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Abstract

We provide some theory and experimental evidence on contests with entry fees. In our
setup, players must simultaneously decide whether or not to pay a fee to enter a contest
and the amount they wish to bid should they choose to enter the contest. In a general
n-bidder game, we show that the addition of contest entry fees increases the contest
designer’s expected revenue and that there is a unique revenue maximizing entry fee.
In an experimental test of this theory we vary both the entry fee and the number of
bidders. We find over-bidding for all entry fees and bidder group sizes, n. We also find
under-participation in the contest for low entry fees and over-participation for higher
entry fees. In the case of 3 bidders, the revenue maximizing entry fee for the contest
designer is found to be significantly greater than the theoretically optimal entry fee.
We offer some possible explanations for these departures from theoretical predictions.
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1 Introduction

Contests are games in which participants’ effort choices affect their probability of
winning a prize. Examples include competitions for promotion among employees,
political lobbying, and R&D patent races. While contests need not have entry fees,
and the contest literature does not give much attention to such fees, many real-world
contests do have entry fees. Examples include writing contests, music competitions,
photography contests, marathons, dance competitions, and cooking competitions. The
organizers of these contests realized a long time ago that the addition of entry fees can
increase their expected revenue. Other motivations for such entry fees may include the
filtering out of low ability players to increase the quality of contest entries, but here our
focus is on seller revenue. Using the model of Fu et al. (2015) we develop a tractable
framework for evaluating the designer’s revenue and the optimal entry fee for a general
n-bidder game. We then design and report on an experiment to investigate whether
subjects behave in this game in the manner predicted by the theory when the entry
fee changes or the number of bidders is set to n = 2 or 3. Our experimental design
has both between- and within-subject elements. Between subjects, we hold the group
size, n, in a session fixed at either 2 or 3 bidders per round. Within each 2- or 3-bidder
session we fix the value of the prize that bidders are attempting to win, V = 100, and
we vary the contest entry fee, ¢ that bidders face. We consider entry fees in the set: {0,
11, 25, 40, 70, 110}. In the 2-bidder (3-bidder) case, the theory we develop suggests
that the contest designer’s expected revenue maximizing choice is to set an entry fee of
25 (11) and that is why we consider those entry fees in addition to three other fees and
a 0 entry fee as well. It would be difficult to test how similar groups of bidders react
to different entry fees or to evaluate the optimal entry fee prediction using field data;
the control of the laboratory enables us to more clearly assess the empirical relevance
of the theory, and that is why we chose to evaluate the theory using experimental data.

To preview our experimental results, we have three main findings. First, we find
departures from the theoretical equilibrium point predictions for both participation in
contests and for the amounts bid across nearly all of the 2 x 6 = 12 treatment condi-
tions that we consider. However, the comparative statics predictions of the theory work
quite well: as the theory predicts, both the frequency of participation in contests and
the amount bid tend to decrease, on average, as the entry fee increases. Second, we find
that there is under-participation for O or low contest entry fees and over-participation
for higher contest entry fees. For the lowest entry fees, participation is predicted to be
100% and for the highest entry fee it is predicted to be 0%. Thus, under-participation
in the former and over-participation in the latter are not so surprising since in both
cases, errors in participation decisions can only go in one direction. However, in 4 of
the 5 treatment conditions for which the symmetric equilibrium predicts participation
frequencies between 0 and 100% we observe over-participation relative to these equi-
librium predictions.' Similarly, we find that while bids tend to decline ever so slightly
as entry fees increase, subjects bid significantly more than equilibrium predictions
for all entry fees and both group sizes (n = 2, 3). This finding of over- bidding is
commonplace in the experimental contest literature where most studies show signif-

! For details see discussion on page 13.
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icant overspending in contest experiments relative to theoretical predictions. See, for
example, Morgan et al. (2012), Fallucchi et al. (2013), Sheremeta (2013), Lim et al.
(2014), Dechenaux et al. (2015), and Sheremeta (2018). Finally, over-participation for
higher entry fees together with over-bidding across all treatments means that the con-
test designer’s revenue is greater than the theoretical prediction. A further implication
is that the contest entry fee that is found to maximize the contest designer’s revenue
(among the 6 fees that we consider) can be greater than the theoretically optimal entry
fee. For instance, in the n = 3 case, the empirical, revenue maximizing contest entry
fee is found to be ¢ = 40 which is much greater than the theoretically optimal fee of
¢ = 11 for that same n = 3 case. This finding suggests that the theoretically optimally
contest entry fees might serve as lower bounds on the choice of entry fees that contest
designer’s should choose in practice.

As for related literature, there are several papers, Anderson and Stafford (2003),
Boosey et al. (2020), and Hammond et al. (2019), that also study contests with entry
fees. Anderson and Stafford (2003) test the theoretical predictions of Gradstein (1995)
using an experimental design with a variable number of players, cost heterogeneity,
and a fixed entry fee. In the first stage, players decide whether to enter the contest
and pay a fixed entry fee or not enter. In the second stage, the contestants compete in
a Tullock contest. The authors find that, consistent with theoretical predictions, cost
heterogeneity and an entry fee decrease participation and effort. Our paper differs
from Anderson and Stafford (2003) in two ways. First, our subjects have to make
decisions about their participation and effort/bids at the same time. Second, and more
importantly, we examine how subjects’ behavior changes with different entry fees.

Boosey et al. (2020) experimentally test the effect of disclosing the number of active
participants in contests with endogenous entry. In the first stage of their experiment,
participants choose between entering the contest or receiving an outside option. In the
second stage, active participants choose their investment level. The authors manipulate
the size of the outside option and the disclosure of the number of entrants at the second
stage. They find greater entry for lower outside options, as theory predicts. When the
outside option is low, consistent with the theory, disclosing the number of entrants
has no effect on aggregate investment. However, when the outside option is high, they
find that there is a strong positive correlation between aggregate investment and the
disclosure of the number of active players. Our paper is similar to Boosey et al. (2020)
in the case where they do not disclose the number of entrants. However, we differ
in how we model entry fees: Boosey et al. (2020) have an outside option, and we
explicitly use a fee to enter the contest. This important difference can significantly
affect the experimental results due to the different framing of entry fees. In addition,
we are able to find the entry fee that maximizes total spending or the contest designer’s
revenue. Anderson and Stafford (2003) and Boosey et al. (2020) do not consider this
question.

Finally, Hammond et al. (2019) investigate contests with prize-augmenting entry
fees both theoretically and experimentally. Moreover, their model incorporates differ-
ent abilities of the players (which are their private information) and entry fees increase
the winner’s prize. They also investigate their theoretical predictions for the two-player
case in the experimental laboratory. They set entry fees either at zero, the optimal level
(the level that maximizes total effort in theory), or higher than the optimal level (three
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times the optimal level). They find, consistent with their theoretical predictions, that
the optimal entry fee maximizes contest revenue. In contrast, the revenue maximizing
entry fee in our experiment is much greater than the theoretical prediction. However,
the (Hammond et al. 2019) setting is different from our model and experiment; in their
setting, the winner’s prize depends on the entry fee.

The auction literature has a long history of studying optimal mechanisms includ-
ing reserve prices and entry fees. Typically, only the auction winner pays the reserve
price. Krishna (2002) describes analytical expressions for the optimal reserve price.
Both reserve prices and entry fees serve to exclude buyers with low values in auctions.
Engelbrecht-Wiggans (1989) and McAfee (1987a) provide surveys of this auction lit-
erature. A typical theoretical and empirical observation is that the entry fee determines
the number of active bidders in the auction. Meyer (1993) considers first-price private-
value auctions with entry fees in the experimental laboratory. He finds that the number
of active bidders is inversely related to the size of the entry fee. McAfee and McMillan
(1987b) analyze first-price sealed-bid auctions with ex ante identical potential bidders
and find that it is optimal for the designer to set an entry fee. Harstad (1990) stud-
ies endogenous entry in common-value auctions with entry fees. He assumes that the
expected number of bidders always enter the auction. Levin and Smith (1994) consider
private-value auctions with risk-neutral bidders. They introduce mixed entry strategies
and describe a symmetric equilibrium with a stochastic number of active bidders.

Binmore (2007) discusses a two-bidder sealed-bid auction with an entry fee. He
finds a symmetric mixed-strategy equilibrium, where both bidders stay out with a
positive probability and randomize their bids if they enter the auction. As in Binmore
(2007)’s model, in the equilibrium of our model players also stay out of contests with
higher entry fees with a positive probability. However, our active contestants do not
randomize their efforts levels in the symmetric equilibrium of the game that we study.

The rest of this paper is organized as follows. First, we present a theoretical model
in Sect. 2. A unique equilibrium is described in which we show how entry fees affect
the level of participation and individual efforts in the contest, as well as the expected
payoff of the contest designer. Then, in Sect. 3, we describe our experimental design
and predictions. Section 4 presents our main findings. Section 5 concludes.

2 The model

Consider an n—player contest. All players value the prize as V > 0. There is a contest
entry fee ¢ > 0.

A strategy of each player i has two parts (p;, x;), where 0 < p; < 1 is the contest
entry probability of player i and x; > 0 is her contest contribution (or bid). We will
look for a symmetric equilibrium, (p*, x*). If player i enters the contest, or p; = 1,
then she maximizes her expected payoff:

Em; (pi = 1,x;)) = —c+ C(')’_l (1 _ p*)n—l v

X; + x*
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g 0 0= () Y

x; +2x*

1 n—1 Xi
+Co 2 (pY) <m) -V —xi, (H

where the first term is the entry fee, the second term is the expected payoff from
winning the prize without competition, the third term is the expected payoff from

winning the prize in competition with one player and so on, and the last term is the
cost of effort.

2.1 Symmetric equilibrium
Given (1) , the optimal x; has to satisfy the following first order condition

*
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In a symmetric equilibrium, x; = x* and p; = p*. Thus, from the first order
condition (2) , we get
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Plugging (3) back into (1) , we obtain
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Therefore, if

then there exists a pure strategy equilibrium with p* = 1 and x* = @ - 'V, where
all players get non-negative expected payoffs.
If

o
\%

then all players cannot enter the contest with certainty because their expected payoffs
will be negative. Hence, in this case, all players enter the contest with a probability
strictly less than one and obtain zero expected payoft, or

En (p*,x*) =0,

or

Z G =) e @
0

Proposition 1 Equation (4) has a unique solution p* € [0, 1] for any y; € [nlz 1] .

See proof in the “Appendix”.
The next two propositions comprise our main theoretical results.

Proposition 2 There exists a symmetric equilibrium (p*(n, ¢), x*(n, c¢)), where

1, if0<c<,
pi(n,c) =14 p* (o), zfnl2 <c<V, (5)
0, ifc>V,
and
LV, f0<c<
o) =1 x*(pN, fh<c<V, (6)
0, ifc>V,

where x* (p*) is defined in (3 ) and p* (¢) is a unique solution of Eq. (4) .

In our experiment, we concentrate on the cases where n = 2 and n = 3 as in those
two cases we can derive closed-form solutions for bids and participation probabilities
for any entry fee, c. Further, as the equilibrium bids are decreasing in n, the n = 2
and n = 3 cases provide the greatest amount of contrast for experimental evaluation.
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0.3 Bids, n=2
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Fig.1 Symmetric equilibrium for n = 2 (dashed lines) and n = 3 (solid lines)

Figure 1 illustrates symmetric equilibrium predictions for both participation and
bids for the case of n = 2 (dashed lines) and the case of n = 3 (solid lines). The
horizontal axis measures the normalized cost of entry ¢/V while the vertical axis
measures both the probability of entry p and the normalized bid, x/V. The darker
(blue) dashed line represents the bid x*(2, ¢) while the thinner (blue) dash line shows
the participation probability p*(2, ¢) for the n = 2 case. The solid thin (green) line
depicts the bid x* (3, ¢) and the solid thick (red) line shows the participation probability
p*(3, ¢) for the n = 3 case. As Fig. 1 reveals, entry costs have to be sufficiently high
before they reduce participation and bid amounts. Further, for a given entry cost
¢, participation probabilities and symmetric bid amounts are generally (though not
always lower) as n increases from 2 to 3.

2.2 Designer’s payoff
The expected payoff of the contest designer in the equilibrium is
T (n,¢) = np*(r*(n, ) + o) [C§ 7 (p™)"!
O A = p Tl =] @)
Simplifying (7) , we get
T (n,c) =np*(x*(n, c) + ¢). 8)
Therefore, using (5) and (6) , we get the following result.
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}
T
1.2
c/vV
Fig.2 Designer’s relative expected payoft, T/ V, (vertical axis) as a function of the relative entry cost, c¢/V
(horizontal axis) when n = 2 (dashed blue line) and when n = 3 (solid red line) (color figure online)

Proposition 3 The designer expected payoff is

n(*t Vo), if0<c<,
T (n,c) = § np*(x* (p*) + ), zfr% <c<V,
0, ifc>V.

The designer expected payoff is maximized at ¢* = nlz

Notice that the designer’s expected payoff is maximized by setting the entry fee as
high as possible while still ensuring full participation in equilibrium. Prior to reaching
the maximum the slope of expected designer revenue is linear and equal to n. Beyond
the maximum, the slope is negative but nonlinear as players start to randomize their
participation decision, which depends on the cost. These different slopes are revealed in
Fig. 2 which shows the designer’s expected payoff, normalized by the prize value, i.e.,
T (n,c)/V, as afunction of the entry cost relative to the prize value (c/V') for the case
where n = 2 (dashed blue line) and n = 3 (solid red line). Given the normalization,
the designer’s expected payoff in Fig. 2 is maximized at n—lz Notice further that the
optimal entry fee induces full rent dissipation since T (n, ¢*) = V.

3 Experimental design
Our experimental design has two treatment dimensions. First, we consider contests

involving groups of size n = 2, the “pairs” treatment, or groups of size n = 3, the
“triples” treatment. The group size aspect of our design is between subjects. Second,
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Table 1 Contest entry fee in points for each of the six rounds

Round/contest number

1 2 3 4 5 6
Ascending order of entry fees 0 11 25 40 70 110
Descending order of entry fees 110 70 40 25 11 0

we vary the contest entry fee that subjects face for each contest. This aspect of our
design is within subjects. Each subject in the pairs or triples treatment plays a total of
6 different contests. Each contest has a different entry fee as detailed in Table 1. To
avoid order effects, we consider two different orders for the six contest entry fees, the
baseline ascending fee order and the reverse ascending fee order, as shown in Table
1. This difference in the order of fees is between subjects; specifically in one-half of
the pairs and one-half of the triples treatment sessions we used the ascending order of
fees (our baseline treatment) while in the other half we used the ascending order of
fees.

The experiment was computerized using the oTree software (Chen 2016). Subjects
entered all choices and received feedback using networked computer terminals.

We report results from 16 sessions, 8 of the pairs treatment and 8 of the triples
treatment. Each pairs session consists of N = 6 subjects and each triples session
consists of N = 9 subjects. Thus, we have data from 8 x 6 or 48 subjects in the pairs
treatment and 8 x 9 or 72 subjects in the triples treatment, or a total of 120 subjects.
In each session, all 6 or 9 subjects participated in the same six one-shot contests or
“rounds” that differed only in their entry fee, as shown in Table 1.

At the start of each and every one of these six rounds, subjects were randomly and
anonymously matched in groups to play each contest. In each pairs treatment session,
the 6 subjects were randomly matched to form groups of size n = 2 (3 pairs total). In
each triples treatment session, the 9 subjects were randomly matched to form groups of
size n = 3 (3 triples total). Subjects always knew the number of subjects in their group
(2 or 3), though the identities of these subjects were not known and the composition
of each subject’s group was likely to change from round to the next as the groups were
randomly re-determined each round.

The prize for each contest/round was fixed across all sessions at V' = 100 points.
Prior to each contest/round k = 1, 2, ..., 6, subjects were shown the entry fee for that
contest/round, cg, also in points. Further, at the start of each and every round, they
were given an endowment of 120 + ¢; points for the round. With this information,
subjects had to simultaneously decide whether or not to give up cx points from their
endowment to enter contest k.

If a subject chose not to enter contest k, then their payoff for the round was their
endowment of 120 + ¢4 points. If a subject chose to enter contest k then they gave
up the c; points associated with entering that contest k and had to then choose how
much to bid for the prize of V = 100 points out of their remaining endowment of
120 points. Note that the remaining endowment of points available to a subject who
paid the entry fee to enter a contest was always the same, and, at 120 points, enabled
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a contest entrant to bid in excess of the constant prize value V = 100 if they so chose.
Bids by contest entrants were always constrained to lie between 0 and 120 points and
were made without knowledge of the number of other contest entrants or those other
entrants’ bids. If a subject was the only entrant (a fact they would not know in advance
of bidding), then they would win the contest with any bid. If there was more than
one contest entrant in a round, then subject i’s probability of winning the 100 point
prize was x;/ Z'}zl xj, where the numerator is subject i’s bid and the denominator
is the sum of the bids of all players (including i) where we assume that the bid of a
nonentering player is 0.

Thus, the point earnings of subject i in round/contest k can be summarized as
follows:

Ck, if i did not enter,
n,-k =120 4 { 100 — x;, if i entered and is the winner of his n — player group,
—X;, otherwise.

After each round, subjects learned the number of subjects in their group of size
n = 2 or 3 who chose to enter, the amount that each entrant bid and each entrant’s
probability of winning. To convey that information, entrants were assigned a temporary
label as participant 1, 2 or 3 in each contest they chose to enter.

After all 6 rounds were played, subjects answered four cognitive reflection test
(CRT) questions for which there was no additional payment. They then completed a
brief demographic survey including a question about their willingness to take risks.

Subjects were given written instructions that were read aloud at the start of the
experiment. They had to correctly answer a number of comprehension instructions
before moving on to the main experiment. The experimental instructions, CRT and
demographic survey questions along with example screenshots of the computer pro-
gram used to collect the data can be found in the Appendix.

After the CRT and survey questions were completed, the program randomly chose
one of the 6 rounds for payment. The round chosen was the same for all participants
in a given session, but the round chosen for payment differed from session to session;
subjects did not know in advance which of the 6 rounds would be chosen for payment
and so they were incentivized to do their best in all 6 contests (rounds).

Each subject’s point earnings from the randomly chosen round were converted into
U.S. dollars at the known rate of 1 point = $0.10. In addition, subjects earned a $7
show-up payment. The subject’s total earnings, including the $7 show-up payment,
averaged $22.82 for a 1-hour study.

The subjects were 120 undergraduate students from the University of California,
Irvine from various major programs of study. No subject participated in more than one
session. The sessions were conducted in person in the UC Irvine Experimental Social
Science Laboratory Subjects were recruited using the Sona system software. Details
on the 16 sessions conducted and subjects’ average earnings per session are given in
Table 2.
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Table 2 Experimental session details and average subject earnings

Session no. No. subjects Group size, n Fee order Avg earnings
1 6 2 Ascending $17.78
2 9 3 Ascending $20.16
3 9 3 Ascending $20.44
4 6 2 Ascending $23.27
5 6 2 Ascending $23.18
6 6 2 Ascending $25.08
7 9 3 Ascending $23.67
8 9 3 Ascending $26.83
9 6 2 Descending $30.00
10 6 2 Descending $23.17
11 6 2 Descending $19.68
12 6 2 Descending $21.00
13 9 3 Descending $17.27
14 9 3 Descending $22.09
15 9 3 Descending $22.23
16 9 3 Descending $29.33
Total 120 Average $22.82

Table 3 Descriptive statistics on

subjects Female Age CRT Score Risk
Mean .592 20.158 2.108 5.525
SD 494 2.609 1.471 1.931
Median 1 20 2 6
Min 0 18 0 1
Max 1 40 4 10

4 Results

Details on the subject population are reported in Table 3. There we observe that our
sample was 59% female, the average age was 20.2 years, the median CRT score was
2 (out of 4) and the median risk measure was 6 on the 11 point (0 - 10) Likert scale,
where 0 means the subject is “completely unwilling to take risks” and 10 means the
subject is “very willing to take risks.”

In reviewing the major results from our experiment, we will first consider subjects’
decisions to participate in the various contests, and the amounts they bid conditional on
entry. Then we will explore group size and entry fee effects. Finally, we will consider
the designer’s actual revenue in relation to theoretical predictions.

Looking first at participation decisions, we find that 4 out of 120 subjects (3.3%)
never submitted a bid in any contest (all 4 were in the n = 3 treatment) even when entry
was free. Considering only contests with positive entry fees, 10 out of 120 subjects
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Table 4 Mean participation probabilities, bids and designer payoffs compared to equilibrium (Eq)

Entry fee Mean par- Eq participation Mean bid Eqbid Mean designer  Eq designer’s

ticipation probability payoff exp. payoff
probability
n=2
0 0.90 1.00 43.52 25.00 71.97 50.00
11 0.88 1.00 46.86 25.00  101.26 72.00
25 0.73 1.00 43.41 25.00 99.77 100.00
40 0.60 0.80 43.28 20.00  100.63 96.00
70 0.50 0.40 39.44 10.00 109.44 64.00
110 0.19 0.00 53.70 0.00 61.39 0.00
n=3
0 0.82 1.00 41.62 22.00  102.31 66.00
11 0.81 1.00 44.06 22.00  133.07 99.00
25 0.71 0.70 42.40 21.38 143.24 97.40
40 0.69 0.50 39.15 18.13 164.90 87.20
70 0.44 0.22 36.10 9.64  141.47 52.56
110 0.18 0.00 42.55 0.00 82.63 0.00

Top panel n = 2 treatment; bottom panel n = 3 treatment

(8.3 %) never paid a fee to enter a contest, and so they never bid in such contests. On
the other hand, 7 out of 120 subjects (5.8%) bid in all 6 contests and so they always
paid the contest entry fees. Thus, the large majority of our subjects, 99/120 (91%)
participated in the various contests with frequencies in the interval (0, 1).

Mean participation rates by entry fee and group size are shown in Table 4 and in
Fig. 3 along with equilibrium predictions. In the first columns of Tables 5, 6 and 7
under the heading “Participation in Contest” we report estimates from random effects
probit regressions of the binary decision to enter a contest as a function of entry costs,
¢, and other potential explanatory factors. Note that the baseline specification is these
regressions is an entry fee of 0.

From these tables and figures we observe that, consistent with the theory for both
the n = 2 and n = 3 treatments, contest entry is monotonically decreasing as the
entry fee rises. The first columns of Table 5 reporting on probit regressions using
the combined data sample reveal that participation is significantly decreasing as the
entry cost rises. However, there are departures from the equilibrium point predictions
for these participation frequencies as revealed in Table 4 and Fig. 3. In particular
for low entry fees, where entry is predicted to be 100% (fees less than 40 when
n = 2 and fees less than 25 when n = 3). Table 4 reveals that there is, on average,
under-participation. This result may not be so surprising, since in the case when
full participation is predicted, the errors can only be in one direction (i.e., less than
predicted). At the other extreme, when the entry fee is 110 and O entry is predicted, we
see again in Table 4 that there is over-participation on average, but this is again owing
to the fact that errors can only go in that direction. More interestingly, in the 5 treatment
conditions where contest participation is predicted to lie between 0 and 100% (fees of
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0.90 \
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o A Y

Fee

Mean Partici

Fig. 3 Mean participation frequencies (vertical axis) by contest fee (horizontal axis) and group size. Light
bars are for n = 2 and dark bars are for n = 3. The whiskers indicate 95% confidence intervals. Symmetric
equilibrium predictions are indicated by solid lines for n = 2 and dashed lines forn = 3

40 and 70 in the n = 2 treatment and fees of 25, 40 and 70 in the n = 3 treatment) we
generally find significant over-participation relative to theoretical predictions, with
the exception of the n = 2, ¢ = 40 treatment where mean participation is lower than
predicted. Indeed, for these five cases we can reject the null of no difference from
theoretical predictions based on the 95% confidence intervals shown in Fig. 3 for all
but the treatment where n = 3 and ¢ = 25, where we cannot reject the null. We
summarize these findings as follows.

Result 1 Participation: Contest participation generally decreases significantly as the
entry fee rises in line with theoretical predictions. Relative to Nash equilibrium point
predictions, there is generally under-participation when entry fees are low and over-
participation when entry fees are high.

We next consider bidding behavior across our different treatment conditions. Mean
bids are shown for each treatment condition in Table 4 and Fig. 4. Figures 5 - 6 show
jittered scatterplots of all bids made for each entry fee, ¢, for the n = 2 and n = 3
treatments respectively along with the prediction of a non-parametric LOWESS filter
and the equilibrium bid amount. Finally, the last columns 6-9 of Tables 5, 6 and 7 (under
the heading “Bid Amount Conditional on Participation™) report on random effects
linear regressions of bid amounts on entry costs, ¢, and other potential explanatory
variables.

Table 4 reveals that mean bids are generally decreasing as the entry fee increases.
However, there are two exceptions to this finding in the two extreme fee cases, an entry
fee of 0 and an entry fee of 110. The increase in mean bids as the entry fee increases
from O to 11 is due to the small bids made by those who enter only when the fee is
0 but who select not to enter when the fee is 11. The mean bids of these subjects in
the fee=0 treatment are 11.46 when n = 2 and 20.86 when n = 3. The lack of entry
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Fig.4 Mean bid amounts (vertical axis) by contest fee (horizontal axis) and group size. Light bars are for
n = 2 and dark bars are for n = 3. The whiskers indicate 95% confidence intervals. Symmetric equilibrium
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Bids by Entry Fee, n=2 Treatment
@ - |

120
1

100
|

$

= B
(=
=
o
2
=]
Ao |
F
N
&
4
o -
T T T T T VAL
0 11 25 40 70 110
Entry Fee
® Bid ——— lowess bid fee >< EQbid

Fig. 5 lJittered scatter plots of bids by entry fee (dots) along with Lowess filter prediction (red line) and
equilibrium predictions (cross) n = 2 treatment (color figure online)
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equilibrium predictions (cross) n = 3 treatment (color figure online)

® Bid

by these low bidders when the entry fee increases to 11 works to raise the mean bid
in that contest relative to the O entry fee contest. If we consider only the 37/48 (77%)
subjects who entered both the lowest fee contests in the n = 2 treatment, their mean
bids fall from 48.72 to 46.54 as the fee increases from O to 11. Similarly, if we look
at the 52/72 (72%) subjects who entered both the lowest fee contests in the n = 3
treatment, their mean bids fall from 44.41 to 43.32 as the fee increases from O to 11.

The story is similar but slightly more mixed for the increase in bids as the entry
fee increases from 70 to 110. First, in the n = 2 treatment, the increase in bids in the
higher fee contest is owing only in part to the lower bids made by the 16/48 (33%)
of subjects who only entered when the fee is 70 (mean bid of 35.30). Still, among the
few, 8/48 (17%) subjects who enter both high fee contests, the mean bid does increase
from 47.70 to 60.28 as the fee increases from 70 to 110, but these are small numbers
of subjects. In the n = 3 treatment, the increase in the mean bids as the fee increases
from 70 to 110 is entirely due to the 25/72 (35%) who enter only when the fee is 70;
those subjects bid lower amounts (mean bid of 32.82) than do those who enter both of
the highest fee contests. Among the few 7/72 (10%) subjects who enter both of these
contests in the n = 3 treatment, the mean decreases from 47.81 to 42.90 as the fee
increases from 70 to 110.

However, as Table 4, Figs. 4, 5 and 6 and Tables 5, 6, 7 all reveal, the reduction
in bids as entry costs increase is rather small and not statistically significant. Relative
to the Nash equilibrium point predictions, mean bids are, in all cases greater than
predicted and this difference is statistically significant, using the 95% confidence
intervals shown in Fig. 4 in all treatment conditions. That is, we can easily reject the
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null of no difference between Nash equilibrium bids and bids in our experiment at the
5% level in favor of the alternative that observed mean bids are always significantly
greater. We summarize these findings as follows.

Result 2 Overbidding: Mean bids do not change much as entry fees increase and are
significantly higher than Nash equilibrium bids for all entry fees and regardless of
whether n = 2 or 3.

While this over-bidding phenomenon might seem surprising, it is, in fact quite
common in the experimental contest literature, see e.g., Sheremeta (2013). This paper
differs by adding contest entry fees which, in theory, should reduce the amounts bid
relative to the no-entry-fee case and in the process, possibly curtail the over-bidding
phenomenon. However, as our results indicate, overbidding persists even with the
addition of contest entry fees.

Having considered mean participation and bids across all treatments, we now focus
more precisely on treatment effects, in particular on the effects of increasing the group
size, the entry fee and the interactions between these two treatment variables.

We first consider the difference in behavior between groups of 2 and 3 bidders.
According to the theory (Proposition 2) in the symmetric equilibrium, both p*(n, ¢)
and x*(n, ¢) decline as n and ¢ increase. Equilibrium participation rates and bids for
the n = 2, 3 cases are illustrated in Fig. 1 and the precise equilibrium point predictions
for the participation probabilities and bids for our experimental treatments are shown
in Table 4. Notice that while there is generally good separation in the equilibrium
participation rates as n increases from 2 to 3, the differences in equilibrium bids are
comparatively smaller, making these differences harder to detect with our sample size.

The experimental data means also reported in Table 4 generally support the com-
parative statics prediction of the theory that, for a given contest entry fee, a higher
number of bidders (3 versus 2) reduces the probability of participating in that contest.
In particular, notice in Table 4 that the mean participation probabilities in the n = 3
treatment for each entry fee ¢ = 0, 11, 25, 40, 70 and 110 are always lower than
the corresponding n = 2 version of the same entry fee value with the sole exception
of the ¢ = 40 treatment. Similarly, but without exceptions, mean bids in the n = 3
treatment for each entry fee ¢ = 0, 11, 25, 40, 70 and 110 are always lower the cor-
responding n = 2 treatment for the same entry fee value. Nevertheless these group
size differences are small, and as Figs. 3 and 4 and Table 5 reveal, the differences in
participation and entry between 3- and 2- player groups of bidders for given entry fees
are not statistically significant. Note in particular that the n = 3 dummy variable in
the regressions characterizing both participation and bidding behavior as reported in
Table 5 generally has a negative sign, but statistically the coefficient on this n = 3
group size indicator is not significantly different from 0.

Result 3 Group size effect: As the group size n increases from 2 to 3, participation
rates and bids are only slightly lower as the contest entry fee, c, increases and these
group size differences are not statistically significant.

There appear to be two qualifications to Result 3. First, using all data Table 5 reveals
that participation rates are significantly lower than the baseline case of no entry fee only
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Fig.7 Mean revenue generated (vertical axis) for each contest fee (horizontal axis) and group size n. Light
bars are for n = 2 and dark bars are for n = 3. The whiskers indicate 95% confidence intervals. Symmetric
equilibrium predictions are indicated by solid lines for n = 2 and dashed lines forn = 3

when the entry fee rises to 25 or more. However, a comparison of Tables 6, 7, which
redo the regression analysis of Table 5 separately by group size (n = 2 or n = 3),
suggests that the reduction in participation for low contest entry fees, particularly a
fee of 40, is largely coming from groups of size n = 2 rather than from groups of size
n = 3. Similarly, as Table 5 reports, bids are significantly lower than the baseline case
of no entry fee only when the entry fee is 70.> However, a comparison with Tables 6,
7, which disaggregate Table 5 by group size n = 2 or n = 3, suggests that this effect
is largely coming from groups of size n = 3.

We next consider the effect of adding contest entry fees for the contest designer’s
revenue and in particular the revenue-maximizing fee. Recall that the designer’s
expected payoff is given by p x n(x 4 c). Here instead of calculating ex-ante expected
revenue we report on the actual, ex-post revenue earned by the contest designer as
we have such revenue information from our experimental data. As Fig. 2 revealed, in
theory the designer’s expected revenue should be maximized at an entry fee of ¢ = 25
in the n = 2 treatment and at an entry fee of ¢ = 11 in the n = 3 treatment.

However, as Table 4 and Fig. 7 reveal, when n = 2 the actual contest designer’s
mean revenue is greatest when the fee is 70, though statistically this revenue amount
is not significantly different than revenues generated by fees of 11, 25 or 40. However,
when n = 3 the actual contest designer’s revenue is greatest, and significantly so when
the fee is 40 which is higher than the predicted payoff maximizing fee of 11. Thus, for
both group size treatments, the entry fee yielding the greatest revenue is higher than
the Nash prediction, though only significantly so in the n = 3 treatment. This result
follows directly from the significant overbidding observed at all entry fee levels in

2 Recall from the theory (see Table 4) that NE bids do not really start declining until the fee increases to
40 and the first large change in the NE bid occurs when the fee rises to 70.
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combination with significant over-participation for intermediate and higher entry fee
levels, as noted earlier in Results 1 and 2.

For the n = 2 case, Fig. 7 reveals that the contest designer’s revenue is significantly
higher than theoretical predictions when the entry fees are 0, 70 or 110 and insignif-
icantly different from theoretical predictions in the three intermediate fee cases (fees
of 11, 25 and 40). However, in the n = 3 case the contest designer’s revenue is sig-
nificantly higher than theoretical predictions for all 6 entry fee values. We summarize
these observations as follows.

Result 4 Designer’s revenue: The contest designer’s revenue is often significantly
greater than theoretical predictions. The entry fees generating the highest designer’s
revenue are greater than theoretical predictions, and significantly so in the n = 3
treatment.

Table 4 and Fig. 7 further reveal that the mean designer’s revenue is not only
frequently in excess of theoretical predictions, but also significantly exceeds the V =
100 point value of the prize. This overdissipation result occurs in 4 out of the 6 fee
treatments for the n = 3 case. Itis due to our addition of entry fees and is a new finding
in the contest literature; Lim et al. (2014) found that overdissipation might take place
with at least n = 4 players in contests without entry fees.

Finally, we explore some possible behavioral explanations for our experimental
findings. Recall that we asked each subject to complete four CRT questions. Each
such question has an immediate simplistic answer that is incorrect; the correct answer
requires somewhat more thought and deliberation. Frederick (2005) has shown that the
number of correct answers to such CRT questions is positively correlated with various
measures of cognitive ability (or intelligence). Since there were four such questions
(see the Appendix for these questions and answers) a perfect CRT score is 4. As Table
3 reveals the median CRT score in our sample was 2 out of 4 correct. We use each
subjects’ score (minimum 0, maximum 4) as a proxy for their cognitive abilities.

We also elicited each subject’s tolerance for risk by asking them: “In general, how
willing are you to take risks?” Answers were recorded on an 11 point Likert scale,
where 0 means “completely unwilling to take risks” and 10 means very willing to
take risks.” Hence a higher number indicates a greater risk tolerance. This simple risk
elicitation question has been shown to generate responses that correlate strongly with
measures of risk attitudes derived from more traditional and incentivized paired lottery
choices (see, e.g., Dohmen 2011). As Table 3 reveals the median risk self-assessment
was 6. Finally, we collected other potential explanatory data, e.g., on gender, age, and
on whether the order of the contests played, ascending or descending in terms of the
entry fees, mattered for subjects’ decisions. Using this subject specific data we have
the following results.

Result 5 CRT Scores: Subjects with high CRT scores are less prone to over-bidding
in the contests they choose to enter.

Support for Result 5 can be found in Tables 5, 6 7. See also additional regres-
sion tables in Appendix E. As Table 5 reveals (in the regression specification
All+Demographic data), overall CRT scores don’t matter for participation decisions,
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but subjects with higher CRT scores are found to bid significantly less on average in
the baseline 0 entry fee case. If we restrict attention to subjects with CRT scores that
are greater than the median score of 2, as in the regressions under the heading “CRT >
2” we observe a more significant effect of entry fees on bidding behavior, particularly
for entry fees of 40 and 70, with no change in participation behavior. Comparable
regressions with subjects having CRT scores < 2, as reported in the Tables found in
Appendix E show that for these low CRT score subjects, bidding is not significantly
lower for entry fees of 40 or 70.
Regarding self-elicited risk preferences, we have the following result.

Result 6 Risk preferences: Increases in subjects’ self-reported risk tolerance lead to
higher bids and greater contest participation. Subjects who assess their own risk
taking to be below the median of 6 (i.e. those who are less risk tolerant) are less
prone to over-bidding compared with those who are more risk tolerant (reporting a
risk tolerance > 6).

Support for Result 6 is also found in Tables 5, 6 and 7. See also additional
regression tables in the Appendix. In the regression specification All+Demographic
(“All+Demo”) of these tables we see that for the baseline 0-entry fee case, subjects
with greater self-reported risk tolerance, as captured by the variable Risk, are more
likely to participate in contests and to bid higher amounts. When we focus only on
subjects whose risk assessments are below the median of 6 (“Risk < 6”) we observe
that these more risk averse subjects reduce their bids significantly more as fees increase
from 25 to 40 to 70 as compared with the more risk tolerant subjects — for a direct
comparison with the latter subject group, see additional Tables in the Appendix.

Finally, we note that we do not find strong evidence for any age or gender effects or
order effects. The female dummy variable is not significant in any of our regressions.
The age variable is significantly positive only for the n = 3 treatment and not using
the combined data set. The dummy variable labeled ‘Order Desc.’, equal to 1 if the
fees followed the descending order starting at 110 and decreasing to 0, is significantly
positive in Table 5 for bid amounts without demographic data, but it is no longer
significant when we break the dataset down by group size as is done in Tables 6-7.

5 Conclusions

Many contests do not have entry fees, though some do. The recognition that entry fees
could increase a contest designer’s revenue has not gone unnoticed. For one example,
the Eyelands short story contest did not have an entry fee prior to 2016 and now they
have one. Other contests, such as the John Lennon Songwriting contest, have always
had an entry fee (currently $30 per song). Our analysis seeks to rationalize the presence
of such fees for entering contests.

We demonstrate that the addition of moderate entry fees can indeed increase a
contest designer’s revenues without having large effects on contest participation,
depending on the number of potential participants. Moreover, in equilibrium we show
there is a theoretically optimal contest entry fee depending on the number of poten-
tial entrants and that this entry fee is non-zero. In an experimental test of the theory
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we develop, we find mixed support for our theoretical predictions. While participa-
tion and bids do decline as contest entry fees increase, the decline is not as rapid, or
as monotonic as the theory predicts. We observe both over-bidding in contests with
entry fees and over participation for larger entry fees. In the case of 3 bidders, over-
participation and over-bidding yield the outcome that the entry fee that generates the
greatest revenue is significantly greater than the theoretically optimal entry fee.

Taking the behavior from our experiment into account, we conclude that contest
designers will want to consider adding entry fees to their contests and consider the
possibility that the entry fee that is revenue maximizing may be even larger than the
one predicted by the rational actor model.

Appendix

A Proof of Proposition 1

Proof Consider the following differentiable function
n—1

1 , .
fx) = Z TR Cinfl (1 =x)ni=

i=0

It is straightforward to check that

FO =1
and
=
.
Note that

n—17T .2 . 2
, ic=@G+1 (n—1)! i1 neio1
= 1-— 0 f 0,1).
f ) §|: e :|i!(n—i—1)!(x) (1—1x) < Oforx € (0,1)

Therefore, function f (x) is monotonically decreasing on the interval [0, 1] and the

range of function f is [n% 1]. Hence, equation ( 4) has a unique solution p* € [0, 1]
c 1

foranyv € [n_Zl] |

B Experimental instructions

Here we present the instructions for the pairs treatment. The instructions for the triples
treatment are similar.
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Welcome to this experiment in the economics of decision-making. You are guaran-
teed $7 for showing up and completing this study. These instructions explain how you
can earn additional earnings from the choices you make. Please silence any mobile
devices and refrain from talking with others for the duration of this study. If you have
any questions, please raise your hand.

Today’s study involves 6 rounds of decision-making and the completion of a ques-
tionnaire.

Decisions

Prior to the start of each of the 6 decision rounds, you will be randomly matched
with one other participant in the room. Thus, the participant you are matched with will
likely change from one round to the next. In each round you will be randomly assigned
the role of “participant 1” or “participant 2”. This labeling helps in identifying each
person’s choices in the round but otherwise it makes no difference. You will not know
the identity of the other participant you are matched with in each decision round —
“your match” — nor will they know your identity even after the study is over.

For each decision round, you and your match for that round have to simultaneously
make one or two decisions.

The first decision is whether you want to enter a contest with the other participant.
The contest always yields a prize of 100 points to the winner and O to the loser. In
order to enter the contest, you have to pay an entry fee in points which will be shown
on your decision screen. The entry fee will be the same for you and your match.

Let us denote the fee to enter decision contest number k = 1, 2, ..., 6 by f; points.
The actual entry fee will differ from round to round so pay careful attention to the fee
in each decision round. A fee of 0 points means there is no entry fee, but in that case
you still have to choose to pay that fee to enter the contest.

Prior to deciding whether you want to enter contest k, both you and your match for
that contest will each be given 120 + f} total points.

If you choose “Don’t Enter” then you keep and earn the 120 + f; points you were
given for decision round k.

If you choose “Pay the Fee and Enter the Contest,” then you give up f; points and
you have to decide how many of your remaining 120 points you want to bid toward
winning contest round k.

Specifically, on the first screen for each round you will see this information:

The prize to the winner of the contest is: 100.0 points
The fee for entering the contest this round is: fi points
You are given 120.0 points plus the fee of fi points for a total of 120.0 + fx points
this round.
Do you want to pay the fee and enter the contest?

Below this you click on either the “Don’t Enter” button or the “Pay the Fee and
Enter” button. Then click the Next button to confirm your decision. You can change
your mind anytime prior to clicking the Next button.

If you choose to Pay the Fee and Enter the contest then you give up fi points and
on the next screen, you make a second decision: how many of your remaining 120
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points you want to bid toward winning the contest you have entered. You make this
second decision by moving a slider on your screen between 0 and 120 or by entering
the number of points you want to bid between 0 and 120 in an input box. Once you
have made your bid, click the Next button. You can change your mind anytime prior
to clicking the Next button.

If you choose Don’t Enter then you will see a “Please Wait” screen.

In either case, you will NOT know when making your own decisions whether your
matched participant has chosen to Pay the Fee and Enter the Contest or has chosen
Don’t Enter. You also don’t know the bid that your match makes if they do choose to
enter the contest until after the round is over.

Decision outcomes

There are several possible outcomes for each decision round (contest):

1. Both you and the other participant chose to pay the fee and enter the contest. In
this case you each give up the entry fee of f; points. Your probability of winning
the contest is calculated as:

Your Bid
Your Bid 4 Other Participant’s Bid

Your Probability of Winning =

The other participant’s probability of winning is calculated in the same manner
and is equal to 1-your probability of winning.? Using these two probabilities, the
computer program determines the winner in a manner such that the participant with
the higher (lower) probability of winning is more (less) likely, though not certain
to win the contest. For example, suppose in a round that you are participant 1 and
based on the points bid, your probability of winning is .60 (60%) and your match
(participant 2) has a probability of winning equal to 1 — .60 = .40 (40%). In this
case the computer program draws a number randomly from the interval [1, 100].
If the number drawn is 60 or less, than you are declared the contest winner, while
if the number drawn is greater than 60, then the other player is declared the contest
winner. If you are the winner, then your payoff in points for the round is

120 — Your bid + 100
If you are not the winner, then your payoff in points for the round is:
120 — Your bid
These payoff consequences are symmetric for the other participant in the contest.

2. You enter the contest but the other participant does not enter. In this case, you
automatically win the contest with any bid that you make but, of course, you don’t

3 In the event that you and the other participant both enter a bid of 0, then your probability of winning and
that of the other participant are the same.
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know in advance whether the other participant entered the contest or not. Your
payoff in points for the round in this case is:

120 — Your bid + 100

The other participant earns 120 + f; points for the round where f; is the contest
entry fee.

3. You do not enter the contest and the other participant does. In this case the other
participant automatically wins the contest with any bid. Your payoff in points for
the round in this case is:

120 + fi

where fj is again the contest entry fee in points. The other participant’s payoff in
points for the round in this case is 120 - Other Participant’s Bid + 100.

4. You and the other participant both Don’t Enter the contest. In this case, there is no
winner of the contest. The points earned by both you and the other participant for
the round in this case are:

120 + fi

where fj is again the contest entry fee in points.

Feedback

At the end of each round, you learn what the other participant chose to do and the
outcome of the round. If one or both of you chose to enter the contest, then you will
learn what was bid by each participant (1 and 2) and your probability and/or the other
participant’s probability of winning. You will learn who (if anyone) won the prize of
100 points for that round. Finally, you will see your total earnings in points for the
round which you can write down. When you have viewed this information click the
Next button.

Earnings
Following completion of all 6 rounds, the computer program will choose one of the
six decision-rounds randomly. All six rounds have an equal chance of being chosen.

Your points from the one chosen round will be converted into dollars at the exchange
rate of 1 point = 10 cents ($0.10 USD).

Questionnaire

To finish the study, you must complete an online questionnaire. Following completion
of the questionnaire, you will be awarded your earnings from the experiment plus your
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$7 show-up payment on a final screen that also shows your unique subject ID number.
Please leave this screen open for verification purposes.

Questions?

Now is the time for questions. If you have a question, please raise your hand.

Comprehension quiz

The following questions are intended to check your understanding of the instructions.
Please answer all parts of all 6 questions. If you make a mistake you will be asked to
re-do your answer until you get it right.

1. Circle One: True or False: I will be matched with the same other participant in
all 6 rounds.
2. Suppose in round k, the contest entry fee, fi = 30 points.

a. How many points will you earn for the round if you do not enter the contest?

b. If you do enter the contest, how many points can you bid toward winning the
prize?

c. Suppose you enter the contest, you bid 20 points but you do not win the prize.
What are your earnings in points for the round?

d. Suppose you enter the contest, you bid 20 points and you do win the prize.
What are your earnings in points for the round?

3. Suppose in round k, the contest entry fee f; = 80 points.

a. How many points will you earn for the round if you do not enter the contest?

b. If you do enter the contest, how many points can you bid toward winning the
prize?

c. Suppose you enter the contest, you bid 50 points but you do not win the prize.
What are your earnings in points for the round?

d. Suppose you enter the contest, you bid 50 points and you do win the prize.
What are your earnings in points for the round?

4. Circle One: True or False: Paying the fee and entering a contest will always result
in more points earned in a round than choosing not to enter the contest.

5. Circle the correct answer. If both participants enter a contest and both make positive
bids then:

a. Whoever bids the most is guaranteed to win the prize.

b. Whoever bids the most has a greater chance of winning but either participant
can win.

c. The probability that each participant wins the prize can never be the same.

6. Circle One: True or False: After playing 6 decision rounds, one round will be
randomly chosen and the points you earned in that round will be converted into
money earnings a the rate of 1 point = $0.10 (10 cents).
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C Screenshots

See Figs. 8,9, 10, 11 and 12.

Round 2

You are Participant 1 this round

The prize to the winner of the contest is: 100.0 points.
The fee for entering the contest this round is: 11.0 points.

You are given 120.0 points plus the fee of 11.0 points for a total of 131.0 points this round.

Do you want to pay the fee and enter the contest?

Don't Enter
Pay the fee and Enter

Next

Fig.8 First entry choice screen in round

Fig.9 Screen with bid slider if Ro un d 2

entered contest

You are Participant 1 this round

Please enter how much do you want to bid:

32:53

0 120

Next
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Round 2

You are Participant 1 this round

Participant 1 Participant 2
Bid 32.53 points 14.21 points
Probability 69.60 % 30.40 %

P1: 69.60% P2: 30.40%

You have not won the prize.

The winner was Participant 2.

You were given 120.00 points and a fee of 11.00 points to play this round.
You paid the fee of 11.00 points and your bid was 32.53 points.

Thus your earnings are 120.00 - 32.53 points.

Which equals 87.47 points this round.
Next
Fig. 10 Contest results screen, participant 1

Round 2

You are Participant 2 this round

Participant 1 Participant 2
Bid 32.53 points 14.21 points
Probability 69.60 % 30.40 %

P1: 69.60% P2: 30.40%

You have won the prize.

You have earned 100.00 points from the prize.

You were given 120.00 points and a fee of 11.00 points to play this round.
You paid the fee of 11.00 points and your bid was 14.21 points.

Thus your earnings are 120.00 + 100.00 - 14.21 points.

Which equals 205.79 points this round.

Next

Fig. 11 Contest results screen, participant 2

@ Springer



Contests with entry fees: theory and evidence

Fig. 12 Final payoff screen Res u It

The experiment has ended.

The selected round to pay you was the Round number 6

In that round you earned a total of 230.00 points.

Therefore you have earned a total of $23.00.

After adding the show up fee of $7.00 you will be paid $30.00

Please click on the next button and fill the questionnaire.

Next

D CRT and demographic questions

CRT questions

The CRT questions we used differ from Frederick (2005) (which are already well
known) and are taken from Toplak et al. (2014)

1.

2.

The ages of Anna and Barbara add up to 30 years. Anna is 20 years older than
Barbara. How old is Barbara? [Correct Answer 5; Intuitive Wrong Answer 10]

If it takes 2 nurses 2 minutes to check 2 patients, how many minutes does it take
40 nurses to check 40 patients? [Correct Answer 2; Intuitive Wrong Answer 40]
On a loaf of bread, there is a patch of mold. Every day, the patch doubles in size.
If it takes 24 days for the patch to cover the entire loaf of bread, how many days
would it take for the patch to cover half of the loaf of bread? [Correct Answer 23;
Intuitive Wrong Answer 12]

If John can drink one barrel of water in 6 days, and Mary can drink one barrel of
water in 12 days, how many days would it take them to drink one barrel of water
together? [Correct Answer 4; Intuitive Wrong Answer 8]

Demographic questions

1. What is your age?

2. What is your gender? Choices: Male, Female, Non-binary

3. What is your university major?

4. What is your grade point average (GPA)?

5. In general, how willing are you to take risks? Please use a scale from O to 10,
where 0 means you are “completely unwilling to take risks” and a 10 means you
are “very willing to take risks.”

E Additional tables

See Tables 8, 9 and 10.
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