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1 INTRODUCTION

The aims of this chapter are to review some aspects of determinism that are famil-
iar to physicists but are little discussed in the philosophical literature and to show
how these aspects connect determinism to issues about symmetries in physics, the
structure and ontological status of spacetime, predictability, and computability.1

It will emerge that in some respects determinism is a robust doctrine and is quite
hard to kill, while in other respects it is fragile and requires various enabling as-
sumptions to give it a fighting chance. It will also be seen that determinism is far
from a dead issue. Whether or not ordinary non-relativistic quantum mechanics
(QM) admits a viable deterministic underpinning is still a matter of debate. Less
well known is the fact that in some cases QM turns out to be more deterministic
than its classical counterpart. Quantum field theory (QFT) assumes determinism,
at least at the classical level, in order to construct the field algebra of quantum
observables. Determinism is at the heart of the cosmic censorship hypothesis, the
most important unsolved issue in classical general relativity theory (GTR). And
issues about the nature and status of determinism lie at the heart of key foundation
issues in the search for a theory of quantum gravity.

2 PRELIMINARIES

2.1 The metaphysics of determinism

The proposal is to begin by getting a grip on the doctrine of determinism as it was
understood pre-GTR and pre-QM, and then subsequently to try to understand
how the doctrine has to be adjusted to accommodate these theories. In pre-GTR
physics, spacetime serves as a fixed background against which the drama of physics
is enacted. In pre-QM physics it was also assumed that there is a set O of gen-
uine physical magnitudes (a.k.a. “observables”) each of which takes a determinate

1Recent surveys of determinism are found in Butterfield [1998], Earman [2004a], and Hoefer
[2003]. A collection of articles on various aspects of determinism is found in Atmanspacher and
Bishop [2002].
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value at every moment of time; call these the occurrent magnitudes. Other phys-
ical magnitudes may be dispositional in character and may take on determinate
values only in appropriate contexts; but it was assumed that these dispositional
magnitudes supervene on the nondispositional magnitudes.2 A history H is a map
from R to tuples of values of the basic magnitudes, where for any t ∈ R the state
H(t) gives a snapshot of behavior of the basic magnitudes at time t. The world is
Laplacian deterministic with respect to O just in case for any pair of histories H1,
H2 satisfying the laws of physics, if H1(t) = H2(t) for some t, then H1(t) = H2(t)
for all t.

Several remarks are in order. First, the ‘t’ which appears in the above definition
is supposed to be a global time function. This notion can be defined in a manner
that applies to classical, special relativistic, and general relativistic spacetimes:
a global time function is a smooth map t : M → R, where M is the spacetime
manifold, such that for any p, q ∈ M, t(p) < t(q) just in case there is a future
directed timelike curve from p to q.3 In classical spacetimes, all of which possess
an absolute (or observer independent) notion of simultaneity, a timelike curve
is one which is oblique to the planes of absolute simultaneity. And the levels
t = const of a global time function must coincide with the planes of simultaneity;
thus, in the classical setting t is determined up to a transformation of the form
t → t′ = t′(t). In the relativistic setting a timelike curve is one whose tangent at
any point lies inside the light cone at that point. In causally pathological general
relativistic spacetimes (e.g. Gödel spacetime — see Section 6.1) there can be no
global time function, and the global sense of Laplacian determinism as defined
above makes no sense.4 But if one global time function exists for a relativistic
spacetime, then many exist. A poor choice of global time function can lead to the
failure of Laplacian determinism on the above definition. Thus, in the relativistic
setting, the definition of determinism must be construed as applying to a suitable
choice of time function, the nature of which will be clarified below.

Second, the above formulation of determinism assumes a distinction between
laws of nature on one hand and initial/boundary conditions on the other. Where
this distinction becomes mushy, so does the doctrine of determinism. There is a

2The general idea of supervenience is that X supervenes on Y iff within the range of possible
cases, there is no difference in X without a difference in Y . The strength and type of superve-
nience depends on what are counted as possible cases. Here the concern is mainly with physical
supervenience where the possible cases are those compatible with the laws of physics.

3This definition presupposes that the spacetime is temporally orientable and that one of the
orientations has been singled out as giving the future direction of time. The first presupposition
is satisfied for classical and special relativistic spacetimes. A general relativistic spacetime (see
[Malament, this vol.]) may not be temporally orientable, but a covering spacetime always is
since temporal orientability fails only if the spacetime is not simply connected. The second
presupposition implies that some solution to the problem of the direction of time has been found
(see [Uffink, this vol.]).

4A necessary and sufficient condition for the existence of a global time function for a relativistic
spacetime is stable causality which (roughly speaking) requires that there exists a widening of
the null cones that does not result in closed timelike curves; for a precise definition, see [Wald,
1984, 198-199]. Not only does Gödel spacetime not admit a global time function, it does not
admit any global time slices (i.e. spacelike hypersurfaces without edges).
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huge philosophical literature on laws of nature.5 Since most of it is unilluminating
when it comes to understanding the nature and function of laws in the practice of
physics, it will be largely ignored here. For present purposes I will simply stipulate
that an acceptable account of laws must satisfy the empiricist constraint that
the laws supervene on the totality of non-modal, particular facts.6 Philosophers
like to speculate about non-empiricist laws; but such entities, should they exist,
would seem to be beyond the ken of science, and as such they are irrelevant for
present purposes. I prefer David Lewis’ [1973, 72-77] way of fulfilling the empiricist
constraint since it connects the account of laws to the practice of physics: the
laws of physics are the axioms or postulates that appear in the ideal theory of
physics, where the ideal theory is the one that, within the class of true theories,
achieves the best balance between simplicity and information content. All of the
historical examples we have of candidates for deterministic laws involve a relatively
small subset B ⊂ O of basic occurrent magnitudes, the assumption being that the
remaining ones supervene on those of B.7 This is hardly surprising if, as has been
claimed, simplicity is a crucial feature of physical laws. Hermann Weyl shared
the conviction that simplicity must figure into an account of laws, but he noted
that “this circumstance is apt to weaken the metaphysical power of determinism,
since it makes the meaning of natural law depend on the fluctuating distinction
between simple and complicated functions or classes of functions” [1932, 42]. This
is, I think, a consequence that has to be swallowed and digested. Philosophers
who are answerable only to their armchairs are free to think otherwise.

Third, it is conceptually possible that the world could be partially deterministic,
i.e. deterministic with respect to partial histories defined by the values of mag-
nitudes in some proper subset D ⊂ O of the occurrent physical magnitudes but
non-deterministic with respect to partial histories defined by the values of magni-
tudes in some other proper subset N ⊂ O. But it is hard to imagine a scenario in
which this could happen if both D and N are basic magnitudes. For in order that
the non-deterministic evolution of the elements N not upset deterministic evolu-
tion for D, the magnitudes in N must not interact with those in D, or else there
would have to be a conspiracy in which the upsetting effects of the N magnitudes
on D cancel out, which is operationally the same. However, this plausibility con-
sideration fails to operate when the N are non-basic magnitudes; in particular, as
discussed below, stochastic processes on one level can supervene on deterministic
processes at a lower level (see [Butterfield, 1998]). This fact makes the inference
from observed stochastic behavior to indeterminism fraught with peril.

Fourth, the laws of physics typically take the form of differential equations,
in which case the issue of Laplacian determinism translates into the question of
whether the equations admit an initial value formulation, i.e. whether for ar-

5For an overview of different accounts of laws of nature, see [Carroll, 2004].
6This is what David Lewis has termed “Humean supervenience” with regards to laws of

nature; for a defense, see [Earman and Roberts, 2006].
7For example, in classical particle mechanics the elements of B are the positions and momenta

of the particles, and it is assumed that any other genuine mechanical magnitude can be expressed
as a functional of these basic magnitudes.
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bitrary initial data there exists a unique solution agreeing with the given initial
data.8 What counts as initial data depends on the details of the case, but typically
it consists of the instantaneous values of the independent variables in the equa-
tions, together with the instantaneous values of a finite number of time derivatives
of these variables. “Arbitrary” initial data might be thought to include any kine-
matically possible values of the relevant variable — as with the initial values of
particle positions and velocities in Newtonian mechanics — but “arbitrary” must
be taken to mean arbitrary within the bounds of compatibility with the equations
of motion, which may impose non-trivial constraints on the initial data. This leads
to the next remark.

Fifth, in the relativistic setting, field equations often factor into constraint
equations, which place restrictions on the initial data, and the evolution equa-
tions, which govern how initial data satisfying the constraint equations evolve over
time — Maxwell’s equations for electromagnetism and Einstein’s gravitational field
equations being prime examples. In these instances the evolution equations guar-
antee that once the constraint equations are satisfied they continue to be satisfied
over time. This should be a feature of deterministic equations, for if the data
at some future time in the unique solution picked out by the initial data do not
satisfy the constraints, then the laws are self-undermining. It could be argued
that a basic feature of time in relativistic worlds — perhaps the key feature that
separates the time dimension from the space dimensions — lies precisely in this
separation of evolution and constraint equations.9

Sixth, while there is no a priori guarantee that the laws of the ideal theory
of physics will be deterministic, the history of physics shows that determinism is
taken to be what might be termed a ‘defeasible methodological imperative’: start
by assuming that determinism is true; if the candidate laws discovered so far are
not deterministic, then presume that there are other laws to be discovered, or
that the ones so far discovered are only approximations to the correct laws; only
after long and repeated failure may we entertain the hypothesis that the failure
to find deterministic laws does not represent a lack of imagination or diligence
on our part but reflects the fact that Nature is non-deterministic. An expression
of this sentiment can be found in the work of Max Planck, one of the founders
of quantum physics: determinism (a.k.a. the law of causality), he wrote, is a
“heuristic principle, a signpost and in my opinion the most valuable signpost
we possess, to guide us through the motley disorder of events and to indicate
the direction in which scientific inquiry should proceed in order to attain fruitful
results” [1932, 26; my translation].10

8And as will be discussed below, there are further issues, such as whether the solution depends
continuously on the initial data.

9See [Callender, 2005] and [Skow, 2005] for defenses of related views on the difference between
space and time.

10For a history of the debates about the status of determinism among the founding fathers of
QM, see [Cushing, 1994] and [Stöltzner, 2003].
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2.2 Varieties of determinism

There is a tendency in the philosophical literature to fixate on the Laplacian
variety of determinism. But other kinds of determinism crop up in physics. For
example, some processes are described by delay-differential equations for which
instantaneous initial data may not suffice to single out a unique solution. A simple
example is given by the first order ordinary differential equation (ode) ẋ(t) =
x(t − C) with a constant delay C > 0. Laplacian determinism fails since given
initial data x(0) is compatible with multiple solutions. However, a near cousin
of Laplacian determinism holds since a specification of x(t) for the interval of
time t ∈ [−C, 0] fixes a unique solution.11 If the constant delay C replaced by a
function τ(t) of t which is unbounded, or if the delay-differential equation has a
more complicated form than in the simple example, then even the weakened forms
of Laplacian determinism can fail. An illustration of the latter is given by the
equation of motion is ẋ(t) = f(t)x(t− 1) where f(t) is a continuous function that
vanishes outside of [0, 1] and satisfies

∫
f(t)dt = −1. Raju [1994, 120ff] gives an

example of an f such that unless x(t) is identically 0 for all t ≥ 1, the equation of
motion admits no solutions for t < 0; whereas if x(t) is identically zero for t ≥ 1,
then the equation of motion admits an infinity of solutions for t < 0. Changing
the delay term x(t− 1) in this example to an advance term x(t+ 1) produces an
example where an entire past history fails to fix a unique future solution. Very
little is known about the initial value problem for what is probably the most
important physical application of delay/advance differential equations; namely,
charged particles moving under their mutual retarded/advanced interactions.12

For sake of definiteness, fix on the Laplacian variety of determinism. Within this
variety there is a distinction between future and past determinism. Past Laplacian
determinism means that for any pair of histories H1, H2 satisfying the laws of
physics, if H1(t) = H2(t) for some t, then H1(t′) = H2(t′) for all t′ > t. Future
Laplacian determinism is defined analogously. In principle, Laplacian determinism
can hold in one direction of time but not in the other. However, if the laws of
motion are time reversal invariant, then future and past determinism stand or
fall together. Time reversal invariance is the property that if H is a history
satisfying the laws, then so is the ‘time reverse’ history HT , where HT (t) :=
RH(−t) and where ‘R’ is the reversal operation that is defined on a case-by-
case basis, usually by analogy with classical particle mechanics where H(t) =
(x(t),p(t)), with x(t) and p(t) being specifications respectively of the particle
positions and momenta at t, and RH(t) = (x(t),−p(t)).13 Since all of the plausible
candidates for fundamental laws of physics, save those for the weak interactions

11See [Driver, 1977] for relevant results concerning delay-differential equations.
12Driver [1979] studied the special case of identically charged particles confined to move sym-

metrically on the x-axis under half-retarded and half-advanced interactions. He showed that,
provided the particles are sufficiently far apart when they come to rest, a unique solution is
determined by their positions when they come to rest.

13A different account of time reversal invariance is given in [Albert, 2000, Ch. 1]; but see
[Earman, 2002] and [Malament, 2004].
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of elementary particles, are time reversal invariant, the distinction between past
and future determinism is often ignored.

This is the first hint that there are interesting connections between determinism
and symmetry properties.14 Many other examples will be encountered below,
starting with the following section.

2.3 Determinism and symmetries: Curie’s Principle

The statement of what is now called ‘Curie’s Principle’ was announced in 1894 by
Pierre Curie:

(CP) When certain effects show a certain asymmetry, this asymmetry
must be found in the causes which gave rise to it. [Curie 1894, 401]

Some commentators see in this Principle profound truth, while others see only
falsity, and still others see triviality (compare [Chalmers, 1970]; [Radicati, 1987];
[van Fraassen, 1991, 23–24], and [Ismael, 1997]). My reading of (CP) makes it a
necessary truth. It takes (CP) to assert a conditional:

If

(CP1) the laws of motion governing the system are deterministic; and
(CP2) the laws of motion governing the system are invariant under a
symmetry transformation; and (CP3) the initial state of the system is
invariant under said symmetry

then

(CP4) the final state of the system is also invariant under said symme-
try

When the first clause (CP1) in the antecedent holds, the second clause (CP2) can
be understood as follows: if an initial state is evolved for a period ∆t and then
the said symmetry is applied to the (unique) evolved state, the result is the same
as first applying the symmetry to the initial state and evolving the resulting state
for a period ∆t. With this understanding, the reader can easily derive (CP4) from
(CP1)-(CP3). Concrete instantiations of Curie’s principle at work in classical and
relativistic physics can be found in [Earman, 2004b]. An instantiation for GTR is
mentioned in Section 6.3 below.15

Although (CP) is a necessary truth, it is far from a triviality since it helps to
guide the search for a causal explanation of an asymmetry in what is regarded as
the final state of system: either the asymmetry is already present in the initial
state; or else the initial state is symmetric and the asymmetry creeps in over time,

14See [Brading and Castellani, this vol.] for a discussion of symmetries and invariances in
modern physics.

15For additional remarks on Curie’s principle, see [Brading and Castellani, this vol.].
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either because the laws that govern the evolution of the system do not respect
the symmetry or because they are non-deterministic. If, as is often the case, the
latter two possibilities are ruled out, then the asymmetry in the final state must
be traceable to an asymmetry in the initial state. It is also worth noting that the
use of (CP) has ramifications for the never ending debate over scientific realism;
for the asymmetry in the initial state may be imperceptible not only to the naked
eye but to any macroscopic means of detection.16

3 DETERMINISM AND INDETERMINISM IN CLASSICAL PHYSICS

3.1 The hard road to determinism in classical physics

Classical physics is widely assumed to provide a friendly environment for deter-
minism. In fact, determinism must overcome a number of obstacles in order to
achieve success in this setting. First, classical spacetime structure may not be
sufficiently rich to support Laplacian determinism for particle motions. Second,
even if the spacetime structure is rich, uniqueness can fail in the initial value
problem for Newtonian equations of motion if the force function does not satisfy
suitable continuity conditions. Third, the equations of motion that typically arise
for classical particles plus classical fields, or for classical fields alone, do not admit
an initial value formulation unless supplementary conditions are imposed. Fourth,
even in cases where local (in time) uniqueness holds for the initial value problem,
solutions can break down after a finite time.

The following subsection takes up the first of these topics — the connection
between determinism and the structure and ontology of classical spacetimes. The
others are taken up in due course.

3.2 Determinism, spacetime structure, and spacetime ontology

Here is the (naive) reason for thinking that neither Laplacian determinism nor
any of its cousins stands a chance unless supported by enough spacetime struc-
ture of the right kind. Assume that the (fixed) classical spacetime background is
characterized by a differentiable manifold M and various geometric object fields
O1, O2, ..., OM on M. And assume that the laws of physics take the form of
equations whose variables are the Oi’s and additional object fields P1, P2, ..., PN

describing the physical contents of the spacetime. (For the sake of concreteness,
the reader might want to think of the case where the Pj ’s are vector fields whose
integral curves are supposed to be the world lines of particles.) A symmetry of the
spacetime is a diffeomorphism d of M onto itself which preserves the background
structure given by the Oi’s — symbolically, d∗Oi = Oi for all values if i, where

16For a more detailed discussion of Curie’s Principle and its connection to spontaneous symme-
try breaking in quantum field theory see [Earman, 2004b]; for spontaneous symmetry breaking
in quantum statistical physics, see [Emch, this vol.].
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d∗ denotes the drag along by d.17 By the assumption on the form of the laws, a
spacetime symmetry d must also be a symmetry of the laws of motion in the sense
that if 〈M, O1, O2, ..., OM , P1, P2, ..., PN 〉 satisfies the laws of motion, then so does
〈M, O1, O2, ..., OM , d∗P1, d

∗P2, ..., d
∗PN 〉.18

Now the poorer the structure of the background spacetime, the richer the space-
time symmetries. And if the spacetime symmetry group is sufficiently rich, it will
contain elements that are the identity map on the portion of spacetime on or below
some time slice t = const but non-identity above. We can call such a map a ‘deter-
minism killing symmetry’ because when applied to any solution of the equations
of motion, it produces another solution that is the same as the first for all past
times but is different from the first at future times, which is a violation of even
the weakest version of future Laplacian determinism.

As an example, take Leibnizian spacetime,19 whose structure consists of all and
only the following: a notion of absolute or observer-independent simultaneity; a
temporal metric (giving the lapse of time between non-simultaneous events); and
a Euclidean spatial metric (giving the spatial distance between events lying on a
given plane of absolute simultaneity). In a coordinate system (xα, t), α = 1, 2, 3
adapted to this structure, the spacetime symmetries are

xα → x′α = Rα
β (t)xβ + aα(t) α, β = 1, 2, 3(1)

t → t′ = t+ const

where Rα
β (t) is an orthogonal time dependent matrix and the aα(t) are arbitrary

smooth functions of t. Clearly, the symmetries (1) contain determinism killing
symmetries.

It is also worth noting that if the structure of spacetime becomes very minimal,
no interesting laws of motion, deterministic or not, seem possible. For example,
suppose that the time metric and the space metric are stripped from Leibnizian
spacetime, leaving only the planes of absolute simultaneity. And suppose that the
laws of physics specify that the world is filled with a plenum of constant mass dust
particles and that the world lines of these particles are smooth curves that never
cross. Then either every smooth, non-crossing motion of the dust is allowed by the
laws of motion or none is, for any two such motions are connected by a symmetry
of this minimal spacetime.

Two different strategies for saving determinism in the face of the above con-
struction can be tried. They correspond to radically different attitudes towards

17A diffeomorphism d of the manifold M is a one-one mapping of M onto itself that preserves
M’s differentiable structure. For the sake of concreteness, assume that d is C∞.

18For on the assumption that the laws are (say) differential equations relating the Oi and Pj ,
they cannot be sensitive to the “bare identity” of the points of M at which the Oi and Pj take
some given values. This diffeomorphism invariance of the laws is one of the ingredients of what is
called substantive general covariance (see section 6.2). One might contemplate breaking diffeo-
morphism invariance by introducing names for individual spacetime points; but the occurrence
of such names would violate the “universal” character that laws are supposed to have.

19The details of various classical spacetime structures are to be found in [Earman, 1989].



Aspects of Determinism in Modern Physics 1377

the ontology of spacetime. The first strategy is to beef up the structure of the
background spacetime. Adding a standard of rotation kills the time dependence
in Rα

β (t), producing what is called Maxwellian spacetime. But since the aα(t) are
still arbitrary functions of t there remain determinism killing symmetries. Adding
a standard of inertial or straight line motion linearizes the aα(t) to vαt + cα,
where the vα and cα are constants, producing neo-Newtonian spacetime20 whose
symmetries are given by the familiar Galilean transformations

xα → x′α = Rα
βx

β + vαt+ cα α, β = 1, 2, 3.(2)
t → t′ = t+ const

The mappings indicated by (2) do not contain determinism killing symmetries
since if such a map is the identity map for a finite stretch of time, no matter how
short, then it is the identity map period. Note that this way of saving determinism
carries with it an allegiance to “absolute” quantities of motion: in neo-Newtonian
spacetime it makes good sense to ask whether an isolated particle is accelerating
or whether an isolated extended body is rotating. To be sure, this absolute ac-
celeration and rotation can be called ‘relational’ quantities, but the second place
in the relation is provided by the structure of the spacetime — in particular, by
the inertial structure — and not by other material bodies, as is contemplated by
those who champion relational accounts of motion.

The second strategy for saving determinism proceeds not by beefing up the
structure of the background spacetime but by attacking a hidden assumption of
the above construction — the “container view” of spacetime. Picturesquely, this
assumption amounts to thinking of spacetime as a medium in which particles and
fields reside. More precisely, in terms of the above apparatus, it amounts to the
assumption that 〈M, O1, O2, ..., OM , P1, P2, ..., PN 〉 and 〈M, O1, O2, ..., OM , d∗P1,
d∗P2, ..., d

∗PN 〉, where d is any diffeomorphism of M such that d∗Pj �= Pj for some
j, describe different physical situations, even when d is a spacetime symmetry, i.e.
d∗Oi = Oi for all i. Rejecting the container view leads to (one form of) relation-
ism about spacetime. A spacetime relationist will take the above construction to
show that, on pain of abandoning the possibility of determinism, those who are
relationists about motion should also be relationists about spacetime. Relationists
about motion hold that talk of absolute motion is nonsensical and that all mean-
ingful talk about motion must be construed as talk about the relative motions of
material bodies. They are, thus, unable to avail themselves of the beef-up strategy
for saving determinism; so, if they want determinism, they must grasp the lifeline
of relationism about spacetime.

Relationalism about motion is a venerable position, but historically it has been
characterized more by promises than performances. Newton produced a stunningly
successful theory of the motions of terrestrial and celestial bodies. Newton’s op-
ponents promised that they could produce theories just as empirically adequate

20Full Newtonian spacetime adds a distinguished inertial frame — ‘absolute space’ — thus
killing the velocity term in (2).
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and as explanatorily powerful as his without resorting to the absolute quantities
of motion he postulated. But mainly what they produced was bluster rather than
workable theories.21 Only in the twentieth century were such theories constructed
(see [Barbour, 1974] and [Barbour and Bertotti, 1977]; and see [Barbour, 1999]
for the historical antecedents of these theories), well after Einstein’s GTR swept
away the notion of a fixed background spacetime and radically altered the terms
of the absolute vs. relational debate.

3.3 Determinism and gauge symmetries

When philosophers hear the word “gauge” they think of elementary particle physics,
Yang-Mills theories, etc. This is a myopic view. Examples of non-trivial gauge
freedom arise even in classical physics — in fact, we just encountered an example
in the preceding subsection. The gauge notion arises for a theory where there
is “surplus structure” (to use Michael Redhead’s phrase) in the sense that the
state descriptions provided by the theory correspond many-one to physical states.
For such a theory a gauge transformation is, by definition, a transformation that
connects those descriptions that correspond to the same physical state.

The history of physics shows that the primary reason for seeing gauge freedom
at work is to maintain determinism. This thesis has solid support for the class
of cases of most relevance to modern physics, viz. where the equations of mo-
tion/field equations are derivable from an action principle and, thus, the equations
of motion are in the form of Euler-Lagrange equations.22 When the Lagrangian
is non-singular, the appropriate initial data picks out a unique solution of the
Euler-Lagrange equations and Laplacian determinism holds.23 If, however, the ac-
tion admits as variational symmetries a Lie group whose parameters are arbitrary
functions of the independent variables, then we have a case of underdetermina-
tion because Noether’s second theorem tells us that the Euler-Lagrange equations
have to satisfy a set of mathematical identities.24 When these independent vari-
ables include time, arbitrary functions of time will show up in solutions to the
Euler-Lagrange equations, apparently wrecking determinism.

The point can be illustrated with the help of a humble example of particle me-
chanics constructed within the Maxwellian spacetime introduced in the preceding
subsection. An appropriate Lagrangian invariant under the symmetries of this
spacetime is given by

L =
∑∑

j<k

mjmk

2M
(ẋj − ẋk)2 − V (|xj − xk|), M :=

∑
i

mi.(3)

21Newton’s opponents were correct in one respect: Newton’s postulation of absolute space, in
the sense of a distinguished inertial frame was not needed to support his laws of motion.

22See [Butterfield, this vol.] and [Belot, this vol.] for accounts of the Lagrangian and Hamil-
tonian formalisms.

23At least if the continuity assumptions discussed in Section 3.5 below are imposed.
24For an account of the Noether theorems, see [Brading and Brown, 2003] and [Brading and

Castellani, this vol.].
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This Lagrangian is singular in the sense that Hessian matrix ∂2L/∂ẋi∂ẋj does not
have an inverse. The Euler-Lagrange equations are

d

dt

(
mi(ẋj − 1

M

∑
k

mkẋk)

)
=
∂V

∂ẋi
.(4)

These equations do not determine the evolution of the particle positions uniquely:
if xi(t) is a solution, so is x′

i(t) = xi(t) + f(t), for arbitrary f(t), confirming
the intuitive argument given above for the apparent breakdown of determinism.
Determinism can be restored by taking the transformation xi(t) → xi(t) + f(t) as
a gauge transformation.

The systematic development of this approach to gauge was carried out by P. A.
M. Dirac in the context of the Hamiltonian formalism.25 A singular Lagrangian
system corresponds to a constrained Hamiltonian system. The primary constraints
appear as a result of the definition of the canonical momenta. (In the simple
case of a first-order Lagrangian L(q, q̇, t), where q stands for the configuration
variables and q̇ := dq/dt, the canonical momentum is p := ∂L/∂q̇.) The secondary
constraints arise as a consequence of the demand that the primary constraints
be preserved by the motion. The total set of constraints picks out the constraint
surface C(q, p) of the Hamiltonian phase space Γ(q, p). The first class constraints
are those that commute on C(q, p) with all of the constraints. It is these first class
constraints that are taken as the generators of the gauge transformations. The
gauge invariant quantities (a.k.a. “observables”) are then the phase function F :
Γ(q, p) → R that are constant along the gauge orbits.

Applying the formalism to our toy case of particle mechanics in Maxwellian
spacetime, the canonical momenta are:

pi :=
∂L

∂ẋi
=
mi

M

∑
k

mk(ẋi − ẋk) = miẋi − mi

M

∑
k

mkẋk.(5)

These momenta are not independent but must satisfy three primary constraints,
which require the vanishing of the x, y, and z-components of the total momentum:

φα =
∑

i

pα
i = 0, α = 1, 2, 3.(6)

These primary constraints are the only constraints — there are no secondary
constraints — and they are all first class. These constraints generate in each
configuration variable xi the same gauge freedom; namely, a Euclidean shift given
by the same arbitrary function of time. The gauge invariant variables, such relative
particle positions and relative particle momenta, do evolve deterministically.

The technical elaboration of the constraint formalism is complicated, but one
should not lose sight of the fact that the desire to save determinism is the mo-
tivation driving the enterprise. Here is a relevant passage from [Henneaux and

25The standard reference on these matters is [Henneaux and Teitelboim, 1992]. For a user
friendly treatment of this formalism, see [Earman, 2003].
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Teitelboim, 1992], one of the standard references on constrained Hamiltonian sys-
tems:

The presence of arbitrary functions . . . in the total Hamiltonian tells
us that not all the q’s and p’s [the configuration variables and their
canonical momenta] are observable [i.e. genuine physical magnitudes].
In other words, although the physical state is uniquely defined once a
set of q’s and p’s is given, the converse is not true — i.e., there is more
than one set of values of the canonical variables representing a given
physical state. To see how this conclusion comes about, we note that
if we are given an initial set of canonical variables at the time t1 and
thereby completely define the physical state at that time, we expect
the equations of motion to fully determine the physical state at other
times. Thus, by definition, any ambiguity in the value of the canonical
variables at t2 �= t1 should be a physically irrelevant ambiguity. [pp.
16–17]

As suggested by the quotation, the standard reaction to the apparent failure of
determinism is to blame the appearance on the redundancy of the descriptive ap-
paratus: the correspondence between the state descriptions in terms of the original
variables — the q’s and p’s — and the physical state is many-to-one; when this
descriptive redundancy is removed, the physical state is seen to evolve determin-
istically. There may be technical difficulties is carrying through this reaction. For
example, attempting to produce a reduced phase space — whose state descriptions
corresponding one-one to physical states — by quotienting out the gauge orbits
can result in singularities. But when such technical obstructions are not met,
normal (i.e. unconstrained) Hamiltonian dynamics applies to the reduced phase
space, and the reduced phase space variables evolve deterministically.

In addition to this standard reaction to the apparent failure of determinism in
the above examples, two others are possible. The first heterodoxy takes the ap-
parent violation of determinism to be genuine. This amounts to (a) treating what
the constraint formalism counts as gauge dependent quantities as genuine physical
magnitudes, and (b) denying that these magnitudes are governed by laws which,
when conjoined with the laws already in play, restore determinism. The second
heterodoxy accepts the orthodox conclusion that the apparent failure of determin-
ism is merely apparent; but it departs from orthodoxy by accepting (a), and it
departs from the first heterodoxy by denying (b) and, accordingly, postulates the
existence of additional laws that restore determinism. Instances that superficially
conform to part (a) of the two heterodoxies are easy to construct from examples
found in physics texts where the initial value problem is solved by supplement-
ing the equations of motion, stated in terms of gauge-dependent variables, with
a gauge condition that fixes a unique solution. For instance, Maxwell’s equations
written in terms of electromagnetic potentials do not determine a unique solution
corresponding to the initial values of the potentials and their time derivatives.
Imposing the Lorentz gauge condition converts Maxwell’s equations to second or-
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der hyperbolic partial differential equations (pdes) that do admit an initial value
formulation (see Section 4.2).26 Similar examples can be concocted in general
relativity theory where orthodoxy treats the metric potentials as gauge variables
(see Section 6.2). In these examples orthodoxy is aiming to get at the values of
the gauge independent variables via a choice of gauge. If this aim is not kept
clearly in mind, the procedure creates the illusion that gauge-dependent variables
have physical significance. It is exactly this illusion that the two heterodoxies take
as real. The second heterodoxy amounts to taking the gauge conditions not as
matters of calculational convenience but as additional physical laws. I know of
no historical examples where this heterodoxy has led to fruitful developments in
physics.

Since there is no a priori guarantee that determinism is true, the fact that
the orthodox reading of the constraint formalism guarantees that the equations of
motion admit an initial value formulation must mean that substantive assumptions
that favor determinism are built into the formalism. That is indeed the case, for the
Lagrangian/Hamiltonian formalism imposes a structure on the space of solutions:
in the geometric language explained in Chapters 1 and 2 of this volume, the space
of solutions has a symplectic or pre-symplectic structure. This formalism certainly
is not guaranteed to be applicable to all of the equations of motion the Creator
might have chosen as laws of motion; indeed, it is not even guaranteed to be
applicable to all Newtonian type second order odes. In the 1880s Helmholtz found
a set of necessary conditions for equations of this type to be derivable from an
action principle; these conditions were later proved to be (locally) sufficient as
well as necessary. After more than a century, the problem of finding necessary
and sufficient conditions for more general types of equations of motion, whether in
the form of odes or pdes, to be derivable from an action principle is still an active
research topic.27

3.4 Determinism for fields and fluids in Newtonian physics

Newtonian gravitational theory can be construed as a field theory. The gravita-
tional force is given by Fgrav = −∇ϕ, where the gravitational potential ϕ satisfies
the Poisson equation

∇2ϕ = ρ(7)

with ρ being the mass density. If ϕ is a solution to Poisson’s equation, then so is
ϕ′ = ϕ+ g(x)f(t) where g(x) is a linear function of the spatial variables and f(t)

26Where A is the vector potential and Φ is the scalar potential, the Lorentz gauge requires
that

∇ · A+
∂Φ

∂t
= 0

(with the velocity of light set to unity).
27Mathematicians discuss this issue under the heading of the “inverse problem.” For precise

formulations of the problem and surveys of results, see [Anderson and Thompson, 1992] and
[Prince, 2000].
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is an arbitrary function of t. Choose f so that f(t) = 0 for t ≤ 0 but f(t) > 0
for t > 0. The extra gravitational force, proportional to f(t), that a test particle
experiences in the primed solution after t = 0 is undetermined by anything in the
past.

The determinism wrecking solutions to (7) can be ruled out by demanding that
gravitational forces be tied to sources. But to dismiss homogeneous solutions to
the Poisson equation is to move in the direction of treating the Newtonian gravita-
tional field as a mere mathematical device that is useful in describing gravitational
interactions which, at base, are really direct particle interactions.28 In this way
determinism helps to settle the ontology of Newtonian physics: the insistence on
determinism in Newtonian physics demotes fields to second-class status. In rel-
ativistic physics fields come into their own, and one of the reasons is that the
relativistic spacetime structure supports field equations that guarantee determin-
istic evolution of the fields (see Section 4.2).

In the Newtonian setting the field equations that naturally arise are elliptic
(e.g. the Poisson equation) or parabolic, and neither type supports determinism-
without-crutches. An example of the latter type of equation is the classical heat
equation

∇2Φ = κ
∂Φ
∂t

(8)

where Φ is the temperature variable and κ is the coefficient of heat conductivity.29

Solutions to (8) can cease to exist after a finite time because the temperature
“blows up.” Uniqueness also fails since, using the fact that the heat equation
propagates heat arbitrarily fast, it is possible to construct surprise solutions Φs

with the properties that (i) Φs is infinitely differentiable, and (ii) Φs(x, t) = 0 for
all t ≤ 0 but Φs(x, t) �= 0 for t > 0 (see [John, 1982, Sec. 7.1]). Because (8) is
linear, if Φ is a solution then so is Φ′ = Φ + Φs. And since Φ and Φ′ agree for all
t ≤ 0 but differ for t > 0, the existence of the surprise solutions completely wrecks
determinism.

Uniqueness of solution to (8) can be restored by adding the requirement that
Φ ≥ 0, as befits its intended interpretation of Φ as temperature; for Widder [1975,
157] has shown that if a solution of Φ(x, t) of (8) vanishes at t = 0 and is non-
negative for all x and all t ≥ 0, then it must be identically zero. But one could
have wished that, rather than having to use a stipulation of non-negativity to
shore up determinism, determinism could be established and then used to show
that if the temperature distribution at t = 0 is non-negative for all x, then the
uniquely determined evolution keeps the temperature non-negative. Alternatively,
both uniqueness and existence of solutions of (8) can be obtained by limiting the

28This demotion of the status of the Newtonian gravitational field can also be supported by
the fact that, unlike the fields that will be encountered in relativistic theories, it carries no energy
or momentum.

29The fact that this equation is not Galilean invariant need cause no concern since Φ implicitly
refers to the temperature of a medium whose rest frame is the preferred frame for describing
heat diffusion.
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growth of |Φ(x, t)| as |x| → ∞. But again one could have wished that such limits
on growth could be derived as a consequence of the deterministic evolution rather
than having to be stipulated as conditions that enable determinism.

Appearances of begging the question in favor of determinism could be avoided
by providing at the outset a clear distinction between kinematics and dynamics,
the former being a specification of the space of possible states. For example, a limit
on the growth of quantum mechanical wave functions does not beg the question
of determinism provided by the Schrödinger equation since the limit follows from
the condition that the wave function is an element of a Hilbert space, which is
part of the kinematical prescription of QM (see Section 5). Since this prescription
is concocted to underwrite the probability interpretation of the wave function, we
get the ironic result that the introduction of probabilities, which seems to doom
determinism, also serves to support it. The example immediately above, as well
as the examples of the preceding subsection and the one at the beginning of this
subsection, indicate that in classical physics the kinematical/dynamical distinction
can sometimes be relatively fluid and that considerations of determinism are used
in deciding where to draw the line. The following example will reinforce this
moral.30

The Navier-Stokes equations for an incompressible fluid moving in RN , N = 2, 3,
read

Du
dt

= −∇p+ υ∆u (9a)

div(u) = 0 (9b)

where u(x, t) = (u1, u2, ..., uN ) is the velocity of the fluid, p(x, t) is the pressure,

υ = const. ≥ 0 is the coefficient of viscosity, and D/dt := ∂/∂t +
N∑

j=1

uj∂/∂xj is

the convective derivative (see Foias at al. 2001 for a comprehensive survey). If the
fluid is subject to an external force, an extra term has to be added to the right
hand side of (9a). The Euler equations are the special case where υ = 0. The
initial value problem for (9a-b) is posed by giving the initial data

u(x, 0) = u0(x)(9)

30Another reaction to the problems of determinism posed by (8) is to postpone them on the
grounds that (8) is merely a phenomenological equation; heat is molecular motion and, thus,
the fate of determinism ultimately rests with the character of laws of particle motion. It will
be seen below, however, that in order to guarantee determinism for particle motion the helping
hand of the stipulation of boundary conditions at infinity is sometimes needed. In any case,
the postponement strategy taken to its logical conclusion would mean that no judgment about
determinism would be forthcoming until we are in possession of the final theory-of-everything.
It seems a better strategy to do today the philosophy of today’s physics while recognizing, of
course, that today’s best theory may be superseded by a better future theory that delivers a
different message about determinism.
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where u0(x) is a smooth (C∞) divergence-free vector field, and is solved by smooth
functions u, p ∈ C∞(RNx[0,∞)) satisfying (9)-(10). For physically reasonable
solutions it is required both that u0(x) should not grow too large as |x| → ∞ and
that the energy of the fluid is bounded for all time:

∫
RN

|u(x, t)|2dx <∞ for all t > 0.(10)

When υ = 0 the energy is conserved, whereas for υ > 0 it dissipates.
For N = 2 it is known that a physically reasonable smooth solution exists for

any given u0(x). For N = 3 the problem is open. However, for this case it is
known that the problem has a positive solution if the time interval [0,∞) for
which the solution is required to exist is replaced by [0, T ) where T is a possibly
finite number that depends on u0(x). When T is finite it is known as the “blowup
time” since |u(x, t)| must become unbounded as t approaches T . For the Euler
equations a finite blowup time implies that the vorticity (i.e. the curl of u(x, t))
becomes unbounded as t approaches T .

Smooth solutions to the Navier-Stokes equations, when they exist, are known
to be unique. This claim would seem to be belied by the symmetries of the Navier-
Stokes equations since if u(x, t) = f(x, t), p(x, t) = g(x, t) is a solution then so is
the transformed ũ(x, t) = f(x− εα(t), t) + εαt, p̃(x, t) = g(x− εα(t), t)− εx ·αt +
1
2ε

2αtt, where α(t) is an arbitrary smooth function of t alone (see Olver 1993, pp.
130 and 177 (Exer. 2.15)). Choosing α(t) such that α(0) = αt(0) = αtt(0) = 0
but α(t) �= 0 for t > 0 results in different solutions for the same initial data unless
f(x − εα(t), t) + εαt = f(x, t). However, the transformed solution violates the
finiteness of energy condition (11).

The situation on the existence of solutions can be improved as follows. Mul-
tiplying (9a-b) by a smooth test function and integrating by parts over x and t
produces integral equations that are well-defined for any u(x, t) and p(x, t) that
are respectively L2 (square integrable) and L1 (integrable). Such a pair is called
a weak solution if it satisfies the integral equations for all test functions. Moving
from smooth to weak solutions permits the proof of the existence of a solution for
all time. But the move reopens the issue of uniqueness, for the uniqueness of weak
solutions for the Navier-Stokes equations is not settled. A striking non-uniqueness
result for weak solutions of the Euler equations comes from the construction by
Scheffer [1994] and Shnirelman [1997] of self-exciting/self-destroying weak solu-
tions: u(x, t) ≡ 0 for t < −1 and t > 1, but is non-zero between these times in a
compact region of R3.

It is remarkable that basic questions about determinism for classical equations
of motion remain unsettled and that these questions turn on issues that mathe-
maticians regard as worthy of attention. Settling the existence question for smooth
solutions for the Navier-Stokes equations in the case of N = 3 brings a $1 million
award from the Clay Mathematics Institute (see [Fefferman, 2000]).
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3.5 Continuity issues

Consider a single particle of mass m moving on the real line R in a potential V (x),
x ∈ R. The standard existence and uniqueness theorems for the initial value
problem of odes can be used to show that the Newtonian equation of motion

mẍ = F (x) := −dV
dx

(11)

has a locally (in time) unique solution if the force function F (x) satisfies a Lipschitz
condition.31 An example of a potential that violates the Lipschitz condition at
the origin is − 9

2 |x|4/3. For the initial data x(0) = 0 = ẋ(0) there are multiple
solutions of (12): x(t) ≡ 0, x(t) = t3, and x(t) = −t3, where m has been set to
unity for convenience. In addition, there are also solutions x(t) where x(t) = 0
for t < k and ±(t − k)3 for t ≥ k, where k is any positive constant. That such
force functions do not turn up in realistic physical situations is an indication that
Nature has some respect for determinism. In QM it turns out that Nature can
respect determinism while accommodating some of the non-Lipschitz potentials
that would wreck Newtonian determinism (see Section 5.2).

3.6 The breakdown of classical solutions

Consider again the case of a single particle of mass m moving on the real line
R in a potential V (x), and suppose that V (x) satisfies the Lipschitz condition,
guaranteeing a temporally local unique solution for the initial value problem for
the Newtonian equations of motion. However, determinism can fail if the potential
is such that the particle is accelerated off to −∞ or +∞ in a finite time.32 Past
determinism is violated because two such solutions can agree for all future times
t ≥ t∗ (say) — no particle is present at these times anywhere in space — but
disagree at past times t < t∗ on the position and/or velocity of the particle when
it is present in space. Since the potential is assumed to be time independent, the
equations of motion are time reversal invariant, so taking the time reverses of these
escape solutions produces solutions in which hitherto empty space is invaded by
particles appearing from spatial infinity. These invader solutions provide violations
of future determinism. Piecing together escape and invader solutions produces
further insults to determinism.

In the 1890’s Paul Painlevé conjectured that for N > 3 point mass particles
moving in R3 under their mutually attractive Newtonian gravitational forces, there
exist solutions to the Newtonian equations of motion exhibiting non-collision sin-
gularities, i.e. although the particles do not collide, the solution ceases to exist

31F (x) satisfies the Lipschitz condition in an interval (a, b) ⊂ R if there is a constant K > 0
such that |F (x1) − F (x2)| ≤ K|x1 − x2| for all x1, x2 ∈ (a, b). A sufficient condition for this is
that dF/dx exists, is continuous, and |dF/dx| ≤ K on (a, b) for some K > 0.

32See [Reed and Simon, 1975, Theorem X.5] for necessary and sufficient conditions for this to
happen.
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after a finite time. Hugo von Zeipel [1908] showed that in such a solution the par-
ticle positions must become unbounded in a finite time. Finally, near the close of
the 20th century Xia [1992] proved Painlevé conjecture by showing that for N = 5
point mass particles, the Newtonian equations of motion admit solutions in which
the particles do not collide but nevertheless manage to accelerate themselves off to
spatial infinity in a finite time (see [Saari and Xia, 1995] for an accessible survey).

Determinism can recoup its fortunes by means of the device, already mentioned
above, of supplementing the usual initial conditions with boundary conditions at
infinity. Or consolation can be taken from two remarks. The first remark is that
in the natural phase space measure, the set of initial conditions that lead to Xia
type escape solutions has measure zero. But it is unknown whether the same is
true of all non-collision singularities. The second remark is that the non-collision
singularities result from the unrealistic idealization of point mass particles that
can achieve unbounded velocities in a finite time by drawing on an infinitely deep
potential well. This remark does not suffice to save determinism when an infinity
of finite sized particles are considered, as we will see in the next subsection.

It is interesting to note that for point particles moving under mutually attractive
Newtonian gravitational forces, QM cures both the collision33 and non-collision
singularities that can spell the breakdown of classical solutions (see Section 5.2).
This is more than a mere mathematical curiosity since it is an important ingredient
in the explanation of the existence and stability of the hydrogen atom.

3.7 Infinite collections

Consider a collection of billiard balls confined to move along a straight line in
Euclidean space. Suppose that the balls act only by contact, that only binary col-
lisions occur, and that each such collision obeys the classical laws of elastic impact.
Surely, the reader will say, such a system is as deterministic as it gets. This is so,
if the collection is finite. But if the collection is infinite and unbounded velocities
are permitted, then determinism fails because even with all of the announced re-
strictions in place the system can seemingly self-excite itself (see [Lanford, 1974]).
Pérez Laraudogoitia [2001] shows how to use such infinite collections to create an
analogue of the escape solution of the preceding subsection where all of the parti-
cles disappear in a finite amount of time. The time reverse of this scenario is one
in which space is initially empty, and then without warning an infinite stream of
billiard balls pour in from spatial infinity.

Legislating against unbounded velocities or imposing boundary conditions at
infinity does not suffice to restore determinism if the billiard balls can be made
arbitrarily small [Pérez Laraudogoitia, 2001]. For then a countably infinite collec-
tion of them can be Zeno packed into a finite spatial interval, say (0, 1], by placing
the center of the first ball at 1, the second at 1/2, the third at 1/4, etc. Assume
for ease of illustration that all the balls have equal mass (≡ 1). A unit mass cue

33A collision singularity occurs when two or more of the point particles collide and the solution
cannot be continued through the collision time.
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ball moving with unit speed from right to left collides with the first ball and sends
a ripple through the Zeno string that lasts for unit time, at the end of which all
of the balls are at rest. The boring history in which all the balls are at rest for
all time is, of course, also a solution of the laws of impact. Comparing this boring
history with the previous one shows that past Laplacian determinism is violated.34

This failure of determinism carries with it a violation of the conservation and
energy momentum, albeit in a weak sense; namely, in the inertial frame in which
the object balls are initially at rest, the total energy and the total momentum
each have different values before and after the collisions start, but in every other
inertial frame there is no violation simply because the values are infinite both
before and after the collisions.35 Pérez Laraudogoitia [2005] has shown how to
construct scenarios in which there is a strong violation of conservation of energy
and momentum in that the violation occurs in every inertial frame.

3.8 Domains of dependence

With some artificiality one of the threats to classical determinism discussed above
can be summarized using a concept that will also prove very helpful in compar-
ing the fortunes of determinism in classical physics and in relativistic physics.
By a causal curve let us understand a (piecewise) smooth curve in spacetime
that represents the spacetime trajectory for a physically possible transfer of en-
ergy/momentum. Define the future domain of dependence, D+(S), of a spacetime
region S as the set of all spacetime points p such that any past directed causal
curve with future endpoint at p and no past endpoint intersects S. The past do-
main of dependence D−(S) of S is defined analogously. And the total domain of
dependence D(S) is the union D+(S) ∪ D−(S). If p /∈ D(S) then it would seem
that the state in region S does not suffice to determine the state at p since there
is a possible causal process that passes through p but never registers on S.

Since neither the kinematics nor the dynamics of classical physics place an upper
bound on the velocity at which energy/momentum can be transferred, it would
seem that in principle any timelike curve — i.e. any (piecewise) smooth curve
oblique to the planes of absolute simultaneity — can count as a causal curve, and
as a consequence D(S) = ∅ even when S is taken to be an entire plane of absolute
simultaneity. The examples from Sections 3.4, 3.6, and 3.7 show how the “in
principle” can be realized by some systems satisfying Newtonian laws of motion.

We have seen that some threats to classical determinism can be met by beefing
up the structure of classical spacetime. And so it is with the threat currently un-
der consideration. Full Newtonian spacetime is what results from neo-Newtonian

34The time reverse of the interesting history starts with all the balls initially at rest, and
then subsequently the collection self-excites, sending a ripple of collisions from left to right and
ejecting the cue ball. If this self-exciting history is physically possible, then future laplacian
determinism is violated. However, it might rejected on the grounds that it violated Newton’s
first law of motion.

35For a comment on how the availability of an infinite amount of momentum/energy renders
the indeterminism unsurprising, see [Norton, 1999, 1268].
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spacetime by adding absolute space in the form of a distinguished inertial frame
(‘absolute space’). In this setting the spacetime symmetries are small enough that
there are now finite invariant velocities (intuitively, velocities as measured relative
to absolute space), and thus laws can be formulated that set a finite upper bound
on the absolute velocity of causal propagation. Nor is this move necessarily ad
hoc as shown, for example, by the fact that the formulation of Maxwell’s laws of
electromagnetism in a classical spacetime setting evidently requires the services of
a distinguished inertial frame, the velocity of light c being the velocity as measured
in this frame.

But, as is well known, such a formulation is embarrassed by the undetectability
of motion with respect to absolute space. This embarrassment provides a direct
(albeit anachronistic) route from classical to relativistic spacetime. Adopting for
classical spacetimes the same geometric language used in the special and general
theories of relativity (see [Earman, 1989, Ch. 2]), absolute space is represented
by a covariantly constant timelike vector field Aa, the integral curves of which are
the world lines of the points of absolute space. The space metric is represented
by a degenerate second rank contravariant tensor hab, which together with Aa

defines a tensor that is formally a Minkowski metric: ηab := hab − AaAb. The
unobservability of absolute motion means that there is no preferred way to split
ηab into an hab part and a AaAb part, suggesting that ηab is physically as well as
formally a Lorentz metric. As we will see in Section 4.1, this puts determinism on
much firmer ground in that domains of dependence of local or global time slices
are non-empty in the spacetime setting of STR.

3.9 Determinism, predictability, and chaos

Laplace’s vision of a deterministic universe makes reference to an “intelligence”
(which commentators have dubbed ‘Laplace’s Demon’):

We ought to regard the present state of the universe as the effect of
its antecedent state and as the cause of the state that is to follow. An
intelligence knowing all of the forces acting in nature at a given instant,
as well as the momentary positions of all things in the universe, would
be able to comprehend in one single formula the motions of the largest
bodies as well as the lightest atoms in the world, provided that its
intellect were sufficiently powerful to subject all data to analysis; to it
nothing would be uncertain, the future as well as the past would be
present to its eyes.36

36[Laplace, 1820]. English translation from [Nagel, 1961, 281-282]. More than a century earlier
Leibniz espoused a similar view: “[O]ne sees then that everything proceeds mathematically —
that is, infallibly — in the whole wide world, so that if someone could have sufficient insight into
the inner parts of things, and in addition has remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a prophet and would see the
future in the present as in a mirror.” Quoted from [Cassirer, 1956, 12].
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Perhaps by taking Laplace’s vision too literally, philosophers and physicists alike
conflate determinism and predictability. The conflation leads them to reason as
follows: here is a case where predictability fails; thus, here is a case where determin-
ism fails.37 This is a mistake that derives from a failure to distinguish determinism
— an ontological doctrine about how the world evolves — from predictability —
an epistemic doctrine about what can inferred, by various restricted means, about
the future (or past) state of the world from a knowledge of its present state.

There is, however, an interesting connection between determinism and practi-
cal predictability for laws of motion that admit an initial value problem that is
well-posed in the sense that, in some appropriate topology, the solutions depend
continuously on the initial data.38 The standard existence and uniqueness proofs
for the initial value problem for the odes used in particle mechanics also furnish a
proof of well-posedness, which can be traced to the fact that the existence proof is
constructive in that it gives a procedure for constructing a series of approximations
that converge to the solution determined by the initial data.

To illustrate the implications of well-posedness for predictability, consider the
toy case of a system consisting of a single massive particle obeying Newtonian
equations of motion. If a suitable Lipschitz condition is satisfied, then for any given
values of the position q(0) and velocity q̇(0) of the particle at t = 0 there exists
(for some finite time interval surrounding t = 0) a unique solution: symbolically
q(t) = F (q(0), q̇(0), t). And further, since this initial value problem is well-posed,
for any fixed t > 0 (within the interval for which the solution is guaranteed to
exist), F is a continuous function of q(0) and q̇(0). Suppose then that the practical
prediction task is to forecast the actual position q̄(t∗) of the particle at some given
t∗ > 0 with an accuracy of ε > 0, and suppose that although measurements of
position or velocity are not error free, the errors can be made arbitrarily small.
By the continuity of F , there exist δ1 > 0 and δ2 > 0 such that if |q(0) − q̄(0)| <
δ1 and |q̇(0) − q̇(0)| < δ2, then |q(t∗) − q̄(t∗)| < ε. Thus, measuring at t = 0 the
actual particle position and velocity with accuracies ±δ1/2 and ±δ2/2 respectively
ensures that when the measured values are plugged into F , the value of the function
for t = t∗ answers to the assigned prediction task. (Note, however, that since the
actual initial state is unknown, so are the required accuracies ±δ1/2 and ±δ2/2,
which may depend on the unknown state as well as on ε and t∗. This hitch
could be overcome if there were minimum but non-zero values of δ1 and δ2 that

37On the philosophical side, Karl Popper is the prime example. Popper [1982] goes so far as to
formulate the doctrine of “scientific determinism” in terms of prediction tasks. An example on
the physics side is Reichl [1992]: “[W]e now know that the assumption that Newton’s equations
are deterministic is a fallacy! Newton’s equations are, of course, the correct starting point of
mechanics, but in general they only allow us to determine [read: predict] the long time behavior
of integrable mechanical systems, few of which can be found in nature” (pp. 2–3). I am happy
to say that in the second edition of Reichl’s book this passage is changed to “[W]e now know
that the assumption that Newton’s equations can predict the future is a fallacy!” [Reichl 2004,
3; italics added].

38When the topology is that induced by a norm || · || on the instantaneous states represented
by a function s(t) of time, well-posedness requires that there is a non-decreasing, nonnegative
function C(t) such that ||s(t)|| ≤ C(t)||s(0)||, t > 0, for any solution s(t).
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answered to the given prediction task whatever the initial state; but there is no
a priori guarantee that such minimum values exist. A prior measurement with
known accuracy of the position and velocity at some t∗∗ < 0 will put bounds,
which can be calculated from F , on the position and velocity at t = 0. And then
the minimum values can be calculated for accuracies δ1 and δ2 of measurements
at t = 0 that suffice for the required prediction task for any values of the position
and velocity within the calculated bounds.)

Jacques Hadamard, who made seminal contributions to the Cauchy or initial
value problem for pdes, took the terminology of “well-posed” (a.k.a. “properly
posed”) quite literally. For he took it as a criterion for the proper mathematical
description of a physical system that the equations of motion admit an initial
value formulation in which the solution depends continuously on the initial data
(see [Hadamard, 1923, 32]). However, the standard Courant-Hilbert reference
work, Methods of Mathematical Physics, opines that

“properly posed” problems are by far not the only ones which appro-
priately reflect real phenomena. So far, unfortunately, little mathemat-
ical progress has been made in the important task of solving or even
identifying such problems that are not “properly posed” but still are
important and motivated by realistic situations. [1962, Vol. 2, 230].

Some progress can be found in [Payne, 1975] and the references cited therein.
Hadamard was of the opinion that if the time development of a system failed to

depend continuously on the initial conditions, then “it would appear to us as being
governed by pure chance (which, since Poincaré,39 has been known to consist pre-
cisely in such a discontinuity in determinism) and not obeying any law whatever”
[1923, 38]. Currently the opinion is that the appearance of chance in classical
systems is due not to the failure of well-posedness but to the presence of chaos.

The introduction of deterministic chaos does not change any of the above con-
clusions about determinism and predictability. There is no generally agreed upon
definition of chaos, but the target class of cases can be picked out either in terms
of cause or effects. The cause is sensitive dependence of solutions on initial con-
ditions, as indicated, for example, by positive Lyapunov exponents. The effects
are various higher order ergodic properties, such as being a mixing system, being
a K-system, being a Bernoulli system, etc.40 Generally a sensitive dependence on
initial conditions plus compactness of the state space is sufficient to secure such
properties. The sensitive dependence of initial condition that is the root cause of
chaotic behavior does not contradict the continuous dependence of solutions on
initial data, and, therefore, does not undermine the task of predicting with any
desired finite accuracy the state at a fixed future time, assuming that error in
measuring the initial conditions can be made arbitrarily small. If, however, there

39See Poincaré’s essay “Chance” in Science and Method [1952].
40See Uffink, this volume, section 6.2, or [Lichtenberg and Lieberman, 1991] for definitions of

these concepts.
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is a fixed lower bound on the accuracy of measurements — say, because the mea-
suring instruments are macroscopic and cannot make discriminations below some
natural macroscopic scale — then the presence of deterministic chaos can make
some prediction tasks impossible. In addition, the presence of chaos means that
no matter how small the error (if non zero) in ascertaining the initial conditions,
the accuracy with which the future state can be forecast degrades rapidly with
time. To ensure the ability to predict with some given accuracy ε > 0 for all t > 0
by ascertaining the initial conditions at t = 0 with sufficiently small error δ > 0,
it would be necessary to require not only well-posedness but stability, which is
incompatible with chaos.41

Cases of classical chaos also show that determinism on the microlevel is not
only compatible with stochastic behavior at the macro level but also that the
deterministic microdynamics can ground the macro-stochasticity. For instance,
the lowest order ergodic property — ergodicity — arguably justifies the use of
the microcanonical probability distribution and provides for a relative frequency
interpretation; for it implies that the microcanonical distribution is the only sta-
tionary distribution absolutely continuous with respect to Lebesque measure and
that the measure of a phase volume is equal to the limiting relative frequency of
the time the phase point spends in the volume. In these cases there does not seem
to be a valid contrast between “objective” and “epistemic” probabilities. The
probabilities are epistemic in the sense that conditionalizing on a mathematically
precise knowledge of the initial state reduces the outcome probability to 0 or 1.
But the probabilities are not merely epistemic in the sense of merely expressing
our ignorance, for they are supervenient on the underlying microdynamics.

Patrick Suppes [1991; 1993] has used such cases to argue that, because we are
confined to the macrolevel, determinism becomes for us a “transcendental” issue
since we cannot tell whether we are dealing with a case of irreducible stochasticity
or a case of deterministic chaos. Although I feel some force to the argument, I am
not entirely persuaded. There are two competing hypotheses to explain observed
macro-stochasticity: it is due to micro-determinism plus sensitive dependence on
initial conditions vs. it is due to irreducible micro-stochasticity. The work in recent
decades on deterministic chaos supplies the details on how the first hypothesis can
be implemented. The details of the second hypothesis need to be filled in; particu-
lar, it has to be explained how the observed macro-stochasticity supervenes on the
postulated micro-stochasticity.42 And then it has to be demonstrated that the two
hypotheses are underdetermined by all possible observations on the macrolevel. If
both of these demands were met, we would be faced with a particular instance of
the general challenge to scientific realism posed by underdetermination of theory
by observational evidence, and all of the well-rehearsed moves and countermoves
in the realism debate would come into play. But it is futile to fight these battles
until some concrete version of the second hypothesis is presented.

41Stability with respect to a norm on states s(t) requires that there is a constant C such that
||s(t)|| ≤ C||s(0)||, t > 0, for any solution s(t). Compare to footnote 38.

42It is not obvious that micro-stochasticity always percolates up to the macro-level.
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3.10 Laplacian demons, prediction, and computability

Since we are free to imagine demons with whatever powers we like, let us suppose
that Laplace’s Demon can ascertain the initial conditions of the system of interest
with absolute mathematical precision. As for computational ability, let us suppose
that the Demon has at its disposal a universal Turing machine. As impressive as
these abilities are, they may not enable the Demon to predict the future state of
the system even if it is deterministic. Returning to the example of the Newtonian
particle from the preceding subsection, if the values of the position and velocity of
the particle at time t = 0 are plugged into the function F (q(0), q̇(0), t) that specifies
the solution q(t), the result is a function F(t) of t; and plugging different values
of the initial conditions results in different F(t) — indeed, by the assumption of
determinism, the F(t)’s corresponding to different initial conditions must differ
on any finite interval of time no matter how small. Since there is a continuum of
distinct initial conditions, there is thus a continuum of distinct F(t)’s. But only
a countable number of these F(t)’s will be Turing computable functions.43 Thus,
for most of the initial conditions the Demon encounters, it is unable to predict the
corresponding particle position q(t) at t > 0 by using its universal Turing machine
to compute the value of F(t) at the relevant value of t — in Pitowsky’s [1996]
happy turn of phrase, the Demon must consult an Oracle in order to make a sure
fire prediction.

However, if q(0) and q̇(0) are both Turing computable real numbers, then an
Oracle need not be consulted since the corresponding F(t) is a Turing computable
function; and if t is a Turing computable real number, then so is F(t). This follows
from the fact that the existence and uniqueness proofs for odes gives an effective
procedure for generating a series of approximations that converges effectively to
the solution; hence, if computable initial data are fed into the procedure, the
result is an effectively computable solution function. Analogous results need not
hold when the equations of motion are pdes. Jumping ahead to the relativistic
context, the wave equation for a scalar field provides an example where Turing
computability of initial conditions is not preserved by deterministic evolution (see
Section 4.4).

A more interesting example where our version of Laplace’s Demon must consult
an Oracle has been discussed by Moore [1990; 1991] and Pitowsky [1996]. Moore
constructed an embedding of an abstract universal Turing machine into a concrete
classical mechanical system consisting of a particle bouncing between parabolic
and flat mirrors arranged so that the motion of the particle is confined to a unit

43The familiar notion of a Turing computable or recursive function is formulated for functions
of the natural numbers, but it can be generalized so as to apply to functions of the real numbers.
First, a computable real number x is defined as a limit of a computable sequence {rn} of rationals
that converges effectively, i.e. there is a recursive function f(n) such that k ≥ f(n) entails
|x − rk| ≤ 10n. Next, a sequence {xn} of reals is said to be computable iff there is a double
sequence {rkn} such that rkn → xn as k → ∞ effectively in both k and n. Finally, a function
of the reals is said to be computable iff it maps every computable sequence in its domain into
a computable sequence and, moreover, it is effectively uniformly continuous. For details, see
[Pour-el and Richards, 1989].
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square. Using this embedding Moore was able to show how recursively unsolvable
problems can be translated into prediction tasks about the future behavior of the
particle that the Demon cannot carry out without help from an Oracle, even if
it knows the initial state of the particle with absolute precision! For example,
Turing’s theorem says that there is no recursive algorithm to decide whether a
universal Turing machine halts on a given input. Since the halting state of the
universal Turing machine that has been embedded in the particle-mirror system
corresponds to the particle’s entering a certain region of the unit square to which
it is thereafter confined, the Demon cannot predict whether the particle will ever
enter this region. The generalization of Turing’s theorem by Rice [1953] shows that
many questions about the behavior of a universal Turing machine in the unbounded
future are recursively unsolvable, and these logical questions will translate into
physical questions about the behavior of the particle in the unbounded future that
the Demon cannot answer without consulting an Oracle.

The reader might ask why we should fixate on the Turing notion of computabil-
ity. Why not think of a deterministic mechanical system as an analogue computer,
regardless of whether an abstract Turing machine can be embedded in the system?
For instance, in the above example of the Newtonian particle with deterministic
motion, why not say that the particle is an analogue computer whose motion
“computes,” for any given initial conditions q(0), q̇(0), the possibly non-Turing
computable function q(t) = F (q(0), q̇(0), t)? I see nothing wrong with removing
the scare quotes and developing a notion of analogue computability along these
lines. But the practical value of such a notion is dubious. Determining which func-
tion of t is being computed and accessing the value computed for various values
of t requires ascertaining the particle position with unbounded accuracy.

Connections between non-Turing computability and general relativistic space-
times that are inhospitable to a global version of Laplacian determinism will be
mentioned below in Section 6.6.

4 DETERMINISM IN SPECIAL RELATIVISTIC PHYSICS

4.1 How the relativistic structure of spacetime improves the fortunes
of determinism

Special relativistic theories preserve the Newtonian idea of a fixed spacetime back-
ground against which the drama of physics plays itself out, but they replace the
background classical spacetimes with Minkowski spacetime. This replacement
makes for a tremendous boost in the fortunes of determinism. For the symme-
tries of Minkowski spacetime are given by the Poincaré group, which admits a
finite invariant speed c, the speed of light, making it possible to formulate laws of
motion/field equations which satisfy the basic requirement that the symmetries of
the spacetime are symmetries of the laws and which propagate energy-momentum
no faster than c. For such laws all of the threats to classical determinism that
derive from unbounded velocities are swept away.
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The last point can be expounded in terms of the apparatus introduced in Section
3.8. For the type of law in question, a causal curve is a spacetime worldline whose
tangent at any point lies inside or on the null cone at that point, with the upshot
that domains of dependence are now non-trivial. Minkowski spacetime admits a
plethora of global time functions. But in contrast with classical spacetimes, such
a function t can be chosen so that the domains of dependence D(t = const) of the
level surfaces of t are non-empty. Indeed, t can be chosen so that for each and
every t = const the domain of dependence D(t = const) is a Cauchy surface, i.e.
D(t = const) is the entire spacetime. In fact, any inertial time coordinate is an
example of a global time function, all of whose levels are Cauchy surfaces.44 In the
context of STR, the definition of Laplacian determinism given above in Section
2.1 is to be understood as applying to a t with this Cauchy property.

It is important to realize that these determinism friendly features just discussed
are not automatic consequences of STR itself but involve additional substantive
assumptions. The stress-energy tensor T ab used in both special and general rel-
ativistic physics describes how matter-energy is distributed through spacetime.
What is sometimes called the local conservation law for T ab, ∇aT

ab = 0, where
∇a is the covariant derivative determined by the spacetime metric, does not guar-
antee that the local energy-momentum flow as measured by any observer is always
non-spacelike. That guarantee requires also that for any future pointing timelike
Ua, −T abUa is a future pointing, non-spacelike vector.45 Combining this require-
ment with the further demand that the local energy density as measured by any
observer is non-negative, i.e. T abUaUb ≥ 0 for any non-spacelike vector field Ua,
produces what is called the dominant energy condition. Not surprisingly, this con-
dition, together with the local conservation of T ab, does guarantee that the matter
fields that give rise to T ab cannot travel faster than light in the sense that if T ab

vanishes on some spacelike region S, then it must also vanish on D(S) (see [Hawk-
ing and Ellis, 1973, 91-94]). The dominant energy conditions is thought to be
satisfied by all the matter-fields encountered in the actual world, but occasionally
what are purported to be counterexamples appear in the physics literature.

4.2 Fundamental fields

In Section 3.4 examples were given to illustrate how fields have a hard time living
up to the ideals of Laplacian determinism in classical spacetimes. The situation
changes dramatically in Minkowski spacetime, which supports field equations in
the form of hyperbolic pdes.46 For example, the Klein-Gordon equation for a
scalar field φ of mass m ≥ 0 obeys the equation

∇a∇aφ−m2φ = 0(12)

44Exercise for the reader: Construct a global time function t for Minkowski spacetime such
that none of the level surfaces of t are Cauchy.

45The minus sign comes from the choice of the signature (+ + +−) for the spacetime metric.
46A standard reference on the classification of pdes relevant to physical applications is [Courant

and Hilbert, 1962, Vol. 2]. See also [Beig, 2004].
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which is a special case of a linear, diagonal, second order hyperbolic pde. For such
equations there is a global existence and uniqueness proof for the initial value
problem: given a Cauchy surface Σ of Minkowski spacetime and C∞ initial data,
consisting of the value of φ on Σ and the normal derivative of φ with respect to Σ,
there exists a unique C∞ solution of (13) throughout spacetime. Furthermore, the
initial value problem is well-posed in that (in an appropriate topology) the unique
solution depends continuously on the initial data. And finally the Klein-Gordon
field propagates causally in that if the initial data are varied outside a closed
subset S ⊂ Σ, the unique solution on D(S) does not vary. Notice that we have
a completely clean example of Laplacian determinism at work — no boundary
conditions at infinity or any other enabling measures are needed to fill loopholes
through which indeterminism can creep in. By contrast, giving initial data on a
timelike hypersurface of Minkowski spacetime is known to lead to an improperly
posed Cauchy problem; indeed, not only do solutions not depend continuously on
the initial data, but there are C∞ initial data for which there is no corresponding
solution. This asymmetry between the fortunes of determinism in timelike vs.
spacelike directions, could, as noted above, be turned around and used as a basis
for singling out the time dimension.

It should be emphasized that only restricted classes of hyperbolic pdes are
known to have well-posed initial value problems. It is a challenge to mathematical
physics to show that the field equations encountered in physical theories can be
massaged into a form that belongs to one of these classes. It is a comparatively easy
exercise to show that, when written in terms of potentials, the source-free Maxwell
equations for the electromagnetic field take the form of a system of linear, diagonal,
second order hyperbolic pdes if an appropriate gauge condition is applied to the
potentials. In other cases the challenge requires real ingenuity.47

Physicists are so convinced of determinism in classical (= non-quantum) special
relativistic physics that they sort “fundamental” from “non-fundamental” matter
fields according as the field does or does not fulfill Laplacian determinism in the
form of global existence and uniqueness theorems for the initial value problem
on Minkowski spacetime. The Klein-Gordon field and the source-free Maxwell
electromagnetic field qualify as fundamental by this criterion. A dust matter
field, however, fails to make the cut since singularities can develop from regular
initial data since, for example, in a collapsing ball of dust the density of the dust
can become infinite if the outer shells fall inward fast enough that they cross
the inner shells. Such shell-crossing singularities can develop even for physically
reasonable initial data for the Maxwell-Lorentz equations where the source for the
electromagnetic field consists of a charged dust obeying the Lorentz force law. But
no great faith in determinism is needed to brush aside the failure of determinism
in such examples; they can also be dismissed on the grounds that dust matter is
an idealization and, like all idealizations, it ceases to work in some circumstances.
Faith in determinism, however, is required to deal with what happens when the
Klein-Gordon equation is converted into a non-linear equation by adding terms to

47See [Beig, 2004] for examples.
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the right hand side of (13), e.g.

∇a∇aφ−m2φ = λφ2(13)

where λ is a constant. It is known that solutions of (14) corresponding to regular
initial data can become infinite at a finite value of t and that such data has non-zero
measure (see [Keller, 1957]).

A number of attempts have been made to modify the classical Navier-Stokes
equations (see Section 3.4) for dissipative fluids in order to make them consis-
tent with STR in the sense that they become a system of hyperbolic pdes with
causal propagation. A criterion of success is typically taken to be that the result-
ing system admits an initial value formulation, confirming once again the faith in
determinism in the special relativistic setting. One difficulty in carrying out this
program is that it necessitates the introduction of additional dynamical variables
and additional dynamical equations, and as a result many different relativistic
generalizations of the classical equations have been produced. Geroch [1995] has
argued that we need not be troubled by this embarras des riches because the differ-
ences among the relativistic generalizations wash out at the level of the empirical
observations that are captured by the Navier-Stokes theory.

4.3 Predictability in special relativistic physics

The null cone structure of Minkowski spacetime that makes possible clean exam-
ples of Laplacian determinism works against predictability for embodied observers
who are not simply “given” initial data but must ferret it out for themselves by
causal contact with the system whose future they are attempting to predict. Con-
sider, for example, the predicament of an observer O whose world line is labeled γ
in Fig. 1. At spacetime location p this observer decides she wants to predict what
will happen to her three days hence (as measured in her proper time).

γ

σ

p'

p

I-(p')t

Figure 1. The failure of predictability in Minkowski spacetime
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Suppose that, in fact, three-days-hence for O corresponds to the spacetime
location p′. And suppose that the equations governing the variables relevant to
the prediction are such that initial data on a spacelike hypersurface Σ fixes a unique
solution in D(Σ). Then to carry out the prediction by way of solving the relevant
equations, O must ascertain the state on a local spacelike hypersurface that slices
through the past null cone of p′, such as σ in Fig. 1. As O’s “now” creeps up
her world line, the past light of the “now” sweeps out increasingly large portions
of σ, but until her “now” reaches p′ she does not have causal access to all of σ.
And the same goes for any other local slice through the past cone of p′. Thus, the
very spacetime structure that provides a secure basis for Laplacian determinism
prevents O from acquiring the information she needs before the occurrence of the
event that was to be predicted.

This predictability predicament can be formalized in a way that will be useful
when it comes to investigating predictability in a general relativistic spacetime
M, gab, where M is a differentiable manifold and gab is a Lorentz signature metric
defined on all of M, Minkowski spacetime being the special case where M = Rn

and gab is the Minkowski metric. Geroch (1977) defines the domain of prediction
P (q) of a point q ∈ M to consist of all points p ∈ M such that (i) every past
directed timelike curve with future endpoint at p and no past endpoint enters the
chronological past I−(q) of q,48 and (ii) I−(p) � I−(q). Condition (i) is needed to
ensure that causal processes that can influence events at p register on the region
I−(q) that is causally accessible to an observer whose “now” is q, and condition
(ii) is needed to ensure that from the perspective of q, the events to be predicted
at p have not already occurred. The predictability predicament for Minkowski
spacetime can now be stated as the theorem that for every point q of Minkowski
spacetime, P (q) = ∅.

Note that the predictability predicament arises not just because of the local null
cone structure of Minkowski spacetime but also because of its global topological
structure. To drive home this point, suppose that space in (1 + 1)-Minkowski
spacetime is compactified to produce the cylindrical spacetime C pictured in Fig.
2. Now predictability is possible since I−(q) for any q contains a Cauchy surface,
e.g. Σ in Fig. 2. As a result P (q) = C − I−(q).

For standard Minkowski spacetime and other spacetimes for which P (q) = ∅ for
every spacetime point q, one can wonder how secure predictions are possible. The
answer is that if complete security is required, the only secure predictions have a
conditional form, where the antecedent refers to events that are not causally acces-
sible from q. But there will be many such conditionals, with different antecedents
and different consequents, and since one will not be in a position to know which
of the antecedents is actualized, the best one can do is a “prediction” (all too
familiar from economic forecasts) consisting of a big set of conditionals. On the
other hand, if complete security is not demanded, then unconditional predictions

48For a point q in a relativistic spacetime M, gab, the chronological past I−(q) consists of all
p ∈ M such that there is a future directed timelike curve from p to q. The chronological future
I+(q) of a point q is defined analogously.
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Σ

p
q

I-(q)t

Figure 2. The improved fortunes of predictability when the spatial aspect of
Minkowski spacetime is compactified

carrying probability instead of certainty are obtainable if inductive inference from
past observations points to one of the antecedents of the set of conditionals as
being highly likely.

If one wants predictions that are in principle verifiable, then a third condition
needs to be added to the definition of the domain of prediction; namely, (iii)
p ∈ I+(q). The point p in Fig. 2 satisfies clauses (i) and (ii) but not (iii).

4.4 Special relativity and computability

Pour-el and Richards [1981] constructed an example in which deterministic evolu-
tion does not preserve Turing computability. The equation of motion at issue is
the relativistic wave equation, which in inertial coordinates is written

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− ∂2u

∂t2
= 0, c ≡ 1(14)

Pour-el and Richards studied solutions corresponding to initial data at t = 0 of
the form u(x, y, z, 0) = f(x, y, z), ∂u(x, y, z, 0)/∂t = 0. They showed that there
is a Turing computable f(x, y, z) such that the corresponding solution u(x, y, z, t)
is not Turing computable at t = 1. However, such a solution is necessarily a
weak solution (in the sense of Section 3.4) to the wave equation since it must
be non-differentiable. And the non-preservation result is sensitive to the norm
used to define convergence. Indeed, if Turing computability is defined using the
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energy norm,49 then for any Turing computable functions f and g, the solution
u(x, y, z, t) corresponding to u(x, y, z, 0) = f(x, y, z), ∂u(x, y, z, 0)/∂t = g(x, y, z)
is Turing computable (see [Pour-el and Richards, 1989, 116-118]).

5 DETERMINISM AND INDETERMINISM IN ORDINARY QM

The folklore on determinism has it that QM is the paradigm example of an in-
deterministic theory. Like most folklore, this bit contains elements of truth. But
like most folklore it ignores important subtleties — in this instance, the fact that
in some respects QM is more deterministic and more predictable than classical
physics. And to distill the elements of truth from the folklore takes considerable
effort — in particular, the folkloric notion that quantum indeterminism arises be-
cause the “reduction of the wave packet” is based on a controversial interpretation
of the quantum measurement process. Before turning to these matters, I will dis-
cuss in Section 5.1 an issue that links to the some of the themes developed above
and in Secs. 5.2-5.4 some issues unjustly neglected in the philosophical literature.

5.1 Determinism and Galilean invariance in QM

Here is another example of how linking determinism and symmetry considerations
is fruitful in producing physical insights. Consider the motion of a single spinless
particle on the real line R, and work in the familiar Hilbert space H of wave
functions, i.e. H = L2

C
(R, dx). The evolution of the state ψ(x) ∈ H of the

quantum particle is governed by the Schrödinger equation

i�
∂ψ

∂t
= Ĥψ(15)

where Ĥ is the Hamiltonian operator. This evolution is deterministic, or so it is
said. But a puzzle is quickly generated by conjoining the presumed determinism
with the presumed Galilean invariance of (16).50 Since (16) is first order in time,
giving the value of the wave function ψ(x, 0) for all x ∈ R at t = 0 should fix the
value of ψ(x, t) for all t > 0. But how can this be if the Schrödinger equation is
Galilean invariant? A proper Galilean transformation x → x′ = x − vt, v �= 0,
is the identity map for t = 0 but non-identity for t > 0. Assuming Galilean
invariance of (16), this map must carry a solution to a solution. Since the map in
question is the identity for t = 0 the two solutions should have the same initial data
ψ(x, 0); but since the map is not the identity for t > 0 the original solution and

49For initial conditions f, g the energy norm is given by
||f, g||2 :=

R R R
[(∇f)2 + g2]dxdydz.

And for functions u on R4 the norm is ||u(x, y, z, t)|| = supt E(u, t), where

E(u, t)2 :=
R R R

[∇u+
“∂u
∂t

”2

]dxdydz.

If u is a solution of the wave equation, then E(u, t) is independent of t.
50For a treatment of the Galilean invariance of the Schrödinger equation, see [Brown, 1999].
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its image under a Galilean boost should diverge in the future, violating Laplacian
determinism. The resolution of this little puzzle is to reject the implicit assumption
that ψ behaves as a scalar under a Galilean transformation. In fact, Galilean
invariance of the Schrödinger equation can be shown to imply that the Galilean
transformation of ψ depends on the mass of the particle. And this in turn entails
a “superselection rule” for mass (discovered by Bargmann [1954]) which means
that a superposition of states corresponding to different masses is not physically
meaningful in non-relativistic QM.

5.2 How QM can be more deterministic than classical mechanics

Physics textbooks on QM offer a procedure for quantization that starts with a
Hamiltonian formulation of the classical dynamics for the system of interest and
produces, modulo operator ordering ambiguities, a formal expression for the quan-
tum Hamiltonian operator Ĥ that is inserted into equation (16).51 But to make the
formal expression into a genuine operator a domain of definition must be specified
since, typically, Ĥ is an unbounded operator and, therefore, is defined at best for
a dense domain of the Hilbert space. Usually it is not too difficult to find a dense
domain on which Ĥ acts as a symmetric operator. The question then becomes
whether or not this operator is essentially self-adjoint, i.e. has a unique self-adjoint
(SA) extension — which will also be denoted by Ĥ.52 If so, Û(t) := exp(−iĤt)
is unitary for all t ∈ R, and since Û(t) is defined for the entire Hilbert space, the
time evolute ψ(t) := Û(t)ψ for every vector in the Hilbert space is defined for all
times. (The Schrödinger equation (16) is just the “infinitesimal” version of this
evolution equation.) Thus, if Ĥ is essentially SA, none of the problems which be-
set the deterministic evolution of the classical state can trouble the deterministic
evolution of the quantum state.

What is, perhaps, surprising is that the quantum Hamiltonian operator can
be essentially SA in some cases where the counterpart classical system does not
display deterministic evolution. Recall from Section 3.5 the example of a particle
moving on the real line R in a (real-valued) potential V (x), x ∈ R. As we saw, when
the potential is proportional to −|x|4/3 near the origin, the initial value problem
for the Newtonian equation of motion does not have a unique solution. But the

quantum Hamiltonian operator Ĥ = − �2

2m
d2

dx2
− V (x) is essentially SA provided

that V (x) is locally integrable and bounded below. And this can be satisfied by
the classically non-deterministic potential by suitably modifying it away from the
origin.53

51See [Landsman, this vol.] for details on various approaches to quantization.
52A linear operator Ô defined on the dense domain D(Ô) of the Hilbert space H is symmetric

just in case for all ψ,ϕ ∈ D(Ô), (Ôϕ, ψ) = (ϕ, Ôψ), where (·, ·) is the inner product on H. That

Ô is self-adjoint means that Ô = Ô∗, i.e. Ô is symmetric and D(Ô) = D(Ô∗), where Ô∗ is

adjoint of Ô∗. Here D(Ô∗) is defined to be the set of ϕ ∈ H such that there is a χ ∈ H such

that (Ôψ, ϕ) = (ψ, χ) for all ψ ∈ D(Ô); then Ô∗ϕ := χ.
53An appropriate dense domain is {ψ ∈ L2

C
(R, dx) : ψ,ψ′ ∈ AC(R) & Ĥψ ∈ L2

C
(R, dx)} where
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Another form of classical indeterminism occurs when the initial value problem
has locally in time a unique solution but the solution breaks down after a finite
time. The example given in Section 3.6 was that of a system of classical point
mass particles moving under the influence of their mutual pairwise attractive 1/r2

force, and it was noted that the solution can break down either because of collision
or non-collision singularities. Neither type of singularity occurs in the quantum
analogue since again the quantum Hamiltonian operator for this case is essentially
SA.54

QM also cures the indeterminism of the Zeno version of classical billiards dis-
cussed in Section 3.7, at least in a backhanded sense. A putative quantum analogue
would mimic the Zeno construction of an infinite number of distinct particles in the
unit interval (0, 1] by squeezing into that interval an infinite number of wave pack-
ets with substantial non-overlap. The latter would require that the uncertainty in
position ∆x associated with a wave packet becomes arbitrarily small as the origin
is approached. By the uncertainty principle, the uncertainty in momentum ∆p
would have to become unboundedly large as the origin is approached. This rep-
resents a breakdown in the putative quantum analogue if ∆x and ∆p both small
in comparison with some specified macroscopic standard is required for mimicing
classical behavior.55

5.3 How QM (even without state vector reduction) can be a lot less
deterministic than classical mechanics

Determinism for the evolution of the quantum state is an all-or-nothing affair.
If Ĥ is essentially SA then the “all” alternative applies since, as already noted,
the exponentiation of the unique SA extension gives a unitary evolution operator
which is defined for all times and all vectors in the Hilbert space. If Ĥ is not
essentially SA there are two possibilities to consider. The first is that Ĥ has no SA
extensions. This can be dismissed on the grounds that Ĥ should be a real operator,
and every real symmetric operator has SA extensions. The second possibility is
that Ĥ has many SA extensions. Then the “nothing” alternative applies; for
the exponentiations of the different SA extensions give physically distinct time
evolutions. Roughly speaking, the different self-adjoint extensions correspond to
different boundary conditions at the boundary points of the configuration space.
Perhaps some boundary condition can be singled out and promoted to lawlike

AC(R) stands for the absolutely continuous functions.
54This result is known as Kato’s theorem; see [Kato, 1995, Remark 5.6]. For a more detailed

discussion of the issue of essential self-adjointness and its implications for quantum determinism,
see [Earman, 2005].

55Mimicking a classical state in which a particle has given values of position and momentum
requires a quantum state ψ that not only returns the given values as expectation values but
also gives (∆x)ψ and (∆p)ψ small in comparison with the relevant macroscopic standard; for if
(∆x)ψ (respectively, (∆p)ψ) is large in comparison with the standard, there is an appreciable
probability that the particle will be found with a position (respectively, momentum) different
from the given value.
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status, thus providing for a unique quantum dynamics. But restoring determinism
by this route would require a justification for the hypothesized singling out and
promotion. Alternatively, the effects of the non-essential self-adjointness of the
Hamiltonian can be down played if it can be shown that the quantum dynamics
associated with different self-adjoint extensions all have the same classical limit
(see [Earman, 2005b]).

A toy example of the second possibility is given by a particle moving on the
positive real line R+ in a potential V (x), x ∈ R. If the potential has the form C/x2,
with C > 0, then the Newtonian initial value problem has a unique solution, and
the solution is defined for all times. The intuitive explanation is that no matter how
much energy it has, the classical particle cannot climb over the indefinitely high
potential to reach the singularity at the origin, and it cannot reach x = +∞ in finite
time. However, the quantum Hamiltonian operator for this case is not essentially

SA on L2
C
(R+, dx) if C <

3
4

(see [Reed and Simon, 1975, Thm X.10]). The intuitive
explanation is that the quantum particle can tunnel through the barrier to reach
the singularity, allowing probability to leak away. This leakage is incompatible
with unitary evolution, which would obtain as the result of exponentiating the
unique SA extension of an essentially SA Ĥ.

The singularity in the configuration space of the toy example is wholly artificial,
being created by deleting half of the real line. But analogues in the form of naked or
timelike singularities occur in general relativistic spacetimes (see Section 6.4). One
can ask whether a relativistic quantum particle propagating on the background of
negative mass Schwarzschild spacetime can tunnel through the effective repulsive
barrier that surrounds the origin r = 0. Horowitz and Marolf [1995] show that the
answer is positive.

Essential self-adjointness of the Hamiltonian might be promoted as a selec-
tion principle to help decide what systems are “quantum possible,” guaranteeing
that (barring state vector collapse) the evolution of the quantum is deterministic.
Those who think that determinism is an a priori truth may look favorably on this
promotion, but otherwise its merits are hard to discern.

5.4 Chaos and predictability in QM

QM can not only be more deterministic than classical mechanics, but it can also
be more predictable as well. Classical predictability is compromised or completely
wrecked for observers who cannot ascertain initial conditions with complete preci-
sion if the systems whose behavior they are attempting to predict display sensitive
dependence on initial conditions. But if the quantum Hamiltonian operator is
essentially SA, then not only is the evolution of the quantum state completely
deterministic, its predictability is not compromised by sensitive dependence on
initial conditions. The point is simply that the linear, unitary nature of the evo-
lution preserves the Hilbert space norm: ||U(t)ψ2 − U(t)ψ1|| = ||U(t)(ψ2 − ψ1)||
= ||ψ2 − ψ1||. In words, if two states are close (as measured in the Hilbert space
norm) to begin with, they remain close for all times, i.e. the evolution is stable.
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This stability causes trouble for anyone seeking chaos in QM itself — they are
driven to such extremes as resorting to open systems (whose evolution is not
unitary) or to hidden variables whose evolution is not stable.56 But in itself
the stability of quantum evolution poses no a priori barrier to explaining how
chaos can emerge from quantum dynamics in some appropriate classical limit. For
that project only requires showing that the expectation values of relevant classical
quantities can diverge rapidly enough (in some appropriate metric) to underwrite
higher order ergodic properties that constitute the chaotic behavior observed on
the macrolevel (see [Belot and Earman, 1997]). One obvious way to carry out this
project is to use Ehrenfest’s theorem to show that in the position representation
the centroid of a quantum wave packet will follow a classical trajectory, as long
as the mean square width of the wave packet remains sufficiently small. However,
for classically chaotic trajectories the time interval in which the latter condition
holds is uncomfortably short — for example, [Zurek, 1998] estimates that for the
chaotic tumbling of Hyperion (a moon of Jupiter) it is of the order of 20 years.
Several authors have argued that quantum decoherence comes to the rescue (see,
for example, [Zurek, 1998; 2003]), but that is a topic that is beyond the scope
of this chapter. Clearly, classical chaos poses a challenge to our understanding of
how the classical world emerges from quantum physics.57 Another aspect of the
classical-quantum correspondence is treated in the next section.

5.5 State vector reduction, hidden variables, and all that

Showing that the Hamiltonian operator Ĥ for a quantum system of interest is
essentially SA is not enough to secure the fortunes of determinism for this system,
and this for two reasons. The first is that the deterministic evolution of the quan-
tum state might be interrupted by “state vector reduction,” as is postulated in
some treatments of the measurement problem in QM, by which the unitary evo-
lution ψ(0) 
→ ψ(t) = exp(−iĤt)ψ(0) is suspended and the quantum state jumps
into an eigenstate of the observable being measured. In its crudest form state
vector reduction is a literal miracle — a violation of the laws of nature — making
it an inappropriate topic for the present forum. But there are more sophisticated
forms of state vector reduction that model the reduction as a dynamical process.
Stochastic models in which the reduction occurs discontinuously and continuously
have been studied respectively by Ghirardi et al. [1986] and Pearle [1989]. Reduc-
tion by means of a non-linear term added to the Schrödinger equation was studied
by Pearle [1976]. If the stochastic models of reduction are on the right track
and if the stochastic mechanisms they postulate represent irreducible randomness,
then obviously determinism is breached. By contrast, the scheme of Pearle [1976]

56See the discussions of Kronz [1998] and Cushing and Bowman [1999]. By contrast, physicists
who study “quantum chaos” do not try to find chaos in QM itself but rather study the distinguish-
ing properties of quantum systems whose classical counterparts display chaos. For this reason
Michael Berry suggested replacing “quantum chaos” with “quantum chaology.” Unfortunately
the suggestion did not stick.

57For a comprehensive survey of this problem, see [Landsman, this vol.].
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achieves a deterministic state vector reduction with the help of hidden variables.58

None of these alternatives to standard non-relativistic QM has been generalized
to a viable relativistic quantum field theory, and as far as I am aware none of
them play any role in the main lines of research on quantum gravity that come
from string theory or loop quantum gravity (see Section 8). Thus, at present it
does not seem productive to speculate about the implications for determinism of
possible modifications to QM that may or may not become part of some future
physics. However, the motivation for introducing state vector reduction is relevant
here, for it leads to the second set of reasons why the conventional quantum state
dynamics may not be sufficient to secure determinism for the quantum domain.

Classical (= non-quantum) theories wear their interpretations on their sleeves.59

For example, for a classical theory that admits an (unconstrained) Hamiltonian
formulation, observables are in one-one correspondence with functions from the
phase space Γ(q, p) to (say) the reals R. The intended interpretation is that if
fO is the function corresponding to the observable O, then the value of O at t is
o iff the state (q(t), p(t)) at t is such that fO(q(t), p(t)) = o. This scheme can
be liberalized to allow for dispositional observables which have definite values in
only some states; for such an O the representing function fO is only a partial
function. Another liberalization is to allow that the range of fO includes “fuzzy”
(e.g. interval) values. To get an interpretation of QM along similar lines requires
adding to the formalism at least two things: (i) an account of which SA operators
correspond to quantum observables, and (ii) a semantics for quantum observables
in the form of a value assignment rule that specifies what values the observables
take under what conditions. I will simply assume that part (i) of the interpretation
problem has been solved.

The most obvious way to supply part (ii) would be to ape the classical value
assignment rule, replacing the classical state space Γ(q, p) by the quantum state
space to get a value assignment rule of the form: the value of quantum observable
O at t is o iff the state vector ψ(t) is such that fO(ψ(t)) = o where fO is the
representing function for the quantum observable O. If, as implicitly assumed in
this formulation, the quantum state space is taken to be the the unit sphere SH
of the Hilbert space H of the system (i.e. {ψ ∈ H : (ψ,ψ) = 1}), then as far as
standard QM is concerned, gauge freedom is present since any two elements of
SH that differ by a phase factor correspond to the same physical state in that all
expectation values of observables are the same for the two quantum states. This
gauge redundancy can be removed by taking the state space to be the projective
Hilbert space PH, defined as the quotient of SH by the action of ψ 
→ ςψ where
ς ∈ C with |ς| = 1; equivalently, PH is the space of rays or one-dimensional
subspaces of H. Thus, from the point of view of conventional QM, the value
assignment rule should obey the restriction that fO(ψ) = fO(ψ′) whenever the

58The hidden variables are the phase angles, an idea revived by Ax and Kochen [1999]; see
below.

59But recall from Section 3 that if determinism is demanded, then the initial on-the-sleeve
interpretation may have to be modified by seeing gauge freedom at work.
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unit vectors ψ′ and ψ belong to the same ray. Allowing the value assignment
to depend on the phase would amount to introducing “hidden variables,” in the
terminology used below.

In any case, if the quantum value assignment rule takes the form under discus-
sion and if the problems discussed in Section 5.3 are waived, then arguably QM is a
deterministic theory, and this is so even if fO is a partial function (i.e. is undefined
for some quantum states) or even if fO can take fuzzy values. For assuming no
state vector reduction, the state ψ(0) at t = 0 uniquely determines the state ψ(t)
at any t > 0; and assuming the implementation of (ii) under discussion, the state
ψ(0) at t = 0 uniquely determines the value assignments at any later time t > 0.
That an observable is assigned no value or a fuzzy value at t does not represent
a failure of determinism, which requires only that the laws plus the initial state
determine the present and future values of all observables to the extent that these
values are determinate at all. Thus, on the present option it is a mistake to view
the Kochen-Specker theorem, and other subsequent no-go theorems, as showing
that QM does not admit a deterministic interpretation. Rather, what these no-
go results show is that, subject to certain natural constraints,60 some subset of
quantum observables cannot all be assigned simultaneously sharp values.61 The
same goes for the Bell-type theorems, which are best interpreted as extensions of
the Kochen-Specker no-go result to an even smaller set of observables (see [Fine,
1982a; 1982b]).

One example of the type of value assignment rule at issue is the eigenvalue-
eigenvector rule which says that, for an observable O whose quantum operator
Ô has a discrete spectrum, O has a sharp value at t iff Ôψ(t) = oψ(t), in which
case O(t) = o. But it is just this eigenvalue-eigenvector link that leads to the
notorious measurement problem in QM in the form of the inability of the theory
to explain why measurements have definite outcomes, and it is this problem that
motivated the idea of state vector reduction. In essence the problem arises because
of the insistence that “measurement” should not be taken as a primitive term
but should be analyzed within QM itself as a physical interaction between the
object system and a measuring instrument. But while the application of the
standard linear, unitary dynamics to the composite object-system + measurement-
apparatus-system can establish a one-one correlation between the eigenstates of
the object observable of interest and the eigenstates of the “pointer observable”
of the measuring instrument, the application of the eigenvector-eigenvalue rule to
the post measurement composite state function yields the unacceptable result that
the “pointer” on the measuring instrument is not pointing to any definite value

60For example, it is natural to require that if the quantum value assignment rule for O assigns
O a definite value, that value lies in the spectrum of the operator Ô corresponding to O. And it
is natural to require that for suitable functions g, Fg(O) = g ◦ FO.

61It follows from Gleason’s theorem that, subject to very plausible constraints on value assign-
ments, not all of the (uncountably infinite number of) self-adjoint operators in a Hilbert space of
dimension 3 or greater can be assigned simultaneously definite values belonging to the spectra of
these operators. The Kochen-Specker theorem shows that the same conclusion can be drawn for
a finite set of quantum observables. See [Redhead, 1987] for an account of these no-go results.
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(see [Albert, 1992] for a detailed exposition). The Schrödinger cat paradox is a
cruel illustration of this conundrum in which “live cat” and “dead cat” serve as
the “pointer positions.”

Thus, if the eigenvalue-eigenvector link is maintained, there are compelling rea-
sons to contemplate a modification of the standard quantum dynamics in order to
ensure that in measurement interactions the quantum state evolves into an eigen-
state of the relevant observables. But since the decision was made above not to
treat such modifications, the discussion that follows will be confined to the other
option, namely, the use of a value assignment rule that breaks the eigenvalue-
eigenvector link, possibly with the help of “hidden variables” that supplement the
quantum state. If hidden variables X are used, the value assignment rule takes the
form: the value of quantum observable O at t is o iff the total state (ψ(t),X(t)) is
such that fO(ψ(t),X(t)) = o, where again fO stands for the representing function
for the observable O but is now a function defined on the augmented state space.
If the evolution of the total state is deterministic, then by the same argument
as before, the quantum domain is fully deterministic if QM is true. An exam-
ple is supplied by the Bohm interpretation where X(t) specifies the positions of
the particles at t. The quantum component of the total state evolves according to
Schrödinger dynamics, and the postulated equation of motion for particle positions
guarantees that (ψ(0),X(0)) uniquely determines (ψ(t),X(t)) for t > 0 (see [Hol-
land, 1993] for a survey). On the Bohm interpretation many quantum observables
have a dispositional character, taking on determinate values only in adequately
specified contexts (typically including a measurement apparatus together with its
hidden variables). For example, in the context of a Stern-Gerlach experiment a
spin 1

2 particle will have spin-up (or spin down) just in case the position of the
particle lies the appropriate region of the apparatus. The validity of the claim that
the Bohm interpretation resolves the measurement problem thus turns on whether
all measurements can be reduced to position measurements.

The family of modal interpretations of QM also attempt to resolve the mea-
surement problem by breaking open the eigenvalue-eigenvector link wide enough
to allow measurements to have definite outcomes but not so wide as to run afoul of
the Kochen-Specker type impossibility results (see [Bub, 1997] and [Dickson, this
vol.] for overviews), but in contrast to the Bohm interpretation the modal interpre-
tations have no commitment to maintaining determinism. Very roughly the idea
is that an observable associated with a subsystem of a composite system in state
ψ(t) has a definite value just in case the reduced density matrix of the subsystem
is a weighted sum of projectors associated with an eigenbasis of the observable.
This guarantees that in an idealized non-disturbing measurement interaction in
which the pointer positions of the measuring instrument are perfectly correlated
with the possible values of the object system observable being measured, both the
pointer observable and the object system observable have definite values.62

62More generally, the interaction of a system with its environment will mean that “measure-
ment” of the system is going on all the time. Thus, decoherence aids the modal interpretation
by providing the conditions of applicability of the interpretation. In the other direction, deco-
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Most forms of the modal interpretation supply the probabilities for an observ-
able to have particular values, assuming that the conditions are appropriate for the
observable to have a determinate value; but they are silent as to what the actual
value is. Nevertheless, the actual possessed values of quantum observables can be
taken to play the role of the hidden variables X, and one can ask whether the total
state (ψ,X) can be given a deterministic dynamics. The answer is negative for
versions of the modal interpretation discussed in the philosophy literature since
these versions do not supply enough hidden variables to allow for determinism. For
example, at the time t > 0 when an ideal measurement interaction is completed
and the eigenstates of pointer position are perfectly correlated with eigenstates of
the object observable, the standard modal interpretations say that both the object
observable and the pointer observable have definite values. In different runs of the
experiment these correlated observables have different values. But in all the runs
the initial quantum state ψ(0) is the same, and the experimental situation can be
arranged so that modal interpretations say that the initial possessed values X(0)
are the same. This failure of determinism is of no concern to the modal theorist
whose goal is to solve the measurement problem. To this end it is enough to show
that there is a stochastic dynamics for possessed values that is compatible with
the statistical predictions of QM. In fact, there is a vast array of such dynamics
(see [Dickson, 1997] and [Bacciagaluppi, and Dickson, 1998]).

A different version of the modal interpretation, proposed by Ax and Kochen
[1999], takes the option mentioned above of extending the standard quantum state
space of rays PH to unit vectors SH. Elements of the former are supposed to char-
acterize statistical ensembles of systems while elements of the latter characterize
individual systems. This extension allows the modal interpretation to specify what
value an observable has, in circumstances when it has a definite value, and also
to provide for a deterministic evolution of the augmented quantum state. It is
postulated that the ensemble corresponding to a ray ςψ, |ς| = 1, is composed
of individual systems with phase factors ς having an initial uniformly random
distribution, which accounts for the apparent failure of determinism.

Both the Bohm interpretation and the family of modal interpretations have
difficulties coping with relativistic considerations. The former does not have any
natural generalization to QFT, at least not one which takes seriously the lesson
that in QFT fields are the fundamental entities and particles are epiphenomena
of field behavior. The latter does possess a natural generalization to QFT, but it
yields the unfortunate consequence that in situations that are standardly discussed,
no subsystem observable has a definite value (see [Earman and Ruetsche, 2005]
and the references therein).

Many worlds interpretations of QM can be given a literal or a figurative reading
(see [Barrett, 1999] for an overview). On the literal reading there are literally
many worlds in that spacetime splits into many branches which, from the branch

herence requires something akin to the modal interpretation, for otherwise it does not, contrary
to the claims of its promoters, resolve the measurement problem. For more on decoherence, see
[Landsman, this vol.].
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time onwards, are topologically disconnected from one another (see, for example,
[McCall, 1995]).63 This form of many worlds can be described as a hidden variable
interpretation by taking the hidden variables X to describe the spacetime branch-
ing and by taking the representing function fO to be a mapping from the total
state (ψ(t),X(t)) to a vector, possibly with infinitely many components labeled
α, where the component α supplies the value at t of O in branch α. The fate of
determinism then depends on whether or not the story of when and how branching
takes place makes the evolution of the total state (ψ,X) deterministic. On the
figurative reading of “many worlds” there is literally only one world, but there are
many minds, contexts, perspectives, or whatever. Also there is no such thing as
an observable O simpliciter but rather an observable O-in-context-α, denoted by
Oα. If the representing function fOα

is a function of the quantum state only, then
determinism seems to be secured. However, our notation is defective in disguising
the need for a specification of the contexts that are available at any given time.
That specification is determined by the quantum state ψ(t) alone if there is a
“democracy of bases,” i.e. any “branch” of ψ(t) expressed as a linear combina-
tion of the vectors of any orthonormal basis of the Hilbert space of the system
defines a context. Such a radical democracy seems incompatible with experience,
e.g. in the Schrödinger cat experiment we either see a live cat or we see a dead
cat, and we never experience a superposition of seeing a live and seeing a dead
cat.64 To overcome this difficulty some many world theorists propose to work with
a preferred set of bases. The issue of determinism then devolves on the question
of whether the specification of the set of preferred bases is deterministic. Even
if the many worlds interpretation — on either the literal or figurative version —
secures ontological determinism, the price seems to be a radical epistemic indeter-
minism: How do I know which branch of a splitting world or which context of a
non-splitting world I am in? Being told that there is no “I” only an “I-in-branch-
α” or an “I-in-context-α ”is of no help when I — whichever I that is — have to
make a prediction about the outcome of a measurement. Here all I can do is fall
back on the statistical algorithm of QM. The many worlds interpretation seems to
guarantee that even if the world is ontologically deterministic, it behaves, as far
as anyone can judge, as if there is an irreducible stochasticity.

Although the discussion of the quantum measurement problem and its ramifi-
cations has been very sketchy, I trust it is sufficient to indicate why it is vain to
hope for a simple and clean answer to the question of whether the truth of QM
entails the falsity of determinism. To arrive at an answer to that question calls for
winnowing the various competing interpretations of QM, a task that is far from
straightforward, especially since judgments about how to perform the winnowing

63How to describe branching spacetimes within the context of conventional spacetime theories
is a ticklish matter. Perhaps the most promising move is to hold on to the assumption that
spacetime is a differentiable manifold but abandon the assumption that it is a Hausdorff mani-
fold. However, non-Hausdorff manifolds can display various pathological properties that threaten
determinism, e.g. geodesics can bifurcate. See Section 6.1.

64But how can we be sure? Perhaps momentary mental confusion is a superposition phe-
nomenon.
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are inevitably colored by attitudes towards determinism.

6 DETERMINISM IN CLASSICAL GTR

6.1 Einstein’s revolution

Einstein’s GTR was revolutionary in many respects, but for present purposes
the initially most important innovation is that GTR sweeps away the notion —
shared by all pre-GTR theories — of a fixed spacetime background against which
the evolution of particles and fields takes place. In GTR the spacetime metric is a
dynamical field whose evolution is governed by Einstein’s gravitational field equa-
tions (EFE). Before discussing the issue of whether this evolution is deterministic,
two preliminary matters need attention.

First, general relativists typically assume that the manifold M of a relativistic
spacetime M, gab is Hausdorff.65 Without this stipulation determinism would be
in deep trouble. For example, non-Hausdorff spacetimes can admit a bifurcating
geodesics; that is, there can be smooth mappings γ1 and γ2 from, say, [0, 1] into M
such that the image curves γ1[0, 1] and γ1[0, 1] are geodesics that agree for [0, b),
0 < b < 1, but have different endpoints γ1(1) and γ2(1). According to GTR, the
worldline of a massive test particle not acted upon by non-gravitational forces is a
timelike geodesic. But how would such a particle know which branch of bifurcating
geodesic to follow? Additionally, the (local) uniqueness of solutions to the initial
value problem for EFE discussed below in Section 6.3 would fail if non-Hausdorff
attachments were allowed.

Second, the reader is reminded that attention is being restricted to relativistic
spacetimes M, gab that are temporally orientable, and it is assumed that one of
the orientations has been singled out as giving a directionality to time. But even
with this restriction in place, some of the spacetimes embodied in solutions to
EFE are inimical to the formulation of global Laplacian determinism given in
Section 2.1. For example, such spacetimes may not admit a global time function.
Indeed, the spacetime of the Gödel cosmological model not only does not admit a
global time function, but it does not even admit a single global time slice (spacelike
hypersurface without edges) so that one cannot meaningfully speak of the universe-
at-a-given-moment.66

One response would be to narrow down the class of physically acceptable models
of GTR by requiring that, in addition to satisfying EFE, such models must also
fulfill restrictions on the global causal structure of spacetime that rule out such
monstrosities as Gödel’s model and other models which contains closed timelike

65M is Hausdorff iff for any p, q ∈ M with p 
= q, there are neighborhoods N(p) and N(q) such
that N(p) ∩N(q) = ∅. Of course, a manifold is (by definition) locally Euclidean and, therefore,
locally Hausdorff.

66This is a consequence of three features of Gödel spacetime: it is temporally orientable (i.e.
it admits a continuous non-vanishing timelike vector field), it is simply connected, and through
every spacetime point there passes a closed future directed timelike curve. For a description of
the Gödel solution, see [Hawking and Ellis, 1973, 168–170] and [Malament, 1984].



1410 John Earman

curves. This move has the independent motivation of avoiding the “paradoxes of
time travel.”67 But much stronger causality conditions are needed to underwrite
the global version of Laplacian determinism in the general relativistic setting.

In the first place, to carry over the classical conception of Laplacian determinism
to the context of a general relativistic spacetime requires that the spacetime admit
a global time function, which is not guaranteed by the absence of closed timelike
curves. But even the requirement of a global time function is not strong enough
because it provides no guarantee that the level surfaces of any such function will
have the Cauchy property. To be at home, Laplacian determinism requires a space-
time M, gab that is globally hyperbolic, which is the conjunction of two conditions:
first, M, gab must be strongly causal in that for any p ∈ M and any neighbor-
hood p there is a subneighborhood such that once a future directed causal curve
leaves, it never reenters (intuitively, there are no almost closed causal curves);
and second, for every p, q ∈ M, the causal diamond J+(p) ∩ J−(q) is compact.68

Global hyperbolicity guarantees that M, gab can be foliated by Cauchy surfaces
and that M is diffeomorphically Σ x R, where Σ is an n− 1 dimensional manifold
if dim(M) = n. But simply stipulating global hyperbolicity has all the virtues of
theft over honest toil. So let us see what can be achieved by honest toil.

6.2 Determinism and gauge freedom in GTR

For pre-relativistic theories a constant theme was that creating an environment
friendly to determinism requires willingness to either beef up the structure of the
background spacetime or else to see gauge freedom at work in sopping up the ap-
parent indeterminism (recall Section 3.3). But in GTR there is no fixed background
structure. Thus, one would expect that GTR either produces indeterminism or
else that there is a non-trivial gauge symmetry at work. This expectation is not
disappointed.

To see why it is necessary to be more detailed about the EFE:

Rab − 1
2
Rgab + Λgab = κTab(16)

where Rab and R := Rc
c are respectively the Ricci tensor (which is defined in terms

of gab and its derivatives) and the Ricci scalar, Λ is the cosmological constant, and
Tab is the stress-energy tensor. The cosmological constant can be ignored for
present purposes, but it is currently the object of intense interest in cosmology
since a positive Λ is one of the candidates for the “dark energy” which is driving
the accelerating expansion of the universe (see [Ellis, this vol.]).

A potential model of the theory is then a triple 〈M, gab, Tab〉 where gab, Tab

satisfy (17) at all points of M. Building such a model seems all too easy: start
67But see [Earman, Smeenk, and Wüthrich, 2005] which argues that the so-called paradoxes

of time travel do not show that time travel is conceptually or physically impossible.
68J+(p) (respectively, J−(p)) denotes the causal future (respectively, causal past) of p, i.e.,

the set of all points q such that there is a future directed causal curve from p to q (respectively,
from q to p).
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with any any general relativistic spacetime M, gab, compute the Einstein tensor
Gab := Rab− 1

2Rgab, and define the stress-energy tensor by Tab := κGab. Thus, the
understanding must be that Tab arises from a known matter field. And in order to
make the environment as friendly as possible for determinism, it will be assumed
that the Tab’s that are plugged into the right hand side of (17) fulfill the dominant
energy condition (see Section 4.1) which, together with the local conservation law
∇aTab = 0 (which itself is a logical consequence of (17)), guarantees that matter-
energy does not propagate faster than light.

Even with these enabling stipulations in place, it seems at first glance that
determinism gets no traction, at least not if a naively realistic interpretation is
given to the models of the theory. The difficulty can be made apparent by repeating
a variant of the construction given in Section 3.2. Let 〈M, gab, Tab〉 be a model
satisfying all of the above stipulations, and suppose that the spacetime M, gab

satisfies all of the causality conditions you like, e.g. that it is globally hyperbolic.
Since there is no fixed background structure to respect, save for the topological and
differentiable structure of M, one is free to choose a diffeomorphism d : M → M
such that d is the identity map on and to the past of some Cauchy surface Σ
of M, gab but non-identity to the future of Σ. Then 〈M, d∗gab, d

∗Tab〉, where d∗

indicates the drag along by d, will also be a model satisfying all of the stipulations
imposed on 〈M, gab, Tab〉. By construction, d∗gab(p) = gab(p) and d∗Tab(p) =
Tab(p) for all p on or to the past of Σ, but d∗gab(p) �= gab(p) and d∗Tab(p) �= Tab(p)
for some points p to the future of Σ (unless we have inadvertently chosen a d
that is a symmetry of gab and Tab, which can always be avoided). The existence
of this pair of models that agree for all past times but disagree in the future is
a violation of even the weakest cousin of Laplacian determinism, at least if the
surface structure of the theory — tensor fields on a manifold — is taken at face
value.

When this sort of construction threatened to undermine determinism in a pre-
GTR setting, two options were available for shoring up determinism: add more
structure to the background spacetime or reject the container view of spacetime.
The first option is ineffective unless the additional elements of spacetime struc-
ture are non-dynamical objects, but this represents a retreat from one of the key
features Einstein’s revolution. If there is to be no retreat, then the second option
must be exercised. In the present context the option of rejecting the container view
of spacetime takes the form of rejecting the naive realism that reads the theory as
describing tensor fields living on a manifold.

Choosing the second option has a principled motivation which is not invented
to save determinism in GTR but which follows in line with the treatment of gauge
symmetries in pre-general relativistic theories. The field equations (17) of GTR
are the Euler-Lagrange equations derived from an action principle that admits the
diffeomorphism group as a variational symmetry group. Thus, Noether’s second
theorem applies, indicating that we have a case of underdetermination — more
“unknowns” than there are independent field equations — and that arbitrary
functions of the spacetime variables will show up in solutions to the field equations.
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Switching from the Lagrangian to the Hamiltonian formulation, it is found, as
expected, that GTR is a constrained Hamiltonian theory. There are two families
of first class constraints, the momentum constraints and the Hamiltonian con-
straints.69 Unfortunately the Poisson bracket algebra of these constraints is not a
Lie algebra,70 and consequently one cannot directly associate the diffeomorphism
group, which acts on the spacetime, with a group which acts on the Hamiltonian
phase space by finding a natural homomorphism of the Lie algebra of the diffeo-
morphism group into the constraint algebra. This glitch is overcome by Isham
and Kuchař [1986a; 1986b] who show that if appropriate embedding variables and
their conjugate momenta are used to enlarge the phase space, then the enlarged
constraint algebra is a Lie algebra, and that there exists a homomorphism of the
Lie algebra of the spacetime diffeomorphism group into the new constraint alge-
bra. Thus, the standard apparatus for treating gauge symmetries can be applied,
yielding the verdict that the diffeomorphism invariance of GTR is to be inter-
preted as a gauge symmetry. On this interpretation, the above construction does
not demonstrate that GTR is indeterministic but rather produces a faux violation
of determinism by taking advantage of the redundancy of the surface structure the-
ory in the sense of the many-to-one correspondence between the surface structure
models and the intrinsic physical situation they describe; in particular, the mod-
els 〈M, d∗gab, d

∗Tab〉 and 〈M, gab, Tab〉 in the above construction cannot threaten
determinism since they are to be interpreted as different descriptions of the same
physical situation. Of course, the apparatus at issue has built into it a commit-
ment to determinism, so its application to GTR cannot be taken as part of a proof
that the correct interpretation of GTR makes it a deterministic theory. The only
claim being made here is that this determinism-saving move for GTR is not ad hoc
but is part of a systematic approach to gauge symmetries that is taken to yield
the “correct” results for pre-GTR theories.71

What is so clear using hindsight wisdom took Einstein many years of struggle to
understand. His infamous “hole argument” can be seen as a discovery of this un-
derdetermination problem.72 What muddied the waters was a confusion between
two senses of general covariance. Formal general covariance demands that the
laws of motion/field equations of a theory be written in a form that makes them

69The plural is used here since there is a momentum constraint and a Hamiltonian constraint
for every point of space.

70The bracket of a pair of the constraints is not always a linear combination of the constraints
multiplied by a “structure constant.” This failure of the constraint algebra to form a Lie algebra
means that GTR is not a gauge theory in the sense of Yang-Mills. But it certainly does not
mean that GTR does not contain non-trivial degrees of gauge freedom.

71Because these matters are surrounded by so much controversy in the philosophical literature,
I want to emphasize as strongly as possible that I am not proposing a new way of looking at
GTR but am simply expounding what is the standard view among general relativists; see, for
example, [Wald, 1984].

72See [Norton, 1984] and [Stachel, 1986] for accounts of how the “hole argument” figured in
Einstein’s search for his gravitational field equations. And see [Rovelli, this. vol, Ch. 12] for an
account of how reflecting on the lessons of the “hole argument” influenced his understanding of
classical GTR and his approach to quantum gravity.
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covariant under arbitrary coordinate transformations. The terminology “formal”
was chosen with malice aforethought since the demand of formal general covari-
ance is a demand on the form rather than on the content of theory. For example,
Newtonian and special relativistic theories can be reformulated, without change of
content, so as to meet this demand. Indeed, the fact that Newtonian and special
relativistic theories can be formulated in a completely coordinate-free manner al-
ready should make it clear that coordinates cannot matter.73 Substantive general
covariance demands diffeomorphism invariance (e.g. that for arbitrary diffeomor-
phism of M, (M, d∗gab, d

∗Tab) is a model of the theory if (M, gab, Tab) is) and
that this diffeomorphism invariance is a gauge symmetry. Again the terminology
“substantive” was chosen with malice aforethought since the demand of substan-
tive general covariance is not automatically met, without change of content, for
formally generally covariant Newtonian and special relativistic theories, at least
not by the lights of apparatus for treating gauge symmetries that has been touted
here (see [Earman, 2006]).

What invites confusion is the fact that a spacetime coordinate transformation
can be taken to indicate either a relabeling of spacetime points or as indicating a
(local) diffeomorphism. In the first guise these transformations are gauge trans-
formations of an innocent kind: they relate the various coordinate representations
of the intrinsic coordinate-free objects gab and Tab obtained by taking the compo-
nents of these objects in different coordinate systems. But there is nothing new
here as regards GTR since exactly the same story holds for intrinsic coordinate-free
presentations of pre-GTR theories. In the second guise, however, these transfor-
mations may or may not be gauge transformations — it depends on the content
of the theory.

When he first discovered the underdetermination problem by means of the “hole
argument,” Einstein took it to reveal a real and intolerable form of underdeter-
mination. To avoid it, he thought he had to reject formal general covariance as a
desideratum for gravitational field equations. Only after wandering in the wilder-
ness of non-covariant equations for almost three years did he re-embrace general
covariance. In effecting the re-embrace Einstein did not speak the language of
gauge symmetries (the terminology and the apparatus had not been invented),
so he did not say that the gauge interpretation of GTR lowers the hurdle for de-
terminism in that it requires only the uniqueness of evolution for gauge invariant
quantities. But he said what amounts to the same thing; or rather he said it for
a subclass of the gauge invariant quantities of GTR — what are called “point
coincidences,” i.e. things like the intersection of light rays.74

Many philosophers have traced Einstein’s path in various ways. Very few of
them, however, have owned up to the implications of where the path leads. If

73In the above presentation I have intentionally used the “abstract index” notation. Thus,
gab stands for a symmetric, covariant tensor field that is defined in a coordinate-free manner
as a bilinear map of pairs of tangent vectors to R. This object can be represented by its co-
ordinate components gjk in a coordinate system {xi}. The transformations between two such
representations are gauge transformations, albeit trivial ones.

74See [Howard, 1999] for an account of Einstein’s use of this term.
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determinism in GTR is saved by treating diffeomorphism invariance as a gauge
symmetry, then the only “observables” (= genuine physical magnitudes) of GTR
are gauge invariant quantities. This is easy enough to say, but what exactly is
the nature of the gauge invariant structure that underlies the surface structure?
This is a crucial issue for those physicists who pursue a quantum theory of gravity
by applying some version of the canonical quantization program to GTR, for on
this program it is the “observables” of classical GTR that will be turned into
quantum observables in the sense of self-adjoint operators on the Hilbert space
of quantum gravity. There is no standard answer to the question of how best
to characterize the observables of classical GTR. But one thing is sure: none of
the familiar quantities used in textbook presentations of GTR, not even scalar
curvature invariants such as the Ricci scalar appearing in the field equations (17),
count as observables in the sense under discussion. And more particularly, no
local quantities — quantities attached to spacetime points or finite regions — are
gauge invariants. In this respect the gauge-free content of the theory has a non-
substantivalist flavor. Whether this content can be characterized in a way that
also satisfies traditional relationalist scruples remains to be seen.

A second closely related implication of treating the diffeomorphism invariance of
GTR as a gauge symmetry concerns the nature of time and change. In the Hamil-
tonian formalism the implication takes the form of a “frozen dynamics.” Applying
to the Hamiltonian constraint of GTR the doctrine that first class constraints
generate gauge transformations leads directly to the conclusion that motion in
GTR is pure gauge. Put another way, the instantaneous states in the Hamiltonian
formulation of the theory contain redundant structure, and any two such states,
where one is generated from another by solving the Hamiltonian form of EFE, are
equivalent descriptions of the same intrinsic, gauge invariant situation.75

For those who find these implications unpalatable, the heterodox moves men-
tioned in Section 3.3 may be attractive. As far as I am aware, however, such
heterodoxy as applied to GTR has not been seriously pursued by the physics
community.

6.3 The initial value problem in GTR

For the sake of simplicity consider the initial value problem for the source-free or
vacuum EFE, i.e. (17) with Tab ≡ 0. Since these equations are second order in
time, presumably the appropriate initial data consist of the values, at some given
time, of the spacetime metric and its first time derivative. The technical formu-
lation of this idea is to take an initial data set to consist of a triple (Σ, hab, kab),
with the following features and intended interpretations. Σ is a three-manifold,
which is to be embedded as a spacelike hypersurface of spacetime M, gab. hab is
a smooth Riemann metric on Σ, which will coincide with the metric induced on
Σ by the spacetime metric gab when Σ is embedded as a spacelike hypersurface

75For more on the problem of time in GTR and quantum gravity, see [Belot and Earman,
1999], [Belot, this vol.], and [Rovelli, this vol.].
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of M, gab. And kab is a smooth symmetric tensor field on Σ that coincides with
the normal derivative of hab when Σ is embedded as a spacelike hypersurface of
M, gab. A spacetime M, gab that fulfills all of these roles is said to be a develop-
ment of the initial data set (Σ, hab, kab). If the development M, gab of the initial
data set (Σ, hab, kab) satisfies the source-free EFE, then hab and kab cannot be
specified arbitrarily but must satisfy a set of constraint equations. The existence
and uniqueness result for the source-free EFE takes the following form76: Let
(Σ, hab, kab) be an initial value set satisfying the constraint equations; then there
exits a development M, gab of the initial data that is the unique — up to diffeomor-
phism — maximal Cauchy development satisfying the source-free field equations.
Furthermore, gab depends continuously on the initial data (see [Hawking and Ellis,
1973] for details of the relevant topology).

Just as the proof of the well-posedness of the initial value problem for the ho-
mogeneous Maxwell equations exploits the gauge freedom in the electromagnetic
potentials (see Section 4.2), so the existence and uniqueness proof for EFE exploits
the idea that diffeomorphism invariance is a gauge symmetry of GTR. When the
metric potentials gij (i.e. the coordinate components of the metric gab) are sub-
jected to a gauge condition (called the harmonic coordinate condition), the EFE
take the form of a system of quasi-linear, diagonal, second order hyperbolic pdes,
which are known to have locally well-posed initial value problem.

That the development M, gab of the given initial data is a Cauchy development
means that Σ is a Cauchy surface of M, gab (and, thus, that this spacetime is
globally hyperbolic). That it is the maximal Cauchy development means that there
is no proper extension of M, gab which is a solution of the source-free EFE and for
which Σ is a Cauchy surface. The up-to-diffeomorphism qualifier to uniqueness was
to be expected from the discussion of gauge freedom in the previous subsection,
and in turn the presence of this qualifier shows that the heuristic discussion given
there can be given precise content. Here the qualifier means that if M′, g′ab is
any other maximal development satisfying the source-free EFE, then there is a
diffeomorphism d : M → M′ such that d∗gab = g′ab.

Curie’s Principle (see Section 2.3 above) would lead one to believe that a symme-
try of the initial value set (Σ, hab, kab) for the vacuum EFE should be inherited by
the corresponding solution. And so it is. Let ϕ : Σ → Σ be a diffeomorphism that
is a symmetry of the initial data in the sense that ϕ∗hab = hab and ϕ∗kab = kab.
Then as shown by Friedrich and Rendall [2000, 216–217], if ψ is an embedding of
Σ into the maximal Cauchy development determined by (Σ, hab, kab), there exists
an isometry ψ̄ of this development onto itself such that ψ̄ ◦ϕ = ϕ ◦ψ, i.e. there is
an isometry of the maximal Cauchy development whose restriction to ϕ(Σ) is ψ.
Moreover, this extension of the symmetry of the initial data is unique.

The initial value problem for the sourced EFE involves not only the stress-energy
tensor Tab but also the equations of motion for the matter fields that give rise to Tab

and, in particular, the coupling of these matter fields to gravity and to each other.
Whether the coupled Einstein-matter equations admit an initial value formulation

76This formulation is taken from Wald [1984, Theorem 10.2.2].
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and, if so, whether the initial value problem is well-posed are issues that have to
be studied on a case-by-case basis. For what seem to be appropriate choices of
coupling, the initial value problem for the combined Einstein-Klein-Gordon equa-
tions and the Einstein-Maxwell equations have existence and uniqueness results
similar to that for the source-free Einstein equations. For other cases the results
are not as nice.77

The results mentioned above demonstrate that substantive general covariance
(in the sense that diffeomorphism invariance is a gauge symmetry) is compatible
with having a well-posed initial value problem. But there is clearly a tension
between the two, and so one can wonder just how tightly the combination of these
two requirements constrains possible laws.78

6.4 Cosmic censorship and chronology protection

The positive results reported in the preceding section hardly exhaust the issue of
determinism in GTR. One key concern is what happens when the maximal Cauchy
development M, gab of initial data (Σ, hab, kab) satisfying the constraint equations
is not maximal simpliciter, i.e. when M, gab can be imbedded isometrically as a
proper subset of a larger spacetime M′, g′ab satisfying the source-free EFE. The
analogous issue can also be raised for the case when Tab �= 0. The future boundary
H+(Σ) of the (image of) the future domain of dependence D+(Σ) in the larger
spacetime is called the future Cauchy horizon of Σ; the past Cauchy horizon H−(Σ)
of Σ is defined analogously.79 Intuitively, beyond the Cauchy horizons of Σ lie the
regions of spacetime where the state of things is not uniquely fixed by the given
initial data on Σ; for generally if the maximal Cauchy development M, gab of the
initial data is not maximal simpliciter, then the larger extensions for which Σ is
not a Cauchy surface are not unique (even up-to-diffeomorphism).

A relatively uninteresting reason why the maximal Cauchy development might
be non-maximal simpliciter is that Σ was a poor choice of initial value hypersurface.
A trivial but useful example is given by choosing Σ to be the spacelike hyperboloid
of Minkowski spacetime pictured in Fig. 3. Here H+(Σ) is the past null cone of
the point p.

Some features of this example generalize; in particular, H+(Σ) is always a
null surface generated by null geodesics. The unfortunate case can be excluded by
requiring, say, that Σ be compact or that it be asymptotically flat. Of course, these
conditions exclude many cases of physical relevance, but for sake of discussion let
us leave them in place. Even so, the maximal Cauchy development may fail to be
maximal simpliciter for more interesting and more disturbing reasons.

77For comprehensive reviews of what is known, see [Friedrich and Rendall, 2000] and [Rendall,
2002].

78An analysis of gauge symmetries different from the one advertised here is given in [Geroch,
2004]. He gives only two examples of laws that have an initial value formulation and that have
diffeomorphism invariance as a gauge symmetry (in his sense).

79More precisely, H+(Σ) := D+(Σ) − I−(D+(Σ)), and analogously for H−(Σ).
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Σ

p

I-(p)t

Figure 3. A poor choice of initial value hypersurface

One reason is that a spacetime can start with nice causal properties and evolve
in such a way that these properties are lost. The point is illustrated by Misner’s
(1 + 1)-dim spacetime that captures some of the causal features of Taub-NUT
spacetime, which is a solution to the source-free EFE. The Σ in Fig. 4 is a compact
spacelike slice in the causally well behaved Taub portion of the spacetime, and its
future Cauchy horizon H+(Σ) is a closed null curve. Crossing over this horizon
takes one into a region of spacetime where there are closed timelike curves.

H+(Σ)

CTCNUT
region

Taub
region

Σ

Figure 4. Misner spacetime

Another reason that the maximal Cauchy development may fail to be maximal
simpliciter is illustrated in Fig. 5 which shows a non-compact asymptotically flat
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spacelike slice Σ on which a spherically symmetric ball of matter starts to undergo
gravitational collapse. After a finite time the density of collapsing matter becomes
infinite, creating a curvature singularity that is pictured as a timelike line in the
figure. Strictly speaking, however, it makes no sense to call the singularity a
timelike line since the singularity is not part of the spacetime.80 But this makes
no difference to the main point of relevance here; namely, a causal curve that
terminates at a point to the future of H+(Σ) and that is extended into the past
may fail to reach Σ, not because it has a past endpoint or because it gets trapped
on H+(Σ) (as can happen in the spacetime of Fig. 4) but because it “runs into a
singularity” or, better (since the singularity is not part of the spacetime), because
it “runs off the edge of the spacetime.”

H+(Σ)

Σ

t

collapsing
matter

singularity

Figure 5. The development of a naked singularity in spherical gravitational collapse

It is known that EFE plus the imposition of the various energy conditions on
Tab discussed above do not suffice to prevent the kind of pathologies indicated
by Figs. 4 and 5. But in all of such known examples there is something suspi-
cious: either the matter fields involved are not “fundamental,” i.e. even when
gravity is turned off these matter fields are not well behaved in the sense that in
Minkowski spacetime the initial value problem for their equations of motion do
not admit global existence and uniqueness results (see Section 4.2), or else the
initial conditions that eventuate in the singularity are very special, e.g. the ini-
tial configuration of matter in Fig. 5 required to produce the singularity must be
perfectly spherically symmetric. One might conjecture that what holds for these
examples holds generally: Consider a fundamental matter field that can serve as a

80One could try to attach the singular points as boundary points of the spacetime manifold.
However, the extant prescriptions for doing this lead to counterintuitive features, e.g. the singular
points need not be Hausdorff separated from interior points of the manifold; see [Geroch et al.,
1982].
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source for gravitation. Then the subset of initial data for the Einstein-matter field
equations for which the unique (up to diffeomorphism) maximal Cauchy develop-
ment is not maximal simpliciter is of measure zero in the full space of such data,
assuming poor choices of initial value hypersurfaces are excluded. To make this
vague claim into a precise conjecture would require a specification of what matter
fields are to be counted as fundamental, a specification of a suitable measure on
the space of initial data, and a non-question begging specification of what counts
as a poor choice of initial value hypersurface. The aimed-for conjecture is referred
to as Penrose’s cosmic censorship conjecture.

Less sweeping versions of the conjecture might focus specifically on one or an-
other of the two types of pathologies illustrated in Figs. 4 and 5. Hawking’s
chronology protection conjecture aims to show that cases where closed timelike
curves develop from a causally innocent past are highly non-generic among solu-
tions to Einstein-fundamental-matter-field equations. The weak cosmic censorship
conjecture aims to show that in generic solutions with asymptotically flat space-
times, singularities are not “naked” in the sense of being visible to observers at
infinity because whatever singularities develop (say, in gravitational collapse) are
hidden inside of the event horizons of black holes which serve as one-way causal
membranes that shield external observers from any of the pathologies of indeter-
minism that might develop within the horizon. Some progress has been made in
formulating and proving precise versions of chronology protection and weak cosmic
censorship, but the juries are still out on strong cosmic censorship.81

6.5 Predictability in general relativistic spacetimes

In Section 4.3 it was seen that the structure of Minkowski spacetimes has a double-
edged quality with respect to determinism and predictability: while this structure
makes possible clean examples of determinism, it also makes it impossible for em-
bodied observers who must gather their information about initial conditions by
means of causal interactions with the world to use determinism to perform gen-
uine predictions. The point was formalized by defining the domain of predictability
P (q) of a point q ∈ M of a spacetime M, gab and noting that in Minkowski space-
time P (q) = ∅ for every q. Non-empty domains of predictability are obtained in
the modified version of Minkowski spacetime with compactified space slices illus-
trated in Fig. 2. A feature of this case generalizes to arbitrary general relativistic
spacetimes; namely, if the spacetime M, gab possesses a Cauchy surface Σ such
that Σ ⊂ I−(q) for some q ∈ M, then Σ is compact. Since a spacetime with a
Cauchy surface Σ is diffeomorphically Σ x R, the kind of complete predictability
that comes with having Σ ⊂ I−(q) for some q is possible only in a spatially finite
universe. The converse is not true: the existence of a compact Cauchy surface does
not guarantee that there is a Cauchy surface Σ such that Σ ⊂ I−(q) for some q, de

81For an overview of progress on cosmic censorship, see [Chruściel, 1992; Isenberg, 1992; [Pen-
rose, 1998; Wald, 1998]. And for an overview of progress on chronology protection, see [Earman
et al., 2005].
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Sitter spacetime providing a relevant counterexample. Many interesting features
of predictability in general relativistic spacetime are studied in [Hogarth, 1993].

6.6 Determinism and computability in general relativistic spacetimes

A Plato machine for gaining mathematical knowledge about an unresolved conjec-
ture of number theory, whose prenex normal form is (∀n1)(∀n2)...(∀nm)F (n1, n2, ...,
nm) or (∃n1)(∃n2)...(∃nm)F (n1, n2, ..., nm) with F recursive, can be conceptual-
ized as an ordinary Turing machine run in Zeno fashion: enumerate the m-tuples
of natural numbers and have the computer check in the first 1/2 minute whether
F holds of the first tuple, check in the next 1/4 minute whether F holds of the
second tuple, etc. At the end of the minute the truth of the conjecture is settled.
Despite various claims to the contrary, I see no conceptual incoherency in such a
device. But STR militates against the physical instantiation of such a device since
the Zeno speed up would seem to require that some of the parts of the device must
eventually move faster than the speed of light.82

General relativistic spacetimes seem to open the possibility of creating the func-
tional equivalent of a Plato machine without Zeno tricks and without running afoul
of the prohibition on superluminal propagation. Consider a spacetime with the
following features. First, there is a timelike half-curve γ1 with past endpoint, no
future endpoint, and an infinite proper length. Second, there is another timelike
half-curve γ2 with past endpoint p and a point q ∈ γ2 such that the proper time
elapsed along γ2 from p to q is finite and such that γ1 ∈ I−(q). Such a spacetime
has been dubbed a Malament-Hogarth spacetime. The theorems of any recursively
axiomatizable theory — say, Zermelo-Frankel set theory — can be recursively
enumerated, and a device whose worldline is γ1 can utilize a Turing machine to
effectively check each of these theorems to see one has the form “0 = 1”. The
device can be programmed to send out a signal — “Eureka!”— to an observer
whose world line is γ2 just in case “0 = 1” is found among the theorems. Assum-
ing that the observer γ2 is aware of this arrangement, she gains knowledge of the
consistency/inconsistency of ZF: she knows that ZF is consistent just in case she
has not received a “Eureka!” signal by the time she reaches the point q.

Similar arrangements can be used to “decide,” at least in principle, Turing unde-
cidable questions and to “compute” Turing uncomputable functions (see [Hogarth,
1994]). They, thus, threaten to falsify the physical Church-Turing thesis which as-
serts, roughly, that any physical computing device can be simulated by a Turing
machine (see [Etsei and Németi, 2002] for a careful formulation of this thesis).
In contrast to the original Church-Turing thesis which belongs to mathematical
logic, the physical Church-Turing thesis lies in the borderland of mathematical
logic and physics (see [Deutsch et al., 2000]), and it is much harder to evaluate,
especially if it is understood to require the physical realizability of the devices that
implement the bifurcated supertask. Here I will confine myself to a few remarks

82Perhaps conflict with STR can be avoided by Zeno shrinking the parts, but this maneuver
may run afoul of quantum restrictions.
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on this matter and refer the interested reader to Németi and David [2005] for a
fuller discussion.

Malament-Hogarth spacetimes are among the solutions of EFE — e.g. Reissner-
Nordström spacetime and (the universal covering spacetime of) anti-De Sitter
spacetimes. These particular spacetimes do not involve causal anomalies in the
sense that they admit global time functions. However, all Malament-Hogarth
spacetimes fail to be globally hyperbolic. Indeed, it can shown of such spacetimes
that if Σ ⊂ M is any spacelike hypersurface such that the above defined γ1 lies
in I+(Σ), then any Malament-Hogarth point q whose chronological past contains
γ1 must lie on or beyond H+(Σ) (see Lemma 4.3 of [Earman, 1995, 117]). The
possibility of non-deterministic influences, which might open the possibility that
γ1 receives a false “Eureka!” message, seems to undermine the use of Malament-
Hogarth spacetimes for gaining knowledge in the sense of certainty. However,
one should not draw hasty conclusions here since, as discussed in the following
subsection, it is possible to have deterministic dynamics for fields propagating
on a non-globally hyperbolic spacetime. Also it might seem that the problem is
avoided by the fact that it can be arranged so that any signal from γ1 arrives
at γ2 before the Malament-Hogarth point q and, thus, within D+(Σ). But since
a “Eureka!” message can arrive arbitrarily close to q, the receiver must possess
arbitrarily accurate discriminatory powers to separate signals that arrive before q
from the potentially false signals that arrive after q.

6.7 The possibility of deterministic dynamics in non-globally hyper-
bolic spacetimes

For fields that propagate on a general relativistic spacetime, the failure of global
hyperbolicity can undermine the initial value problem. For example, it is known
that in generic two-dimensional spacetimes with closed timelike curves (CTCs)
the scalar wave equation may fail to have smooth solutions or else may admit
multiple solutions for the same initial data specified on a spacelike hypersurface.
But remarkably, existence and uniqueness results have been proven for some four-
dimensional spacetimes with CTCs (see [Friedman, 2004] for a review).

For spacetimes that do not have such blatant causal anomalies as CTCs but
which nevertheless fail to be globally hyperbolic, Hilbert space techniques can
sometimes be used to cure breakdowns in existence and uniqueness.83 Consider
a general relativistic spacetime M, gab that is static and possesses a global time
function. The first condition means that there is a timelike Killing field V a that is
hypersurface orthogonal.84 The second condition can be guaranteed by choosing

83The use of Hilbert space techniques to study problems in classical physics was pioneered by
Koopman [1931]. However, Koopman’s approach assumes determinism at the classical level and
then shows how to represent this determinism as unitary evolution on a Hilbert space.

84The Killing condition is ∇(cgab) = 0 where ∇a is the covariant derivative operator compatible
with gab. Staticity guarantees that locally a local coordinate system (xα, t) can be chosen so
that the line element takes the form ds2 = gαβ(xγ)dxαdxβ − g44(xγ)dt2. Cf. Malament, this
volume, section 2.7.
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a spacelike hypersurface Σ orthogonal to V a and by requiring that every integral
curve of V a meets Σ in exactly one point. Then every point p ∈ M can be labeled
by (x, t), where x ∈ Σ is the point where the integral curve of V a through p meets
Σ, and t is the value of the Killing parameter along this integral curve. Such
a causally well behaved spacetime can nevertheless fail to be globally hyperbolic
because, intuitively speaking, it possess a naked, timelike singularity. (To help fix
intuitions, think of Minkowski spacetime with a timelike world tube removed. Or
the reader familiar with GTR can think of the negative mass Schwarzschild solution
to EFE, which is static and contains a timelike naked singularity at r = 0.) Now
consider a massive m ≥ 0 scalar field φ propagating on this background spacetime
in accord with the Klein-Gordon equation (13). For the type of spacetime in
question this equation can be rewritten in the form

∂2φ

∂t2
= −Aφ(17)

where t is the Killing parameter (see [Wald, 1980a], [Horowitz and Marolf, 1995]).
The differential operator A can be considered a Hilbert space Â operator acting
on L2

R
(Σ, dϑ), where dϑ is the volume element of Σ divided by

√−V aVa. With
the domain initially taken to be C∞

0 (Σ), Â is a positive symmetric operator. The
proposal is to replace the partial differential equation (18) with the ordinary dif-
ferential equation

d2φ

dt2
= −Âφ(18)

where the time derivative in (19) is a Hilbert space derivative. Since the Hilbert
space operator Â is real it has self-adjoint extensions, and since Â is positive the
positive square root of a self-adjoint extension Âe can be extracted to give

φ(t) := cos(
√
Âet)φ(0) + sin(

√
Âet)φ̇(0)(19)

which is valid for all t and all φ(0), φ̇(0) ∈ H. Since φ(t) is a solution throughout
the spacetime of the Klein-Gordon equation (13) and since it is the unique solution
for given initial data φ(0), φ̇(0) on Σ, it provides (relative to the chosen self-adjoint
extension) a deterministic prescription for the dynamics of the Klein-Gordon field.
There are other possible prescriptions for obtaining the dynamics of φ, but Ishibashi
and Wald [2003] have shown that the one just reviewed is the only one satisfying
the following set of restrictions: it agrees locally with (18); it admits a suitable
conserved energy; it propagates the field causally; and it obeys time translation
and time reflection invariance. If the Hilbert space operator Â is essentially self-
adjoint, then the unique self-adjoint extension Âe provides the dynamics for the
φ field satisfying the said restrictions. And this dynamics is fully deterministic
despite the fact that the background spacetime on which the field propagates is
not globally hyperbolic. Not surprisingly, however, Â fails to be essentially self-
adjoint for many examples of static but non-globally hyperbolic spacetimes, and
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unless further restrictions are added to single out one of the self-adjoint extensions,
no unambiguous dynamics is specified by the above procedure. But remarkably,
Horowitz and Marolf [1995] have provided examples of static, non-globally hyper-
bolic spacetimes where Â is essentially self-adjoint, and in these cases the above
prescription produces a dynamics of the φ field that is fully deterministic despite
the presence of naked singularities.

7 DETERMINISM IN RELATIVISTIC QFT

Ordinary QM starts from a classical mechanical description of a system of particles
— specifically, a Hamiltonian description — and attempts to produce a quantized
version. Similarly, QFT starts from a classical relativistic description of a field and
attempts to produce a quantized version. However, some classical fields do not
lend themselves to a QFT that physicists find acceptable. Consider, for example,
the non-linear wave equation (13) as a candidate for describing boson-boson inter-
actions. A heuristic quantization procedure leads to the conclusion that there is no
lowest energy state, leaving the system vulnerable to radiative collapse. On these
grounds quantum field theorists have categorized the hypothetical interaction as
“not physically realizable” (see [Baym, 1960]). That difficulties are encountered
in QFT is perhaps not surprising when it is realized that the field in question is
ill-behaved at the classical level in that regular initial data can pick out solutions
that develop singularities within a finite amount of time. Is it plausible that deter-
ministic behavior at the classical relativistic level can serve as a selection principle
for what fields it is appropriate to quantize?

Determinism also plays a more constructive role in QFT. In ordinary QM, quan-
tization involves the choice of a suitable representation of the canonical commuta-
tion relations [x̂j , p̂k] = iδjk (CCR). Since unbounded operators are involved, this
form of the CCR only makes sense when the domains of the operators are specified.
Such worries can be avoided by working with the Weyl, or exponentiated, form of
the CCR, which also makes available the Stone-von Neumann theorem: for a finite
number of degrees of freedom, the irreducible strongly continuous representations
of the Weyl CCR are all unitarily equivalent — in fact, all are equivalent to the
familiar Schrödinger representation. This theorem no longer applies when there
are an infinite number of degrees of freedom, as in QFT, a feature of QFT that
raises a number of interesting interpretational issues that are not relevant here.
What is relevant is the fact that the construction of the CCR algebra for, say,
the Klein-Gordon field in Minkowski spacetime, makes essential use of the deter-
ministic propagation of this field (see [Wald, 1994]). This construction can be
generalized to a Klein-Gordon field propagating in an arbitrary general relativistic
background spacetime that is globally hyperbolic since the deterministic nature of
the propagation carries over to the more general setting.

For a non-globally hyperbolic spacetime M, gab it is still the case that for any
p ∈ M there is a neighborhood N (p) such that N , gab|N , considered as a spacetime
in its own right, is globally hyperbolic, and thus the field algebra A(N ) for this
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mini-spacetime can be constructed by the usual means. One can then ask whether
these local algebras can be fitted together to form a global algebra A(M) with
the natural net properties (e.g. each such A(N ) is a subalgebra of A(M), and if
N1 ⊂ N2 then A(N 1) is a subalgebra of A(N 2)). Kay (1992) calls the spacetimes
for which the answer is affirmative quantum compatible, the idea being that non-
quantum compatible spacetimes are not suitable arenas for QFT. A variety of non-
globally hyperbolic spacetimes are not quantum compatible, e.g. 2-dim cylindrical
spacetimes obtained from two-dimensional Minkowski spacetime by identifications
along the time axis. But, remarkably, some acausal spacetimes have been shown
to be quantum compatible (see [Fewster and Higuchi, 1996] and [Fewster, 1999]).

8 DETERMINISM AND QUANTUM GRAVITY

Arguably the biggest challenge in theoretical physics today is to combine the in-
sights of GTR and QFT so as to produce a quantum theory of gravity (see [Rovelli,
this vol.]). Some inkling of what this sought after theory will yield can perhaps
be gained from semi-classical quantum gravity, which is a kind of shot-gun mar-
riage of GTR and QFT. Semi-classical means that there is no attempt to quantize
the metric of spacetime, but rather than merely treating a general relativistic
spacetime as a fixed background on which quantum fields propagate (as in the
preceding section), an attempt is made to calculate the back-reaction on the met-
ric by inserting the quantum expectation value of the (renormalized) stress-energy
in place of the classical stress-energy tensor on the right hand side of EFE (17).
Although there may be no consistent theory underlying such a procedure, good
theoretical physicists know how to extract usable information from it. Perhaps
the most spectacular extraction is Hawking’s conclusion that a black hole is not
black but radiates exactly like a black body at temperature proportional to the
surface gravity of the black hole. This Hawking effect is taken as confirmation
that the formula for black hole entropy,85 which had been derived by independent
means, is more than a formal expression; it shows that black hole entropy is the
ordinary thermodynamic entropy of a black hole (see [Wald, 1994]).86 Theoretical
physicists of different schools are in agreement that this is a stable result that has
to be accommodated by an adequate quantum theory of gravity. But from this
point on, the disagreements increase to the point of stridency.

The Hawking effect means that, when quantum effects are taken into account,
black holes are not stable objects because the Hawking radiation must be accom-
panied by a diminution of the mass of the black hole. Presumably, as this process

85Sbh =
kc3

4G�
A, where A is the surface area of the black hole.

86The Hawking effect is related to, but distinct from, the Unruh effect. The latter effect is
analyzed in terms of the apparatus of quantum statistical mechanics discussed in [Emch, this
vol.]. In Minkowski spacetime the essence of the Unruh effect is that what an observer uniformly
accelerated through the Minkowski vacuum experiences is described by a KMS state. The Unruh
effect has been generalized to general relativistic spacetime; see [Kay and Wald, 1991].
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goes deeper and deeper into the quantum regime, the semi-classical calculation will
eventually break down. But if the continuation of the calculation can be trusted,
then in the fullness of time the black hole will completely evaporate. (The esti-
mated evaporation time for a black hole of solar mass is the order of 1067 years,
much greater than the age of the universe. But this is no problem in a universe
with an infinite future, as the latest cosmological measurements indicate is the
case for our universe.) And if the result of the evaporation can be described by a
classical general relativistic spacetime, the result is a momentarily naked singular-
ity and a breakdown in global hyperbolicity, as is indicated in Fig. 6.87 So even if
some form of cosmic censorship holds for classical GTR, quantum effects seem to
undo it.

Σ2

Σ1

singularity

center of
symmetry

ι0

R1

ℑ+

black hole
interior

Figure 6. Conformal representation of black hole evaporation

Having gotten this far it is not difficult to establish that if at a time Σ1 prior to
the evaporation of the black hole the quantum field is in a pure state and if Hawking
radiation has established correlations between relatively spacelike regions, such as
the region R1 in the black hole interior (see Fig. 6) and the region consisting of
a “sandwich” about the post evaporation time Σ2, then the state of the quantum
field will be mixed at a post evaporation time Σ2.88 Since a pure-to-mixed state
transition is necessarily non-unitary, the upshot is a loss of unitarity.89

87Following the conventions of conformal diagrams (see [Hawking and Ellis, 1973]), I+ denotes
future null infinity (the terminus of outgoing null rays), and ιo denotes spatial infinity.

88This can be rigorously established in the algebraic formulation of QFT; see [Earman, 2002].
89And, incidentally, there is also a violation of time reversal invariance; see [Wald, 1986] and

[Earman, 2002].
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This “information loss paradox,” as it is often referred to in the physics and
the popular literature, has evoked an amazing variety of reactions; see [Belot et
al., 1999] for an overview. Most notable are the reactions from those who are so
desperate to avoid the conclusion that they are willing to deploy “black hole com-
plementarity”90 and thereby abandon the mainstream reading of relativity theory,
namely, that what the theory teaches us is that there is an intrinsic observer-
independent reality — the very opposite of vulgar relativism that has it that
everything is relative-to-an-observer.

But stepping back from the fray allows one to see that there is no need for
such desperate measures. The pure-to-mixed evolution that is at the heart of the
“paradox” need not be seen as a breakdown of quantum theory.91 Nor is it surpris-
ing that consequences labeled ‘paradoxical’ flow from loss of global hyperbolicity.
What needs to be questioned is whether this loss of global hyperbolicity is a plausi-
ble expectation of quantum gravity. Semi-classical quantum gravity suggests such
a loss, but this way of bringing GTR and QFT together is at best a stepping stone
to a full theory of quantum gravity. And just as ordinary QM showed the ability to
smooth away singularities of classical mechanics, so the correct theory of quantum
gravity may show the ability to smooth away the singularities of classical GTR.

Some positive indications come from the work of string theorists who are able to
point to mechanisms that can smooth out singularities in classical general relativis-
tic models; for example, Johnson et al. [2000] show that brane repulsion smooths
out a class of naked singularities dubbed the repulsion. String theorists can also
give a back door argument for exclusion of some types of classical singularities:
postulate or prove that the sought after M-theory gives a stable ground state, and
then note that this rules out analogues of the negative mass Schwarzschild solution
and the like.

Other encouraging results come from loop quantum gravity (LQG), which aims
to produce a quantum theory of gravity by applying to GTR a version of the
canonical quantization based on a new set of canonical variables introduced by
Amitaba Sen and exploited by Abay Ashtekar.92 In the Friedmann-Robertson-
Walker big bang models of classical GTR the scale factor a of spacetime goes to
zero as the big bang singularity is approached, and the curvature blows up since

90Consider the case in STR of two inertial observers, O and O′, who describe an ambient
electromagnetic field using electric and magnetic fields (E,B) and (E′,B′) respectively. There
is a translation between the two descriptions which gives E′and B′ as functions of E, B, and
the relative velocity of O and O′ and vice versa with O and O′ exchanged. The existence of
such a translation follows from the fact that there an intrinsic, observer independent reality —
in this case, the electromagnetic field as specified by the Maxwell tensor field. This tensor field is
independent of coordinate systems, reference, frame, and observers. Contracting it with different
velocity fields, representing the motions of different observers, results in different descriptions
in terms of electric and magnetic fields. Whatever else it means, the “complementarity” part
of “black hole complementarity” means that the different descriptions of an evaporating black
hole given by two observers, one who falls through the black hole horizon and one who remains
outside the horizon, are not related in the way the descriptions of O and O′ are related.

91See [Wald, 1994, 181–182] and [Belot et al., 1999].
92See [Rovelli, 2004] and [this vol.] for surveys of loop quantum gravity.
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it scales as 1/a2.93 Since there is no physically motivated way to extend such a
solution through the initial singularity, the question of what happens “before” the
big band belongs to theology or science fiction rather than science. The situa-
tion is startlingly different in LQG. Corresponding to the classical quantity 1/a
there is a self-adjoint operator, acting on the Hilbert space of spatially homoge-
neous, isotropic quantum kinematical states, and its spectrum is bounded from
above, giving a first indication that the classical singularity has been removed (see
[Bojowald, 2001]). A complete proof of removal would require that the quantum
dynamics gives an unambiguous evolution through the classical singularity. In
LQG the “dynamics” is obtained by solving the Hamiltonian constraint equation,
which restricts the physically allowed states. For the case at issue this constraint
equation comes in the form of a difference equation rather than a differential equa-
tion. If the scale factor a is regarded as a “clock variable,” then the constraint
equation provides a “time evolution” of the quantum state through discrete steps
of the clock variable. The key point is that this evolution equation does determine
a unique continuation through the classical singularity.94 However, what happens
at the classical singularity is undetermined because the coefficient corresponding
to this stage decouples from the other coefficients in the evolution equation (see
[Ashtekar and Bojowald, 2003] for details).

From the point of view of determinism this last result means that the situation
is somewhat ironic. Determinism is not threatened in classical GTR by the initial
big bang singularity of the Friedmann-Robertson-Walker models because these
models are globally hyperbolic, and because there is no physically motivated way
to extend through the initial singularity. In LQG the initial singularity is banished
both in the sense that curvature remains bounded and in the sense that there is a
sensible way to extend through the classical singularity. But the price to be paid
is a loss of determinism in LQG at the classical singularity, which can be seen as
a Cheshire grin of the classical singularity.

Recently LQG has been used to resolve black hole singularities, leading to a
new perspective on the Hawking information loss paradox in which Fig. 6 is not a
valid depiction of black hole evaporation (see [Ashtekar et al., 2005]). It is argued
that, analogously to the FRW case, the quantum evolution continues through the
classical singularity.95 The new picture is not one in which global hyperbolicity is
restored; indeed, that concept is not meaningful since what replaces the classical
singularity is a region which cannot be described even approximately by the space-
time geometry of classical GTR. Nevertheless, it is argued that in the quantum

93The line element of FRW models can be written in the form ds2 = a(t)dσ2 − dt2, where dσ2

is the spatial line element.
94But see [Green and Unruh, 2004] where it is shown that in a spatially closed FRW model, the

use of the scale factor as a “clock variable” is problematic. And the situation in inhomogeneous
cosmologies is much more delicate and complicated; see [Brunnemann and Thiemann, 2006a;
2006b].

95As in the FRW case, the Hamiltonian constraint equation becomes a difference equation.
The “quantum evolution” comes from this equation by choosing a suitable “clock variable” and
then following the quantum state through discrete steps of the clock variable.
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evolution a pure state remains pure and, in this sense, no information is lost. In
its present form the argument has a heuristic character, and detailed calculations
are needed to make it rigorous.

9 CONCLUSION

Is the world deterministic? Without the aid of metaphysical revelation, the only
way we have to tackle this question is to examine the fruits of scientific theorizing.
We can thus set ourselves the task of going through the theories of modern physics
and asking for each: If the world is the way it would have to be in order for the
theory to be true, is it deterministic? One of the things we discovered is that
this task is far from straightforward, for the way in which theories are interpreted
is colored by our attitudes towards determinism. For example, the unwillingness
to see determinism fail at the starting gate in Newtonian gravitational theory
militates in favor of taking gravitation to be a direct interparticle interaction and
against assigning independent degrees of freedom to the Newtonian gravitational
field. And an unwillingness to see determinism fail at the starting gate in GTR
leads to the rejection of a naively realistic interpretation of the textbook version
of the theory’s description of spacetime and to the acceptance of diffeomorphism
invariance as a gauge symmetry — which entails that none of the variables used
in textbook presentations is counted as a genuine (= gauge invariant) physical
magnitude.

The fortunes of determinism are too complicated to admit of a summary that
is both short and accurate, but roughly speaking the story for classical (= non-
quantum theories) is this. In Newtonian theories determinism is hard to achieve
without the aid of various supplementary assumptions that threaten to become
question-begging. For special relativistic theories determinism appears so secure
that it is used as a selection criterion for “fundamental fields.” GTR, under the
appropriate gauge interpretation, is deterministic locally in time; but whether it
is deterministic non-locally in time devolves into the unsettled issues of cosmic
censorship and chronology protection.

Quantum physics is the strangest and most difficult case. Ordinary QM is in
some respects more deterministic than Newtonian mechanics; for example, QM
is able to cure some of the failures of Newtonian determinism which occur either
because of non-uniqueness of solutions or the breakdown of solutions. But the
fortunes of determinism in QM ultimately ride on unresolved interpretational is-
sues. The main driving force behind these issues is the need to explain how QM
can account for definite outcomes of experiments or more generally, the apparent
definiteness of the classical world — an ironic situation since QM is the most accu-
rate physical theory yet devised. Some of the extant responses to this explanatory
challenge would bury determinism while others give it new life.

A new arena for testing the mettle of determinism is provided by the nascent
quantum theories of gravity. There are some preliminary indications that just
as ordinary QM was able to smooth out singularities of Newtonian mechanics,
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so quantum gravity effects may smooth out singularities of classical GTR. If this
smoothing ability is broad enough it would alleviate worries that there are ana-
logues in quantum gravity of breakdowns in determinism in classical GTR asso-
ciated with failures of cosmic censorship. Quantum gravity will likely put a new
face on the measurement problem and related interpretational issues that arise
in ordinary QM. But it is too early to say whether this new face will smile on
determinism.
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