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I want to consider this question within the framework of relativity theory:  given

two point particles X and Y,  if Y is rotating relative to X, does it follow that X is

rotating relative to Y?   To keep the discussion as simple as possible, I'll allow X and

Y to be test particles.

As it stands, the question is ambiguous.  Roughly speaking, one wants to say that

"Y is rotating relative to (or around) X", at least in the sense I have in mind, if "the

direction of Y relative to X" is "changing over time". What must be explained is

how to understand the quoted expressions. There is a perfectly straightforward way

to do so within Newtonian particle mechanics (section I), where there is an

invariant notion of "time", and "space" is assumed to have Euclidean structure. At

all times, there is a well-defined vector  that points from X to Y, and one can use it to

define the angular velocity of Y relative to X.

But the situation is more delicate in relativity theory. Here no such simple

interpretation of "relative rotation" is available, and some work is required to make

sense of the notion at all.  (It seems to me unfortunate that this is often overlooked

by parties on both sides when it is debated whether relativity theory supports a

"relativist" conception of rotation.) In section II, I'll consider one way of defining

the "angular velocity of Y relative to X" (Rosquist (1980)) that does not presuppose

the presence of special background spacetime structure (e.g., flatness, asymptotic

flatness, stationarity, rotational symmetry), and can be explained in terms of simple

(idealized) experimental procedures.  I'll also derive an expression for the angular
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velocity of Y relative to X in the special case where the worldlines of X and Y are (the

images of) integral curves of a common background Killing field.  Finally, in section

III, I'll turn to the original question.

I

For purposes of motivation, let's first consider relative rotation within the

framework of Newtonian particle mechanics. Here we can associate with the

particles, at every time t, a relative position vector r
→

XY(t) that gives the position of Y

relative to X.  (We can think of the vector as having its tail coincident with X and its

head coincident with Y.) The inverted vector, r
→

YX(t) = –r
→

XY(t) gives the position of

X relative to Y at time t. Let's take for granted that the particles never collide  (so that

r
→

XY(t) is non–zero at all times), and consider the normalized vector:

n
→

XY(t)   =  
r
→

XY(t)

|r
→

XY(t)|
 .

We can think of it as giving the direction of Y relative to X at time t. The

(instantaneous) angular velocity of Y relative to X at time t is given by the vector

cross product:

Ω
→

XY(t)   =   n
→

XY(t)  ×   
d
dt (n

→
XY(t)) .

Notice that it is not here presupposed that X is in a state of uniform rectilinear

motion. X (and Y too) can wiggle so long as n
→

XY(t) has a well–defined derivative.

Notice also that if  n
→

YX(t) and Ω
→

YX(t) are defined in the obvious way,  by

interchanging the roles of X and Y, then n
→

YX(t) = –n
→

XY(t) and Ω
→

YX(t) = Ω
→

XY(t). We

will be interested in two assertions.

(i) Y is not rotating relative to X :

Ω
→

XY(t) = 0  (or, equivalently, 
d
dt (n

→
XY(t)) = 0) for all t.
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(ii) Y is rotating relative to X with constant angular velocity (i.e., in a fixed plane 

with constant angular speed):    
d
dt (Ω

→
XY(t)) = 0   for all t.

What is important for present purposes is that both assertions are manifestly

symmetric in X and Y.2   It is the purpose of the present modest note to show that

the situation changes, and changes radically, when one passes to the context of

general relativity. We show with an example in section III that there it is possible for

Y to be non–rotating relative to X, and yet for X to be rotating relative to Y with

constant (non–zero) angular velocity.  Moreover, the X and Y in question can be

chosen so that the distance between them is constant (according to any reasonable

standard of distance). And the distance can be arbitrarily small.  (Of course, it

remains to explain the interpretation of relative orbital rotation in general relativity

on which these claims rest.) 3

II

Let's now turn to the relativity theory. In what follows, let (M, gab) be a

relativistic spacetime structure, i.e., a pair consisting of a smooth, connected 4–

manifold M, and a smooth semi–Riemannian metric gab on M of Lorentz signature

(+1, –1, –1, –1).4  Let γX and γY be smooth, non–intersecting timelike curves in M

representing, respectively, the worldlines of X and Y. (We will not always bother to

distinguish between the curves and their images.) We will follow Rosquist (1980),

and define at each point on γX a vector Ωa that may be interpreted as the

"instantaneous (apparent) angular velocity of Y relative to X".5

Imagine that an observer sitting on particle X observes  particle Y through a

tubular telescope.  We can take the orientation of his telescope at a given moment to

determine the "(apparent) direction of Y relative to X" at that moment; and we can

represent the latter as a unit vector, orthogonal to γX.  In this way, we pass from the
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curves γX  and γY to a (normalized, orthogonal) direction field νa  on γX.  Once we

have the field νa  in hand, we are almost done. We can then define Ωa  in terms of

νa  in close analogy to the way we previously defined Ω
→

XY in terms of n
→

XY.  We need

only replace the "time derivative" of  n
→

XY with the Fermi derivative of νa  along γX.

Here is the construction in detail.  (See figure 1.)

Figure 1

Let ξa  be the four–velocity of X, i.e., a future–directed6, timelike vector field on

γX, normalized so that ξaξa
 = 1. We assume that given any point p on γX, there is (up

to reparametrization) a unique future–directed null geodesic that starts at some

point (or other) on γY and ends at p. This amounts to assuming that X can always see

Y, and never sees multiple images of Y.7  Let λa  be the (future directed, null) tangent

field to this geodesic (given some choice of parametrization). We arrive at the

direction vector a  (of Y relative to X) at p by starting with –λa  at that point,  then

projecting it orthogonal to ξa ,  and finally normalizing the resultant vector:

νa   =   
–λa  + (λnξn) ξa

 (λmξm)  .

(Equivalently, νa  is the unique vector at p in the two–plane spanned by ξa  and λa

such that νaξa  = 0, νaνa  = –1, and νaλa  > 0. )  The Fermi derivative of νa  in the

direction ξa ,

(ga
m – ξaξm) ξn∇nνm,

is just the component of the directional derivative ξn∇nνa  orthogonal to ξa , i.e., the
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spatial component of the derivative as determined relative to X. We arrive at the

angular velocity a  of Y with respect to X at each point on γX, in effect, by taking the

cross product there of νa  with (ga
m – ξaξm) ξn∇nνm in the three–plane orthogonal to

ξa :

Ωa  =  – εabcd ξb νc  ((gdm – ξdξm)ξn∇nνm).

In analogy to the conditions formulated in section I, we say

(i´) Y is not rotating relative to X if

Ωa  = 0  (or, equivalently8,  (ga
m – ξaξm) ξn∇nνm  = 0 ) at all points on γX;

(ii´) Y is rotating relative to X with constant angular velocity if

(ga
m – ξaξm) ξn∇nΩm  = 0  at all points on γX.

These conditions have a natural physical interpretation. Consider again our

observer sitting on particle X and observing Y through his tubular telescope.

Condition (i´) holds iff the orientation of his telescope is constant as determined

relative to the "compass of inertia". So, for example, we might position three

gyroscopes at X so that their axes are mutually orthogonal.9 The orientation of the

telescope tube at any moment can then be fully specified by the angles formed

between each of the three axes and the tube. Condition (i´) captures the requirement

that the three angles remain constant. Condition (ii´) captures the requirement that

the three gyroscopes can be positioned so that the telescope tube is at all times

orthogonal to one of the three,  and its angles relative to the other two assume the

characteristic, sinusoidal pattern of uniform circular motion (with respect to elapsed

proper time).

We now consider the special case where γX and γY are integral curves of a

background future–directed, timelike Killing field τa.  In this case, there is a strong
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sense in which the particles X and Y remain a constant distance apart.10  To match

our notation above,  we express τa in the form τa = τ ξa,  with  ξaξa = 1 and  τ =

(τnτn)1/2. Associated with ξa is a vorticity (or twist) vector field

ωa  =  
1
2
  εabcd ξb ∇c ξd.

We want to derive an expression for Ωa in terms of ωa .  To do so, we direct attention

to the one–parameter group of local isometries {Γs} associated with τa , i.e., the "flow

maps" of which τa  is the "infinitesimal generator". Given any one null geodesic

segment running from γY to γX, it's image under each map Γs is another null

geodesic segment running from  γY to γX. (This follows immediately. Since γY and γX

are integral curves of τa , each is mapped onto itself by Γs. Since Γs is an isometry, it

preserves all structures that can be characterized in terms of the metric gab, and that

includes the class of null geodesics.) The collection of maps {Γs} in its entirety, acting

on the null geodesic segment, sweeps out a two–dimensional submanifold S,

bounded by γY and γX,  through every point of which there passes a (unique) integral

curve of τa  and a (unique) null geodesic segment running from γY and γX. (See

figure 2.)

 Figure 2

Thus, we have on S two fields tangent to S:  the timelike Killing field τa
, and a

future–directed null geodesic field λa  (λn ∇n λ
a  = 0  and λn λn = 0) that is preserved by

each map Γs, or, equivalently, that is Lie derived by the Killing field τa, i.e.,

τn ∇n λ
a  – λn ∇n τ

a   =  0.
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With this equation in hand, it is a matter of routine computation to derive an

expression for Ωa in terms of ωa .

Proposition11  Let S, τa, and λa  be as in the preceding paragraph (and let νa , Ωa , and

ωa  be the corresponding fields on S, as defined earlier in this section). Then, at all

points on S,

Ωa  =  ωa   +  (νnωn) νa .

(We have formulated the proposition in terms of the relative velocity of Y with

respect to X. But, of course, a corresponding statement holds if the roles of X and Y

are reversed. One just has to remember that the reversal brings with it a different

two–dimensional submanifold S and a different null field λa .)

Proof  Since λa, gab (and τa) are Lie derived by the Killing field τa , so are all fields

definable in terms of them. In particular, νb is Lie derived by τa .  Thus,

0  =  τn ∇n ν
m – νn ∇n τ

m =  (τ ξn) ∇n ν
m – νn ∇n (τ ξm)

=  (τ ξn) ∇n ν
m – τ νn ∇n ξ

m – ξm νn ∇n τ.

So

ξn ∇n ν
m =  νn ∇n ξ

m +  (τ–1) ξm νn ∇n τ

and, hence,

(gdm – ξdξm)ξn∇nνm = (gdm – ξdξm)νn∇nξm

since (gdm – ξdξm) ξm = 0.  Therefore,

Ωa  =  –εabcd ξb νc  ((gdm – ξdξm)ξn∇nνm)  =  –εabcd ξb νc  ((gdm – ξdξm)νn∇nξm)

=  –εabcd ξb νc  (ν
n∇nξd).
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The final equality follows from the fact that εabcd ξb ξd = 0 (since εabcd is anti-

symmetric in the indices 'b' and 'd'). To proceed further, we use the following

expression for ∇nξd that holds for any unit timelike field ξa  proportional to a Killing

field12:

∇nξd = εndprξ
p

 ω
r  + ξn ξ

m∇mξd.

Direct substitution yields:

Ωa  =  –εabcd ξb νc  ν
n (εndprξ

p
 ω

r  + ξn  ξ
m∇mξd) =  –εabcd ξb νc  ν

n εndprξ
p

 ω
r

=  –εdabc εdnpr  ξb νc  ν
n ξp

 ω
r  =  6  δa

[n δ
b
p δ

c
r] ξb νc  ν

n ξp
 ω

r

=  6  ξb νc  ν [a  ξb
 ω

c] =  ξb νc   (ν a ξb
 ω

c  ...  – ν c ξb
 ω

a  + ... )

=   (νc ω
c) ν

a  +  ωa .

(The second equality follows from the fact that νn ξn  = 0; the fourth from the fact that

εdabc εdnpr  = –  6  δa
[n δ

b
p δ

c
r].  For the latter, see Wald (1984), p. 432.)  //

We claimed above that relativity theory allows for the possibility that there be

two point particles X and Y, a constant distance apart, such that Y is non–rotating

relative to X, but X is rotating relative to Y with constant (non–zero) angular

velocity. Our strategy for producing an example in section III is this. We exhibit a

spacetime with a future–directed, timelike Killing field τa = τ ξa , and two integral

curves of the field, γX and γY, such that the following conditions hold.

(a) ωa  = 0  on γX.

(b) ωa  ≠  0  on γY,  but (ga
m – ξaξm) ξn∇nωm  =  0  on γY.

(c) Whether working from γY to γX, or from γX to γY, the associated future–
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directed null geodesic field λa  that is Lie derived by τa (as in the construction 

above) is everywhere orthogonal to ωa .

This will suffice. Consider the condition in (c). If the connecting null field λa is

orthogonal to ωa , then the direction field νa induced by λa is also orthogonal to ωa :

νaωa   =   (
–λa  + (λnξn) ξa

 (λmξm)  ) ωa   =  ξaωa  =  0.

So, by the proposition,  Ωa 
(Y wrt X)  = ωa  on γX, and Ωa 

(X wrt Y) = ωa  on γY.

So by (a) and (b),

Ωa
(Y wrt X) = 0  on γX, while

Ωa 
(X wrt Y) ≠  0  on γY,  but (ga

m – ξaξm) ξn∇n Ω
m

(X wrt Y)
  =  0  on γY,

as desired.

 III

The example we present in this section is a bit artificial. But it does have the

virtue of simplicity. It will be relatively easy to identify the necessary elements of

structure -- the timelike Killing field τa , and the integral curves γX and γY -- and

verify that they satisfy conditions (a)–(c).  Given how very stringent the conditions

are, it is of some interest, perhaps, to have any simple example at all.

In constructing the example, we start with Gödel spacetime (M, gab) in its entirety

and then, at a certain point, shift attention to a restricted model of form

(O, gab|O
), where O is an open subset of M. The restricted spacetime is, in some

respects, much better behaved than the original.  In particular, it does not admit

closed timelike curves. Indeed, it satisfies the stable causality condition. (But, unlike

the original, of course, it is extendible.)
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In what follows, we take Gödel spacetime13 to be the pair (M, gab), where M is the

manifold ®4 and gab is characterized by the condition that given any point p in M,

there is a global (adapted) cylindrical coordinate system t, r, ϕ, y on M such that  t(p)

= r(p) = y(p) = 0 and

gab = 4µ2 [(dt)a(dt)b  –  (dr)a(dr)b  –  (dy)a(dy)b

         + (sh4 r – sh2 r) (dϕ)a(dϕ)b + 2 sh2 r  ((dt)a(dϕ)b + (dϕ)a(dt)b)].

(We use 'sh r' and 'ch r' to  stand for 'sinh r' and 'cosh r'.) Here  –∞ < t < ∞,

0 ≤ r < ∞,  –∞ < y < ∞, and  0 ≤ ϕ < ∞  with  ϕ = 0 identified with ϕ = 2π; µ is an

arbitrary positive constant.  (We will assume a point p has been chosen, once and for

all, and work with the corresponding coordinate system.)  The metric gab is a

solution to Einstein's equation

Rab – (1/2) gab R  =  8 π G Tab

for a perfect fluid source

Tab = ρ ηa  ηb – p (gab – ηa  ηb),

with four–velocity  ηa  = (2µ)–1(∂/∂t)a ,  mass density ρ = (16 π G µ2)–1, and isotropic

pressure p = (16 π G µ2)–1.

The field (∂/∂t)a is everywhere timelike, and defines a temporal orientation on

(M, gab). The integral curves of (∂/∂t)a  will be called "matter lines" (since the four–

velocity ηa  of the fluid source is everywhere proportional to (∂/∂t)a).

In the appendix, we give an explicit expression for a volume element εabcd on

(M, gab) in terms of  coordinates t, r, ϕ, y.  It defines an orientation on (M, gab).

In Gödel spacetime,  (∂/∂t)a ,  (∂/∂y)a , and (∂/∂ϕ)a  are all Killing fields and so,
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therefore, are all linear combinations of these fields. We will be interested,

specifically, in the field

τa  =   (∂/∂t)a  + 2 (∂/∂ϕ)a .

Since

τaτa   =   4µ2 [ 1 + 2 (sh4 r – sh2 r) + 4 sh2 r ] =  4µ2 [ 1 + 2 (sh2 r)(ch2 r) ],

it follows immediately that

(1)  τa  is everywhere timelike.

It is also clear that

(2) the coordinate functions r and y are constant on all integral curves of τa .14

If the constant value of r is 0, the integral curve is a matter line (since (∂/∂ϕ)a  = 0

where r = 0), characterized by its y value.  We call it an "axis curve". If the constant

value of r is strictly positive, we can picture it as a helix that wraps around an axis

curve (the one with the same y value).15

If, as above, we express τa  in the form τa  = τ ξa , with ξaξa  =  1, the vorticity  field

associated with ξa  comes out to be:

(3)  ωa  =
2 2 (sh2r) (ch2r)

(4 µ2) [1 + 2 (sh2r) (ch2r)]
  (∂/∂y)a

(The computation requires just a bit of work. We present it in the appendix.) It

follows immediately that

(4)  ωa  =  0   ⇔   r = 0.16

It also follows that 
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(5) (ga
m – ξaξm) ξn∇nωm  =  0  everywhere.

In fact, the stronger condition  ξn∇nωa  =  0  holds everywhere.  This follows because

ξn ∇n r = 0, by (2) above, and (∂/∂y)a is covariantly constant, i.e., ∇n (∂/∂y)a .17  So

ξn ∇n ω
a

 =  
2 2 (sh2r) (ch2r)

(4 µ2) [1 + 2 (sh2r) (ch2r)]
   ξn ∇n(∂/∂y)a  =  0.

We are now well on our way. If we take γX to be any integral curve of τa  with r = 0,

and γY to be any one with r ≠ 0, conditions (a) and (b) listed at the end of section II

will be automatically satisfied. So it only remains to consider condition (c).

To satisfy the orthogonality constraint in (c), we need to further restrict the

choice of γX and γY so that the y coordinate function has the same (constant) value

on both curves.  Let ro be any positive real number and let yo  be any real whatsoever.

Let γX be an integral curve of τa  with constant values r = 0, y = yo, and let  γY  be one

with constant values  r = ro, y = yo.  The following conditional claim about null

geodesics follows easily.

(6)  If there exists a null geodesic that intersects both γY and γX, and if λa  is the 

tangent field to the curve, then λaωa= 0 at all points on the curve.

For  assume there is such a curve σ with tangent field λa .  Since λa  is a geodesic field,

we have λn∇n  (λ
aκa) = 0 for all Killing fields κa . 18  In particular, taking κa  to be

(∂/∂y)a ,  λa(∂/∂y)a  is constant on σ.  But  λa(∂/∂y)a = –4µ2 (λa∇a y).  So λa∇a y  is

constant on σ.  If the constant value of this function were not 0, the value of the

coordinate y would have to increase or decrease along σ -- contradicting the fact that

the initial and final points share the value yo.  So it must be the case that  λa(∂/∂y)a

is  0 at all points on σ.  But, by (3),  ωa  is everywhere proportional to (∂/∂y)a .  So

λaωa   =  0 at all points on σ.

Now it only remains for us to consider the existence and uniqueness of null
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geodesics running between γY  and γX. But here, for the first time, things get sticky.

We want to be able to assert that an observer on one of the particles will see the

other at all times, but not see it in more than one position on the celestial sphere. It

is a curious fact about null geodesics in Gödel spacetime that this will simply not be

the case, in general.  It turns out that if  sh ro > 1 (i.e., if ro > ln (1 + 2)), the observer

will not see the other particle at all. And if  sh ro ≤ 1, he will, in general, see multiple

images of the other. Roughly speaking, this results from the fact that photons act

like boomerangs in Gödel spacetime.  Any future or past directed null geodesic that

starts at a point on γX moves outward (with monotonically increasing r value) until

it reaches the critical radius rc = ln (1 + 2),  and then moves inward (with

monotonically decreasing r value) until it hits γX again; and then the process starts

all over.19  So, it can happen, for example, that two past–directed null geodesics start

out in different directions from a point on γX, and both  intersect γY, though at

different points. One hits γY on the way out. The other hits it on the return trip in.

To avoid this complication, we now impose the requirement that ro < rc, restrict

attention to the open subset

O = {q ∈ M:  r(q) < rc},

and consider (O, gab|O
) as a spacetime model in its own right (with the temporal

orientation and orientation inherited from the original).20  Then we can make the

desired existence and uniqueness claim concerning null geodesics.

(7) Given any point qX on γX, there is a unique point qY on γY such that there 

exists a future directed null geodesic running from qY to qX; and 

symmetrically, with the roles of X and Y reversed.

That this is true follows alone from the qualitative description of past and future
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directed null geodesics just given (the boomerang effect). We  sketch the proof in the

appendix.

This puts all the needed pieces of the example together. We now revert to the

discussion at the end of section II.

Appendix:  Needed Facts About Gödel Spacetime

(A) Derivation of formula (3) in section III

Let k be any real number and let τa  be the Killing field (∂/∂t)a  + k (∂/∂ϕ)a . If we

restrict attention to the (open) region where it is timelike, we can express τa  in the

form τa = τ  ξa ,  with  ξaξa  = 1. We claim that the vorticity associated with ξa  (in this

region) is given by

ωa   =   
2  + k (2 sh2r –1) + k2 2  sh4r

(4 µ2) [1 + k 2 2  sh2 r + k2 (sh4 r – sh2 r)]
  (∂/∂y)a .

 If k = 2 , this reduces to (3).

In the derivation, we use the following basic relations:

(∂/∂t)a
 =  4µ2 ((dt)a + 2  sh2 r (dϕ)a)

(∂/∂ϕ)a
 =  4µ2 ( 2 sh2 r (dt)a  + (sh4 r – sh2 r) (dϕ)a)

τa
 =  4µ2 ( (1 + k 2 sh2 r) (dt)a  + ( 2  sh2 r + k (sh4 r – sh2 r)) (dϕ)a )

τ2   =   τaτa  =  4µ2 (1 + k 2 2  sh2 r + k2 (sh4 r – sh2 r) ),

and we work with the volume element defined21 by

εabcd  =  f  (∂/∂t)[a (∂/∂r)b (∂/∂ϕ)c (∂/∂y)d]    where   f  =  
– 4!

(16µ4) (sh r) (ch r)
 .
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Since εabcd τb τd = 0, we have

ωa   =   
1
2
  εabcd ξb ∇c  ξd  =  

1
2
   εabcd 

  

τb
 τ ∇c  

τd
 τ

   =    
1

2 τ2  εabcd  
 τ[b ∇c  τd].

So we start by deriving an expression for τ[b ∇c  τd].  First, note that since ∇[c (dt)d] = 0

= ∇[c (dϕ)d],

∇[c τd]  =  4µ2 ( (dt)[d ∇c] (1 + k 2 sh2 r) + (dϕ)[d ∇c] ( 2  sh2 r + k (sh4 r – sh2 r)) )

=  4µ2 ( k 2 2 (sh  r)(ch  r) (dt)[d(dr)c]  +

                                2 (sh  r)(ch  r)( 2 + k (2 sh2 r – 1)) (dϕ)[d (dr)c] ).

Hence,

τ[b ∇c  τd]  =  τ[b ∇[c  τd]]  =  (16 µ4) K (dt)[b (dr)c(dϕ)d]

where

K = – k 2 2 (sh  r)(ch  r) ( 2  sh2 r + k (sh4 r – sh2 r))

                             + (1 + k 2 sh2 r) 2 (sh r)(ch  r)( 2 + k (2 sh2 r – 1))

= 2 (sh  r)(ch  r) [ 2  + k (2 sh2r –1) + k2 2  sh4r ].

So,

ωa   =   
1

2 τ2  εabcd  
 τ[b ∇c  τd]  =     

1
2 τ2   (16 µ4) K εabcd   (dt)[b (dr)c(dϕ)d]

=   
1

2 τ2   (16 µ4)  K  f (4!)–1  (–(∂/∂y)a)

= 2  + k (2 sh2r –1) + k2 2  sh4r

(4 µ2) [1 + k 2 2  sh2 r + k2 (sh4 r – sh2 r)]
  (∂/∂y)a .  //

 (B) Proof sketch of claim (7) in section III

Let qX be any point on γX and let λ
∼ a   be any past–directed (non–zero) null vector

at qX  such that λ
∼ n∇n y = 0. Let σ be the (unique) inextendible, past–directed null
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geodesic starting at qX whose tangent at that point is  λ
∼ a . Let its tangent field be λa .

The r coordinate on σ starts at 0 and increases (monotonically) through all values

less than rc.  So there is exactly one point q on σ whose r value is ro.22 Let the

coordinates of q be (t, ro, ϕ, yo).  (We know, from the discussion after (5), that λn∇n y

is constant on σ. Since it is 0 at qX, it must be 0 at all points.  So the value of the y

coordinate must be yo at all points on  σ.)  The point q need not fall on γY.

We have so far considered just one inextendible, past–directed null geodesic

starting at qX along which y has the constant value yo. But the entire class of these is

generated by taking the image of σ under "rotations" of form

(t, r, ϕ, y) → (t, r, ϕ + ϕo, y),

i.e., under isometries generated by the Killing field (∂/∂ϕ)a . One of these isometric

images of  σ does  intersect γY  (since there is s ome  point qY on γY and some ϕo such

that qY has coordinates (t, ro, ϕ + ϕo, yo)).  The time reversed, i.e., future-directed,

version of this curve qualifies as a null geodesic running from a point qY on γY to

qX. So we have established the existence claim in (7).  And uniqueness follows easily

as well. Suppose σ1 and σ2 are both past–directed null geodesics starting at qX that

intersect γY. Then since both arise as images of σ under rotations of the sort just

described, and since these maps preserve the value of the coordinate t, the

intersection points share a common value of t. But there can be only one point on

γY having any particular value of t. (This  follows because  γY is a future directed

timelike curve, and (see note 19) the coordinate function t is strictly increasing on all

such curves.)

The argument for the symmetric claim (with the roles of X and Y interchanged)

is very much the same. But now, in addition to considering "rotations" (as above),

we also consider "timelike translations" of form
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(t, r, ϕ, y) → (t + to, r, ϕ, y),

i.e., isometries generated by the Killing field (∂/∂t)a .  Let qY be any point on γY.

Essentially the  same argument as we have just considered shows that given any

point on γX, there is a unique point on γY such that there exists a future–directed

null geodesic running from the first point to the second. By moving to the image of

this curve under, first, a timelike translation and, then, a rotation, we arrive at a

future–directed null geodesic σ that starts at a point qX on γX and ends at qY. This

gives us existence. For uniqueness, suppose there were a second point q′X  on γX  and

a null geodesic σ′ running from q′X to qY.  By first sliding σ′ up or down so that q′X  is

mapped to qX, and then rotating it, we could generate a future–directed null

geodesic that starts at qX, but ends at a point on γY distinct from qY -- and this we

know is impossible. //
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Footnotes

1 It is a pleasure to dedicate this paper to John Stachel, and thank him here for the

encouragement and support he has given me over the years. (It is also a pleasure to

thank Robert Geroch, Howard Stein, and Robert Wald for helpful comments on an

earlier draft.)

2 It should be emphasized that this does not imply that all claims about "orbital

rotation" are symmetric within the framework of Newtonian physics.  For example,

let X be a particle sitting at the center of mass of the solar system. The earth and the

sun both rotate relative to X (and relative to each other) in our sense; and X rotates

relative to both the earth and the sun in that sense. But there is this asymmetry

between the motion of X on the one hand, and that of the earth and the sun on the

other:  X is non–accelerating, while both the earth and the sun have non–zero

acceleration vectors that point toward X. This captures one  sense in which one

might say that the earth and sun are rotating around X, but not conversely.

3 The discussion to this point has been cast in terms of textbook Newtonian

particle mechanics. It might be asked what, if anything, changes when one passes to

the Cartan formulation of Newtonian theory in which gravity is treated as a

manifestation of spacetime curvature.  (Rather than thinking of point particles as

being deflected from their natural straight trajectories by the presence of a

gravitational potential, one thinks of them as traversing the geodesics of a non–flat

affine connection.) The short answer is that our notion of relative angular velocity

carries over in a natural way, and conditions (i) and (ii) remain symmetric. (More

problematic is the notion of orbital rotation considered in the preceding note since it

makes reference to the "acceleration" of particles in a gravitational field. But it can
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be reformulated (in terms of the presence of background spacetime symmetries) and

remains asymmetric).)   It would take us too far afield to sort this all out here.

4 Definitions of the technical terms used here and in what follows can be found,

for example, in Wald (1984). (Strictly speaking, a few minor transpositions will be

necessary since Wald works with the signature (–1, +1, +1, +1) rather than ours.)

5 We might have written 'ΩXY
a', but that notation is potentially misleading. The

identification indices 'XY' should not be confused with tensor or spinor indices.  In

what follows, it will usually be clear from context whether we are talking about the

angular velocity of Y relative to X, or of X relative to Y.  But when there is danger of

confusion, we will write  ' Ωa
(Y wrt X)' or  'Ωa

(X wrt Y)'.

6 In what follows, we assume that (M, gab) is temporally orientable and a

particular temporal orientation has been selected. We also assume that it is

orientable and a volume element εabcd
  has been selected.  (A smooth field εabcd

  on

M qualifies as a volume e l ement   if it is completely anti–symmetric (εabcd
  =  ε[abcd])

and normalized so that  εabcd εabcd  =  – 4!)  Neither the assumption of temporal

orientability nor orientability is really necessary. We can, alternatively, restrict

attention to appropriate local neighborhoods of M. But the assumptions are

convenient and, in fact, the spacetime we will use for our example in section III

(Gödel spacetime) is temporally orientable and orientable.

7 This is a substantive assumption, and will play a role in the presentation of our

example in section III.

8 The equivalence here corresponds perfectly to that in (i) in section I, and the

proof is essentially the same.  Ωa  = 0  iff  the three vectors ξa , ν
a , and

((ga
m – ξaξm)ξn∇nνm  are linearly dependent. But since ξa and νa are non–zero, and
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both νa  and  ((g
a

m – ξaξm)ξn∇nνm are orthogonal to ξa , this condition holds iff

(ga
m – ξaξm)ξn∇nνm

  is proportional to νa .  But (ga
m – ξaξm)ξn∇nνm is orthogonal to νa

(since νaξa  = 0 and  νm ξn∇nνm
 =   (1/2) ξn∇n (ν

mνm) = (1/2) ξn∇n (–1) = 0).  So Ωa  = 0  iff

(ga
m – ξaξm)ξn∇nνm

  = 0, as claimed.

9 If they are positioned so as to be orthogonal at some initial moment, they will

remain so.

10 For example, the distance between them is constant as determined by the time it

takes a light signal to complete a round trip passage from one particle to the other

and back -- as measured by clocks sitting on the respective particles. Indeed, the

distance between them is constant according to any  notion of distance that can be

formulated in terms of the spacetime metric gab and the curves γX and γY, since they

are all preserved under the flow maps associated with τa .

11 The proposition is slightly more general than the one proved in Rosquist (1980).

He worked with a unit timelike vector field ξa  that is Born rigid (i.e., has vanishing

scalar expansion and shear) and geodesic. These two conditions imply that ξa is

proportional to a Killing field, but not conversely. Rosquist also limited attention to

the case where, in our notation, νnωn = 0.

12 Every unit timelike field  ξa  whatsoever satisfies

∇nξd =  θnd + ωnd + ξn ξ
m∇mξd,

where

θnd = h(n
r hd)

s ∇r ξs          ωnd = h[n
r hd]

s ∇r ξs          hnr
  =   gnr – ξnξr.

And every such field satisfies, εndprξ
p

 ω
r = ωnd (as one can verify by direct
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substitution for ωr in the left side expression). But if  τ ξa  is a Killing field for some

scalar field τ,  θnd = 0.  (This follows from Killing's equation, ∇r (τ ξs) + ∇s (τ ξr) = 0.)

13 For an indication of what Gödel spacetime "looks like", see the diagrams in

Hawking and Ellis (1973) and Malament (1984).

14 This is equivalent to the claim that τn∇n r = 0  and τn∇n y = 0.  The first equation

holds since (∂/∂t)n (∂/∂r)n  =  0  =  (∂/∂ϕ)n (∂/∂r)n and, hence,

 0  =  τn(∂/∂r)n  =   τn  (– 4µ2 (dr)n ) = – 4µ2 τ n∇n r.

The argument for the second equation is similar.

15 This picture, while helpful, is potentially misleading in one respect. As we shall

see,  a particle whose worldline is one of these helices can qualify as non–rotating

relative to a particle whose worldline is an axis curve.

16 This fact explains the choice of the coefficient 2 in our expression for τa . We

want ωa  to be  0  at points where r = 0.  As we show in the appendix, the vorticity

associated with the general field (∂/∂t)a  + k (∂/∂ϕ)a   (where it is timelike) comes out

to be

2  + k (2 sh2r –1) + k2 2  sh4r

(4 µ2) [1 + k 2 2  sh2 r + k2 (sh4 r – sh2 r)]
  (∂/∂y)a .

This reduces to

(4 µ2)–1 ( 2 – k) (∂/∂y)a .

at r = 0.

17 ∇(a(∂/∂y)b) = 0, since (∂/∂y)a is a Killing field; and ∇[a(∂/∂y)b] = 0,  since
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  ∇[a(∂/∂y)b]  =  –4 µ2 ∇[a∇b] y  =  0.

18 We have

λn∇n  (λ
aκa) = λaλn∇n  κa  + κa λ

n∇n  λ
a  = 0.

The first term in the sum vanishes because κa  is a Killing field (and, so, ∇(n  κa) = 0).

The second does so because  λ
a  is a geodesic field.

19 See Lathrop and Teglas (1978) for an analytic characterization of geodesics passing

through points where r = 0, and see Hawking and Ellis (1973) for a picture.

20 The coordinate map  t: O → ®4 qualifies as a global time function on (O, gab|O
),

i.e., it increases along all future–directed timelike curves.  (Hence there cannot be

any closed timelike curves in (O, gab|O
).)  The assertion is equivalent to the claim

that the vector field (∇a t) is timelike and future–directed (i.e., (∇a t )(∇a
 t) > 0 and

(∂/∂t)a(∇a
 t ) > 0) on O.  But this is clear since

(∇a t )(∇a
 t) = 

1 – sh2r

4µ2(1 + sh2r)
   on O,

and (∂/∂t)a(∇a
 t) = 1 everywhere. (The expression for (∇a t )(∇a

 t) follows from the

fact that the inverse metric is:

gab =  
1

4µ2(sh2r + sh4 r)
  [ (sh2r – sh4 r) (∂/∂t)a(∂/∂t)b – (sh2r + sh4 r) (∂/∂r)a(∂/∂r)b

   – (sh2r + sh4 r) (∂/∂y)a(∂/∂y)b – (∂/∂ϕ)a(∂/∂ϕ)b + 2 2 sh2 r  (∂/∂t)(a(∂/∂ϕ)b) ]. )

21 Let R be the closed set of points where r = 0.  Since the fields (∂/∂t)a , (∂/∂r)a ,

(∂/∂ϕ)a , and (∂/∂y)a  are linearly independent on M – R,  there must  exist s ome

function f  defined on M – R for which the equation holds. We can determine f, up
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to sign, with the following calculation:

 –(4!) =  εabcdεabcd  =  f 2 (∂/∂t)[a (∂/∂r)b (∂/∂ϕ)c (∂/∂y)d]

                                                          • (∂/∂t)[a (∂/∂r)b (∂/∂ϕ)c (∂/∂y)d]

=   f 2 (∂/∂t)[a (∂/∂r)b (∂/∂ϕ)c (∂/∂y)d]

                                                                             • (4µ2)
4 
((sh4 r – sh2 r) – 2 sh4 r )(dt)[a (dr)b (dϕ)c (dy)d]

=   – f 2 (4µ2)
4 

(sh4 r + sh2 r) 
4!

(4!)2 .

The volume elements on M–R defined by the two solutions for f have well defined

limits at points in R. Once those limit values are included, we have a (smooth)

volume element on all of M.

22 It is precisely here that the present argument would break down if we had not

restricted attention to O.
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ξa  (4–velocity of X)  
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νa  (normalized direction vector   
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Figure 1
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