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0 bservationaliy

In his paper "Indistinguishable Space-times and the Fundamental
Group" 1 Clark Glymour poses a criterion for the obselVational indistin-
guishability of space-time models and presents two sets of examples from
the subclass of Robertson-Walker models. The underlying idea is quite
intuitive.

In some space-time models studied in relativity theory any particular
obselVer can receive signals from, and hence directly acquire information
about, only a limited region of space-time. This happens, for instance, in a
rapidly expanding universe in which galaxies that might try to signal one
another are actually receding from one another at velocities approaching
that of light. It may turn out in these cases that the information from that
limited region of space-time which anyone obselVer can have access to is
compatible with quite different overall space-time structures. Two space-
times are obselVationally indistinguishable under Glymour's criterion if,
for precisely these reasons, no obselVer in either space-time would have
grounds for deciding which of the two, if either, was his. No observer
would be able to discriminate obselVationally between the two even if he
did nothing but sit and record signals beamed at him from all directions all
day long, even if the signals themselves coded all the spatio-temporal
information that the sender had to offer, and even if the observer lived
eternally.

Glymour is proposing a reason why the spatio-temporal structure of the
universe might be underdetermined by all obselVational data that we
could ever, even just in principle, obtain. Some claims of un-
derdetermination in science are of a very general sort, to the effect that no
body of evidence will ever force a particular scientific hypothesis upon us
NOTE: Most of the ideas in this paper arose in conversation with Robert Geroch and Clark
Glymour. I have not hesitated to incorpol1Jte their many contributions. I am grateful to
both.
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if only we are prepared to make sufficiently sweeping revisions in relevant
theory. Along these lines one might argue, and some have argued, that
we can always ascribe more than one topology to space-time if we are
imaginative in the invocation of phantom effects such as the duplication of
all events at a distance. Such a claim mayor may not be irrefutable. But it
is certainly quite different from the claim that we have a choice in the
ascription of topology even without giving up any of our trustiest theories.
This is the possibility that Glymour is suggesting, if only tentatively. He
makes no argument to the effect that the space-time structure of our
universe, i.e., the real one, is in fact one of a pair of observationally
indistinguishable space-times. The point is rather that if it were an ele-
ment of such a pair, then it would be underdetermined by all observa-
tional evidence. We would then be unable to determine its global struc-
ture even if we adamantly insisted on holding on to our best theories and
exploiting them fully in the attempt.

Rather than comment on the details of Glymours proofs, I want to try to
make the geometric ideas in his paper more perspiroous by considering
several very simple, easily visualized examples of observationally indis-
tinguishable space-times in two and three dimensions. In doing so I shall
establish a few simple results concerning the invariance of global prop-
erties of space-times under the relation of observational indistinguishabil-
ity. I shall also discuss several other relations concerning observational
indistinguishability, some weaker and some stronger. The upshot of my
remarks will be that the cosmologist's predicament is even worse than one
thought at first. Observational underdetermination of one sort or another
is more the rule than the exception.

I

Let me first rehearse a few definitions.2 An n-dimensional space-time
(for n ~ 2) is taken to be a connected, s'mooth, n-dimensional differenti-
able manifold (without boundary), endowed with a smooth, nondegener-
ate pseudo-Riemannian metric of Lorentz signature (+, -, . . . , -).
The metric associates with each point a light cone (in the tangent space at
that point). It is assumed that space-times are temporally oriented, i.e.,
that they are further endowed with a continuous, nonvanishing vector
field which assigns a timelike vector to every point. The vector field
distinguishes a "future lobe" in the light cone at each point.

Given two points x and y, we say y is to the timelike future of x and
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write x < < y if there is a piecewise smooth curve from x to y whose
tangent vector (or vectors) at each point lies inside the future lobe of the
light cone at that point-in short, if there is a future-directed timelike
curoe from x to y. If in the definition tangent vectors are permitted to be
on the boundary as well as in the interior of the light cone, y is said to be
the causal future of x, and we write x < y. In this case the connecting
curve is called a future-directed causal curoe. l11e relation x <.y is usually
interpreted to mean that it is possible for a signal to travel from x to y;
x < < Y is interpreted to mean that it is possible for a heavier than light
particle to make the trip. Associated with each relation is its respective
past and future sets: I-(z) = {y: y < < z}, I+(z) = {y: z < < y}, J-(z) = {y:

y < z}, and J+(z) = {y: z < y}. The 1 sets are open (in the space-time
manifold topology) and are for this reason somewhat easier to work with
than the J sets, which are in general neither open nor closed. The set I-(z)
is called the observational past of z; it consists of those points in space-
time which can possibly send a (siower-than-light) signal to z.

We can associate with each observer his space-time trajectory or cosmic
world-line which is itself, necessarily, a future-directed timelike curve. If
0- is such a world-line, the observational past of 0- is just the union: 1-[0-]
= U {I-(x): x EO-}. l11e idea that an observer live "eternally" is captured

in the condition that his associated world-line befuture-inextendible, i.e.,
that as a curve in the space-time manifold, it be extended as far as possible
into the future. Such curves, by definition, have no "future end point." 3

l11at an observer have lived eternally could be captured, symmetrically,
in the condition that his world-line be past inextendible. But as far as
capacity for observation is concerned, no advantage comes through this
kind of longevity. If x and yare successive points on a world-line, then
x « y and I-(x) C J-(y) by the transitivity of the relation «.

We now have all the components for Glymour's definition of observa-
tional indistinguishability:

Definition: Two space-times M and M' are obseroationaUy indistinguisha-
ble if for every future-directed, future-inextendible, timelike curve o-in
M there is a curve 0-' of the same type in M' such that 1-[0-] and 1-[0-'] are
isometric; and, correspondingly, with the roles ofM and M' inter-

changed.

The condition that 1-[0-] be isometric to 1-[0-'] formalizes the condition
that the portion of M which 0- can possibly see over the course of his
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etemallifetime is, "space-time-wise," identical with that portion of M'
which 0-' can possibly see over the course of his lifetime. The definition is
mathematically well formed since both 1-[0-] and 1-[0-'] are pseudo-
Riemannian manifolds (without boundary) in their own right.

The simplest example of a space-time which admits no observationally
indistinguishable counterpart is Minkowski space-time. Here the obser-
vational past of every future-in extendible timelike curve 0- is the entire
manifold; equivalently, Bnd(I-[o-]) = cb. The set Bnd(I-[o-]), the boundary
of 1-[0-], may be termed the observational horizon of 0- (the expression
"event horizon" is more common).

One need not look far to find a space-time in which aU observers have
observational horizons. The light cones in Minkowski space-time are all
fixed at 45°. Consider the two-dimensional plane in standard t, x coordi-
nates with a metric whose associated light cones, while situated at 45° for
t = 0, rapidly narrow to the vertical as t increases in absolute value. For
example, although others would serve just as well, let the metric beds2 =
dt2 - (cosh2t) dx2. (Recall that cosh t = i,2(et + e-~). Because the cones

collapse, null geodesics (trajectories of light rays) will be confined to a
region of space-time of bounded x-width (see Figure 1). For the particular
metric cited, they will be confined to a region of x-width 1T. Corre-
spondingly, the observational past of every future-inextendible timelike
curve will be confined to a region of x-width 21T.

Null geodesics

-;-~I.>~ ~~--

and (1- (0"])
/

-)(--

'*-1T -.-f ,~ 21T ;:

Figure 1. The covering space of two-dimensional De Sitter space-time, i.e., the t, x
plane with metric ds I = dt2 - (cosh I t) dXI. Light cones narrow rapidly to the vertical

as I t I- 00. Every futltre-extendible timeliJce Cllrve 0' has an observational horizon of
x-width 21T. Two-dimensional De Sitter space-time arises by identifying all points (t,
x + 2n1T) for integers R. By introducing coordinates f = sinh t, x = (cosh t) (cos x), Ii =
(cosh t) (sin x), it assumes the familiar form of a hyperboloid of one sheet -fl + Xl +
iii = 1 in HI with metric dsl = -dP + di,1 + dill.

t
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Now let M be the two-dimensional space-time just described. Let M'
be the result of cutting a vertical strip in M of x-width 21T and identifying
opposite sides. It is clear that M and M' must be observationally indistin-
guishable from one another. Since no observer in either M or M' can see
beyond his 21T horizons, none will be able to determine which of the two,
if either, is his. (Incidentally, M' is the two-dimensional version of De

Sitter space-time.)
This first example exhibits the general features of Glymour's construc-

tion. He considers a subclass of space-times whiro he calls standard.
These, like M and M', are manifolds topologically of form R X V carrying
Robertson- Walker metrics J.y2 = dt2 - R(t)2du2, where du2 is a smooth,

complete Riemannian metric of constant curvature on V and is independ-
ent of t. Within the class he finds space-times R X V which admit nice
families of isometries, and forms new space-times R X V' by taking quo-
tient manifolds under them. The essential requirement on the isometries
is that they move points sufficiently far so that the observational past of
every point is disjoint from the observational pasts of all of its image
points. In the present example V is R, V' is 51, and the isometry in
question is just the translation: (t, x) -+ (t, x + 21T).

All the examples of observationally indistinguishable space-time pairs
which Glymour generatE:.i with this construction are such that either one
is a covering space of the other or they share a common covering space.
But examples can easily be given in which this is not the case. The
building blocks for one are vertical slabs of two types, A and B, both cut
from the plane. In standard t, x coordinates, both may be taken to be the
set {(t, x): 0 < x < 21T}. Slabs A will carry the De Sitter metric from the
first example: J.y2 = dt% - (cosh2 t) dx2. Slabs B will carry the metric J.y2 =
dt2 - (cosh! t) (1 + X(21T - x») dx2. This metric shares the property that its

associated light cones collapse to the vertical as t increases in absolute
value. It approaroes the metric of A smoothly along its borders so that
when the two slabs are glued together (with an appropriate common
boundary line inserted), the resulting double slab carries a smooth met-
ric. The B metric also has an extra wiggle factor inserted which further
narrows and then restores the cones in moving from x = 0 to x = 21T for

any fixed value of t. One could equally well use any other smooth wiggle
factor. The point is simply to distinguish the two slabs metrically.

Now we form space-times M and M' by taking two nonisomorphic -(I)
+ (I) sequences of A and B slabs and gluing them together. One such
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sequence might be . . . ABABBA . . . . Any sequences will do if at
least one token of each slab type occurs in each. The obselVational past of
any obselVer in either M or M' will be restricted to an A slab, a B slab, or
an AB or BA double slab (see Figure 2). In each case, his obselVational
past is compatible with both space-time structures. Hence M and M' are
obselVationally indistinguishable. But by our initial choice of sequences,
they are not isometric. As they stand, M and M' are homeomorphic (i.e.,
they have the same topology, that of the Euclidean plane). But with a
simple variation on the slab theme we could distinguish M and M' topo-
lo.e;ically as well. We would need to distinguish only the component A

and B slabs topologically.
Next I want to consider the condition of "obselVational indistinguisha-

bility after finite time." As Glymour's definition is formulated, space-times
can be obselVationally distinguishable from each other without an ob-
selVer in either one necessarily being able to distinguish between them
at any time during the course of his life. It is sufficient that the composite,
lifelong, integrated knowledge of one obselVer distinguish between them.
A weaker condition of obselVational indistinguishability which Glymour
considers insists that obselVational distinction between space-times be
made within the lifetime of some obselVer.

Definition: Two space-times M and M' are obseroationaUy indistinguisha-
ble after finite time if for every point x in M there is a point x' in M' such
that J-(x) and J-(x') are isometric; and, correspondingly, with the roles of
M and M' are interchanged.

This seems the more natural way to formulate the condition.
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The two notions of obselVational indistinguishability are certainly not
equivalent. Consider, for example, simple two-dimensional Minkowski
space-time and "truncated" Minkowski space-time consisting of that por-
tion of the former below the x-axis. The obselVational pasts of all points in
both space-times are isometric, so the two are certainly obselVationally
indistinguishable after finite time. But they are not obselVationally indis-
tinguishable. As noted above, Minkowski space-time has no obselVa-

tionally indistinguishable counterpart.
There seems to be something rather unsatisfactory about truncated

Minkowski space-time. Perhaps it violates our sense that the universe
should satisfy what Leibniz called the "principle of plenitude." However
compelling the metaphysics, a condition of inextendibility is often im-
posed on space-times. It is the condition that it not be possible to embed
the space-time isometrically in another without the two being isometric.
Clearly truncated Minkowski space-time is extendible.

If we restrict our attention to inextendible space-times, then it becomes
more difficult to show that space-time pairs can be obselVationally indis-
tinguishable after finite time while not obselVationally indistinguishable.
In fact, as Glymour points out, within the class of inextendible standard
space-times the two conditions are equivalent. But if standardness is not
also demanded, examples showing the difference in strength are still

available.
One such is found by elaborating the slab construction from the second

example. Consider this time vertical "half slabs" of two types, A and B.
Each is respectively that portion of its earlier counterpart falling beneath
the x-axis. Let S be the set of all finite sequences of A and B slabs and
consider -w + w sequences in S, i. e., sequences of the form
. . . S-~-lS~+tS+2. . . , which include all elements of S. Take two,
in particular, which are distinct in the sense that their underlying com-
posite sequences of A's and B's are not isomorphic. Glue all these slabs
together nicely and finally glue to both of them "on top" the upper half of
two-dimensional Minkowski space-time. The resulting mosaiCS" are in-
extendible space-times (see Figure 3). Given any point in either M or M',
its obselVational past intersects with only finitely many adjacent slabs and so
has an isometric counterpart in the other space-time. 1bus M and M' are
obselVationally indistinguishable after finite time. But any future-inex-
tendible timelike CUlVe in either space-time will include in its obselVa-
tional past the entire manifold; hence it will include the entire finite
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Figllre 3. M and M' are observationally indistinguishable after finite time, but not
observationally indistinguishable. The observational past of a typical point x in M is
indicated together with its counterpart x' in M'.

sequence of A and B slabs which, by our initial choice, finds no isometric
counterpart in the other space-time. Thus M and M' are not observa-
tionally indistinguishable.

In one sense, even the condition of observational indistinguishability
after finite time is overly stringent. Suppose we have two space-times M
and M', and suppose for every point x in M there is a corresponding point
x' in M' such that J-(x) and J-(x') are isometric. Then no observer in M at
any point in his life will be in a position to determine which of the two
space-times, if either, is his. Yet M and M' need not necessarily be
observation ally indistinguishable after finite time because there might be
an observer in M' who could at some time distinguish between them.

As far as the epistemological situation of the M -observer is concerned,
it makes no difference what the M'-observer can or cannot determine.
For this reason it is worth considering a new condition of observational
indistinguishability which, unlike the first two, is not symmetric.

Definition: If M and M' are space-times, M is uJeakly obseroationally
indistinguishable from M' if for every point x in M there is a point x' in M'
such that J-(x) and J-(x) are isometric.

Quite trivially, M can be weakly observation ally indistinguishable from
M' without the two being observationally indistinguishable after finite
time. For example, take M as in the very first example--the t, x plane
with metric dY2 = dt2 - (cosh2 t) dx2; and take M' to be either one of the

two space-times in the second example, the ones built from vertical A and
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B slabs. The observational past of every point in M, indeed the observa-
tional past of every future inextendible timelike cuIVe in M, Snds an
isometric counterpart in any of the A slabs of M'. But obviously no ob-
server in M' who ever catches a glimpse of the B portion ofhis space-time
could think himself to be in M.

This third notion of observational indistinguishability seems a
straightforward rendering of conditions under which observers could not
determine the spatio-temporal sb"ucture of the universe. Yet, and this is
what is most interesting, the condition of weak observational indistin-
guishability is so widespread in the class of space-times as to be of

epidemic proportions.
There are some space-times that are not weakly indistinguishable from

any other. These include space-times M in which the observational past of
some point is the entire manifold, i.e., l-(x) = M for some x. 11te simplest
such example is two-dimensional Minkowski space-time "rolled up" along
the t-axis (i.e., for some k > 0, the points (t. x) and (t + nk, x) are
identified for all integers n). A more interesting example is COdel space-
time. But only these quite bizarre space-times seem to escape having
counterparts from which they are weakly observationally indistinguisha-
ble. (There is a theorem lurking here.)

Let me give a geometrically intuitive argument sketch which, while
falling short of a proof, suggests why this should be so. To keep things
simple, let us restrict attention (much more than we have to) to space-
times that are decent in their "causal structure" and have no closed or
almost closed future-directed timelike cuIVes. To be specific, let us con-
sider only "strongly causal" space-times.~

Let M be one such space-time and let {xt} be a countable sequence of
points in M, the union of whose observational pasts covers all ofM, i.e.,
U {1-(Xt)} = M.5 Using a "clothesline construction" we can string

out these 1-(Xt) with appropriately chosen "space-time SIler" to form
a new space-time M'. (The causality assumption here disallows the pos-
sibi]jty of the 1-(Xt) folding back on themselves.) In other words, we
can Snd a space-time M' in which all the 1-(Xt) can be isometrically em-
bedded. 11te space-time filler with which M' is constructed can be chosen
quite arbitrarily, subject only to the constraint, of course, that it be
smooth on the boundaries of the 1-(Xt). Exercising this freedom we can so
moose the filler as to guarantee that M' not be isometric to M. But clearly
M must be weakly observationally indistinguishable from M'. Any point
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X EM will be in some I-(x~. Since I-(x)C I-(xi), I-(x) will find an isomet-
tric counterpart in the I-(x ~ portion of the clothesline.

M' as it stands suffers from being (very) extendible. But it follows from
an argument of Robert Geroch 6 that every space-time has an inextendible

extension. We can choose one for M', say M", and we have enough
freedom in doing so to ensure that M" not be isometric to M. At least if M
is itself inextendible, the I-(Xi) excised from it will remain unaffected by
the extension from M' to M". So for every point x EM, I-(x) will still find
an isometric counterpart in M".

/I Space - time filler /I~ "~ ' Jc, """',, " ' " c,
:".;.;. --~~_.i i;i.. '..~;""...~~J;:J.'~';;;;';;;;';';;;':;;'-
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Figure 4. "Clothesline construction" by which a space-time is formed in which all the
past observation sets 1-(%1) can be isometrically embedded.

This argument sketch shows that every strongly causal space-time is
weakly obseIVationally indistinguishable from some other space-time, and
that if the first is inextendible, the second may be taken to be inextendible
as well. If greater care is exercised in hanging the clothesline used in the
construction, the argument goes through under much weaker "causality"
assumptions. Indeed, it is sufficient that for some point x, J-(x) 'f M.

II
To get a better feeling for the three observational indistinguishability

relations it will help to consider several global properties of space-times
and see whether any are preserved under them, i.e., whether it is the
case that given two space-times, the first observationally indistinguishable
(respectively observationally indistinguishable after finite time, weakly
observationally indistinguishable) from the second, the property obtains
in the first space-time only if it obtains in the second. The question is of
interest because even in the presence of observational indistinguishability
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there is the possibility that an obselVer can make some determinations
concerning the global spatio-temporal structure of the universe and so at
least delimit the range of open choices.

The accompanying tabulation lists a sampling of commonly studied
global properties and indicates their invariance under the three relations.
The arrows indic-ate, of course, that if a property is not preselVed under a
strong sense of obselVational indistinguishability, it is not preselVed
under weaker senses (and correspondingly when it is preselVed). Coun-
terexamples for (1)-(5) and (8) are appended. The other causality prop-
erties are of some special interest because, as indicated in the table, they
diverge from their respective negations when it comes to preselVation
under weak obselVationaI indistinguishability.

01 after Weak
Ol? finite time? OJ?
No '-+

~~~~~~~~~
~~-~--=~-Yes No

~~ +---~ ¥ es
~ ,--':--Yes Nof,~ , e Yes

k ]
No ~--.

Property
1. temporal orientability
2. spatial orientability
3. orientability
4. inextendibility
5. noncompactness
6. causality

noncausality
7. strong causality

nonstrong causality
8. existence of a glObal

time function
9. existence of a Cauchy swface

nonexistence of a Cauchy
surface - Yes

Causality is the condition that there not be a closed, future-directed
causal curve. If causality is violated in a space-time M, the entire violating
curve will be in the observational past of some point x-any point, in fact,
which lies to the future of some point on the curve. If now J-(x) is isomet-
ric to J-(x') for some point x' in a space-time M', the image of the closed
curve under the isometry will itself be a closed curve in J-(x'). It follows
that noncausality is preserved under weak observational indistinguishabil-
ity and causality is preserved under observational indistinguishability
after finite time (by the symmetry of the relation).

;;;;:dr~~~;t1~J No
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On the other hand, the following simple example shows why there
must be a 'No' in the third column of line 6 in the table. Take M to be
two-dimensional Minkowski space-time. Construct M' by first cutting two
slits in M, say A = {(t, x): t = 0 & 0 ~ x~ I} and B = {(t, x): t = 1 & 0 ~ x

~ I}, and then identifying the lower edge of slit B, excluding the comer
points (1, 0) and (1, 1), with the upper edge of slit A, excluding (0, 0) and
(0, 1). (See Figure 5.) M is certainly weakly observationally indistinguish-
able from M' since every point x in M has as an observationally indistin-
guishable counterpart every point x' in M' lying, say, beneath slit A. But
causality is badly violated in M'; one sample closed timelike curve is
indicated in the figure. M' as it stands is extendible, but it can be
rendered inextendible by further identifying the upper edge of slit B with
the lower edge of slit A, again excluding comer points. In a sense the
points (0, 0), (0, 1), (1, 0), and (1, 1) are "missing," but there is no way
they can be replaced to extend M'.

M'M

delete
L1<

Figure 5. M is weakly observationally indistingtrishable from M' although M' is not
causal (0' is a sample closed ca\lSaI curve). The lower edge of slit B is identified with
the upper edge of slit A and the upper edge of slit B is identified with the lower edge
of slit A (excluding end points). M' is inextendible.

l1le situation seems to be this: if causality is violated in a space-time,
some observer will know about it; if on the other hand it is not violated, no
observer will ever know for sure one way or the other. This does not
follow from the one example, but it could be established with another
clothesline construction. In addition to the other space-time segments
1-(Xi), an additional causality-violating segment would have to be added to
the line.

With respect to preservation under the different notions of observa-
tional indistinguishability, strong causality is quite similar to causality.
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The claims made in the table are verified along the lines just indicated.
The condition that there exist a Cauchy surface is a bit different.

If M is a space-time, a set S C M is a Cauchy surface if S is achronal
(i.e., for no points x and y in S is x «y) and ufor every point z in M,
every (past- and future-) inextendible timelike curve through z intersects
S. For example, the surfaces t = constant are Cauchy in Minkowski
space-time. A simple example of a space-time that does not admit any
Cauchy surface is (the covering space of) the two-dimensional version of
anti-De Sitter space-time. It can be represented as the t, x plane with
metric dS'2 = dt2 - (cosh-2 x) dx2. At x = 0 the metric reduces to Min-

kowski form and the associated null cones are at 45°. But as x increases in
absolute value, the cones flatten and approach the horizontal asymptoti-
cally. (See Figure 6.) In contrast, remember that with the De Sitter
metric (i.e., dS'2 = dt2 - (cosh2 t) dx2) the cones narrowed to the vertical as
t increased in absolute value. No surface t = constant will be Cauchy in

anti-De Sitter space-time because there are inextendible curves through
many points which "come in from or go out to spatial infinity" without
hitting the surface. The same is in fact true of all achronal sets.

The condition that there exist a Cauchy surface is of great interest
because of its usual interpretation as a condition of Laplacian determinism
and the possibility of cosmic prediction.7 If a set is Cauchy, no signal
propagating causal influence can reach any point in space-time without
that signal registering itself, before or after, on the set. In the absence of
such a set-in anti-De Sitter space-time, for example-causal influence
can "come in from infinity" without registration. For this reason even a

Figure 6. The covering space of two-dimensional anti-De Sitter space-time, i.c., the
t, x plane with metric d;v' = dt' - (cosh-'x) doT', which admits no Cauchy surface.
Light cones rapidly Hatten to the horizonal ~s Ix I -+ oc. An inextendible timelike
curve 0" coming in from and going out to "infinity" is indicated along with a sample
t = constant slice which it fails to hit.
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complete specification of "initial data" on a t = constant surface in anti-De
Sitter space-time will not uniquely determine past and future spatio-
temporal evolution.

It turns out that the existence of a Cauchy surface is equivalent to the
condition of global hyperbolicity.1I A space-time satisfies this condition if it
is causal and if for all points x and y, the setJ+(x) nJ-(y) is either empty or
compact. (Note that this is not true in anti-De Sitter space-time.) Now
suppose M is weakly observationally indistinguishable from M' and M fails
to be globally hyperbolic. If causality fails in M then, as we know, it must
fail in M' too. Suppose then that for some x, y in M, J+(x) nJ-(y) is neither
empty nor compact. Suppose further that z is some point to the future of
y, i.e., y «z. ThenJ+(x)n J-(y) is contained in ]-(z). (Fact: w < y &
y« z - w« z). If z' is in M' and cP: [-(z) -]-(z') is an isometry, then
J+[cp(x)] n J-[cp(y)] = cp(f+(x) nJ-(y)] will be a set in M' neither empty nor

compact. Hence M' is not globally hyperbolic. Thus the nonexistence of a
Cauchy surface is preserved under weak observational indistinguishabil-
ity. (The same argument, of course, establishes that the existence of a
Cauchy surface is preserved under observational indistinguishability after
finite time.)

The following example shows, in contrast, that the existence of a
Cauchy surface is not necessarily preserved under weak observational
indistinguishability. Once again take M to be two-dimensional Minkowski
space-time. For M' we in effect glue together the lower half of M with the
upper half of two-dimensional anti-De Sitter space-time. More spe-
cifically, M' is the t, x plane with the metric ds2 = dt2 - dx2 in the region

t :e; 0, and the metric ds2 = dt2 - (cosh-2 x) dx2 in the region t~ 1. For the
buffer strip 0 < t < 1 choose any metric whatsoever that smoothly con-
nects the other two. M' is clearly an inextendible spa<"e-time without a
Cauchy surface. Equally clearly, however, M is weakly observationally
indistinguishable from M'. Every point in M has as a counterpart every
point in M' with coordinate t :e; O.

The comments made before about C"clusality can now be paraphrased. In
particular, it seems that if a space-time has a Cauchy surface', none of its
native observers will ever know for sure whether it does or not!

III

The predimment of the cosmologist attempting to determine the global
space-time structure of his universe has been cast as a serious one. How-
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ever, an objection could be made. It is important and should be consid-
ered. The notion of weak observational indistinguishability was intro-
duced on the suggestion that Glymour's two conditions are unnecessarily
stringent. According to the objection they are not stringent enough.

The different conditions of observational indistinguishability are posed
solely in terms of spatio-temporal structure. They do not mention the
things and processes which populate space-time. But, the objection runs,
two cosmological models are only truly observationally indistinguishable
if neither underlying space-time structure nor its contents (stars, galaxies,
background radiation, or whatever) distinguish them to any observer.

In response, the several definitions of observational indistinguishability
can be extended in a straightforward way to include the physical goings-
on within space-time. Let us suppose that the fundamental furniture of
the universe consists of a number of matter-fieldso (e.g., an electromag-
netic field) which are mathematically represented by tensor fields defined
on the underlying space-time manifold, and whose dynamical histories are
constrained by (partial differential) field equations. This is no more than
the framework within which relativity is in fact studied. In this context, a
cosmological model may be construed as an ordered (n+l) tuple (M,
F I, . . . , Fit) whose first element is a space-time and whose remaining
elements are tensor fields of the appropriate type on M, satisfying appro-
priate field equations. We say that two cosmological models (M,
FI, . . . , FJ and (M', F'I, . . . , F'J are obseroationaliy indistin-
guishable in any of the three senses defined if M and M I are observa-

tionally indistinguishable in t.'1at sense and if the isometries between past
observational sets called for in the definitions also preserve the values of
respective matter fields, i.e., for any such isometry <1>, <I>.(FJ = Fi for i =

1, . . . , n.
In reply to the present objection it can now be argued that observa-

tional indistinguishability between cosmological models, if not in the nar-
rower sense between space-times, really is a sufficient condition for the
empirical underdetermination of space-time structure. The reply seems a
strong one. If one accepts the idealization of a cosmological model in the
first place, then specification of the values of the various matter fields in a
region of space-time completely specifies what there is to be observed-
background radiation, quasars, or whatever. If, for example, the cos-
mological model (M, F I, . . . , F,,) is weakly observationally indistin-
guishable from (M'l' F'I, . . . , F'it), then nothing any observer in the
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first model could "see" at any time in his life, no matter how discerning his

instruments, would ever distinguish between the two models. It seems

clear, too, that no physical theory such as any observer could ever ex-

trapolate from the matter-fields as he sees them could possibly cut the ice

between them. To the extent that he is entitled to adopt the would-be

ice-cutting theory, so is his observational counterpart. By the very defini-

tion of weak observational indistinguishability it would seem that any

theory supported by the observational evidence available to anyone ob-

server in (M, FI' . . . , FR) would have to be neutral, as between two

cosmological models.

Suppose we grant now that observational indistinguishability between

cosmological models (in any of the three senses) is a sufficient condition

for the empirical underdetermination of space-time structure. There re-

mains the question of existence. Suppose (M, FI' . . . , FR) is a cos-

mological model and that M as a space-time is observationally indistin-

guishable (in one of the senses) from some other space-time. We can ask

whether there necessarily exists a cosmological model (M', F'l, . . . ,

F'R) which is observationally indistinguishable (in the same sense) from

(M, F I' . . . ,F II)' At least with respect to the sense of weak observa-

tional indistinguishability the answer seems to be clearly yes! The same

clothesline construction that served to generate space-times can be used

to generate cosmological models as well. Instead of linking the space-

times l-(x,) we link the cosmological models

(l-(x,), F I
I ,..., Fil l ),
l-<.ri> I-fzt>"

connecting them with space-time and matter-fields filler.

The cosmologist's epistemological predicament, it thus appears, is not at

all relieved by bringing into the picture the matter-fields that populate

space-time.

Appendix

Counterexamples (see tabulation page 71)

(1) Spatio-temporal orientability conditions are not preserved under ob-
servational indistinguishability.

Definition: A space-time is:
(a) temporally orientable if it admits a continuous, nonvanishing

timelike vector field;
(b) spatiaUy orientable if it admits three (or in general n - 1) continu-
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ous spacelike vector fields whose vectors are at every point linearly

independent;
(c) orientable if it is both temporally and spatially orientable, or

neither.
For (a), take M to he the covering space of two-dimensional De

Sitter space-time (Figure 1) and form M' by first cutting a vertical strip
of width 21T in M, twisting, and then identifying opposite sides. M' is
topologically a Mobius strip. M and M' are observationally indistin-
guishable, but only M is temporally orientable (see figure).9

M'
ds~dt~(cosh2t) dx2 1 27r--+f

"- ---f;:::XrX
I I

t .. tI X I

-- Lx:. :_--~--~

~identifY~
For (b) and (c), take M to be a three-dimensional version of the

previous M. l1le observational past of every future-inextendible curve
will be confined to a vertical square cylinder with sides of width 21T.
Form M' by cutting out such a cylinder from M and then cross-
identifying the t = constant surfaces, turning them into MObius strips.

M and M' are observationally indistinguishable; but while M is spa-
tially orientable and orientable, M' is neither (see figure).

M ds2:dt2-(cosh2t)(dx2+dy2) M'

;/' """"-<1~7
I
I1+--7 -

~ I identify
./

---

/
x

x

11

x

~ 217"--+1/~27r
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(2) The condition of inextendibility (see page 67) is not preserved under
observational indistinguishability. The construction resembles that in
Figure 5. Start with two copies of two-dimensional Minkowski space-
time and excise from each the slit I = {(t, x): t = 0 & 0 EO; xEO; I}. Now
identify the upper edge of each slit with the lower edge of the other
(excluding end points). This will be M. It is inextendible. For M',
start again with two copies of two-dimensional Minkowski space-time.
From one cut the same slit I = {(t, x): t = 0 & 0 EO; x EO; I}. From the

other cut away the closed upper half, leaving the set {(t, x): t < O}.
Now identify the upper edge of I with a corresponding section of unit

width from the edge of the second space-time (see figure).

M'
1\M

~A
~~~..,,:~A~

EJ
V

de1ete delete

M, but not M', is inextendible. But they are obselVationally indistin-

guishable. To see this it suffices to check the few possibilities. Any
future-inextendible timelike curve in M will find a counterpart in the "A
section" ofM'. But any future-inextendible curve on M' will also find a
counterpart in M. In particular the curve 0-' which runs off. the edge of M'
in its truncated portion finds a counterpart 0- in M which runs to the

"hole" (0, 0).
(3) The condition of noncompactness is not preseIVed under obselVational

indistinguishability.
For M we take a two-dimensional "horizontal cylinder space-time" with

metric ds2 = (cos x) dxdt + (sin2 x) (dt2 - dx'l). At x = n1T the light cones

are tangent to the horizontal, pointing to the right for even n and to the
left for odd n. At x = (n + l/2)1T the cones are at 45° to the horizontal (see

figure). The obselVational past of every future-inextendible CUIVe in M is

confined to a region of x-width 21T. M' is formed from M by identifying
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points x = 2n1T. Clearly M, but not M', is noncompact. But M and M' are

obselVationally indistinguishable.
(4) 11te condition that there exist a global time function is not preselVed

under cibselVational indistinguishability.

Definition: A smooth map t: M -+ R is a global time function on the
space-time M if for all x, y in M, x <" & x * 11-+ t(x) < t(y).

11te condition that there exist a global time function is equivalent to the
condition of "stable causality." 10

For M start with two-dimensional rolled up Minkowski space-time and
then make excisions (as in the figure) which just prevent null geodesics,
which are aligned at 45°, from circumnavigating the manifold. This
space-time is causal (and strongly causal), but does not admit a global time
function. Any real valued function on M which increases along causal
culVes will be discontinuous somewhere.

(As it stands the space-time is extendible (we can replace the excisions).
But without changing its cone structure or causal properties, we can
render it inextendible by multiplying its metric by a conformal factor </>2
which appropriately goes to 00 as the slits are approached [see figure].) M'

M'

M \.,.'

identity

,v
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is taken by "unrolling" M. M and M' are observationally indistinguishable
since no observational past of any future-inextendible curve in either
extends beyond the excision barriers. But only M' admits a global time
function.

Notes

1. See also Clark Glymour, "'opology, Cosmology and Convention," SyntMse 24 (1972):
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matics, 1972). More accessible than either is Robert Geroch, "Space-Time Structure from a
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Academic Press, 1971).

3. A future end point need not be a point on the curve. The definition is this: If M is a
space-time, I a connected subset of R, and u: 1-+ M a futurecdirected causal curve, a point x
is the future end point of u if for every neighborhood 0 of x there is a to E I such that u(t) E 0
for all tEl where t > to, i.e., u enters and remains in every neighborhood of x.

4. A space-time is strongly causal if, given any point x and any neighborhood 0 of x, there
is always a subneighborhood 0' C 0 of x such that no future-directed timelike curve which
leaves 0' ever returns to it.

5. A countable cover of this fonn can be found in any space-time M, strongly causal or not.
Since M is without boundary, for every y in M there is an x in M such that y «x, i.e.,
" E I-(x). So the set {I-(x): x EM} is an open cover of M. But M has a countable basis for its
topology (Robert Geroch, "Spinor Structure of Space-Times in General Relativity I... Jour-
nal of Mathematical Physics 9 (1968): 1739-1744.) So by the LindeljjfTheorem there is a
countable subset of {I-(x): x EM} which cove~ M.

6. Robert Geroch, "Limits of Spacetimes... Communications in Mathematical Physics 13
(1969): 180-193.

7. See John Eannan, "Laplacian Determinism in Classical Physics" (to appear) and
Robert Geroch's paper in this volume.

8. Robert Geroch, "Domain of Dependence," Journal of Mathematical Physics II (1970):
437-449. (A somewhat different but equivalent definition of global hyperbolicity is used.)

9. There is a problem of how to define observational indistinguishability in a nontempor-
ally orientable space-time (the definition given presupposed temporal orientation). But
under any plausible candidate, M and M' in the example would come out observationally
indistinguishable. One could associate with every inextendible timelike curve u all the
points that are connected with some point on the curve by another timelike curve. (In a
temporally oriented space-time this would be the union I+[u] UI-[u].) Even these sets in M
and M' would find isometric countelparts in the other.

10. A space-time is stably causal if there are no closed causal curves and if there are no
closed causal curves with respect to any metric close to the original. (nlis can be made
precise by putting an appropriate topology on the set of all metrics on the space-time
manifold.) Note that in the space-time M of the following example the slightest Rattening of
the light cones would allow timelike curves to scoot around the barrie~. The equivalence is
proven in S. W. Hawking, "The Existence of Cosmic Time Functions," Proceedings of the
Royal Society A, ~ (1968): 433-435.
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