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Introductory note to *1949b

This item is the slightly edited text of a lecture that Godel presented
at the Institute for Advanced Study on 7 May 1949. It has been prepared
from a handwritten manuscript (in English) in the Godel Nachlass.

1. Introductory remarks

In his lecture, Godel exhibits and discusses the properties of his new
exact solution to Einstein’s equation. The solution represents a possible
universe, compatible with the constraints of relativity theory, in which
aggregate matter (on a cosmological scale) is in a state of uniform, rigid
rotation. Godel’s presentation here covers much the same ground as does
the published account (1949) that appeared two months later. But the
tone throughout is more relaxed and expansive, and there are a number
of specific additions. They include the following:

(a) At the very beginning of the lecture, Godel exhibits a Newtonian
cosmological model in which, as in his own model, aggregate mat-
ter is in a state of uniform rigid rotation. In so doing, he par-
tially anticipates later work by Heckmann and Schiicking (1955)
on Newtonian analogues of Godel space-time. (See also Lathrop
and Teglas 1978.)

(b) He discusses what it can mean to say that the universe in its
entirety is rotating and notes the incompatibility of general rela-
tivity with (at least some versions of) “Mach’s principle”.

(c) He explains a generic connection in general relativity between
rotation and temporal structure, and notes that it was this con-
nection that first led him to look for “rotating solutions”.

(d) Godel gives an account of what he calls the “geometric meaning”
of his solution that is perhaps more accessible, because less com-
pressed, than the version in 1949. (For an elegant redescription

~ see Chakrabarti, Geroch, and Liang 1983.)

(e) He makes several remarks that help one visualize the configura-
tion of light-cones in Godel space-time and visualize its time-like
and null geodesics. (As represented in a standard space-time di-
agram, the latter are helices of bounded radius that cyclically
intersect the [vertical] worldlines of the major mass points. Thus
free particles and light rays exhibit a kind of boomerang effect.
See Kundt 1956, Chandrasekhar and Wright 1961, and Lathrop
and Teglas 1978.)
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(f) He asserts in passing the existence of yet other solutions to Ein-
stein’s equation representing possible universes in which (i) aggre-
gate matter is rotating, but no closed timelike curves are present;
(ii) aggregate matter is expanding as well as rotating. (Godel
sketches an existence proof in 1952, but he does not exhibit any
solutions explicitly.)

Godel’s remarks (c) concerning how he first came to look for “rotat-
ing solutions” are of particular biographical interest. He makes clear
that his technical investigations were driven, at least initially, by an-
tecedent philosophical interests. In what follows, I'll make a number
of non-technical explanatory remarks about the generic connection be-
tween rotation and temporal structure that is at issue here, and then
add a few details to Godel’s account (d) of the “geometrical meaning”
of his solution.

2. Cosmic rotation and “objective” time

Gaodel came to look for solutions to Einstein’s equation representing
rotating universes in the course of trying to bolster an argument that
relativity theory supports a particular conception of time, one that he
identified with Kant and certain species of “idealist philosophy”. It is
that argument, in its fully bolstered form, that one finds in 1949a.

What links Kant and relativistic physics, according to Godel, is a
common denial of the “objective existence of ... time in the Newtonian
sense”. In the case of relativistic physics, of course, denial is supposed
to follow from the relativity of simultaneity (and of temporal relations
more generally). But Gédel himself raises a possible difficulty with this
position.

To be sure, relativity theory teaches us that it does not make sense
to speak of simultaneity until one relativizes consideration to particular
individuals. (It would be more appropriate to speak of relativization to
time-like curves or worldlines. It is not essential that they be “traversed”
by conscious agents, or any objects for that matter.) But in the context
of cosmology, at least, one is given at the outset a distinguished class of
worldlines, namely, those of the major mass points of the universe (stars
or galaxies). And so it is natural to understand all attributions of tem-
poral structure as relativized to that class. This is in fact done all the
time. It is done, for example, by cosmologists when they talk about the
“first three minutes” of the universe. In this context, therefore, one does
recover an “objective”, in the sense of uniquely distinguished, temporal
structure.

Godel’s search for “rotating solutions” was prompted by a desire to
counter this objection. It turns out that in relativity theory it is a
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highly contingent matter whether one can talk about simultaneity in any
natural sense even after relativizing consideration to a particular family
of worldlines. Godel apparently understood this early on, and undertook
to find a cosmological model, unlike all others previously discovered, in
which the worldlines of the major mass points would not support a nat-
ural notion of relative simultaneity. But this was tantamount to looking
for a rotating universe, because, and this is the crucial point, in a cos-
mological model, non-rotation of the major mass points is precisely the
necessary and sufficient condition for there to exist a natural notion of
simultaneity relative to their worldlines. This is the generic connection
between rotation and temporal structure that Godel discusses in his lec-
ture.

What does one mean by a “natural” notion of relative simultane-
ity? Consider a congruence of worldlines, and a spatial slice (ie., a
three-dimensional space-like hypersurface) that intersects the congru-
ence. Standardly, at least, one construes the latter as a “simultaneity
slice” relative to the former if and only if the slice is everywhere or-
thogonal to the individual worldlines of the congruence (with respect to
the background space-time metric). This identification’ ‘of relative simul-
taneity with orthogonality is taken for granted in standard presentations
of “special relativity” and in discussions of cosmology. Moreover, one
can easily show that the identification is forced if one requires of any
candidate notion of relative simultaneity that 1t respect certain weak
symmetry conditions.

In any case, this is the identification Gidel has in mind when he
speaks of “a very natural definition of simultaneity independent of coor-
dinates”. And the italicized assertion above can be captured, more pre-
cisely, this way: in a cosmological model, the congruence of worldlines
of the major mass points is twist-free (i.e., has everywhere vanishing ro-
tation) if and only if the congruence admits an orthogonal foliation (i.e.,
if there exists a one-parameter family of slices everywhere orthogonal to
the worldlines).

The assertion is a special case of Frobenius’ theorem. (See Wald 1984,
page 434.) One can make it at least intuitively plausible by considering
an analogue. Think about an ordinary rope. In its natural twisted state,
the rope cannot be sliced in such a way that the slice is orthogonal to all
fibers. But if the rope is first untwisted, such a slicing is possible. Thus
orthogonal sliceability is equivalent to fiber untwistedness. The assertion
above merely extends this intuitive equivalence to the four-dimensional
“space-time ropes” (i.e., congruences of worldlines) determined by the
major mass points of the universe.

By finding the first cosmological model in relativity theory in which
the major mass points are in a state of rotation, Gidel found the first one
in which there is no natural, distinguished notion of temporal structure,
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not even one determined by relativization to the worldlines of the major
mass points. He could make no claim that our universe, in fact, has this
property. But he could hold that out as a possibility; our universe just
might exhibit some very small net rotation. And even if it does not, he
could claim that, at least so far as relativity theory is concerned, it is
an entirely accidental matter that it does not.

3. The “geometrical meaning” of Godel space-time

Godel’s account of the “geometrical meaning” of his solution is not
so terse as that in 1949, but it does still leave out many details. Here
we add just a few, and make explicit the connection between Gddel’s
abstract characterization of his metric and his two representations in-
volving particular coordinate systems.

First, consider the coordinate-free characterization. Quite generally, a
relativistic space-time may be taken to be a structure (M, g;x), where M
is a connected, smooth, four-dimensional manifold, and g; is a smooth
semi-Riemannian metric on M of signature (+, —, —, —). In Godel space-
time M is R%, and (M, 1) can be decomposed as a metric product of R
(with its usual positive definite metric) and a structure (R3, h;), where
h;i has signature (+,—,—). Any discussion of the “geometrical mean-
ing” of Gddel’s solution concerns the latter. The metric h;x is of form

hik = ki + tits

where

1. h%, is a complete metric on R? of signature (+, —, —) and constant
positive curvature; and

2. t* = bkt is a unit time-like Killing field with respect to h/,.
(In Godel’s presentation of his metric, he carries a free scale parameter a.
The corresponding constant curvature of k{, comes out to be (1/4a2).)

The transition from A, to hy is what Gédel describes as “stretching
the metric in the ratio +/2 in a direction of Clifford parallels”. The “Clif-
ford parallels” here are the integral curves of the Killing field ¢'. Notice
that (i) ki, and hi agree in their determinations of whether vectors are
orthogonal to t'; (ii) they agree in the squared lengths they assign to
vectors orthogonal to ¢'; and (iii) whereas ¢t* has length 1 with respect
to hl,, it has length v/2 with respect to hi.

We can easily recover this abstract characterization of the Gédel met-
ric starting from either of the two coordinate-dependent expressions he
exhibits in the lecture. Consider the first:

@®ldz? — dz? + (1/2)e** dz? — dad + 2e* dzodzy)

e ey g ] g g L gty ot wte oy
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Here the coordinates Zg, ..., z3 range over all of R. We arrive at the
structure (R3, hy) simply by dropping the term —dz3} and restricting
the reduced metric to any hyperplane of constant z3 value. This reduced
metric can be cast in the form

02[(1/2)d$g + e d:tod.‘l?z - d:tg] + (02/2)[(1370 + e“dxg]z.
Let k!, be the metric determined by the first term
a®[(1/2)dz} + e dzodz; — dzi),

and let ¢; be the field (a/ v2)(dxo + €*'dz;) determined by the second.
Then the inverse h"** is given by

1Y ez (9_) fgeen (2 o) (0)1
(E:?) [_26 Bccg +de 0.120 OIQ A(j.('l ’

and ¢ = h'*t, comes out to be, simply, (v2/a)(8/8zo). Clearly ¢' has
unit length with respect to k!, and is a Killing field with respect to that
metric (since zo does not appear in any of the coefficients of hiy).

It remains to show that (R3, k), ) is a complete manifold with constant
curvature (1/4a2). To do so we define a map

(zo, T1, 23) > (uo, U1, U2, u3)
from R3 into R* by setting
uo = 2alcos(z0/2v2) cosh(z /2) — (1/2v2)x; €¥/% sin(z0/2V2)]
u; = 2alsin(zo/2V/2) cosh(z1/2) + (1/2v2)z2 /2 cos(z0/2V'2)]
u3 = 2a[- sin(zo/2V2) sinh(z,/2) + (1/2V2)z2 /2 cos(z0/2V2)]
us = 2alcos(zo/2V3) sinh(z1/2) + (1/2V2)z2 €2 sin(z0/2V2)].
A straightforward computation determines that

wf +u] -} - uj =4a
du? + du} — du} — du3 = a?((1/2)dz3 + e**dzodz; — dz3)
at every point in the image of the map. Moreover, one can veri.fy that
the map is a diffeomorphism if one restricts zo, say, to the interval

[-m, 7). Indeed, under that restriction one can explicitly solve for the =
coordinates in terms of the u coordinates; e.g.,

zo = 2v/2 arccos{(uo + us)/((uo + us)? + (ua = w)*)/7).
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Thus we see that (R?, A}, ) is an isometric covering space of the manifold
H={(u, ,u3)eR|ud+u}-ul-ul=4d%

with respect to the metric induced on H by the background flat metric
on R* of signature (+,+,—,-). It is a standard result that the latter is
a complete manifold of constant curvatire (1/4a?). (See, for example,
O’Neill 1983, page 113.)

We can execute very much the same computational argument starting
from Godel’s second representation of his metric (in cylindrical coordi-
nates):

4a?[dt? — dr® — dy® + (sh®r — shr)d¢? + 2v2 sh®r dyp dt}.

If we drop the term —dy? and regroup the other terms, we arrive at the
expression

4a%[(1/2)dt? — dr?® — sinh®r dip® + V2 sinh?r dy dt]
+ 2a%[dt + V2 sinh®r di)?

for hyx. If we use the two terms to define, respectively, the metric k], and
the field ¢;, then again a simple computation establishes that t* = h'*t;
is a unit time-like Killing field with respect to hj,. (It comes out to
be (1/av/2)(8/8t).) To map (R?, k,) isometrically onto H (with its in-

duced metric) we set

up = 2a cos(t/v2) cosh r
u; = 2a sin(t/v/2) cosh r
up = 2a sinh 7 sin(p — (¢/V2))
u3 = 2a sinhr cos(yp — (¢/V2)).

To gain further insight into the two displayed maps of (R, h/,) onto H,
we can recast them, making use of the fact that H has a natural Lie
group structure.

Consider the four-dimensional (associative, distributive) algebra of
what Gédel calls the “hyperbolic quaternions”. Its elements can be con-
strued as vectors

@ = wo + wiji + w2 + wajs

with real coefficients wg, ,ws;. Multiplication is defined by the re-
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quirement that 1 serve as an identity element, and by the table

=-1 j2=j2=1
Nrj2=-J2-J1=]3
J2:J3=-=J3'J2=-h
J3-Jv=—J1-J3 =J2

If we define the conjugate and norm of ¢ by setting

P = wp — w11 — wajz — wajs
norm(y) = -3 = w + wl — ud —

then it follows easily that for all ¢ and 9, ¢ - ¥ = ¥ - ¢ and hence
norm(yp - ¥) = norm(y) norm(y).

To simplify notation now, let us identify the hyperbolic quaternion
wo + w1 Ji1 + waj2 + w3j3 with the corresponding element (wy, ..., ws) in
R®. Then H is identified with the set of hyperbolic quaternions of norm
442, and it acquires a natural Lie group structure: given two elements u
and v’ in H, we simply take their product to be (1/4a?)u-v'. The norm-
product condition above guarantees that the operation is well-defined.
The element u has % for an inverse.
Notice that for all real numbers zp, 71, T2, the quadruples

(cos zo,sin z4,0,0)
(coshzl,0,0,sinhzl)
(1, T2, %2, 0)

all have norm one. So their dot product has norm 1. Straightforward
multiplication establishes that the associated map

(o, T1,2) — 2a(cos zo, sin Zg, 0,0) - (cosh z3,0,0,sinh z,) - (1, 22,232,0)

is essentially just the first of the two maps from (R?,h/;) onto H dis-
played above. This is where it “comes from”. [To match Godel’s coeffi-
cients exactly one has to take the dot product of

(cos(z0/2V'2), sin(zo/2v2),0,0)
(COSh($1/2), 0, 0, Sinh($1/2))
(1,22/2,22/2,0).)

Notice also that for every fixed element w of norm 1, the map from H
to H defined by

0
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is an isometry. (Maps of this form are norm preserving. Hence the rescaled ¢}
. y ; :
preserve the flat metric on R* and the induced metric on H.) More- ' (working with the ed £)
over, elements of the first type above—(cos z, sin zo, 0, 0)—form a one- Rix  (1/2)hixR = datiti — 2ahs.

parameter group. So the family of maps {¢., }%GR defined by
1 (co8 20, 8inZ0,0,0) - u To cast the right hand side in the desired form
8xpntity + Ahix

one need only set p = a/2nx and A = —2a. Clearly, the construction
works only if the initial constant curvature a is positive (since the grav-
itational constant x and the mass density p are positive), though the
magnitude of a is not constrained.

David B. Malament®

aThis note was written while I was a Fellow at the Center for Advanced Study
in the Behavioral Sciences. 1 am grateful for the financial support provided by the
National Science Foundation (#BN587-00864) and the University of Chicago. Iam
also grateful to Howard Stein for helpful comments on an earlier version.

(t, 7, ¢) > 2a(cos(t/V'2),5in(t/V2),0,0)-
(coshr, 0, sinh r sin ¢, sinh r cos )

- of H.

: Consider again the abstract characterization of Godel's metric. Wh Lectur i universes
o 3 . ! y
sh:)uld one be interested in a metric of this sort in the first place? As cture on rotating ve
Gddel explains, the answer is that one knows “in advance” that it will ( *1 94 9 b)

. provide a solution to Einstein’s equation for the case in which the energy-
- momentum source is a cosmic dust field (or a perfect fluid, if one does

: n:;'temte? allauot:lx at ?fo;:'- zero “oosmol.ogncal. consta.nt”'). One can show, A few years ago, in a note in Nature, Gamow [1946] suggested that the
quite generally, that 1l i, 18 .a.three-d.lmensn-onal metric of constant cur- whole universe might be in a state of uniform rotation and that this rota-
 vaturea (nolt necess&nl).f positive), t' is a unit time-like Killing field with tion might explain the observed rotation of the galactic systems. Indeed, if
respect to hjy, and hiy is of form the primordial matter out of which the galaxies were formed by condensa-

, tion was in a state of rotation, the galaxies themselves will possess a much

hi =y, Btitx, faster rotation. For in consequence of the law of conservation of angular

. . momentum, their angular velocity will increase as the square of the ratio

then the Ricci tensors corresponding to hj, and hix have forms of contraction. Therefore they will exhibit a rotation even in the coordi-

, nate system in which the primordial matter was at rest, that is to say, a

Ry 20hy rotation in the frame of reference defined by the totality of galaxies. In

Ry 2(1 - B)ahly + (20%a + 6Ba)t;ts. exactly the same way, the rotation of the galaxies in its turn can be used to

explain the rotation of the fixed stars and planetary systems and therewith

So if one takes 8 = 1, the latter reduces to Ry = 8atty, or to Rix = essentially all Totations occurring in astronomy. Of course, there arises

dot;ty if one rescales t* to be of unit length with respect to hg. Therefore at once the objection that by this theory the axes of rotation of all astro-



