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IN DEFENSE OF DOGMA:
WHY THERE CANNOT BE A

RELA nvISTIC QUANTUM MECHANICS OF

(LOCALIZABLE) PARTICLES

... although it is not a theorem, it is widely believed that
it is impossible to reconcile quantum mechanics and
relativity, except in the context of a quantum field theory.
A quantum field theory is a theory in which the
fundamental ingredients are fields rather than particles;
the particles are little bundles of energy in the field.
(Weinberg 1987, 78-79; italics added)

IN SOME QUARTERS, AT LEAST, rr COUNTS as the "received view"
that there cannot be a relativistic, quantum mechanical theory of
(localizable) particles. In the attempt to reconcile quantum mechanics
with relativity theory, that is, one is driven to a field theory; all talk
about "particles" has to be understood, at least in principle, as talk
about the properties of, and interactions among, quantized fields. I want
to suggest, today, that it is possible to capture this thesis in a convincing
"no-go theorem". Indeed, it seems to me that various technical results on
the "non-localizability" of particles in (so-called) relativistic quantum
mechanics, going back some thirty years, are best understood as versions
of such a theorem.l

I am well aware that not everyone agrees with this interpretation.
Gordon Fleming, who has been centrally involved in this work himself,
has an altogether different view of its significance (if I understand him
correctly). I shall welcome any comments Gordon may have in the dis-
cussion period. But it is not my purpose to have a debate, or try to force
agreement. My remarks are going to be largely expository in character,

tI wish to thank Rob Qifton. William Demopou1~, Gordon Fleming, Michael
Friedman, Geoffrey Hellman. Simon Saunders, and Abner Shimony fOr helpful
axnments.

lSee Flemi~ (1965a,b), ~~erfeldt (1974, 1985, 1989), Hegerfeldt and
Rui~rs (1980), Jancewicz (1977), Perez and Wilde (1977), Ruijsenaars (1981),
Schlieder (1971), and Skagerstam (1976).
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and are intended primarily for persons who are not already familiar
with the technical results I have in mind.

The particular theorem I am going to discuss is just a bit different in
surface formulation than ones I have seen in the literature. The differ-
ence is unimportant when it comes to proving the theorem. Standard ar-
guments carry over intact. But it may serve to clarify just how high is
the cost of trying to hold on to a particle theory. I want to use the theo-
rem to argue that in attempting to do so (i.e., hold on to a particle
theory), one commits oneself to the view that the act of performing a
particle detection experiment here can statistically influence the
outcome of such an experiment there, where "here" and "there" are
spacelike related. Of course, this sort of "act-outcome" correlation is to
be distinguished from the sort that involves only the outcomes of the
two experiments.

I have always taken for granted that relativity theory rules out
"act-outcome" correlations across spacelike intervals. For that reason, it
seems to me that the result does bear its intended weight as a "no-go
theorem"; it does show that there is no acceptable middle ground be-
tween ordinary, non-relativistic quantum (particle) mechanics and
relativistic quantum field theory. But I have no inclination to argue if
someone wants to claim, to the contrary, that the existence of such
correlations is compatible with "relativity theory" (properly
understood). I would like to avoid recent controversy concerning the
nature of "causal connection" and "signaling", and concerning just which
sorts of "non-locality" are and are not excluded by the theory.2 W ha t
seems to me most important is that there is an empirical issue at stake
here - whether Mother Nature does allow for act-outcome correlations
across spacelike intervals. The point on which I want to stand is this: to
whatever extent we have evidence that She does not allow such
correlations, we have evidence that quantum mechanical phenomena
must ultimately be given a field-theoretic interpretation.

Let me now turn to the theorem itself. One has a choice in discussions
of particle localization. One can consider either localization in regions
of spacetime or in regions of "space", as determined relative to some
free-falling observer. I am going to opt for the latter because doing so
sharpens a comparison of the classical and relativistic contexts.

Let M be Minkowski spacetime, and let 8 be a family of parallel
spacelike hyperplanes that cover M. (We will be working throughout

~ Maudlin (1994), and references therein.
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with this one family. "Hyperplane dependence", such as Gordon
Fleming discusses, will play no role here whatsoever.) Let us take a spa-
tial set to be any bounded open set within some particular hyperplane in
8. (As will become clear, nothing would be lost if we restricted attention
to bounded open sets that are, in any desired sense, sufficiently "large".
The problem we will be discussing is not that of trying to localize parti-
cles in small regions of space, but rather in any bounded regions whatso-
ever, no matter how large.)

Any candidate for a relativistic, quantum mechanical representa-
tion of a single (localizable) particle, presumably, will include the fol-
lowing elements3:

(a) a Hilbert space H (the rays of which represent the
pure states of the particle);

(b) an assignment to each spatial set ~ of a projection
operator P A on~

(c) a strongly continuous, unitary representation a H U(a)
in H of the translation group in M.

We think of P A as representing the "proposition" or "eventuality" that
the particle in question would be found in A. if a particular detection ex-
periment were performed. We will be interested in four constraints on
the structure

(H, A. H PAl a H U(a».

(1) Translation Covariance Condition: For all vectors a in
M, and all spatial sets A,

Ph.+ a = U(a) Ph. U(-a)

(where A. + a is the set that results from translating A.
by the vector a).

3These elements will also be included in a classical representation. The
difference is this. In the relativistic context, the theory determines a representation
~ f-+ P A for every family of ~el spacelike hyperplanes; we are simply choosing
one WIth which to work. In the classical context, there is only one family to
consider. «c), as formulated, makes reference to Minkowski spacetime, but only to
its structure as an affine space. So it too is neutral as between the classical and
relativistic contexts.)
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(2) Energy Condition: For all future directed, unit timelike
vectors a in M, if H(a) is the unique self-adjoint
("Hamiltonian") operator satisfying

U(ta) = e -itH(a),

the spectrum of H(a) is bounded below, i.e., there exists
a real number k(a) such that (cp, H(a) cp) ~ k(a) for all
unit vectors cp in the domain of H(a).

(3) Localizability Condition: If Al and ~ are disjoint
spatial sets in a single (common) hyperplane,

PAl PAz = PAz PAi = 0

(where 0 is the zero operator on H).

(4) Locality Condition: If ~1 and Az are spatial sets (not
necessarily in the same hyperplane) that are
spacelike related

PAl PAz = PAz PAl'

I shall comment on these in turn. The "covariance condition" is quite
weak. It is formulated solely in terms of the translation group, rather
than the full Poincare group, and is entirely neutral as between a classi-
cal and a relativistic framework. The condition bears the following in-
terpretation. Let A and a be given. P A represents the "proposition" that
the particle would be found in A if a particular detection experiment
were performed. We can imagine conducting that experiment, not at its
original site, but rather at another that is displaced from the first by
the vector a. We understand P A + a to represent the "proposition II that if

this particular displaced detection experiment were performed, the par-
ticle would be found in A + a.

The second condition asserts that the energy of the particle, as de-
termined by any free-falling observer, has a finite ground state. If it
failed, the particle could serve as an infinite energy source (the likes of
which we just do not seem to find in nature). Think about it this way. We
could first tap the particle to run all the lights in Canada for a week. To
be sure, in the process of doing so, we would lower its energy state. Then
we could run all the lights for a second week, and lower the energy state
of the particle still further. And so on. If the particle had no finite
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ground state, this process could continue forever. There would never come
a stage at which we had extracted all available energy.

The "Iocalizability condition" captures the requirement that the
particle cannot be detected in two disjoint spatial sets at a given time (as
determined relative to our background free falling observer).4 Notice
that the condition does not rule out the possibility that the particle can
travel with arbitrarily large finite speed; it only rules out "infinite
speed". This condition too is entirely neutral as between the classical
and relativistic frameworks.

The "locality condition", in contrast, does impose the stamp of
relativity. It is here, by the way, that I have altered slightly the
formulation that one standardly finds in the literature. Let d1 and ~ be
spatial sets that are spacelike related, but do not necessarily belong to
the same hyperplane. Usually it is required that the corresponding
projection operators P 61 and P 6 be orthogonal, i.e., that they satisfy the
condition formulated in (3). T.;e intended interpretation is clear. Since
relativity theory rules out the possibility that the particle travels at
superluminal speed, it should be impossible to detect the particle in two
places, spacelike related to one another. I find this stronger condition
entirely plausible as a constraint on a candidate for a relativistic theory
of a single particle. But it is just not needed. It suffices to require that the
two operators P 61 and P 62 commute. This weaker condition carries the
following interpretation. Perhaps it is possible for the particle to be de-
tected in both places. Still, the probability that it be detected in ~ m~
be statistically independent of whether a detection experiment is per-
formed at d1, and vice versa.s

4It is this condition, in the present context, that captures what is ~tial to a
"particle theory". In contrast to a particle, a "field" is spread out throughout all of
space and so can, in a sense, be foUnd in two (disjoint) places at one time.

S'fhis in~tion is supported by the follow~ simple ~ent that goes
back. at least, to Liiders (1951). lt takes for granted tfiat coI\ditio:nal probabilities
in quantum me:hanics can be computed ~ the so-<alled "Liiders rufe". (In effect.
we are restricting attention to a particular class of idealized, non-disturbing
m~ts.)

The c~ of interest is that in which ~1 and ~z are spatial sets that do not
belong to the same hyperplane. Let us assume that ~1 's hyperplane is earlier than
~ 's, and let us assume that the particle starts out in a state represented by the
demit::Y operator W. H no detection experiment is performed at ~1' the Erobability
that the particle will be detected at ~z is given by tr(wp~>. But the probability of
the later event, conditional on the a~umption that the detection experiment is
pe:rformedat~l (but not conditional on the outcome), is given, instead, oy tr(W'Pt.z>
where

W'= Pt.1 WPt.1 + {l-Pt.JW{l-Pt.J.
W'is a mixture of the two outcome states that could result from the first detection
experiment ("particle detected at ~ 1" and "particle not detected at ~ 1 ") weighted by
their respective probabilities. So the condition in which we are interested, the one
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The theorem can now be formulated as follows.

Proposition: 1£ the structure (H., 8 H U(a), A H PM satisfies
conditions (1)-(4), P A; 0 for all spatial sets A..

We can think about it this way. Any candidate relativistic particle
theory satisfying the four conditions must predict that, no matter what
the state of the particle, the probability of finding it in any spatial set
is O. The conclusion is unacceptable. So the proposition has the force of a
"n<>-go theorem" to the extent that one considers (1) through (4) reason-
able constraints.

II

The proposition is an elementary consequence of the following non-
elementary technical lemma of Borchers (1967). The use I will make of i t
is almost exactly the same as in Jancewicz (1977). So far as I know, the
first person to recognize the relevance of the lemma to questions of "non-
localizability" was Schlieder (1971).

that captures the requirement that the act of performing the first experiment cannot
statistiCally influence the outcome of the second, is:

For all density operators W, tr(WPAz) = tr(W' PAz). (8)

But, as we verify below, (8) is strictly equivalent to the condition that PAl and P~
commute. (Since the latter condition is symmetric in6.t and 6.1, it follows that (8) is
also ~valent to its symmetric counterpart in which the roles of 6.t and 6.1 are
inte~ed.)If PAl and P ~ commute, (8) follows immediately from basic properties of the

trace operator. For any density operator W,
tr(W'PAz) = tr(PAtWPAtPAz) + tr[(I-PAt)W(I-PAJPAz]

= tr(WPAtPAzPA1) + tr[W(I-PAt)PAz(I-PAt)]
= tr(WPAtPAz) + tr[W(I-PA1)PAz] = tr(WPAz).

Conversely, assume that (8) holds. Let. be any unit vector in H, and let W be the
projection operator P£+J whose range is the one-dimensional subspace spanned by
t. Then we f\ave

(t. PAzt) = tr(WPAz) =tr(W' PAz) = tr(WPAIPAzPAt) + tr[W(I-PAJPAz(I-PAt)]

= <t, PAtPAz.PAtt) + (t, (I - P~t)PAz(I - PAt) t).

So if
A = PAt} - PAlPAt}PAl- (I - PAl)PAt}(I - PAt>.

<t, A,) = 0 for all unit vectors t. Since A is self-adjoint, this is only possible if A =
O. Thus,

PAt} = PAlPAt}PAl+ (I-PAl)P~(I-PAl).
Multiplying both sides of the equation by PAl' first on the left, and then on the right,
we have

PAtP~ - PAlP~PAl =P~PAl.
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Lemma: Let V(t) = e - it H be a strongly continuous, one-parameter

group of unitary operators on a Hilbert space whose generator H
has a spectrum bounded from below. Let PI and P2 be two
projection operators such that:

(i) PtP2=O. and

(ii) there is an e > 0 such that for all t, if It! < e,

[PI' V(t) P2 V(-t)] = O.

Then Pl V(t)P2V(-t)=O forallt(andhenceV(t) P2 V(-t) Pl = 0 for

all t).

The proof of the proposition (from the lemma) is as follows.

Assume that conditions (1) - (4) hold, and let A be any spatial set.
We show that PA = O. We can certainly find a vector 8, tangent to the
hyperplane of A, such that (see figure 1)

(a) A and A + a are disjoint, and

(b) for all future directed, unit timelike vectors ai' and all
sufficiently small t (in absolute value), A and A + a + tal are
spacelike related.

It follows from (a) and the localizability condition that

(a, PA PA+a = PA+a PA = 0

It follows from (b), the translation covariance condition, and the local-
ity condition that:

(b') For all future directed, unit timelike vectors al' and all suffi-
ciently small t,

[PA,U(taVPA+aU(-taV] = [PA' PA+a+tal]=O

Now we invoke the lemma (taking V(t) = U(taJ. PI = PAt and Pz = PA +'>
- it is applicable by the energy condition - and conclude that:

(c) For all future directed, unit tirnelike vectors aI' and a lit,
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PI.. U(taJPI.. + a U(-taJ = U(taJPI.. + a U(-taJ PI.. = 0

and therefore

= PA+a+ta PA = O.

1
PA PA+a+t8.

A+(t2+E)a2

A+(t2+t)a2= A+a+tlal

A+(t2-E)a2

82

t

81

4

a

A A+a
Figure 1
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Next, let ~ be any future directed unit tirnelike vector. For all suffi-
ciently large ~ > 0, the set A + ~ ~ is to the tirnelike future of A + 8 (see
figure 1 again). So we can certainly find a particular ~ > 0, and £ > 0,
such that A + (~+t) ~ is to the tirnelike future of A + 8 for all t with It I
< E. Hence, if It I < E, there is a future directed, unit tirnelike vector 81
and a number tl such that

A + (~+t) ~ = A + a + tl 81'

Therefore, by (c), if It I < £,

= P A + (~+ t)az P A = 0PA PA + (~+ t)az

or, equivalently (by the translation covariance condition),

= U(~) PA + ~U(~ PA = 0P A U(~ P A + ~ U(-t82}

If we now invoke the lemma again (taking V(t) = U(taz), PI = P A' and
P 2 = P A + ~~), we may conclude that

PA U(~ PA + tz~U(~) = 0

and therefore (by the translation covariance condition again)

P A U[(t+~ P A U[-(t+W = 0

forallt. Hence (taking t = ~), PA = PAPA = o. .

The University of Chicago
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