Minimal acceleration requirements for “time travel” in Gédel space-time
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It is demonstrated that the total integrated acceleration of any closed timelike curve in Godel
space-time must be at least In(2 + +/5). This answers a question posed by Geroch.

I. INTRODUCTION

In Godel space-time, even though there exist closed
timelike curves, there do not exist any closed timelike geo-
desics.! Thus any “time traveler” who would return to an
“‘earlier” point on his own world line must undergo some
acceleration, sometime during the trip. The question arises
whether there is some minimal amount that is needed.

Let ¥ be a closed timelike curve.” We take its fotal (inte-
grated ) acceleration to be

TA(y} = fa ds,

Y

where s is elapsed proper time along ¥, and a is the magni-
tude of its acceleration. [Thus, if we let £ " be the unit tangent
to ¥ and let a"=£™V,&" be its acceleration, then
a=(—a"a,)"’%] Our question is this. Does there exist
some number £ > 0 such that TA{y)>k forall closed timelike
curves yin Godel space-time? [Notice that TA(y) is invariant
under rescaling of the space-time metric. It does not depend
on our choice of units for space-time length.]

The simplest closed timelike curves in Gddel space-
time (“Godel circles”) exhibit enormous total acceleration.
(See Sec. IT below.) But it is just possible that a would-be
economical “time traveler” can make do with arbitrarily
small quantities of total acceleration by properly choosing
his navigational strategy. (For example, he might try using
large bursts of acceleration for ultrashort periods of proper
time, rather than sustaining acceleration over the entire trip.
And he might try wandering over large regions of the space-
time manifold, rather than staying close to home:)

Chakrabarti, Geroch, and Liang* have shown that this
possibility can be ruled out if the “time traveler” is required
to start out at rest relative to the major, field producing, mass
points of the Gddel universe. In effect they show that “time
travel” is not possible at all unless, during at least part of the
trip, high relative speed is achieved. If one is starting from a
state of relative rest, this is impossible without the accumula-
tion of considerable total acceleration. Their argument es-
tablishes that TA(y)>4ln 2 for all closed timelike curves y in
the restricted class.

We show below in Sec. IV that this bound holds (and
can be raised) even if the “time traveler” is allowed arbitrar-
ily large initial relative speed. Thus, TA{»)>In(2 + y5)for all
closed timelike curves in Godel space-time [In(2 + /5) is
approximately 1.44]. This bound can probably be raised still
further, but it is not clear by how much. In any case, the
answer to our question above is certainly positive.
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Il. PRELIMINARIES

In this section we list several basic features of Gédel
space-time that will be needed later, and then compute the
total acceleration for a special class of closed timelike curves.

We start with the following characterization of Gédel
space-time (M, g,,.,,). Here, M is the manifold R 4, and g,,,,, is
such that for some point (and hence, by homogeneity, any
point) p in M, there is a global adapted (cylindrical) coordi-
nate system ¢, r, @, y in which ¢ (p) = rp) = y(p) = 0 and

&mn =Vt J(V,1) = (V. 7)(V,.7) — (V. 3)(V,.p)
+ (sh*r —sh* 7)(V,.@)(V.¢)

+ 2"/i Sh2 r(v(m 2 )(vn) t )‘

(We shall use sh 7 and ch 7, respectively, to abbreviate sinh »
and coshr.) Here — 0 <f< o0, — w0 <y< e, 0<r< w0,
and 0<@< 27 with ¢ = 0 identified with ¢ = 2.

Clearly (3 /3t )" is a timelike Killing field of unit length.
It represents the four-velocity of the major, field-producing,
mass points of the universe, and determines a temporal ori-
entation. The integral curves of (3 /3t )", characterized by
constant values for 7, @, and y , will be called matter lines.

Here, (3 /d@)" is a rotational Killing field with squared
norm (sh* 7 — sh? 7). It will play an essential role in our argu-
ment. The (closed) integral curves of (3 /)", characterized
by constant values for ¢, 7, and y, will be called Gode! circles.

Given any two points p and g in M, we take the (radial )
distance from p to q to be the r-coordinate value of ¢ in any
cylindrical coordinate system (of the sort above) adapted to
p- This distance function is symmetric, and induces a natural
geometric structure on all # = const, y = const submanifolds
of Gaodel space-time. Indeed, the following is true.

(1) Under the radial distance function every ¢ = const,
y = const submanifold is a model for the axioms of hyperbo-
lic (i.e., Lobatchevskian) plane geometry.’

Given a point p, we take the critical cylinder associated
with p to be the set of all points whose radial distance from p
is less than 7. = In(1 + 2). Since sh 7, = 1, and the squared
norm of (3 /3¢)" is (sh* r — sh? ), (2) follows immediately.

(2) Godel circles with radius r =r, are closed null
curves. Those with radius » > r, are closed timelike curves.
Thus there exist closed timelike curves fully contained in any
arbitrarily small radial expansion of a critical cylinder. But
the expansion is essential.

(3) There are no closed timelike curves contained within
any critical cylinder. Indeed, within a critical cylinder tis a
universal time function (i.e., it increases along all future-di-
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rected timelike curves),® and so the cylinder considered as a
space-time in its own right is stably causal.

(4) All timelike geodesics through a point p are confined
to the critical cylinder associated with p. [Hence, by (3), there
are no closed timelike geodesics.]

There is an easy proof of this statement which does not
require a prior characterization of all geodesics in Godel
space-time. Since the argument will help to motivate our
own proof in Sec. III, we present it here in detail.

Consider any timelike geodesic ¥ passing through p. Let
£ " be its unit tangent, and let the function E, be defined by

d
r.-e(2)
® § a? n
= (sh* — sh? )£ "V, @) + V2 sh> HE "V, 2).
Here, E, must be constant along y since

n ngem a n a m __
£.E, =66 (30) +67(5) vsm=o
[The first term vanishes because (3 /d¢g)" is a Killing field,;
the second because ¥ is a geodesic.] Its constant value must
be O since y passes through p.’

Now suppose that ¥ escapes from the critical cylinder
associated with p. Let ¢ be the point where it reaches the
critical radius .. Then at g we haveshr = 1and E, = 0. So
&"V,t=0. But £" is of unit length. So at all points

1 =§n§" = (gnvnt)Z - (é—nvnr)z - (§"vny)2

+ (sh* r — sh? 7)€"V, @ )

+ 22 sh* HE ™V, @ JE ™V ).
Hence at g

1= — (") = E"V,0P,
which is impossible. |

Now we do a simple calculation so as to have a numeri-
cal value for total acceleration in at least one case.

Lemma 1: A Godel circle y with radius 7> r, has total
acceleration

7 sh 2r(2 sh? r — 1)/(sh* r — sh? 7)!/2,

Proof: The unit tangent to the circle is £ " = f(3d/d¢ )",
where f = (sh*r — sh? )~ /2, Clearly £ "V, f = 0. The accel-
eration vector a,, is given by

o (ZTnE) - ()

2
= —sz—v,, (sh* 7 — sh? )

_f2
= ——sh 212 sh” r — 1)V, .

(For the second equality we have used the fact that (9 /dg)” is
a Killing field.) Hence

a=(— a"a")lll —_ (f‘2/2)sh 2r2shr — 1).
Therefore

. 27
TA(y) =fads=f af“d<p=_2La,
14 Y f
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and our claim follows. (In the second equality we have used
dé /ds=£"V,6=f) u

Notice that TA(y) blows up as 7« and r—r,. A mini-
mal value for total acceleration is reached when r satisfies
sh? 7 = (1 4 /3)/2. It comes out to 27(9 + 6y/3)!/2, which is
approximately 27.67.

11l. AN INEQUALITY

We know from our proof of statement (4) above that the
function E, (as determined relative to any cylindrical coor-
dinate system) cannot increase along a timelike curve if the
curve is a geodesic. A key idea in our proof is that when E,
does increase, its magnitude of increase can be used to moni-
tor the accumulation of total acceleration along the curve.

We start with a quite general inequality.*

Lemma 2: Let A™ be a Killing field, not necessarily
timelike, in a space-time (M, g,,,,). Let ¥ be an arbitrary time-
like curve in (M, g,,,) with tangent £", and let E=£™4,,.
Then

|E"V,E|<a[E*—A"4,, ] 1z,

Proof: Direct computation shows

E§'V,E=E"6"V, A, +E"A, V8"
=A,a"=h,,A"a",

whereh,.,, =g,., — &£, is the (negative semidefinite) “spa-
tial metric” which projects g,,,, orthogonal to £ ™. Hence, by

the Schwarz inequality (applied to — 4,,,,),
§"V.E| =] —h,,A"a"]
(= hppa™a) ' — h,,, A" A"
=a[E*— A", )"~ |

We are interested in the case where (M, g,,..) is Gédel space-‘
time, 4 " is (3 /dg)", and E is E,,. So the inequality comes to

|£"V,E,|<a[E} — (sh*r —sh® )] "2

There are two subcases to consider. If r>r,, then
(sh* r — sh? ) > 0 and the square root term is dominated by

VEZ. If 0<r<r,, then (sh* r — sh? /<0 and the term as-

sumes a minimal (negative) value of — } when sh r = 1/42.
So in both cases we have

167V, Ep|<a[EG + 1]

This is the inequality we shall exploit.

Lemma 3: Let y be an arbitrary timelike curve in Godel
space-time passing through the point p. Let the rotational
Killing field (3 /)" be centered at p, and let g be any point
on y. Then

TA(Y)>In[2E,(g) + (4E ] (9) + 1)'/?].
Proof: Just integrate

|67V, E, |

| dE
TAW)> _—_ds>f __ 9,
o LEG+41Y2 7 Oy [EG +4]'

=In[2E,(q) + 4EZ(q) + 1)'*].
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IV. THE THEOREM

Now we concentrate attention on closed timelike curves
in Gddel space-time. Given any one such 3, and any two
points p and ¢ on y, there is a well-defined (radial) distance
between p and g. Let the diameter of y be the maximal value
of this distance as p and ¢ range over y. The second key idea
in our proof is the demonstration that this diameter cannot
be arbitrarily small. Here we invoke statement (3) from Sec.
II. We show that if the diameter were less than some minimal
value, then the entire curve would have to fall within some
critical cylinder; and that is impossible. The only slightly
delicate point is that in computing that minimal value we
cannot fall back on Euclidean plane geometry. The radial
distance function is hyperbolic, not Euclidean.

Lemma 4: Let y be a closed timelike curve in Gddel
space-time with diameter D. Then ch D>(1 + /5)/2.

Proof: We are really interested not so much in ¥ itself,
but rather its (possibly self-intersecting) projection in some
t = const, y = const submanifold of Godel space-time. Let
7’ be this projection and let p and ¢ be points on ¢’ which are
maximally distant from one another. [Sod (p,q) = D, whered
is our distance function.] Further let s be the midpoint of the
line segment connecting p and ¢q. We show that . if
ch D <(1 ++/5)/2, then ¥ is fully contained in the (open)
disk of radius r, centered at s. It will follow that y itself is
contained in the critical cylinder which has this disk as its
projection, and we shall be done. (See Fig. 1.)

Let u be any point on . Then d (p,u)<D and d (q,u)<D.
The angles .x psu and & gsu cannot both be acute. Without
loss of generality assume the former is not. By the counter-
part to the “law of cosines” which holds in hyperbolic plane
geometry® we have

chd (p,u)] = chld (p,s)]chd (s,u)]
— sh[d (p,s)]sh[d (s,u)Jcos s psu.
Since cos xpsu<0 it follows that

ch[d(s,u)]<0h[d(p’u)] ch D _ \/fcth/z'
chld(ps)] chD/2  [chD+1]
But now if ch D < (1 + /5)/2, then ch[d (s,u)] <2 and we
may conclude that d (s,u) <r,.° [ |

Our proposition is a simple consequence of Lemmas 3
and 4. All we need is the fact that given any two timelike
vectors A ™, u™ at a point (in any space-time), ¥"u,,
>(/{ '"/lm)l/z(,lt’"/tm)llz.

Proposition.: Let ¥ be a closed timelike curve in Godel
space-time. Then

FIG. 1. Figure for Lemma 4.
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TA®)>In(2 + 5).

Proof: Let p and ¢ be any two points on ¥ which are
maximally distant from one another. Consider a cylindrical
coordinate system adapted to p. By Lemma 4 the r coordi-
nate of g satisfies ch 7>(1 + /5)/2. Hence (sh*r — sh? 7)!/2
>1, and ¢ falls outside the critical cylinder centered at p.
Since (d /dg)" is timelike at g, it must be the case at that point
that

a a n a 172
£, =¢(5). 2 ) ).
»=5 dp/n W\dp/ \dp/.

= (sh*r —sh? 7)"/2>1.

Our claim now follows from Lemma 3. ]

It is important that the point p in our proof need not be
the one point on ¥ where there is a kink (if there is one at all).?
Even if it is not, at least one of the connecting segments of y
between p and ¢ must be smooth, and Lemma 3 can be ap-
plied to that one. If ¥ is smooth everywhere, then the argu-
ment can be applied fwice, once on each segment, and the
lower bound on TA(y) can be raised by another factor of 2.

We can get some sense for magnitudes of total accelera-
tion by considering another inequality* involving “fuel con-
sumption.” Suppose a point particle “rocket ship” traverses
a timelike curve y. Suppose its (rest) mass at any point is .
Then & "V,m<0 (since the rocket uses up fuel during the
trip). Let J " be the energy momentum of the rocket’s ex-
haust. Assuming that the rocket is suitably isolated, J " must
balance precisely the rate at which the rocket itself loses
energy momentum. So

J'= £V, mE" = — [EEN,m) + ma"].
Now J " must be causal, i.e., J"J, >0. Therefore,
(£°V,m)> — m*a*>0.
Since (£7V,m)<0 it follows that
a< — &%V, (In m).
If m; and m; are, respectively, the initial and final mass of
the rocket, then (by integration)
TA({y)<In(m,/m,).

This is the inequality we were looking for. It gives us a lower
bound on that percent of the rocket’s initial mass which must
be in the form of fuel. Since m, — m, is the fuel expended

during the trip, we have
m P m 73 1 1
T TAn

Percent of initial mass as fuel
m

If TA(y) =In(2 ++/5) then the percent must already be
greater than 76%. If TA(y) = 2m(9 + 6y/3)"/? (recall our cal-
culation for Godel circles), then the percent cannot differ
from 100% by more than 2 X 102,

We close by mentioning explicitly several questions
which our discussion leaves open.

(a) Is there any closed timelike curve in Godel space-
time with total acceleration less than 27(9 + 6y/3)'/2?

If the answer is yes, then we have the following ques-
tions.

(b) What is the greatest lower bound of TA(y) as ¥
ranges over all closed timelike curves?
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(c) Is that lower bound realized?
{d) What do the curves look like which realize or ap-
proach the bound?
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Let A, =g,,, — (0/01),,(3/3t), be the (negative semidefinite) metric
which results from projecting g,, orthogonal to (3/dt)™. Since
(@/8t),, =Vt + 2 sh? rV, @, we have

- hmn = (vm r)(vn ") + AShz zr(vmw )(vn¢ )'

Let S be any ¢ = const, y = const submanifold, and construe — 4,,, as a
(positive definite) metric on S. It suffices for us to show that (S, — 4,,,)isa
complete Riemannian manifold of constant negative curvature. (The value
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of curvature is — 1.} There are various ways to do this. One is the follow-
ing. Consider new coordinates on S defined by
xy=Jch2r, x,=4sh2rcos@, x,=ish2rsing.

For all » and ¢ we have x,>0 and x} — x2 — x} = §. Furthermore, in
these coordinates the metric assumes the form

=R = = (VX1 }(VoX1) + (V0 X5)(V,%5) + (V,, %50V, x5).

Therefore, (S, — A,,,) is isometric to the upper half of a two-sheeted hy-
perboloid of radius § in R %, with respect to the metric induced on the
latter by a background flat metric of Lorentz signature. It is a standard
result that this hyperboloid (under the induced metric) is a complete Rie-
mannian manifold of constant curvature — 1. [See, for example, J. Wolf,
Spaces of Constant Curvature (Publish or Perish, Boston, 1974), Chap. 2.]
It must be shown that V,, ¢ is timelike and future directed within a critical
cylinder. That is easy. The inverse to g,,, is given by

g = m [ — (sh* r — sh? r)(%)m(%)"
— (sh*r +sh? r)(%)"'( % )"
— (sh* 7 + sh? r)(aiy)m(g;)" _ (%)'"(%)n
+ 22sh? ,(%)‘M( % ))]
and hence

(V..t V") = (1 — sh® /(1 + sh® ).

Soclearly V¢ is timelike if and only if 7 < .. Also, V,# is future directed
within the cylinder since (3 /3¢ \'(V,¢) = 1.
"The angular coordinate ¢ is not defined at p, but that does not matter. The
vector (@ /dg)" goes to the zero vector as p is approached, and E, goestoO.
¥See almost any book on non-Euclidean geometry; e.g., W. T. Fishback,
Projective and Euclidean Geometry (Wiley, New York, 1969), p. 257.

°0f course the value {1 + v/5)/2 was obtained by working this computation
backwards.
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