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A No-Go Theorem about Rotation
in Relativity Theoryl

DAVID B. MALAMENT

Within the framework of general relativity, in some cases at least, it is a
rather delicate and interesting question just what it means to say that a
body is or is not "rotating." Moreover, the reasons for this-at least the
ones I have in mind-do not have much to do with traditional controversy
over "absolute vs. relative" conceptions of motion. Rather they concern
particular geometric complexities that arise when one allows for the possi-
bility of spacetime curvature. The relevant distinction for my purposes is
not that between attributions of "relative" and "absolute" rotation, but
between attributions of rotation than can and cannot be analyzed in terms
of a motion (in the limit) at a point. It is the latter--ones that make essen-
tial reference to extended regions of spacetime-that can be problematic.

The problem has two parts. First, one can easily think of different cri-
teria for when a body is rotating. The criteria agree if the background
spacetime structure is sufficiendy simple, for example, in Minkowski space-
time (the regime of "special relativity"). But they do not do so in general.
Second, none of the criteria fully answers to our classical intuitions. Each
one exhibits some feature or other that violates those intuitions in a sig-
nificant and interesting way.

My principle goal in what follows is to make the second claim precise
in the form of a modest no-go theorem. To keep things simple, I'll limit
attention to a special case. I'll consider (one-dimensional) rings centered
about an axis of rotational symmetry, and consider what it could mean to
say that the rings are not rotating around the axis. (It is convenient to work
with the negative formulation.) The discussion will have several parts.

First, for purposes of motivation, I'U describe two standard criteria of
nonrotation that seem particularly simple and natural. (I could assemble a
longer list of proposed criteria, but I am more interested in formulating a
general negative claim that applies to all.)2 One involves considerations of
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268 DlJnd B. MlJ/Roment

angular momentum ("ZAM criterion"). The other is cast in terms of the
"compass of inertia" on the axis ("CIA criterion"). Next, I'll characterize
a large class of "generalized criteria of nonrotation" that includes the ZAM
and CIA criteria. Third, I'll abstract two (seemingly) modest conditions of
adequacy that one might expect a criterion of nonrotation to satisfy (the
"limit condition" and the "relative rotation condition"). Finally, I'll show
that no (nonvacuous)3 "generalized criterion of nonrotation" satisfies
both conditions in all relativistic spacetime models. The proof of the the-
orem is entirely elementary once all the definitions are in place. But it may
be of some interest to put them in place and formulate a result of this type.
The idea is to step back from the details of particular proposed criteria of
nonrotation and direct attention instead to the conditions they do and do
not satisfy.

I. Informal Preview

Beginning in section II, our discussion will be cast in the precise language
of relativistic spacetime geometry. But first, to explain and motivate what
is coming, we give a rough, preliminary description of the no-go theorem
in more direct, intuitive, quasi-operational terms. This will involve a bit of
hand-waving, but not much. (This section will not presuppose familiarity
with the mathematical formalism of general relativity.)

Consider a ring positioned symmetrically about a central axis as in fig-
ure 1.4 At issue is what it means to say that the ring is not-rot4ting (about
that axis). The first criterion we will be considering takes the absence of
inertial or dynamical effects on the axis as the standard for nonrotation.
Here is one way to set things up in terms of a telescope and a water bucket.
(Water buckets, to be sure, are not particularly sensitive instruments, but

FIGUREl
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FIGURE 2

they are good enough for our purposes.) Let P be the point of intersection
of the axis with the plane of the ring. Place a lazy susan at P (in the plane
of the ring), bolt a half-filled water bucket to the center of the lazy susan,
and bolt a tubular telescope to the water bucket. (See figure 2.) Finally,
mount a light source at a point (any point) on the ring. Now consider pos-
sible rotational states of the composite apparatus on the axis (lazy susan +
water bucket + telescope). There is one state in which the apparatus trReks
the ring in the sense that an observer, standing on the lazy susan and look-
ing through the telescope, will see the light source permanently fixed on
its cross hairs. We take the ring to be non rotating Recording to the CIA cri-
terion if in this state (the tracking state), the water surface in the bucket is
flat rather than concave.

This characterization is a bit complicated because it makes use of a tele-
scope as well as a water bucket. The former is used to bridge the distance
between the water bucket here and the ring there.

We can actually use the instruments described to ascribe an angular
speed to the ring (relative to the compass of inertia on the axis). Let the
composite apparatus be placed in a state of motion in which the water sur-
face is flat. And (just to keep things simple), let us assume that, at some ini-
tial moment, the observer standing on the lazy susan sees the light source
through the telescope. It may be the case that he continues to see it as time
elapses. (This is just the case in which the ring is judged to be nonrotating
according to the CIA criterion.) But, in general-assuming the ring is in
some state of uniform rotational motion-he will see it periodically, with a
characteristic interval of time A.t between sightings. (We imagine that the
observer carries a stopwatch.) This interval is the time it takes for the ring
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to complete one rotation (relative to the CIA). So the angular speed of the
ring (relative to the CIA) is just 21t/At.

Now we consider a second criterion of nonrotation that is, on the face
of it, very different in character from the first. There is a generic connec-
tion in mechanics, whether classical or relativistic, between (continuous)
symmetries of spacetime structure and conserved quantities. Associated
with the rotational symmetry of the ring system under consideration is a
notion of angular momentum.5 According to our second (ZAM) criterion,
the ring is "nonrotating" precisely if the value of that angular momentum
is zero at every point on the ring. The condition has an intuitive geomet-
rical interpretation that we will review later. Here, instead, we describe an
experimental test for determining whether the condition obtains. (Many
other tests could be described just as well.)

Imagine that we mount a light source at some point Q on the ring, and
from that point, at a given moment, emit light pulses in opposite (clockwise
and counterclockwise) directions. This can be done, for example, using
concave mirrors attached to the ring. Imagine further that we keep track of
whether the pulses arrive back at Q simultaneously (using, for example, an
interferometer). It turns out that this will be the case-they will arrive back
simultaneously-if and only if the ring has zero angular momentum.

This equivalence is not difficult to verify and we will do so later. But
wholly apart from the connection to angular momentum, the experimen-
tal condition described should seem like a natural criterion of nonrotation.
Think about it. Suppose the ring is rotating in, say, a counterclockwise
direction. (Here I am just appealing to our ordinary intuitions about
"rotation.") The C pulse, the one that moves in a clockwise direction, will
get back to Q before completing a full circuit of the ring because it is mov-
ing toward an approaching target. In contrast, the CC pulse is chasing a
receding target. To get back to Q it will have to traverse the entire length
of the ring, and then it will have to cover the distance that Q has moved
in the interim time. One would expect, in this case, that the C pulse would
arrive back at Q before the CC pulse. (Presumably light travels at the same
speed in all directions.) Similarly, if the ring is rotating in a clockwise direc-
tion, one would expect that the CC pulse would arrive back at Q before
the C pulse. Only if the ring is not rotating, should they arrive simultane-
ously. Thus, our experimental test for whether the ring has zero angular
momentum provides what would seem to be a natural criterion of nonro-
tation. (Devices working on this principle, called "optical gyroscopes," are
used in sensitive navigational systems. See, for example, the discussion in
Ciufolini and Wheeler 1995, 365.)

We now have two criteria for whether the ring is non-rotating. It is
nonrotating in the first sense if it is nonrotating with respect to the com-
pass of inertia on the axis (as determined, say, using a water bucket and
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telescope). It is nonrotating in the second sense if it has zero angular
momentum (as determined, say, using light pulses circumnavigating the
ring in opposite directions). As we shall see later, it is a contingent matter
in general relativity whether they agree or not. Whether they do so
depends on the background spacetime structure in which the ring is
imbedded. If it is imbedded in Minkowski spacetime, for example, it will
qualify as nonrotating according to the CIA criterion iff it does so accord-
ing to the ZAM criterion. But if it is imbedded, instead, for example, in
Kerr spacetime, the equipalence fails. (We choose this example lest one
imagine that the failure of agreement occurs only in pathological spacetime
models that are of mathematical interest only. The Kerr solution may well
describe regions of our universe, the real one, at least approximately-
regions surrounding rotating black holes.)

Though the two criteria do not agree in general, it is important for our
purposes that they tragree in the limit for infinitely small rings,» no matter
what the background spacetime structure. They do so in the following sense.
Imagine that we have a sequence of rings Rl,~, R3'. . . that share a cen-
ter point P on the axis, and have radii that shrink to O. Imagine further that
each of them is non-rotating according to the ZAM criterion. Each ring ~
has a certain angular speed ro-. with respect to the compass of inertia on the
axis. (We described a procedure above for measuring it.) None of the ro-.

need be O. The claim here is that (regardless of the background spacetime
structure), the sequence (Ol'~' (03' . . . must converge to O. (We will ver-
ify the claim later.)

We have considered just two simple, natural, experimental criteria for
nonrotation. We could consider others (that do not, in general, agree with
either one). But the fact is, it would turn out in every case that the crite-
rion agrees with them "in the limit for infinitely small rings" in the sense
just described (no matter what the background spacetime structure ).6 This
is one way to understand the claim that there is a robust notion of rotation
(in the limit) at a point in general relativity, even if there is none that
applies to extended regions of spacetime.

In any case, with these remarks as motivation, we now propose for con-
sideration a first condition that one might expect a reasonable criterion of
nonrotation to satisfy. Let us understand a "generalized criterion of nonro-
tation" to be, simply, a specifIcation, for every ring, in every state of motion
(or nonmotion), whether it is to qualify as "nonrotating." We don't require
that it have a natural geometrical or experimental interpretation.

Limit Condition: Let R1,~, R3" . . be a sequence of rings, each "non-rotat-
ing," that share a center point P on the axis, and have radii that converge to O.
For every i, let ~ have angular speed ro-. with respect to the compass of inertia
on the axis. Then the sequence 0>1' ~'0>3' . . . converges to O.
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FIGURE 3

We have just asserted that the ZAM criterion satisfies this condition
(regardless of the background spacetime structure). The CIA criterion
does too, of course. (In the latter case, ~ is 0, for every i. So the sequence
certainly converges to 0.)

It remains to state our second condition (on a generalized criterion of
nonrotation). Suppose we have two rings RI and R2 centered about the
axis as in figure 3. (The planes of the rings are understood to be parallel,
but nor necessarily coincident.) Further suppose that "~ is nonrotating
relative to RI'" Then, one would think, either both rings should qualify as
"nonrotating," or neither should. This is precisely the requirement cap-
tured in our "relative rotation condition." It is not entirely unambiguous
what it means to say that ~ is nonrotating re/at;pe to RI' But all we need
is a sufficient condition for relative nonrotation of the rings. And it seems,
at least, a plausible sufficient condition for this that, over time, there is no
change in the distance between any point on one ring and any point on
the other, i.e., the two rings move as if locked together.

Re/aN1'e RotaNon CondiNon: Given two rings Rl and ~, if (i) Rl is "nonro-
tating," and if (ii) R2 is nonrotating relative to Rl (in the sense that, given any
point on R2 and any point on R1, the distance between them is constant over
time), then ~ is "nonrotating."

The relative rotation condition is really at the heart of our discussion.
It seems a modest condition. But neither the CIA nor the ZAM criterion
satisfies it, in general! They both do so if the rings are imbedded in
Minkowski spacetime. But, as we shall see, neither does if they are imbed-
ded in, for example, Kerr spacetime.

It should be clear just what is being asserted here. The situation is
extremely counterintuitive. Consider the ZAM criterion. The claim is that
we can have two rings, moving as if rigidly locked together, where one, but
not the other, has zero angular momentum. Light pulses circumnavigating
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the first will arrive back at their starting point simultaneously. But pulses
circumnavigating the second will not do so. (And similarly with the CIA
criterion. )

We have made a number of claims ,involving two criteria of nonrota-
tion, two possible conditions of adequacy on a criterion of rotation, and
two spacetime models. It may help to summarize some of those claims in
a table.

In Minkowski
spacctimc

InKerr
spacctimc

Do the CIA and ZAM criteria agree
(for rings of arbitrary radius)? ~ No

Does the CIA criterion satisfy the
limit condition? Yes Yes

Does the ZAM criterion satisfy the
limit condition? Yes Yes

Does the CIA criterion satisfy the
relative rotation condition? Yes No

Does the ZAM criterion satisfy the
relative rotation condition? Yes No

The fact that neither the CIA nor ZAM criterion satisfies the relative
rotation condition (in general), seems a significant strike against them, and
it is natural to ask whether any other criterion does better. Our principal
claim is that, in an interesting sense, the answer is 'no'. There are criteria
that satisfy the relative rotation condition in Kerr spacetime.7 But the cost
of doing so is violation of the limit condition, or else the radical conclu-
sion that no ring in any state of motion (or nonmotion) counts as "non-
rotating. "

Theorem In Kerr spacetime (and other relativistic spacetime models to be dis-
cussed), there is no generalized criterion of nonrotation that satisfies the fol-
lowing three conditions:

(i) limit condition
(ii) relative rotation condition
(iii) nonvacuity condition: there is some ring in some state that qualifies

as "nonrotating."

The result is intended to bear this interpretation. Gi1Jen any (non1Jacu-
ous) generalized criterion of non rotation in Kerr spacetime, to the extent that
it gives "correct» attributions of nonrotation in the limit for infinitely small
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rings-the domain where one does have a robust notion of nonrotation-it
must violate the relative rotation condition.

II. Formal Treatment

Now we start all over and cast our discussion in the language of relativis-
tic spacetime geometry.8 We present formal versions of the two criteria of
nonrotation and the two conditions of adequacy (though not in the same
order as in section I).

First we have to consider how to represent one-dimensional rings in a
state of uniform rotational motion. To keep things as simple as possible,
we will think of the rings as test bodies with negligible mass, imbedded in
a background spacetime structure that exhibits the rotational and "time
translational" symmetries of the ring system itself. More precisely, we will
think of them as imbedded in a stationary, an-symmetric spacetime model.

II.l Stationary, hi-Symmetric Spacetimes

We take a (relRtivistic) spacetime model to be a structure (M, 8ab) where M
is a connected, smooth, four-dimensional manifold, and 8ab is a smooth,
pseudo-Riemannian metric on M of Lorentz signature (+, -, -, -). We say
that (M, 8ab) is stRtionRry Rnd Rxi-symmetric if there exist two one-para-
meter isometry groups acting on M, {r t: te R} and {1:§': q>e 51}, satisfying
several conditions. (Here we identify 51 with the set of real numbers mod
2n. )9

(SAS 1) The isometries r t and 1:" commute for all tE Rand <pe SI,

(SAS 2) r t(p) ~ P for all points P in M and all t ~ O. (So the orbits ofall points
under trt: teR} are open.)

(SAS 3) Some, but not all, points P in M have the property that ~cp'(p) - p for
all <po (Those with the property are called ~ points. So the orbits of axis points
under {~q>: cpeSl} are singleton sets, and those ofnonaxis points are [nonde-
generate] closed curves.)

(SAS 4) The orbits of {r t: tE R} are timelike, and the nondegenerate orbits of
{1:q>: (pE SI} are spacelike.lO

The final condition is slightly more complex than the others. Let M-
be the restricted manifold that one gets by excising the (closed) set of axis
points. The orbit of any point in M- under the two-parameter isometry
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group {r t°1:4p: te R & q>e 81} is a smooth, two-dimensional, timelikell sub-
manifold that is diffeomorphic to the cylinder R x SI. Let us call it an orbit
cylinder. So (in the tangent space) at every point p in M-, there is a time-
like two-plane T(p) tangent to the orbit cylinder that passes through p, and
a spacelike two-plane S(p) orthogonal to T(p). The final condition imposes
the requirement that the set (S(p): pe M-} be integrable.

(SAS 5) (Orthogonal transitivity) Through every point in M- there is a smooth,
two-dimensional, spacelike submanifold n that is tangent to S(p) at every point
pin n ('\ M-.

Associated with the two isometry groups /rt: tER} and {1: : <PESl},
respectively, are Killing fields ~ and cpa. (They arise as the ".tesimal
generators" of those groups.) It will be helpful for what follows to refor-
mulate the five listed conditions in terms of these fields. (SAS 1) is equiv-
alent to the assertion that the fields have vanishing Lie bracket, i.e., at all

points

'tnv ncp8 - cpnv n ~ = o. {t:

(SAS 2) comes out as the requirement that ~ be everywhere nonzero. (SAS
3) can be understood to assert that ~ vanishes at some (axis) points, but
does not vanish everywhere. (SAS 4) is equivalent to the assertion that ~ is
everywhere timelike, and ~ is spacelike at nonaxis points. Finally, (SAS 5)
is equivalent (by Frobenius's theorem) to the assertion that the conditions

~a~Vc'td] - 0 (2.:)

't[aCPb V c'td] - 0 (2b)

hold at every nonaxis point.ll
The five listed conditions imply the existence of coordinate functions

with respect to which the metric ~b assumes a special, characteristic
form.la The first three imply that there exist smooth maps t: M -+ Rand
cp: M- -+ SI such that -ra - (a/at)a on M, and cpa = (a/acp)a on M-. (Again,
M- is the restricted submanifold on which cpa ;t; 0.) The remaining con-
ditions imply that, at least locally on M-, we can find further smooth
coordinates xl and xa such that, at every point, the vectors (a/axl)a and
(a/axa)a are spacelike, orthogonal to each other, and orthogonal to both
(a/at)a and (a/acp)a. Thus, at points in M-, the matrix of components of
~b with respect to the coordinates (t, cp, xl' xa) has the characteristic
form:
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0"a
rcp.

rcpa

na

0

0

0 0

(d/dx2)*(~/dx2}a

0

00

(~/ax3)~d/i)x3)a0 0

And the inverse matrix (giving the components of gab) has the fOml:

00(~a)D-l

(n.> D-l

0

( na)D-l

(~a)D-l

0

00

[(d/~)a(d~)at1 0

0 [(~/dx3)a(d/dx3)at10 ()

where D = (tar)(CPbcpb) - (ta~)2. (D < 0 in M-, since (CPbcpb) < 0 in M- and
(tar) > 0 everywhere.)

For future reference, we note that vat (= gabVbt = gah(dt)b) can be
expressed as

V3t ~ (cpnCPn)D-l (ojat)a + (-tD19n)D-l (a/aq)a _(D-l) [(nn) ~ - ('tDcpn) cpa]

in M-. Hence

(V at)(V~) - (cpD(pn)D-l

and therefore

(vat) [(V nt)(VDt)tl - r - (-rDtpn)(nm)-I.pa
(3)

in M-.
Of special interest is the case where [( t~n)( ~m)-l] is constant on

M-.I4 We will say then that the background spacetime (M, 8ab) is static.
This is a slightly nonstandard way of formulating the definition.IS But if
[(t~n)(cpm<pm)-l] is constant, t,a = -ra- (tn<pn)(cpm<pm)-l~ is a smooth time-
like Killing field on M that is hypersurface orthogonal. (It is a Killing field
since any linear combination of two Killing fields is one. It is hypersurface

orthogonal by (3).)
An example to which we will turn repeatedly is Kerr spacetime (see,

e.g., O'Neill 1995). In Boyer-Lindquist coordinates (t, <p, r, G)-again
with -ra - (a;dt)a and <pa - (a;a<p)a-the nonzero components are
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(5b)

(5c)

-rata = 1 - 2 M r p-2

rcpa - 2 M r a (sinze) p-2

VCPa - - [r2 + a2 + 2 M ~a2(sin29) p-2] (sin29)

(d/dr)a(d/-or). - ~A-l

(d/d9)~d/de)a - ~

where

~ -r2 + a2(cri)

A - r2 -2 M r + a2. (Se)

(Here a and M are positive constants.) Axis points are those at which
(sin29) = O. It is not the case that r is everywhere timelike and cpa is every-
where spacelike on M-. But these conditions do obtain in restricted regions
of interest, e.g., in the open set where r > 2 M. Ifwe think of Kerr space-
time as representing the spacetime structure surrounding a rotating black
hole, our interest will be in small rings that are positioned close to the axis
of rotational symmetry (where (sin29) is small) and far away from the cen-
ter point (where r is large). There we can sidestep complexities having to
do with horizons and singularities.

11.2 Striated Orbit Cylinders and the ZAM Criterion

Assume we have fixed, once and for all, a stationary, axi-symmetric space-
time (M, ~b) with isometry groups {rt: teR} and {1:,: <peSl} and corre-
sponding Killing fields r and q>b. The first of these fields defines a temporal
orientation on (M, ~b). We will work with that one in what follows.16

We want to represent (one-dimensional) rings, centered about the axis
of rotational symmetry. We do so using the "orbit cylinders" introduced
above. Recall that these were characterized as the orbits of points in M-
under the two-parameter isometry group {r t°1:q> te R & q>e SI }. Here is an
equivalent formulation.

Definition An orbit cylinder is a smooth, two-dimensional, timelike submani-
fold in M-, diffeomorphic to the cylinder R x SI, that is invariant under the
action of all maps r t and 1:.-

Clearly, we are thinking about the life history of a ring, not its state at a
given "time."

Let C be an orbit cylinder representing ring R To represent the rota-
tional statc of R, wc nccd to kccp track of thc motion of individual points
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FIGURE 4

on it. Each such point has a worldline that can be represented as a time-
like curve on C. So we are led to consider, not just C, but C together with
a congruence of smooth timelike curves on C.17

We want to think of the ring as being in a state of rigid rotation (with
the distance between points on the ring remaining constant). So we are
further led to restrict attention to just those congruences of timelike
curves on C that are invariant under all isometries r t and 1:cp' Equivalendy
(moving from the curves themselves to their tangent vectors), we are led
to consider smooth, future-directed timelike vector fields E;a on C that are
invariant under all these maps. Since each such field is determined by its
value at anyone point on C (and since the tangent plane to C at any point
is spanned by the vectors ~ and ~ there), E;a must be of the form (k1~ +
k2cpa), where k1 and k2 are constants, and k1 > 0.18 We lose nothing if we
rescale E;a by a positive factor and write it in the form (~+ k~). So we are
led to the following definition.

Definition A stri4tell orbit cylinlleris a pair (C, k), where C is an orbit cylinder,
and k is a number such that the vector fidd (-ca + kcpa) is timelike on C.

We call the integral curves of (-ra + kcpa) on C "striation lines," and call
k their "slope factor."

Now we can formulate our fundamental question: Under what condi-
tions does a striated orbit cylinder count 4S nonrotating? The first proposal
we consider is the following.19
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Definition A striated orbit cylinder (C, k) is nonrotating according to the ZAM
(zero angumr momentwm) criterion if the vector field (r + kcpa) is orthogonal
to cpa, i.e., if k = - (~a)( cpD4pn)-I.

The connection with angular momentum is immediate. The stated condi-
tion is equivalent to the assertion that every point on the ring has 0 angu-
lar momentum with respect to the rotational Killing field ~ .20

The criterion should seem like a reasonable one. It seems plausible to
regard a striated orbit cylinder as nonrotating iff the striation lines (rep-
resenting the worldlines of points on the ring) do not "wrap around the
cylinder." And the latter condition is plausibly captured in the require-
ment that the striation lines be everywhere orthogonal to equatorial cir-
cles on the cylinder, i.e., have no component in the direction of those
circles. But how does one characterize "equatorial circles" in the present
context? If the background geometry were Euclidean, e.g., if we were
dealing with ordinary barber shop poles, we could characterize an equa-
torial circle as a closed curve of shortest length on the cylinder that is not
contractible to a point. That characterization does not carry over to the
present context where the background metric has Lorentz signature. But
an alternate, equivalent one does. In the Euclidean case, we can equally
well characterize an equatorial circle as the orbit of a point under the
group of rotations that leave fixed the central axis of the cylinder. Lifting
that characterization to the present context, we are led to construe the
orbits of points under {1:4p: cpe SI} as "equatorial circles." These are just
the integral curves of the field ~. So the requirement that striation lines
not "wrap around the cylinder" is plausibly captured in the condition that
they be everywhere orthogonal to the field ~. That is precisely the ZAM
criterion of nonrotation.

Consider now the operational test described in the preceding section
for whether a ring is rotating according to the ZAM criterion. We can ver-
ify that it works with a simple calculation.21 Let (C, k) be a striated orbit
cylinder. We have to keep track of three curves on C. (See figure 5). The
first is a striation line Y that represents the worldline of a fixed point on the
ring from which light is emitted and absorbed. The other two are null
curves Al and Az on C that represent the worldlines of photons that start
at that point, traverse the ring in opposite directions, and then arrive back
at it. (Call them "photon 1" and "photon 2.") Let Po be the initial emis-
sion point at which the three curves intersect. Let PI be the intersection
point ofy with Al at which the first photon is reabsorbed. And let P2 be
the corresponding intersection point ofy with Az' We have to verify that
the photons arrive back at the same instant iff(C, k) is nonrotating accord-
ing to the ZAM criterion, i.e.,
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FIGURES

PI - P2 ~ k ~ - (~a)(cpnfPn)-l (6)

The tangent fields to the curves 'Y, AI' and ~ (after rescaling by a pos-
itive constant) can be written in the form (-r;a + k(f)a), (-r;a + 4~), and (-r;a +
12~). Since the first is timelike, and the second two are null, we have ~ *
kand

l7)(r + ~~)('ta + li~a) - 0

for i = 1,2. Consider the scalar function <p': C ~ 81 defined by <p' - «p-
kt)(mod 2n). It is a circular coordinate that is adapted to (C, k) in the sense
that it is constant along striation lines}2 Let the (t, <p') coordinates of the
points Po, PI' P2 be (to, <p'o), (tI' <p'o), and (t2' <p'o). We can verify (6) by con-
sidering the respective rates at which <p' changes along Al and ~ as a func-
tion of t}3 Without loss of generality, assume that it increases from <p'o to
«p'o + 2n) along AI' and decreases from <p'o to «p'o - 2n) along ~. Then,

the total increase (resp. decrease) along Al (resp. ~) can be expressed as:24

21t~ (tI-to) (dtp'/dt)IODAl c(tl-to) (4-k)

-21t ~ (t2 - to) (dtp'/dt)\onA2= (~-to}{12 -k).
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So

{tl-~)-!2:n (11 + 12 -2k}«fr":t;}f!,(~r~;:-l,

But it follows from (7) that

11 - [- (~a) + (_D)1/2] (~J-I

12 = [- (~a) - (-D)I/2] (cp"cpJ-I

where (as above) D - ('ta-ra)(CPbcpb) - ('tnff'"f. So,

PI ~ P2 <=> (ti - ~) - 0 <=> {II + 12 - 2k) = 0 <=> k - - (~a) «p"«pJ-I,

which confirms (6).

II.3 Generalized Criteria of Nonrotation and the
Relative Rotation Condition

Now we turn to "generalized criteria of nonrotation." Using our current
terminology, the definition comes out this way.

Definition A generlJlized criterion of nonrotlJtion is a specification, for every
striated orbit cylinder (C, k), whether it is to count as "nonrotating" or not.

We do not assume that generalized criteria of nonrotation bear a nat-
ural geometrical or experimental interpretation. Nor do we assume that
given an orbit cylinder C, they render (C, k) "nonrotating" for at least one
k, or at most one k. Clearly, the ZAM criterion of nonrotation qualifies as
a generalized criterion of such.

Next consider the relative rotation condition. Intuitively, it asserts that
ifwe have two rings (with the same axis of symmetry), then if the first qual-
ifies as "nonrotating," and if the second is nonrotating relative to the first,
then the second ring also qualifies as "nonrotating." As mentioned above,
all we need here is a sufficient condition for relative nonrotation of the two
rings; and it seems, at least, a plausible sufficient condition for this that,
over time, there be no change in the distance between any point on one
ring and any point on the other, i.e., the two rings move as if locked
together.

Suppose we have two striated orbit cylinders (C1, kl) and (C2' k2), sup-
pose 11 is a striation line of the first, and 12 is a striation line of the second.
There are various ways we might try to measure the "distance between 11
and 12." For example, we might bounce a photon back and forth between
them and keep track of how much time is required for the round trip-as
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measured by a clock following one of the striation lines. But no matter
what procedure we use, the measured distance will be constant over time
if 11 and 12 are (up to reparametrization) integral curves of a common
Killing field ( or, equivalently, orbits of a common one-parameter group of
isometries). For any measurement procedure can be characterized in terms
of some set of relations and functions that are definable in terms ~b (e.g.,
the set of null geodesics, the length of a timelike curve) and all such rela-
tions and functions will be preserved under the elements of the isometry
group (since these all preserve 8ab). So we seem to have a plausible suffi-
cient condition for the relative nonrotation of (C1, kl) and (C2' ~)-
namely, that there exist a (single) Killing field r defined on M whose
restriction to C1 is proportional to (-ca + k1 ~), and whose restriction to C2
is proportional to (-ca + k2~). But the latter condition holds immediately
ifk1 = k2, since, for any constant k, (-ca + k~) is itself a Killing field defined
onM.

The upshot of this long-winded argument is the proposal that it is
plausible to regard (C2' k2) as nonrotating relative to (Cl' kl) ifkl = k2.
So we are led to the following formulation of the relative rotation
condition.

RelRitipe RotR;tion Condition For all k, and all striated orbit cylinders (Cl, k)
and (C2' k) sharing k as their slope factor, if (Cl, k) qualifies as "nonrotating,"
so does (C2' k).25

It follows easily that the ZAM criterion of nonrotation satisfies the re/R-

tive rotation condition iff the background stationary, axi-symmetric splU"e-
time structure is static, i.e., if the function {(-t"q>~(fP"q>,J-l ] is constant on

~.26 In Kerr spacetime, by (5b) and (5c),

(8)- (~.pa)(.pn.pn)-l = (2 Mra)[(~+a,2)p1+ 2 M r a2 (sin29)]-l,

The right hand side expression is not constant over any open set. So we see
that the ZAM criterion does not satisfy the relatiJ1e rotR-tion condition in Kerr
spR-cetime, or the restriction of Kerr spR-cetime to R-ny open set. (We have been
taking for granted that a and M are both strictly positive. It also follows
directly from (8) that the ZAM criterion does satisfy the relative rotation
condition in Schwarzschild spacetime (a - 0 and M > 0) and Minkowksi
spacetime (a = 0 and M - 0).)

II.4 The CIA Criterion

Next we consider how to capture the CIA criterion of nonrotation in the
language of spacetime geometry. Let (C, k) be a striated orbit cylinder.
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The Killing field (-ra + k<pa) that determines the striation lines on C is
defined on all ofM. It seems a natural proposal to construe (C, k) as non-
rotating if the twist (or vorticity) of (-ra + k~) vanishes at axis points. This
is very close to being the CIA criterion. But there is a problem. It is true
that given any axis point p, there is one and only k such that (-ra + k~) has
vanishing twist at p. (We verify this in lemma 2.) But it turns out that that
critical value need not be the same at all axis points. It is not, for example,
in Kerr spacetime. (In the end, it is this one fact that lies at the heart of our
mini no-go theorem.) So we need to direct attention to some particular
axis point and take the test to be whether (-ra + k~) has vanishing twist
there. The natural choice is the "centerpoint" of the ring, the point that lies
at "the intersection of the axis with the plane of C." (That is where we pre-
viously placed the experimental apparatus consisting of lazy susan + water-
bucket + telescope. Recall figure 2.) The question, then, is how to construe
the expressions in quotation marks.

One natural way to do so is in terms of light signals traveling from the
ring to the axis. There is exacdy one point on the axis at which the incom-
ing light signals arrive so as to be perpendicular to the axis. That one point
is a natural candidate for the "centerpoint" of the ring, and we will treat it
as such in what follows. But a bit of work is necessary to set everything up.

Let E abcd be a volume element,27 and let oa be the smooth field defined

by
aa = eabcd tb V cfPd

We claim that at every a:x:is point p, aa gives the "direction of the axis
of rotation" as determined relative to -ra. The interpretation is supported
by the following lemma that collects several simple facts about aa for future
reference. It implies that at axis points, aa is, up to a constant, the only
nonzero vector, orthogonal to -ra, that is kept invariant by all isometries 1:cp.

!.emmll 1 At all points:

(i) aa is orthogonal to ~ and cpa
(ii) L.(aa) - 0 - Lt(aa) (Here L. and ~ are Lie derivative operators.)
(ill) t[a Vb 'Pc] - (1/6) E abcdod.

At axis points:

(iv) aa ~ 0
(v) VafPb = (1/2)(tDtJ-1 EabcdtCad

Given any field~, ifL.(~) - 0 at an axis point, then at the point it must be
of form ~ ~ kl~+ k2aa.

Proof(i) e abcd is totally antisymmetric. So oata - e ~a tb V c'Pd - 0, and
alq)a - E abcdcpa'tb V cCPd = E abl;d CP[a 'tb V cCPdj"
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But <P[a'tb V c<Pd] = 0, by (2b). So oa<Pa = O. (ii) The Lie operators Lor and Lcp
annihilate -ra and -r, by (I), and annihilate ~b and e abcd because -ra and -r
are Killing vectors. So they annihilate all fields definable in terms of -ra, -r ,
~b' and eabcd, including oa. (ill) follows by a simple computation:

eabcd ad - eabcdedmpq'tm V p'Pq - (3!) ~a[~p~cq] 'tm V p'Pq = M[a Vb'Pcr28

For (iv), suppose ~ = 0 at an axis point p. Then, by (ill),"~ Vb<Pcj = 0 at
p. Expanding this equation and using the fact that Vb<Pc = - V c<f'b (since ~
is a Killing field), we have

(na)Vb CPc + 'tc-raVaCPb - 'tb-raVa<pc = O.

But the second and third terms are 0 at p, since ~V a'Ph = ~V a 'tb (by equa-
tion (I» and 'Ph - 0 at p. So, since ~ is timelike, V bCPc - 0 at p. But this is
impossible. For given any Killing field r, if both Ka and V a ~ vanish at a
point, r must vanish everywhere. (See Wald 1984,443.) And we know
that cpa does not vanish everywhere. (v) follows from (iii) and a computa-
tion very close to the one just used for (iv). Finally, assume that L~(V) -
0 at p. Then, at p, VVa'Ph = ~V a'l'b - 0 since ~ = 0 at p. Hence, by (v),
EabcdV't'od = 0 at p. It follows that the three vectors v,r and aa are lin-
early dependent at p and, so, V can be expressed there as a linear combi-
nation of the other two vectors. .

Let C be an orbit cylinder. Let y be an integral curve of -ra on which <pa

vanishes.29 It represents the worldline of a point30 on the axis of rotation.
We say that y is the centerpoint of C if, for all future-directed null geodes-
ics running from a point on C to a point on y, if A. a is the tangent field to
the null geodesic, then, at the latter (arrival) point, A. a is orthogonal to aa .31

In what follows, we take for granted that orbit cylinders have unique
centerpoints. The assumption is harmless because it will suffice for our
purposes to restrict attention to regions of spacetime near axis points (e.g.,
within convex sets) and there they certainly do.32

To complete our definition of the CIA criterion we need the following
lemma.

umms 2 Let P be an axis point. Then there is a unique k such that the Killing
field coa - (-ra + kcpa) has vanishing tWist at p, i.e., such that Cora Vbf.c] - 0 at p. Its

value is given by:
kcrit(P) ~ - [(Vb'tc)(vbq>C)] [(V mq>J(VIntpI1)]-l.

Proof Since ~ ~ 0 at p, what we need to show is that there is a unique
k such that
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(9)'tr.Vb'tc] + k't[a VbCPc] ~ 0

at p. We know from clauses (iii) and (iv) of lemma 1 that "t[a VbCl>c] ~ 0 at p.
So uniqueness is immediate. For existence, consider the tWist vector field

of r defined by

or - E abc~b V c't(

roa is orthogonal to ~ and is Lie derived by ~, i.e., Lcp( roa) ~ O. (The proof
is almost exactly the same as for cra in clauses (i) and (ii) of lemma 1.)
Hence, by the final assertion in lemma 1, wa = k2cra at p, for some number
k2. It follows by clause (iii) of lemma 1, and the counterpart statement for
wa and 't[a Vb tcJ' that

;a Vb'tc] - (1/6) Eabcdrod - ~ (1/6) Eabcdad - k2 't[a VbCPc] ,

Thus (9) will be satisfied awe take k ~ - k2.
Now assume that k does satisfy (9) at p. Contracting with -caVbcpc, and

then dividing by (Mc)' yields

[(Vbtc)(VbcpC)] + k [(VbCPc)(Vbcpc)] = O.

(Almost all terms drop out because rVa<Pb = 0.) So to complete the proof
we need only verify that (V bqlc)(Vbqlc) * 0 at p. But this follows, since by
clause (v) of lemma 1,

I-IEbcpq(VbcpC)'tP~z - (l/2)('tn-cn}l(O"q~)(VbCPc)(Vb~) - (1/2)('tD-tn;

at p, and by clauses (i) and (iv), «(Jq~) < 0 at p. .

Lemma 2 has a simple geometric interpretation. Equation (9) is equiv-
alent to:

ro" + kaa - O.

So, when the dust clears, the lemma asserts that, at every axis point, the
twist vector roa (of -ra) is co-alligned with the axis direction vector cra. The
critical value k is just a proportionality factor.

If p is an axis point, and y is the integral curve of -ra that passes through
p, the function kcrit is constant on y. (This follows since the condition that
(-ca + kcpa) is twist free is definable in terms of -ca, cpa, and &b' and these are
all preserved by the isometrles r J. SO, in particular, if y is the centerpoint
of an orbit cylinder C, we can write 'kcrit(y)' without ambiguity. Now we
have all the pieces in place for our definition.
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Definition A striated orbit cylinder (C, k) is nonrotating according to the CIA
criterion if k = kcrit(Y)' where Y is the centerpoint of C.

We now consider the conditions under which the CIA criterion satis-
fies the relative rotation condition, and the conditions under which our
two criteria of nonrotation agree. We take them in order.33 Since every axis
point is the centerpoint of some orbit cylinder, the CIA criterion satisfies
the relative rotation condition iff the function kcrit assumes the same value
at all axis points. But there is a more instructive way to formulate the later
condition.

Lemm/J 3 The function f = [-( ~a)( "n)-l] can be smoothly extended from
M- to all of M. The value of the extension at an axis point P is kcrit(p).

Proof The proof that f can be smoothly extended to M is long, and we
omit the details.34 But the rest of the proof is easy. Consider the field t,a
- r + rcpa defined on M-. By (3), it is hypersurface orthogonal, i.e., of form
t'a = g Vah. So, it must have vanishing twist.35 Therefore, at all points in
M- ,

0 - 't'ra Vb't'cJ. - iaVb1c} +hraVblpc] + ~c'ta Vb] f + ~a Vb'tc] + f2cp[a Vblpcj'

Let k' be the limiting value of f at p. Then, at p we have

c0 - 't[a Vb'tc] + k' ;aV~.,

(since <Pa = 0 at p). But we saw in the proof of lemma 3 that there is a
unique k that satisfies equation (9). So k' - kcrit (p). .

It follows immediately from lemma 3 that the CIA critenon satiifies the
relatipe rotation condition iff{-{-c"tpj{tp"tp,J-IJ has the same limitpalues at
all axis point. At axis points in Kerr spacetime, the limit value of
[-( ~a)( ~<pn>-l] is

2 M r a [r2 + a2]-2

(Recall (8).) Clearly, this function is not constant over any interval of val-
ues for r. So we see that the CIA criterion does not satisfY the relRtive rota-
tion condition in Kerr spacetime, or the restriction of Kerr spacetime to an
open set containing an axis point.

We also see if that if the background stationary, axi -symmetric spacetime
is static, then the CIA criterion satisfies the relative rotation condition. (If
[-( ~a)( ~n>-l] is constant, then certainly the function has the same limit
values at all axis point.) It turns out, however, that the converse is false.36
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Next consider the conditions under which our two criteria agree (for
all rings). What is required is that, for all orbit cylinders C, the value of
[-(rcpa)(~J-1] on C be equal to the value ofkcrit at the centerpoint of
C. Recalling how centerpoints are defined, and making use of lemma 3, we
see that the CIA and ZAM criteria of nonrotation agree (for all rings) iff
the function [-(~q>.)(qI'q>,J-l ] is constant on all null geodesics that termi-
nate at axis points and have tangents there orthogonal to the axis direction
0".37 It follows that they do not agree in Kerr spacetime, or any open set in
Kerr spacetime containing an axis point. 38

11.4 The Limit Condition and the Theorem

Finally) we turn to the limit condition. Let (CI) kI)) (C2) k2)) (Ca) ka))
. . . be a sequence of striated orbit cylinders that share a common center-
point 'Y) and that converge to 'Y. (We can take the second condition to mean
that each point on 'Y is the accumulation point of a sequence of points PI)
P2) Pa) . . . ) with Pi on Ci.) For all i) let 'tja - -ra + kj~) and let ~a be its
associated twist field

O),a - ea 't.b Vc't.dI bcd I 1 .

We can take the limit condition to assert that, if each (Ci, ~) qualifies as
"nonrotating," then the sequence <Ola, ~a, <O3a, . . . converges to 0 on 'Y.
This captures the requirement that the measured angular velocity of (Ci'
~) relative to the compass of inertia on 'Y goes to O. An equivalent formu-
lation is the following.39

Limit Conditiqn Let (Cl, kl)' (C2, k2), (C3' k.3)" . . be a sequence of striated
orbit cylinders that share a common centerpoint 'Y, and that converge to 'Y. If
each of the (Ci'~) qualifies as "nonrotating," then ~m ki - kcriJ'Y).

.--

It follows immediately, of course, that the CIA criterion satisfies the
limit condition (in all stationary, axi-symmetric spacetime models). For if
each (Ci'~) qualifies as nonrotating according to that criterion, ~ = kcriJV

for all i. (One does not need to take a limit to reach kcriJY).) It also follows
immediately from lemma 3 that the ZAM criterion satisfies the limit condi-
tion (in all stationary, axi-symmetric spacetime models). For if each (Ci, ~)
qualifies as nonrotating according to that criterion, ~ is equal to the value
of the function [-( ~a)( cpncpJ-l ] on Ci, for all i. And the sequence of those
values converges to kcrit( y) by lemma 3 (and the fact that the Ci converge
to y).

We can, now, finally, state our prindpal result.
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Theorem Assume the background stationary, axi-symmetric spacetime model is
one (like Kerr spacetime) in which there exist axis points p and p' such that
kcrit(P) * kcrit(P'). Then there is no generalized criterion of nonrotation that (in
the model) satisfies the following three conditions:

(i) limit condition
(ii) relative rotation condition
(ill) nonvacuity condition: there is at least one striated orbit cylinder

that qualifies as "nonrotating."

Proof Let 'Y and l' be the integral curves of -ra containing p and p', and
let C1, C2, C3, . . . and C'l' C'2' C'3' . . . be sequences of orbit cylinders
that converge to 'Y and l' respectively. Now assume there is a generalized
criterion of nonrotation G that satisfies all three conditions in the model.
Let (C, k) be a striated orbit cylinder that qualifies as "nonrotating"
according to G. For all i sufficiently large, (Ci, k) and (C'j, k) are striated
orbit cylinders, i.e., (-ra + k~) is timelike on Ci and C'io So, by the relative
rotation condition, (Cp k) and (C'j, k) qualify as nonrotating according to
G for all i sufficiently large. Therefore, by the limit condition applied to
the sequences (C1, k), (C2, k), (C3, k), . . . and (C'l' k), (C'2' k), (C'3' k),
. . . , it must be the case that k - kcrir<P) and k = kcrir<p'). But this contra-
dicts our hypothesis that kcrir<P) * kcrir<P'). So our nonexistence claim fol-
lows. .

The implication in the theorem is reversible. For if the value of kcrit is
the same at all axis points, then the CIA criterion satisfies all three of the
stated conditions. (Even then, of course, it need not be the case that the
CIA criterion agrees with ZAM criterion, or that the latter satisfies the rel-
ative rotation condition.)

I have argued that, in the context of general relativity, the concept of rota-
tion is a delicate and interesting one. Perhaps it is worth saying, in con-
clusion, that I intend no stronger claim. There is no suggestion here that
the no-go theorem poses a deep interpretive problem (or any problem at
all) for the foundations of general relativity, nor that we have to give up
talk about rotation in general relativity. The point is just that, depending
on the circumstances, we may have to disambiguate different criteria of
rotation, and may have to remember that they all leave our classical intu-
itions far behind.
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NOTES

1. I wish to thank David Garfinkle, Robert Wald, and especially, Robert
Geroch for helpful discussion of the issues raised in the paper. I am also grateful to
John Norton for assistance in preparing figures 4 and 5.

2. For an extended discussion of other criteria, see Page 1998 and the refer-
ences cited there.

3. It turns out that a generalized criterion of rotation can satisfy both the
limit and relative rotation conditions vacuously if, according to the criterion, no
ring, in Rnystate of motion (or nonmotion), qualifies as "nonrotating."

4. Here and throughout section I, we make free appeal to our commonsense
(Euclidean) intuitions about the geometry of space. We take for granted that we
understand, for example, what it means to say that the plane of the ring is orthog-
onal to the axis, that the axis is at the center of the ring, etc. Later, in section II,
we will have to consider how to capture these conditions within the framework of
four-dimensional spacetime geometry.

5. We will later restrict attention to spacetimes that are stationary and axi-
symmetric. It is the presence of the latter axial (or rotational) symmetry that gives
rise to a norion of angular momentum. (See note 20.)

6. I am only thinking here of experimental procedures that can be perfonned
locally, on or near the ring and axis. Procedures performed, for example, at "spa-
tial infinity" are excluded.

7. For example, we can take an arbitrary ring in an arbitrary state of uniform
rotational motion and dub it "nonrotating." Then we can take other rings to be
"nonrotating" precisely if they are nonrotating relative to thRt one (in the sense
described).

8. In what follows, we presuppose familiarity with the basic mathematical for-
malism of general relativity, and make use of the so-called "abstract index notation"
(see Wald 1984).

9. Thus, r 0 and r.o are the identity map on M, and

rtO rt, = r(t+t') andE.o E" = E(op+,') (mod2a)

for all t, t' in R, and alllp, 1p' in SI.
10. Strictly speaking, this condition rules out standard examples of interest,

including Kerr spacetime. We are, in effect, limiting attention to restricted regions
of interest in those spacetimes where the condition holds. (See the final paragraph
of this section.)

11. That is, at every point there is a timelike vector tangent to the submani-
fold. Equivalently, the restriction of ~ to the submanifold has signature (1, -1).

12. For a proof of the equivalence, see Wald 1984, 163.
13. See the discussion in Wald 1984, 162-65.
14. Note that the definition does not depend on the initial choice of time like

Killing field -t3 in this sense: given any other choice 't*a= (k1-t3 + k2cpa),'t*a satisfies
the constancy condition iff -t3 does.

15. Usually one says that a spacetime is "static" if there exists a timelike Killing
field r (defined everywhere or, at least in some domain of interest) that is hyper-
surface orthogonal, i.e., such that Ka = f (Vag) for some functions f and g. (In this
case r is orthogonal to the g = constant hypersurfaces.)
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16. That is, a timelike vector W at a point will qualify as future directed if ~a
> o.

17. In what follows, we will not always bother to distinguish between (param-
etrized) curves and the images of such curves. Strictly speaking, it is the latter in
which we are usually interested.

18. Since F,a is timelike and future directed, it must be the case that

(kIt" + k2V)(klt. + ~4p.) > 0 and t"(klt. + ~4p.) > O.

These two conditions imply that kl > O.
19. Rings nonrotating according to this criterion might also be called "locally

nonrotating." That terminology is often used in the literature. (See, for example,
Bardeen 1970,79, andWald 1984, 187.)

20. Given any Killing field r in any relativistic spacetime model (not neces-
sarily stationary and axi-symmetric), and any timelike curve with (normalized)
four-velocity F,a, we associate with the two a scalar field (r~) on the curve. If the
curve represents a point particle, then we call (~) the "energy" of the particle
(relative to r) if r is timelike, and call it the "angular momentum" of the particle
(relative to r) if r corresponds to a rotational symmetry. In the special case of a
free particle with geodesic worldline, the canonically associated magnitude (~)
is constant on the curve (i.e., is conserved) since

E.nV n(~) = JC"E.nv nE..+ E..E.nV nlC. - o.

(The first term in the sum vanishes because the curve is a geodesic (F,nv nF,a - 0);
the second does so because r is a Killing field V(nICa) = 0.)

In the case at hand, we are considering a rotational Killing field cpa and points
on the ring with four-velocity f(r+kcpa), where f - [(~+kcpa)('ta+kCPa)]-1/2. The
angular momentum of the points (with respect to cpa) is f(~+kcpa)CPa' Clearly, this
magnitude vanishes precisely if (~+ kcpa) is orthogonal to CPa,

21. See also Bardeen 1970 and Ashtekar and Magoon 1975. Ours is a simple,
low-brow calculation. The discussion in the second reference is much more gen-
eral and insightful. (Readers may want to skip the calculation. It is not needed for
anything that follows.)

22. To confinn that it is constant along them, note that
(t"+ kV)Va(4p - kt) - t"V.(- kt) + (kV)V.4p - o.

23. t increases along all three curves since

(tn + kqi')Vn t - (~+ ~qi') Vn t - 1

for i c 1, 2.
24. Note that if~ is parametrized by s, then

(dcp'jdt) - (dcp-'jds)j(dtjds) - [('r" + ~cp") V nCP'] [('r" + ~cp") V nt]-1 - (~- k).

25. It might seem preferable to state the condition this way. For all striated
orbit cylinders (C, k) and all orbit cylinders C', if (C, k) qualifies as "nonrotating,"
then so does (C', k). But there is a problem with this formulation. It takes for
granted that (C', k) is a striated orbit cylinder in the first place, i.e., that the field
(-ra + kcpa) is timelike on C'.
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26. (Recall our slighdy nonstandard definition of "static" in section II.I.) The
"if' half of the proof is straightforward. The proof of the converse involves one
small complication. Here is the argument in detail. Assume that the ZAM criterion
satisfies the relative rotation condition. Let PI and P2 be any points in M-, let CI
and C2 be the orbit cylinders that contain them, and let ki and ~ be the values of
the function [-{~a)(~n>-I) at PI and P2' We must show that k1 = k2. We don't
know (initially) that either (C1, k2) or (C2' k1) qualifies as a striated orbit cylinder.
But, by moving sufficiendy close to the axis, we can find a point P3 such that, if C3
is the orbit cylinder that contains P3' (C3' k1) and (C3' k2) both qualify as striated
orbit cylinders. (For any value of k, the vector field (~+k~) is timelike at points
sufficiendy close to axis points.) (Cp k1) and (C2' kV are both nonrotating accord-
ing to the ZAM criterion. So, by the relative rotation condition, (C3' kl) and (C3'
kV are both nonrotating according to that criterion. So k1 and k2 must both be
equal to the value of[-{~a)(~n>-I) at P3' Therefore, k1 S kv

27. Volume elements always exist locally, and that is sufficient for our purposes.
28. For facts such as Eabcd Edmpq - (3!) ~a[m~p~cq], see Wald 1984,433.
29. If ~ vanishes at one point on an integral curve of ~ , it necessarily vanishes

at all points. This follows from equation (1).
30. There is a certain ambiguity in terminology here. We have taken an "axis

point" to be a point in M at which ~ - O. But here we have in mind an "axis point"
in the sense offigure 2 (i.e., a point in a three-dimensional space). It is represented
by a timelike curve in M. In what follows, when referring to "axis points," it should
be clear from context (and notation) which is intended.

31. Note that if the stated condition holds for one future-directed null geo-
desic running from a point on C to a point on y, it holds for all. For the entire class
of such null geodesics is generated from anyone under the action of the isometry
group {r (01:.: tE R & <PE SI). Note too that the requirement that ).. a be orthogo-

nal to aa at the arrival point is equivalent to the (slighdy more intuitive) require-
ment that, at that point, the component of ).. a orthogonal to ~ (representing the
"spatial direction" of the incoming light signal relative to~) be orthogonal to aa.

32. Here is a rough sketch of the proof. Suppose p is an axis point and sup-
pose ).. a is a past-directed null vector at p that is orthogonal to the axis direction aa.
We can extend )..a to a past directed null geodesic. Let q be any point on that geo-
desic and let C( q) be the orbit cylinder that contains q, i.e., the orbit of q under
the isometry group {r(o1:.: tER & <PES1}. Then, "by construction," C has a cen-
terpoint y (with P on it).

There is a smooth two-dimensional time like submanifold S through p that con-
sists entirely of axis points. (At every point of S, the tangent plane to S is spanned
by ~ and aa, where aa is as in the preceding paragraph.) Ifwe let)..a range over all
past-directed null vectors at points of S that are orthogonal to aa, and consider all
points q on the past-directed null geodesics they determine (or at least all such
points sufficiendy close to p), we sweep out an open set o. The argument in the
preceding paragraph shows that every orbit cylinder through every point in 0 has
a centerpoint. Uniqueness follows from that fact that, at least locally, given any
point q, there is a unique point p on S such that there is a future directed null geo-
desic that runs from q to p and whose tangent vector at q is orthogonal to aa.
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33. To support the operational interpretation of the CIA criterion presented
in section I, one can proceed as follows. Let (C, k) be a striated orbit cylinder, let
Y be the centerpoint of C, and let l' be a striation line on the cylinder, represent-
ing the point on the ring (say R) at which a light source is mounted. (So, both Y
and l' are integral curves of the field 't'a ~ ~ + kcpa.) Finally, let )"a be a future
directed null geodesic field, the integral curves of which run from l' to y. (The lat-
ter represent light signals emitted at R and received at the center point.) The entire
field of integral curves is generated from anyone of them under the action of the
isometry group associated with 't'a, i.e., the field )"a is Lie derived by 't'a. Suppose
the telescope at the center point is tracking the light source. Then the direction of
the telescope (as determined by the observer with worldline y) is represented by a
vector field va on ywhose value at any point is the component of)"a orthogonal to
't'a at that point. It is not difficult to check that the Fermi derivative of va along Y
vanishes iffk ~ kcrit(Y). (For details, see the discussion in Malament (forthcoming).
The vanishing of that Fermi derivative serves as a surrogate here for the flatness of
the water surface in the bucket.)

34. Here is a rough sketch of a proof (due to Robert Geroch). Let S be the
two-dimensional submanifold of axis points. Let a. - (-~a) and ~ - (na), so that
f = a./~. Let P be a point on S. Given any point q sufficiently close to p, it has a
unique orthogonal "projection" q' on S, i.e., there is a unique point q' on S with
the property that the geodesic segment running from q' to q is orthogonal to S.
So the point q is uniquely distinguished by a pair of objects: (i) the value of~ at q,
and (ii) its orthogonal projection q' on S. Thus, ifwe restrict attention to a suit-
able open neighborhod of p, we can think of a. as a function defined on a subset A
of the product manifold (with boundary) [0,00) x R2. We first show that a. is
smooth, not just as a function on M, but also when construed this way (as a func-
tion on A). To do so, we consider a finite Taylor series expansion of a., up to order
n, at p, with partial derivatives taken in directions tangent to, and orthogonal to,
S. Since a. is constant on orbits of V, the coefficients in the series, i.e., the mixed
partial derivatives of a. at p, have a special, simple structure. Those of odd order in
directions orthogonal to S must be 0, and those of even order in those directions
can be expressed in terms of derivatives in anyone orthogonal direction (and direc-
tions tangent to S). This allows us to reinterpret the series as a finite Taylor series
expansion (at p) of a. construed as II funcrion on A.

Next we observe that a. - 0 and Vaa. - 0 at p. (The second equation can be
proved using clause (v) of lemma 1.) It follows that the terms in the expansion of
Oth order in ~ are O. So we can divide by I} and generate a finite Taylor series expan-
sion for f = a./1} at p. Since the number of terms n in the original expansion was
arbitrary, so is the number of terms in the derived expansion. It follows that all par-
tial derivatives of f (as a function on M) exist and are continuous at p.

35. The computation is straight forward.

t'.Vbt'c = g (V.h)Vb (g (Vch» - g2(V.h)(VbVch) + g (V.h)(Vbg)(Vch).

So, since, (V[b V c]h) - 0, and (Vfah)(V c]h) = 0, it follows that t'la Vbt'c] ~ o.
36. For a counterexample, It suffices to find a stationary axt-symmetric space-

time that is not static, but exhibits "cylindrical symmetry," i.e., in which the axis
direction field au is a Killing field. For the latter condition will guarantee that the
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function kcrit is constant as one moves along the axis. GOdel spacetime is one such.
(In terms of standard t, cp, r, y coordinates, oa turns out to be-up to a constant-
just the translational Killing field (a lay )a.) (For a description of Gooel spacetime,
see Hawking and Ellis 1973. For further discussion of rotation in the model, see
Malament [forthcoming].)

37. It would be nice to have a simpler or more instructive characterization. (I
do not have one.)

38. One can verify this with a calculation, but there is a painless way to see that
the stated constancy condition cannot hold. Start at a point p on the axis with pos-
itive r coordinate, choose a future directed null vector ).. a at p orthogonal to oa, and

consider the (maximally extended) null geodesic through p that has tangent )..a at
p. It comes in from "past infinity" where, asymptotically, the value of
[-(~a)(~n)-l] is O. (Recall (8).) Since its value at p is not 0, the function can-
not be constant on the geodesic.

39. By lemma 2, ~[b V c~d] + kcrit~[b V cCPd] = 0 on 'Y. So

(~al converges to 0 on y
<=> {'trb V c'd] + kj 'trb V cCPd]1 converges to 0 on y
<=> {(lair - kj) '[b ~ cCPdV converges to 0 on y.

Since ~[b V cCP d] ~ 0 on 'Y, the third conditions holds iff (kcrit - ~) converges to O.
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