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Model Solutions for Odd-Numbered

Problems in Section 2.2

[Note: At this stage, we allow ourselves to perform simple computations with

vectors (e.g., rearranging terms in a sum) without justifying every step with a

direct appeal to clauses VS 1 - VS 8 in the definition of a vector space.]

Problem 2.2.1 Show that for all points p and q in A, and all subspaces W of

V, the following conditions are equivalent.

(i) q belongs to p+W

(ii) p belongs to q+W

(iii) −→pq ∈W
(iv) p+W and q+W coincide (i.e., contain the same points)

(v) p+W and q+W intersect (i.e., have at least one point in common)

Proof Let p and q be points in A, and let W be a subspace of V .

(i) ⇒ (ii) Assume that q belongs to p + W . Then there is a vector u in W

such that q = p + u. It follows that p = q + (−u). Since u is in W (and since

W is a subspace of V ), (−u) is in W as well. So p belong to q +W .

(ii) ⇒ (iii) Assume that p belongs to q + W . Then there is a vector v in W

such that p = q + v. So −→qp = v ∈ W . But W is a subspace of V . So, since −→qp
belongs to W , −−→qp belongs to W as well. It follows that −→pq = −−→qp ∈W .

(iii) ⇒ (iv) Assume that −→pq belongs to W . We show that (p+W ) ⊆ (q+W ).

(A similar argument shows that (q+W ) ⊆ (p+W ).) Let r be a point in p+W .

Then there is a vector u in W such that r = p+ u. It follows that

r = (q +−→qp) + u = q + (−→qp+ u) ∈ q +W

(since both −→qp and u belong to W and W is a subspace of V ). So r is in q+W .

Thus, (p+W ) ⊆ (q +W ), as claimed.

(iv) ⇒ (v) This one is trivial.

(v) ⇒ (i) Assume there is a point r that belongs to both p+W and q +W .

Then there exist vectors u and v in W such that r = p + u and r = q + v. It

follows that

q = r + (−v) = (p+ u) + (−v) = p+ (u− v).
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Since u and v are both in W , and since W is a subspace of V , (u− v) is in W .

So q belongs to p+W .

Problem 2.2.3 Let p, q, r, s be any four distinct points in A. Show that the

following conditions are equivalent.
(i) −→pr = −→sq
(ii) −→sp = −→qr
(iii) The midpoints of the line segments LS(p, q) and LS(s, r) coincide, i.e.,

p+
1

2
−→pq = s+

1

2
−→sr.

Proof

(i) ⇒ (ii) Assume −→pr = −→sq. Then

−→sp = −→sq +−→qr +−→rp = −→pr +−→qr +−→rp = −→qr + (−→pr +−→rp) = −→qr + 0 = −→qr.

So we have (ii).

(ii) ⇒ (iii) Assume −→sp = −→qr. Then

p+
1

2
−→pq = (s+−→sp) +

1

2
(−→pr +−→rq)

= s+
1

2
(−→sp +−→sp +−→pr +−→rq)

= s+
1

2
(−→sp +−→qr +−→pr +−→rq)

= s+
1

2
((−→sp +−→pr) + (−→qr +−→rq))

= s+
1

2
(−→sr + 0) = s+

1

2
−→sr.

So we have (iii).

(ii) ⇒ (i) Assume p+
1

2
−→pq = s+

1

2
−→sr. Then

p = s+
1

2
−→sr +

(
−1

2
−→pq
)

= s+
1

2
(−→sr −−→pq)

= s+
1

2
((−→sp +−→pr)− (−→ps +−→sq))

= s+
1

2
((−→sp −−→ps) + (−→pr −−→sq))

= s+
1

2
(2−→sp + (−→pr −−→sq))

= s+

(
−→sp +

1

2
(−→pr −−→sq)

)
.
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So −→sp = −→sp +
1

2
(−→pr −−→sq). It follows that (−→pr − −→sq) = 0 and, hence, that

−→pr = −→sq. So we have (i).

Problem 2.2.5 Let (V,A,+) be a two-dimensional affine space. Let {p1, q1, r1}
and {p2, q2, r2} be two sets of non-collinear points in A. Show that there is a

unique affine space isomorphism ϕ :A → A such that ϕ(p1) = p2, ϕ(q1) = q2,

and ϕ(r1) = r2.

Proof

Let {p1, q1, r1} and {p2, q2, r2} be two sets of non-collinear points in A. Then

the vectors −−→p1q1 and −−→p1r1 are linearly independent and, so, form a basis for V .

Similarly, −−→p2q2 and −−→p2r2 form a basis for V . It follows that there is a unique

isomorphism Φ: V → V such that

Φ(−−→p1q1) = −−→p2q2
Φ(−−→p1r1) = −−→p2r2.

Now consider the map ϕ : A→ A defined by

ϕ(s) = p2 + Φ(−→p1s). (1)

It follows from proposition 2.2.6 that ϕ(p1) = p2, that ϕ is a bijection, and that

ϕ(s) = ϕ(t) + Φ(
−→
ts). (2)

for all s and t in A. Thus ϕ qualifies as an affine space isomorphism. And it

further follows from (1) that

ϕ(q1) = p2 + Φ(−−→p1q1) = p2 + −−→p2q2 = q2

ϕ(r1) = p2 + Φ(−−→p1r1) = p2 + −−→p2r2 = r2,

as required.

To establish uniqueness, suppose that ϕ′ : A → A is an affine space iso-

morphism such that ϕ′(p1) = p2, ϕ′(q1) = q2, and ϕ′(r1) = r2. Suppose that

Φ′ : V → V is the corresponding vector space isomorphism. So we have

ϕ′(s) = ϕ′(t) + Φ′(
−→
ts). (3)

for all s and t in A. It now follows by (3) and (1) that

Φ′(−−→p1q1) =
−−−−−−−−→
ϕ′(p1)ϕ′(q1) = −−→p2 q2 =

−−−−−−−→
ϕ(p1)ϕ(q1) = Φ(−−→p1q1).

Similarly, we have

Φ′(−−→p1r1) = Φ(−−→p1r1).
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So the isomorphisms Φ and Φ′ agree in their action on the elements of a basis

for V . It follows that they are agree in their action on all vectors in V , i.e.,

Φ′ = Φ. From this, in turn, it follows that ϕ and ϕ′ must be equal. For by (3)

and (1) again, we have

φ′(s) = φ′(p1) + Φ′(−→p1s)
= p2 + Φ′(−→p1s)
= φ(p1) + Φ(−→p1s)
= φ(s)

for all s in A.
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