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1 Introduction

Nash equilibrium (Nash Jr, 1950) and its more general counterpart, correlated equi-

librium (Aumann, 1974, 1987), are important solution concepts in game theory that

form the basis of a multitude of predictions and rationalizations of behavior in ap-

plied economic theory. In one interpretation of correlated equilibrium due to Myerson

(1991), a mediator designs a device that makes private but correlated recommenda-

tions to each player in the game.1 The recommendation device constitutes a correlated

equilibrium if every player is always willing to follow the device’s recommendation.

To shed light on human cognition, we design a novel experiment where individuals act

as the designers of such recommendation devices. Specifically, we examine subjects’

ability to coordinate the behavior of players in games towards desirable outcomes,

while considering the strategic incentives of the players to follow recommendations.

We find that subjects are most successful in this task when strategic incentives align

with socially desirable outcomes.

Consider the following metaphorical example. Two cars are approaching an ob-

scured intersection along perpendicular roads. If one car waits, the other prefers

to go rather than wait. The worst outcome is both cars proceeding simultaneously,

leading to a crash. Without seeing or communicating with each other, coordination

is impossible. Now, suppose a traffic light is installed, showing green for one car and

red for the other half the time. With the norm that green means ‘Go’ and red means

‘Stop’, both cars will always follow the traffic light’s instructions. In this scenario,

the traffic light coordinates the cars’ behavior to achieve a fair and efficient outcome.

In other words, the traffic light serves as a recommendation device that implements

a particularly desirable correlated equilibrium.

Analogies for coordinating devices like traffic lights are plentiful, including medi-

ation in conflict resolution, central bankers’ announcements guiding market expecta-

1Myerson (1991), p. 250 refers to the mediator as “a person or machine that can help the players
communicate and share information.” Similarly, Gintis (2014), p. 142 refers to such a designer as
“the choreographer,” – a “new player” in the “augmented” game who issues a “directive”.
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tions, the design of data exchange protocols between servers, or even the role of a

conductor leading an orchestra to ensure harmony. But how effective are people at

crafting such devices or recommendations for others? Do they recognize the incen-

tives of the other parties to follow the recommendations; i.e., do their recommenda-

tions constitute a correlated equilibria? How do features of the environment, such as

prevailing incentives, influence the recommendations they provide? Are there some

situations in which crafting effective recommendations is relatively straightforward

and others where it is particularly difficult?

To date, research on the empirical relevance of correlated equilibrium has focused

on placing subjects in the role of a player in the game to investigate whether they are

willing to follow, or learn to follow, the recommendations produced by coordinating

devices. However, numerous factors may influence an individual’s propensity to follow

recommendations. For instance, those deviating from recommendations may struggle

to effectively reason about their own strategy or the strategies of others, lack trust in

their opponents (i.e., face strategic uncertainty), or exhibit social preferences (such as

fairness considerations) beyond the experimenter’s control. Thus, asking someone to

simply play games does not necessarily identify their degree of strategic sophistication.

In contrast, our research is the first to investigate whether experimental subjects can

design a recommendation device to coordinate the behavior of players within a given

game. To focus on the behavior of the designer and exclude the multitude of factors

that may shape behavior of the players, we automate the players in the game as

rational robots. Using the above example, while prior research places subjects in the

role of drivers, we task our subjects to design a traffic light.

Our experimental setting is of interest for several reasons. First, designing a rec-

ommendation device presumes an understanding of how subjects themselves would

react to these recommendations. Therefore, evidence of this designing ability pro-

vides a more comprehensive evaluation of the relevance of correlated equilibrium.2

2Our approach also offers insights into the empirical relevance of correlated versus Nash equi-
libria. While every Nash equilibrium is a correlated equilibrium, the reverse is not true. Thus, it is
of interest to understand the extent to which individuals recognize and use the broader concept of
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Second, previous tests of recommendation following a conditioned signal structure

are certainly interesting but ultimately incomplete. They rely on an exogenous ex-

ternal device, but it is unclear how such a device might have arisen in the first place.3

Thus, our approach can be viewed more broadly as placing subjects in the role of

‘recommendation designers’, rather than simply observing their responses to various

recommendations. Third, by using rational robots for the players who consider the

recommendations of the human designers, we eliminate additional noise from individ-

ual player behavior. The consistent behavior of rational robot players helps isolate

the comprehension of the design problem by the human equilibrium designer. Indeed,

designing a correlation device requires a holistic approach that integrates strategic in-

centives, randomization, and correlation, but it also depends on how designers expect

players to engage with the game. Our design removes this latter variable. Finally,

advancements in AI technology require a better understanding of human-robot inter-

actions.4 Recent literature primarily focused on games where humans play against

robots (e.g., Bayer and Renou, 2024) or robo-advice to humans (e.g., Bianchi and

Brière, 2024). Instead, we contribute to how humans design systems to coordinate

robots.5

Our experimental design is as follows. Participants design recommendation de-

vices for five different games under a common objective. They have five attempts to

design a device for each game. Each device provides probabilistic, private, potentially

correlated recommendations to pairs of robot players playing each game. These robot

players are Bayesian expected-utility maximizers who determine whether following

the recommendations from the device aligns with their self-interest. Thus, a device

for which all recommendations are followed implements a correlated equilibrium.

correlated equilibrium.
3For instance, traffic lights are designed and continually adjusted by human engineers.
4Consider the importance of crafting effective prompts to fully utilize the large language models

like ChatGPT or determining appropriate tasks for robots.
5This is increasingly important as more robotic autonomous devices interact without direct

human involvement. For example, autonomous vehicles are already navigating our roads and some-
times face difficult moral trade-offs, such as deciding whether to save their own passengers or those
in another autonomous vehicle when a collision is unavoidable. Humans need to establish rules for
these situations aligning them with our moral and norms, see, Bonnefon et al. (2024).
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We are interested in subjects’ ability to design a device that achieves a correlated

equilibrium, and, conditional on this, results in a fair and efficient outcome. This is

accomplished as follows. First, subjects earn a positive payoff from their device only

if all of its recommendations are followed by the robot players. Second, the payoff

earned from a device for which all recommendations are followed increases with the

minimum expected payoff across the robot players.6 As all the games we consider are

symmetric, the desirable correlated equilibrium (DCE), that maximizes a subject’s

payoff is one that is both Pareto efficient and fair. We focus on this selection rule

from the set of correlated equilibria because it is naturally applicable in practice. For

example, the traffic light achieves this social objective by being Pareto efficient, –

allowing cars from one direction only to pass through the intersection at a time, –

and ensuring fairness, as cars from different directions have an opportunity to cross

the intersection.

We ask subjects to design recommendation devices for five games: Prisoner’s

Dilemma, Matching Pennies, Battle of the Sexes, and two versions of Chicken that

differ in both their set of correlated equilibria and their DCE. These games are selected

because the structure of their DCE differs in important aspects of equilibrium reason-

ing, such as (1) the necessity of randomization, (2) the degree of correlation required,

and (3) the alignment of strategic incentives with the social objective of fairness and

efficiency. For example, the DCE in the Prisoner’s Dilemma is the unique Nash equi-

librium in pure strategies, which does not require randomization or correlation and

has payoff incentives that conflict with efficient outcomes. In contrast, the DCE in

the Battle of the Sexes involves perfectly correlated randomization between its two

pure-strategy Nash equilibria and has payoff incentives that are perfectly aligned with

the objective of fairness and efficiency. These differences allow us to explore whether

these distinct aspects of equilibrium reasoning impact subjects’ ability to successfully

6In this sense, subjects are induced to apply the Rawlsian criterion (see Rawls, 1971) – to
make the worst-off player as well off as possible, – as a secondary objective in selecting a correlated
equilibrium. Subjects aim to satisfy this criterion subject to the constraint that the device is incentive
compatible (i.e., it constitutes a correlated equilibrium).
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implement the DCE through their recommendation device.

We find significant heterogeneity in subjects’ proficiency at crafting recommenda-

tion devices to achieve a correlated equilibrium and the DCE across different games.

Specifically, a significant portion of participants successfully designed the DCE in

Battle of the Sexes and Matching Pennies, with success rates of 79% and 73%, re-

spectively. In contrast, fewer subjects achieved this in the Prisoner’s Dilemma and

two versions of Chicken, with success rates of 37%, 18%, and 30%, respectively. In

the Chicken games, however, most subjects were able to implement some correlated

equilibrium (93% and 96%). An analysis using a distributional distance metric re-

veals that subjects’ designs closely align with the ideal outcomes in all games except

for the Prisoner’s Dilemma.

Our results reveal that subjects’ success in designing recommendation devices

correlates positively with the alignment between strategic incentives and socially de-

sirable outcomes. Specifically, success rates are highest in games where a fair and

Pareto efficient outcome coincides with a correlated equilibrium, as seen in Battle

of the Sexes and Matching Pennies. Subjects are adept at managing randomization

and correlation levels tailored to these games, despite differing requirements (perfect

correlation in Battle of the Sexes versus none in Matching Pennies). Conversely, suc-

cess rates decline when strategic incentives conflict with social desirability, as seen

in the Prisoner’s Dilemma and Chicken games. The difficulty appears to arise from

a reluctance to adopt a non-cooperative mindset, which is crucial for responding to

robot players’ strategies. This is particularly stark in Prisoner’s Dilemma, where sub-

jects fail to recognize the strong strategic incentives of each robot player, governed

by the presence of a strictly dominant strategy. Thus, we find that individuals can

effectively design recommendation devices with desirable characteristics but struggle

when strategic and social goals are misaligned.
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2 Related Literature

There are a number of papers that experimentally investigate correlated behavior

in games. These papers find that individuals tend to correlate their behavior when

pre-play communication is permitted (Moreno and Wooders, 1998), follow correlated-

equilibrium recommendations when those improve upon Nash equilibrium outcomes

(Duffy and Feltovich, 2010), and may learn to correlate their behavior in the absence

of coordinating devices (Friedman et al., 2022). The literature also finds, however,

that the propensity of subjects to follow recommendations that constitute a correlated

equilibrium is mediated by factors such as strategic uncertainty (Cason and Sharma,

2007), the directness of recommendations (Duffy et al., 2017), payoff asymmetries

(Anbarcı et al., 2018), whether recommendations are private or public (Bone et al.,

2013), and whether subjects must commit to the coordinating device as a whole

(Georgalos et al., 2020). These papers focus mostly on the willingness of individuals

to adhere to the recommendations made by correlation devices. By contrast in this

paper, we ask whether individuals are able to design the correlation device themselves.

An exception to studies that investigate subjects’ willingness to follow correlated-

equilibrium recommendations is the work of Cason et al. (2022). In their paper,

experimental subjects are asked to predict the distribution over actions that will be

generated by other individuals playing that game. They find that subjects tend to

believe that play will be correlated even though the people playing the games do

not have access to any correlating device. In contrast, instead of asking subjects

to predict what will happen in the game, we ask subjects to design a coordination

device that implements what they believe should happen in the game. Moreover, our

subjects design devices for rational robot players to avoid the strategic uncertainties

created by human players.

There is also a related literature on mechanism design experiments, surveyed in

Chen and Ledyard (2010). These experiments generally involve evaluation of subjects’

play under various imposed mechanisms with most applications concerning public
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good provision, auctions, contract theory, matching markets, and prediction markets,

among others. In this literature, it is typically not the case that subjects are placed in

the designer role as in our study. Still, we think that for simple games, such as those

that we study here, placing subjects in the designer role is a reasonable approach.

That is because it reveals the design preferences of non-expert designers, which may,

in turn, hold greater appeal to those operating under such designs.

Our work is also related to the literature on experiments regarding information

design and Bayesian persuasion (Kamenica and Gentzkow, 2011). These papers ask

whether subjects can use information structures that successfully correlate behavior

with some payoff-relevant state of the world (Aristidou et al., 2019; Au et al., 2023;

Fréchette et al., 2022; Wu and Ye, 2023; Ziegler, 2022). In our paper, we focus on

complete information games (i.e., a single payoff-relevant state) and subjects seek to

create signal structures or recommendations that correlate the behavior of players in

that complete information game (i.e., implement correlated equilibria).

Finally, our work is related to studies exploring the ability of individuals to draw

inferences from correlated signals and the notion of correlation neglect (Enke and

Zimmermann, 2019; Hossain and Okui, 2021). These issues are more likely to affect

the players in the game who must decide whether to follow correlated recommenda-

tions made privately. We, instead, ask the reverse question: can subjects actually

create the correlated signals from which inferences must be drawn? As such, our

subjects need to think about signal correlation hypothetically rather than drawing

inferences from actual signal realizations.7

3 Theoretical Framework

A finite game of complete information can be described by the tuple

G = (N, (Ai)i∈N , (ui)i∈N),

7This is an important distinction as there is evidence that thinking about hypothetical events is
fundamentally different from extracting information from actual events (Esponda and Vespa, 2014).
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where N is a set of players, Ai is a finite action set for player i ∈ N , and ui : A→ R is

the utility of player i defined over the set of action profiles A ≡
∏
i∈N

Ai. Let ∆(A) be

the set of probability distributions over A. For a game G, we can define a distribution

over action profiles µ ∈ ∆(A) to be a correlated equilibrium as follows.

Definition. Distribution µ is a correlated equilibrium (CE) for game G if∑
a−i

µ(ai, a−i)[ui(ai, a−i)− ui(a′i, a−i)] ≥ 0

for all i ∈ N , ai, a
′
i ∈ Ai.

In one interpretation of a CE, µ serves as a statistical summary of a ‘recommendation

device’. In this framework, the action profile a is drawn with probability µ(a), and

each player i receives only their own recommended action ai from profile a. The device

implements a CE if, for any drawn profile a, each player i finds it optimal to follow

their recommendation, given that all other players also follow their respective recom-

mendations.8 Note that a Nash equilibrium is a special case of a CE where µ is the

product of its marginal distributions across players; that is, action recommendations

are made independently to the players in the game.

In our experiment, subjects will design recommendation devices in an attempt to

implement CE. Since some games have multiple CE, we specifically focus on the CE

that solves the following constrained optimization problem:

max
µ∈∆(A)

min
i∈N

∑
a∈A

µ(a)ui(a) , s.t. µ is a correlated equilibrium. (1)

In other words, we are interested in the CE that maximizes the minimum average

payoff across players, following the Rawlsian criterion (Rawls, 1971). Each game for

which our subjects design recommendation devices is symmetric, making the problem

in (1) equivalent to finding the CE that is both efficient (i.e., surplus maximizing) and

8Alternative theories explain why observed behavior in games might constitute a CE without
requiring the interpretation of a recommendation device. For example, CE can arise as Bayes’ Nash
equilibria when players condition on extraneous signals, or from simple adaptive procedures with
repeated play (Hart and Mas-Colell, 2000). We focus on the recommendation device interpretation
because it provides a natural framework to investigate individuals’ ability to implement CE.
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fair (i.e., equally distributing surplus among players). We refer to this distribution as

the desirable correlated equilibrium (DCE) and denote it by µ∗.

We focus on the CE that is fair and Pareto efficient as these are natural ob-

jectives in practice, as the traffic light example from the Introduction illustrates.

Moreover, experimental evidence suggests that individuals are more likely to follow

CE recommendations when they offer efficiency gains compared to Nash equilibria

(Duffy and Feltovich, 2010) and minimize payoff asymmetries (Anbarcı et al., 2018).

Consequently, recommendation devices that solve (1) should be more effective at

coordinating real-world behavior.

Throughout the paper, we will also refer to the socially desirable outcome

(SDO) which is the unconstrained solution to problem (1): the probability distribution

over action profiles that is fair and efficient but not necessarily a CE. We denote

this distribution by µSD. The SDO differs from the DCE when µSD is not incentive

compatible. In such cases, we will say that the strategic incentives of the game are

not perfectly aligned with the SDO.

4 Experimental Design

Our experiment employed a within-subjects design and was coded using oTree (Chen

et al., 2016). Each subject designed recommendation devices for five different games,

presented in random order. For each game, subjects were given five consecutive

attempts (referred to as rounds) to design their device.9

Our subjects are 100 undergraduate students from the University of California,

Irvine, pursuing various programs of study. In total, we collected 2, 500 designed

recommendation devices (100 participants×5 games×5 rounds per game). The sample

was gender balanced with 54 females and 46 males. Subjects had no prior experience

9We selected five games to explore how variations in game structure impact subjects’ under-
standing of strategic incentives and the appropriate use of correlation and randomization. The
decision to include five rounds per game was based on a pilot and aimed to balance the opportunity
for subjects to learn while maintaining high stakes for each attempt.
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with the experiment and participated in a single session with five games. Payments

were determined by converting points earned from the usage of their recommendation

devices into USD (more details are provided in Section 4.2). In addition, subjects

received a 10 USD show-up payment. The average total earnings for subjects were

27.64 USD for an experiment lasting, on average, 90 minutes (including approximately

25 minutes spent reading instructions and 20 minutes for a comprehension quiz).

Given the complexity of the experimental task, we implemented a simple visual

interface for designing recommendation devices and took extensive measures to en-

sure that subjects understood the task. Written instructions (see Online Appendix A)

were provided and read aloud at the start of the experiment, which included detailed

explanations and examples for a specific game different from those used in the experi-

ment. The instructions explained how to use the interface to design recommendation

devices, how robot players would analyze the game and respond to those devices, and

how payments would be determined.

Subjects were then required to complete a nine-question comprehension quiz to

assess their understanding of the experiment’s key aspects, which included explicitly

designing devices. They could not begin the actual experiment until all questions were

answered correctly, with detailed feedback provided after each response. Additionally,

three practice rounds were conducted using the same game from the instructions.

At the end of the experiment, we collected additional information to investigate

potential correlates with performance in the design task. This included standard

demographic information, field and year of study, performance on a five-question

version of the cognitive reflection test (CRT) (Frederick, 2005), a measure of strategic

reasoning related to the hypothetical play of the 11-20 game (Arad and Rubinstein,

2012), and the self-reported strategies utilized by subjects.10

10We used CRT questions because they evaluate inhibitory control and analytical thinking and
are often found to correlate with performance in logical tasks (Campitelli and Gerrans, 2014). The
11-20 game (Arad and Rubinstein, 2012) was included to measure players’ levels of reasoning, as
our design task requires high levels of reasoning. For the precise wording of the CRT questions and
the 11-20 task, see Online Appendix B.
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P1/P2 Red (R) Blue (B)

Red (R) (uRR1 , uRR2 ) (uRB1 , uRB2 )

Blue (B) (uBR1 , uBR2 ) (uBB1 , uBB2 )

P1/P2 Red (R) Blue (B)

Red (R) µRR µRB

Blue (B) µBR µBB

Figure 1: Left: Normal form for a 2× 2 game, where both players choose between actions
Red and Blue. Right: Table representation of a recommendation device.

4.1 The Design Problem

Subjects designed recommendation devices for five 2×2 games which take the general

normal form shown in the left panel of Fig. 1. Each player in the game has two actions,

either Red (denoted R) or Blue (denoted B). We chose to use colors to provide a clear

visual representation of the recommendation device that subjects needed to design.

Subjects were told that their goal was to make recommendations to ‘intelligent’ robot

players that would follow these recommendations only if it is in their best interest to

do so (i.e., they strictly prefer to follow the recommendations or are indifferent).11

In theory, any recommendation device for a 2×2 game can be summarized using a

table, as shown in the right panel of Fig. 1. In this table, the entries µa1a2 represent the

probabilities that the device jointly recommends actions a1 ∈ {R,B} and a2 ∈ {R,B}

to player 1 and player 2, respectively.

We implemented the task of constructing such a table as follows. Subjects were

provided on the screen with a bucket containing 24 balls, each labeled with ‘1’ on

one half and ‘2’ on the other half. To design the device, subjects colored each half of

these balls with either red or blue. They were instructed that for each pair of robot

players, a random ball would be selected from the bucket and split in half. The half

labeled ‘1’ would be given to robot-player 1, and the half labeled ‘2’ would be given

to robot-player 2. The color of the half given to each robot-player would represent

the recommended action for that player.

11Essentially we explained in layman’s terms that the robot players are Bayesian expected-utility
maximizers. See page 2 of the instructions in the Online Appendix A for the precise explanation.
Pages 6-8 of the instructions provide examples of the robots’ reasoning.
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Figure 2: Example of the decision screen used by subjects to input a recommendation
device. The game shown here was used in the instructions and for practice rounds.

The balls were colored by the subjects using sliders. First, subjects used a slider

to determine how many of the 24 balls’ halves labeled ‘1’ should be colored red, with

the remainder colored blue. Next, subjects used two additional sliders to color the

half labeled ‘2’: one slider for balls where the half labeled ‘1’ was red and another

one for balls where the half labeled ‘1’ was blue. Once all balls were colored, the

design of the recommendation device was complete and subjects were provided with

a summary table of the recommendations their device would make; see an example

of the screen with a designed device in Fig. 2.

Subjects were then asked whether they wanted to submit their device for possible

use by the robot players. Before confirming their submission, subjects could continue

to make any alterations to their device without any time limits. Both the device and

the summary table were updated anytime as subjects adjusted their color choices for

the two halves of the 24 balls.

While the finite number of balls imposes some limitations, this device still enables

subjects to implement a large number of probability distributions. Specifically, sub-
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jects could feasibly design 2925 distinct probability distributions, including the DCE

distribution of each game. Therefore, it was unlikely that subjects would find the

DCE distribution randomly within the five attempts provided for each game.

4.2 Incentivization and Feedback Between Rounds

For each game, subjects’ payoffs were aligned with the objective in (1): to design

a recommendation device that implements the DCE, i.e., a CE where the minimum

expected payoff across the two players is as large as possible. We achieved this by

structuring the point system as follows.

Subjects were informed that a large number of pairs of robot players would play

the game against each other, with each pair receiving a random recommendation

made by their designed device.12 If even a single instance occurred where a robot

player chose not to follow a recommendation made by the device, no points would be

awarded for that device. Conversely, if recommendations from a device were always

followed, the subject would earn points equal to the minimum of the average payoff

across all robot players 1 and the average payoff across all robot players 2.

With this payment structure, subjects were motivated to target the set of CE as a

whole, since a positive payoff was only awarded for a device for which all recommen-

dations were followed. However, the maximum number of points was awarded for the

device that implemented the solution of (1), i.e., the DCE µ∗.

At the end of the experiment, a random game was selected, and subjects were

paid for the device that earned the highest number of points for that game across five

rounds. This approach was intended to motivate subjects who had found a CE to

keep experimenting to identify the device that implements the DCE.13 Subjects were

12Although this explanation may suggest a dynamic context with repeated interactions, we em-
phasized that robots would treat each round as a one-shot game when deciding whether to follow
the recommendations. See page 2 of the instructions in the Online Appendix A.

13Choosing a random round within a random game might have led subjects to stop experimenting
once they found any CE (not necessarily the DCE), in order to maximize their chances of receiving
some payment.
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paid at a rate of 6 USD per point earned, in addition to a show-up fee of 10 USD.

We provided feedback to subjects between rounds. They were informed whether

all recommendations from their device were followed. If so, we shared the points

earned and whether the device could be further improved to earn more (see Figs. C1

and C2 in Online Appendix C). This feedback essentially indicated whether they

had found the DCE, only a CE, or neither. Along with the rule that only the best

device across the five rounds in a game was considered for payment, this incentivized

subjects to experiment with their designs.

If some recommendations were not followed (i.e., a CE was not achieved), we

presented a ball from their device where one robot player did not follow the rec-

ommendation. This ball was selected randomly based on the device’s probability

distribution. We explained which player did not follow the recommendation and why,

emphasizing that subjects must consider their device as a whole to ensure incentive

compatibility.14 To avoid overwhelming subjects, we revealed only one ball at a time

and did not show the full calculations. This approach encouraged deeper reasoning

without revealing the correct answer. Subjects could refer to the instructions for

examples of reasoning. Evidence provided in the Online Appendix E.1 suggests that

subjects responded to this feedback.15

4.3 Games Considered in the Experiment

Subjects designed recommendation devices for five games: Prisoner’s Dilemma, Match-

ing Pennies, Battle of the Sexes, and two versions of the Chicken game. The payoffs

of each game are presented in the left column of Table 1, together with the volume

of the set of all CE as a fraction of the volume of the set of probability distributions

over action profiles and the payoff in the DCE (the distribution that solves problem

14See Fig. C3 in Online Appendix C, where the reasoning was “Given what P2 perceived about
what P1 was recommended, which is based on the composition of all the balls in the container, P2
decided that it is in its interest not to follow the recommendation.”

15In particular, when informed that a recommendation from a particular ball was not followed,
subjects tended to decrease the number of this ball in their subsequent device.
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(1)). We list below the DCE for each game.16

(i) Prisoner’s Dilemma: The DCE is µ∗RR = 1 and µ∗RB = µ∗BR = µ∗BB = 0.

(ii) Matching Pennies: The DCE is µ∗RR = µ∗RB = µ∗BR = µ∗BB = 1/4.

(iii) Battle of the Sexes: The DCE is µ∗RB = µ∗BR = 1/2, and µ∗RR = µ∗BB = 0.

(iv) Chicken, version 1: The DCE is µ∗RB = µ∗BR = µ∗BB = 1/3, and µ∗RR = 0.

(v) Chicken, version 2: The DCE is µ∗BB = 1/2, µ∗RB = µ∗BR = 1/4, and µ∗RR = 0.

Table 1 also provides a graphical representation of each game in both the joint

distribution space (middle panels) and the payoff space (right panels). In these plots,

white discs correspond to the Nash equilibria of the game, and the black dot shows

the DCE. The distribution space is a three-dimensional simplex, represented in co-

ordinates (µRB, µBR, µBB). Here, the origin corresponds to giving full weight to the

(R,R) recommendation, which is the Nash equilibrium for the Prisoner’s Dilemma,

for example. In the first two games, there is a unique CE, so their sets are singletons

with zero volume. For the last three games, the set of CEs forms a polytope; its edges

are shown in black and the faces are colored. Projections of the DCE onto the axes

are indicated by dashed lines.

The space of expected payoffs for two robot players is two-dimensional, offering a

clearer illustration. However, it should be emphasized that these are projections from

the distribution space. For each game, we display (i) the set of feasible payoffs (the

light-grey shaded area), (ii) the set of CEs (the light-blue shaded area with a thick

solid boundary), and (iii) the convex hull of Nash equilibrium payoffs (the dark-blue

shaded area). In both Chicken games, the convex hull is a proper subset of the set of

CEs, but in the Battle of the Sexes, these two sets coincide. For each game, the DCE

corresponds to the CE that is both Pareto efficient and fair, meaning that it lies on

the upper frontier of CE payoffs and the expected payoffs of both robot players are

equal.

16Online Appendix D shows derivations and how our interface implements them.
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Game Distribution Space Payoff Space

Prisoner’s Dilemma

PD Red Blue
Red (4, 4) (6, 1)
Blue (1, 6) (5, 5)

CE set volume: 0
Desirable CE payoff: 4

Desirable CE

0 1 2 3 4 5 6
0

1

2

3
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5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

Matching Pennies

MP Red Blue
Red (5, 3) (3, 5)
Blue (3, 5) (5, 3)

CE set volume: 0
Desirable CE payoff: 4

Desirable CE

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

Battle of the Sexes

BoS Red Blue
Red (0, 0) (6, 2)
Blue (2, 6) (0, 0)

CE set volume: 0.118
Desirable CE payoff: 4

Desirable CE

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

Chicken - ver 1

C1 Red Blue
Red (0, 0) (6, 1)
Blue (1, 6) (5, 5)

CE set volume: 0.167
Desirable CE payoff: 4

Desirable CE

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
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f
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Chicken - ver 2

C2 Red Blue
Red (0, 0) (6, 2)
Blue (2, 6) (5, 5)

CE set volume: 0.144
Desirable CE payoff: 4.5

Desirable CE

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

Table 1: Games used in the experiment.
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4.4 Research Questions

With this experimental design, we address several research questions for each game:

1. Do subjects design devices that implement the DCE? If not, how close are they?

2. What devices do subjects tend to design? How do these evolve with experience?

3. Do subjects’ performance and their individual characteristics correlate?

As discussed in the Introduction, evaluating the ability to design recommendations

that support a CE offers a more comprehensive assessment of equilibrium thinking, re-

vealing aspects of individuals’ strategic reasoning that previous experiments could not

address due to various confounds. Generally, the implementation of CEs in strategic

interactions requires understanding such concepts as individual incentives, random-

ization, and correlation. Therefore, we have chosen five classic games with varying CE

and DCE structures to investigate how these structural differences impact answers to

our research questions. These differences are summarized in Table 2.

All games require randomization except for Prisoner’s Dilemma where the unique

CE is the unique Nash equilibrium in pure strategies. Neither Prisoner’s Dilemma

nor Matching Pennies require correlation, as their DCEs are also Nash equilibria. In

contrast, Battle of the Sexes requires perfect correlation (i.e., it can be implemented

using a public randomization device), while the two Chicken games require more

nuanced, partial correlation (i.e., private recommendations are required).

Randomization Correlation Alignment of Incentives

PD No None Strongly Unaligned
MP Yes None Aligned
BoS Yes Perfect Aligned
C1 Yes Partial Weakly Aligned
C2 Yes Partial Weakly Aligned

Table 2: Differences in the types of reasoning required to solve for the DCE across games.
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We consider individual incentives in the games from the perspective of their align-

ment with the socially desirable outcome (SDO). In Matching Pennies and Battle of

the Sexes, the DCEs are socially desirable (i.e., the constrained and unconstrained

versions of (1) have the same solution), indicating perfect alignment. In Prisoner’s

Dilemma and both versions of Chicken, however, the SDO is µSD
BB = 1, which is not a

CE. We describe the alignment as weak in the Chicken games, where the DCE assigns

positive weight on the SDO (µSD
BB = 1/3 in C1 and µSD

BB = 1/2 in C2). In contrast, we

consider the incentives strongly unaligned with the SDO in the Prisoner’s Dilemma,

where µSD
BB = 0.17

5 Results

In Sections 5.1 to 5.3, we address in turn the three research questions posed above

for each game. Then, in Section 5.4, we compare the results across games and discuss

the insights gained from this comparison, emphasizing four key findings.

5.1 How Well Did Subjects Perform?

Recall that the subjects’ objective in each game was to design a device corresponding

to the DCE, which would maximize their points. In three games, where other CEs

are also possible, designing a device corresponding to any of them would still earn

some points. Additionally, when the DCE is not found, it is interesting how far the

subjects were from designing the optimal device.

These considerations lead us to focus on three performance measures.18

TopScore: An indicator equal to 1 if a subject designed the DCE, and 0 otherwise.

Score: The number of points a subject earned, relative to the maximum points pos-

17A quantitative measure of the alignment between strategic incentives and the SDO is provided
in Section 5.4.1.

18Online Appendix E.2 presents two additional measures: an indicator whether any CE was found
and Selten measure, which penalizes the CE indicator by the volume of the CE-set.
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sible. Score is 1 if the DCE is implemented, and positive if any CE is implemented.19

N-RMSE: A normalized Root Mean Square Error (RMSE) measure capturing how

close a subject’s designed distribution µ is to the DCE µ∗. The RMSE between two

arbitrary distributions µ and ν is defined as:

RMSE(µ, ν) ≡
√∑

a∈{R,B}2
(µ(a)− ν(a))2 .

N-RMSE scales the measure to the [0, 1] interval and increases as µ approaches µ∗:

N-RMSE(µ;µ∗) ≡ 1− RMSE(µ, µ∗)

maxµ′ RMSE(µ′, µ∗)
. (2)

This measure complements the two point-based measures, as a subject’s device may

implement a distribution close to the DCE but still earn zero points if it is not a CE.

Note that N-RMSE equals 1 if and only if µ = µ∗, and 0 when µ is maximally distant

from the DCE µ∗ in terms of RMSE.

All three measures are defined for a given game and round. However, we focus on

participants’ best attempt in each game. Therefore, for each participant, we calculate

all three performance measures for each of the five rounds. Then, for each measure,

we take the participant’s maximum across the five rounds and average these across

the entire sample. Fig. 3 provides a graphical comparison of the three aggregate

performance measures, computed in this way, across the five games in our study.

We begin by examining whether subjects designed devices that implement the

DCE in each game. TopScore shows that performance is highest in Battle of the

Sexes (nearly 80% found the DCE) and Matching Pennies (nearly 75% found the

DCE), with no statistically significant difference between the two.20 In contrast, a

minority of subjects implemented the DCE in the other games: approximately 40%

in Prisoner’s Dilemma, 30% in Chicken 2, and 20% in Chicken 1.

19Normalization is useful because the maximum points varied across games. For example, the
second version of Chicken has a maximum payoff of 4.5 points, while all other games have a maximum
of 4 points.

20This is based on a two-sided t-test for the difference of two averages at the 5% significance level,
which we use hereafter unless specified otherwise.
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Figure 3: The average (across all subjects) of the highest value in five rounds for each of the
three performance measures in each game. Error bars represent 95% confidence intervals.

Next, we assess how close the designed devices are to implementing the DCE by

examining both Score and N-RMSE. N-RMSE is high for Battle of the Sexes and

Matching Pennies, indicating that even subjects who did not find the DCE were close

to it. Despite this similarity, the Score in Battle of the Sexes is significantly higher

than in Matching Pennies. This difference arises because Matching Pennies has a

unique CE, while Battle of the Sexes has multiple CEs. While subjects struggled to

implement the DCE in the Chicken games, they were near the objective, as reflected

by a high Score. That is, subjects consistently found a CE that was reasonably close

to the optimal one in terms of Pareto efficiency and fairness. Although N-RMSE is

significantly lower in the Chicken games compared to Battle of the Sexes and Matching

Pennies, it is significantly higher than in Prisoner’s Dilemma. In Prisoner’s Dilemma,

performance was the lowest: subjects struggled to find the DCE and, overall, designed

devices that were maximally distant from it in terms of N-RMSE.

In summary, overall performance was highest in Battle of the Sexes and Match-
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Figure 4: Average designed device for each game across rounds (from round 1 to round 5,
reading left to right within each game bin). The final bar in each bin, marked with a star
?, represents the DCE for the game. Black circles indicate the average Score per round.

ing Pennies, intermediate in the Chicken games, and lowest in Prisoner’s Dilemma.

Section 5.4 explores how the structures of these games may underlie this finding.

5.2 What Devices Did Subjects Design?

We now examine the recommendation devices designed by subjects in each game.

To do this, we adjust our raw dataset by imputing the DCE device for all rounds

following the first round in which a subject achieved the DCE.21

We begin by illustrating in Fig. 4 the average designed device for each round in

each game. This average is calculated by taking the mean of the designed distribu-

21Subjects completed all five rounds for a game, even if they achieved the DCE earlier. In 687
out of 711 cases, subjects did not change their device once the DCE was achieved. However, in 24
cases (3.38%), subjects continued to experiment with other devices despite already having designed
the DCE. Although this experimentation had no impact on payoffs (since they were paid for the
best round), these instances could distort our performance statistics if not corrected. Therefore, we
imputed the use of the DCE for all subsequent rounds after it was first achieved.
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tions across all 100 subjects for each round.22 Each bin shows the fractions of the

corresponding action profiles (reflecting the four types of colored balls placed by sub-

jects in their containers) for each of the five rounds, with the final bin for each game

displaying the DCE distribution. We also superimpose the evolution of the Score

measure as a black line.23

Starting with Prisoner’s Dilemma, recall that the unique CE in this game is also

the unique Nash equilibrium in pure strategies, i.e., where µ∗RR = 1. Although sub-

jects increased the weight on action profile (R,R) round-by-round, convergence to

the DCE was slow: by round 5, the average device allocated only approximately 50%

weight to (R,R). Subjects did not fully abandon the socially desirable profile (B,B),

as the average weight on this profile remained relatively constant from rounds 2 to 5.

This further corroborates the finding that performance in Prisoner’s Dilemma showed

the greatest distance from the DCE (recall Fig. 3).

In contrast, for Matching Pennies and Battle of the Sexes, the average device

by round 5 is very close to the corresponding DCE. This is in line with Score and

other performance measures as shown in Fig. 3. Note that learning in these games is

relatively quick, with significant improvements occurring already after round 1.

For the two versions of the Chicken game, subjects, on average, successfully elim-

inated the extremely undesirable action profile (R,R), but did not consistently im-

plement the precise DCE distribution. By round 5, subjects appear to underestimate

the extent to which they can recommend the socially desirable profile (B,B).

While inspecting the aggregate data provides insight into the average recommen-

dation behavior of participants, investigating the distribution of recommendation de-

vices at the individual level offers a deeper understanding of how subjects attempted

to solve each game. For each game, we compare the distribution of recommendation

devices designed by subjects in round 1 (their initial attempt) with the distribution

22Note that for a device µi designed by subject i, the average over N subjects, µ ≡
∑N

i=1 µi/N ,
is a feasible distribution over action profiles {R,B}2; that is, µ ∈ ∆({R,B}2).

23Online Appendix E.3 shows the dynamics over the five rounds for other performance measures.
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(b) Payoff Space: Round 5

(c) Distribution Space: Round 1 (d) Distribution Space: Round 5

Figure 5: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Prisoner’s Dilemma in round 1 vs. round 5.

in round 5 (their final attempt or the DCE, if achieved earlier). The results for the

Prisoner’s Dilemma and the two Chicken games – identified as the most challenging

– are discussed here, while Online Appendix E.4 discusses the remaining two games.

Figs. 5 to 7 illustrate the results both in the space of players’ expected payoffs (top

panels of each figure) and in the distribution space with coordinates (µRB, µBR, µBB)

(bottom panels of each figure), cf. Table 1.
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Prisoner’s Dilemma. Fig. 5c reveals that, in Round 1 of the Prisoner’s Dilemma,

several salient distributions are attempted by subjects, including the DCE, the SDO,

and a 50-50 mix between these two profiles. In general, subjects tend to place too

much weight on the (B,B) profile, as indicated by the distinct number of devices

implying expected payoffs in the upper-right quadrant relative to the DCE in Fig. 5a.

By round 5, as shown in Fig. 5d, the modal response is the DCE. However, a majority

of recommendation devices remain suboptimal, appearing almost randomly dispersed

across the distribution space. Thus, no consistent pattern emerges among subjects

who failed to reach the DCE by round 5. Nonetheless, there remains a tendency for

devices in round 5 to place substantial weight on the socially desirable (B,B) profile,

as demonstrated by the significant number of devices implying expected payoffs that

lie along the 45-degree line above the DCE (Fig. 5b).

Chicken, Version 1. Recall that in the Chicken 1 game, the DCE places zero prob-

ability on profile (R,R) and equal probability on the remaining profiles, including the

socially desirable profile, (B,B). As seen in Fig. 6c, subjects begin optimistically:

they assign more weight to the socially desirable profile than strategic incentives jus-

tify. This is strongly evidenced by the modal recommendation device, which coincides

with the SDO, and by many devices implying expected payoffs that lie to the upper-

right of the DCE payoffs (Fig. 6a). By the final round, however, subjects seem to

have learned that they cannot recommend (B,B) too often. Indeed, the majority of

devices now fall within the set of CE (Fig. 6d).24 The two most salient devices in

round 5 are the DCE (now the modal device) and a device that mixes 50-50 between

the two asymmetric Nash equilibria, (R,B) and (B,R). Additionally, some devices

imply expected payoffs along the 45-degree line between these two prominent devices

(Fig. 6b). This suggests that subjects recognized that partial correlation, by mixing

some (B,B) with the asymmetric action profiles, was desirable given the objective.

Very few subjects continue to design devices that over-weight the socially desirable

24The percentage of subjects who designed a device implementing any CE increased from 37%
in round 1 to 93% in round 5.
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Figure 6: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Chicken 1 in round 1 vs. round 5.

profile. In fact, most appear to underestimate the extent to which (B,B) can be

recommended. This aligns with the average device for Chicken 1 shown in Fig. 4.

Chicken, Version 2. This game is similar to Chicken 1 in that the DCE assigns

zero weight to the inefficient action profile (R,R). The main difference is that sub-

jects can place more weight on the socially desirable profile in this version of Chicken

(µ∗BB = 1/2 rather than 1/3 as in Chicken 1). Examining Fig. 7, we observe that
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Figure 7: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Chicken 2 in round 1 vs. round 5.

the distribution of designed devices for Chicken 2 resembles the distribution found

in Chicken 1. In round 1, subjects overestimate the extent to which they can rec-

ommend the socially desirable action profile: the modal device implements the SDO,

µSD. However, as with Chicken 1, by round 5, subjects appear to have understood

qualitatively that they cannot recommend (B,B) too frequently. Instead, most rec-

ommendation devices now constitute CEs.25 The modal device implements the DCE,

25The percentage of subjects who designed a device implementing any CE increased from 54%
in round 1 to 96% in round 5.
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Variable Average Description

StudyYear 2.96 year of study (from 1-freshman to 6-PhD Student)
CRTNcorr 2.44 number of correct answers on CRT (from 0 to 5)
CRTIntuit 1.68 number of intuitive answers on CRT (from 0 to 5)
StratSoph 0.60 level of reasoning (from 0 to 2)
GenderF 0.54 1 if gender is Female, = 0 if gender is Male
GameOrder 3.00 order in which the game was played (1-first : 5-last)

Study majors: Arts, BiologicalSc, Business, Design, Economics, Engineering,
HealthMed, Inform&CS, SocialSc, PhysicalSc

Table 3: List of all potential correlates. The second column reports their average values.

yet the device that mixes 50-50 between the two asymmetric Nash equilibria, (R,B)

and (B,R), is also salient (Fig. 7d). Fig. 7b further shows that several devices im-

plement expected payoffs along the 45-degree line between these two salient devices,

again suggesting that subjects understood that partial correlation of the actions of

the robot players was necessary to some extent. Consequently, similar to Chicken 1,

the average designed device assigns an insufficient probability to the socially desirable

profile, as observed in Fig. 4.

5.3 Do Subject Characteristics Correlate with Performance?

At the end of the experiment, we collected demographic information from the subjects.

We also presented them with a five-question CRT test and the 11-20 game task

designed to measure their strategic reasoning. We now investigate whether any of

this information sheds light on the sources of individual heterogeneity in performance.

Since the game order was randomized across subjects, we also check whether this had

any impact on performance. Table 3 provides a list of all the correlates we consider.26

As the Score is directly linked to the subjects’ payoffs, we focus on analyzing

this measure here. The results for the TopScore performance measure are presented

26See Online Appendix B for the correct and intuitive answers to CRT questions. For the 11-20
game task, we followed Arad and Rubinstein (2012), estimating the highest level as 2 and categorizing
subjects who answered 18 or 19 as levels 2 and 1, respectively. All other subjects were categorized
as level 0. For the proportions of study majors, see Table E2 in Online Appendix E.5. This table
also reports all pairwise correlations among the potential explanatory variables.
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PD MP BoS C1 C2

GameOrder
−0.0627∗ 0.0346 −0.0244 0.0235 0.0075
(0.0317) (0.0310) (0.0165) (0.0211) (0.0184)

CRTNcorr
−0.0159 0.0618∗∗ 0.0349∗∗ −0.0025 0.0311∗

(0.0299) (0.0309) (0.0146) (0.0187) (0.0162)

StratSoph
0.0809 0.0746 0.0144 0.0728∗ 0.0528

(0.0623) (0.0641) (0.0301) (0.0388) (0.0336)

GenderF
−0.0392 0.0834 −0.0221 −0.0805 0.0368
(0.1029) (0.1055) (0.0509) (0.0644) (0.0573)

StudyYear
0.1184∗∗∗ −0.0247 0.0096 0.0020 0.0033

(0.0446) (0.0457) (0.0216) (0.0277) (0.0241)

Diagnostic: R2 0.3326 0.1689 0.2865 0.1869 0.1402

* 10%, ** 5%, *** 1% levels of significance (two-sided t-test)

Table 4: Regressions of the highest Score (over five rounds) on the set of correlates. Study
major dummies were included as additional controls. These and the intercept are not shown
here (see Online Appendix E.5 for complete results). Each regression uses 100 observations.
Standard errors are reported in parentheses.

in Online Appendix E.5. For each game, we regress the highest value (over the five

rounds) of the Score for each subject on the set of correlates. The results are presented

in Table 4.

First, note that performance on the CRT significantly increases the Score in

Matching Pennies and Battle of the Sexes at the 5% level. This can be attributed to

the fact that our experimental task required substantial contemplative effort rather

than intuitive reasoning. However, these two games were among the easiest for the

subjects, suggesting that high CRT performance alone was not sufficient for the re-

maining three games.27 Second, the year of study is a significant determinant of

performance in the Prisoner’s Dilemma.28

It is also informative to examine potential correlates that do not exhibit a signif-

27The CRTNcorr is also significant in Chicken 2 but only at the 10% level. For the TopScore
regressions, it is not significant for both Chicken games, but it is significant for the Battle of the
Sexes.

28From more general regressions in Online Appendix E.5, subjects who major in Economics,
Engineering, and Physical Sciences perform significantly better in the Prisoner’s Dilemma compared
to those who major in other fields. This likely reflects a higher familiarity with the Prisoner’s
Dilemma from their study among these experimental subjects.
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icant relationship. First, there is no effect of strategic sophistication on the Score,

except for marginal significance at the 10% level in Chicken 1. This may be because

our measure is too crude to capture the necessary elements for our task or because

it is positively correlated with CRTNcorr. Second, no order effects are observed, in-

dicating that performance in a particular game was not influenced by when subjects

engaged with that game.29 Thus improvements in performance primarily occur with

experience within a game across rounds, as discussed in Section 5.2.

These findings suggest that individual characteristics (at least those we collected)

may explain less of the variation in performance compared to the characteristics of

the games themselves. We explore this further in the following section.

5.4 Discussion

Our analysis shows significant performance differences across the five games (Fig. 3).

Subjects successfully found the DCE in Battle of the Sexes and Matching Pennies but

struggled in Prisoner’s Dilemma, Chicken 1, and Chicken 2 (though many did find

some CE in the latter two). Learning was also slow in these latter three games. By the

fifth round, the DCE was the modal response, but the average device deviated signif-

icantly from the DCE, particularly in Prisoner’s Dilemma (Fig. 4). This considerable

variation in performance cannot be solely attributed to subjects’ characteristics.

Implementing the DCE in each game involves three key aspects of equilibrium

reasoning: (a) aligning strategic incentives with socially desirable outcomes, (b) the

necessity of randomization, and (c) the degree of correlation required, as detailed in

Table 2. We will now examine our results through these lenses.

29The only exception is the Prisoner’s Dilemma, where, at the 10% significance level, performance
decreased as the game was played later.
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µSD µ∗ 1− N-RMSE(µSD;µ∗)
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Table 5: The SDO, µSD and the DCE, µ∗, in coordinates (µ∗RR, µ
∗
RB, µ

∗
BR, µ

∗
BB); and

the N-RMSE between them for each game.

5.4.1 The Alignment of Strategic Incentives

We first examine how well the strategic incentives in each game align with socially

desirable outcomes. Subjects aimed to design a recommendation device that gener-

ates a fair and Pareto-efficient outcome for rational players, targeting the DCE, µ∗,

which solves the constrained optimization problem (1). However, the objectives of

fairness and efficiency might also lead towards the socially desirable outcome, µSD,

the unconstrained solution of (1) that ignores the strategic incentives of rational play-

ers. As discussed in Section 4.4, the alignment between the DCE and the SDO varies

significantly across five games, which may explain the differences in design success.

We quantify this alignment, previously shown qualitatively in Table 2, by comput-

ing the normalized distance between the DCE and the SDO, see Table 5.30 Strategic

incentives align perfectly with the SDO in Matching Pennies and Battle of the Sexes,

where µ∗ and µSD coincide. In contrast, Prisoner’s Dilemma shows maximal mis-

alignment, as µ∗ is far from µSD. Both Chicken games exhibit partial alignment, with

Chicken 2 aligning more closely with µSD than Chicken 1. The alignment order is:

MP ∼ BoS � C2 � C1 � PD. (3)

We observe that this order relates to performance in the experiment and formulate:

30Our performance measure, N-RMSE, defined in (2), is the normalized RMSE transformed to
decrease with distance. Here, we use 1−N-RMSE.
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Finding 1. Performance in the experiment is inversely related to how well strategic

incentives align with the social objective.

Support: Subjects performed best in Matching Pennies and Battle of the Sexes,

where incentives fully align with the social objective. They performed less well in

the Chicken games, where incentives are only weakly aligned but still managed to

find CE close to the optimum (evidenced by high Score and N-RMSE in Fig. 3).

Moreover, in their final attempts, subjects tended to underweight the socially opti-

mal action profile (B,B), as discussed in Section 5.2. This suggests that subjects, at

least qualitatively, understood the role of strategic incentives in the Chicken games,

which may be due to the fact that these incentives are weakly aligned with the SDO.

Furthermore, according to (3), strategic incentives are more closely aligned with the

SDO in Chicken 2 compared to Chicken 1. As shown in Fig. 3, subjects were more

likely to find the DCE in Chicken 2 (approximately 10% more subjects) and achieved

a higher Score, although these differences are not statistically significant. The poor-

est performance was in Prisoner’s Dilemma, where strategic incentives are completely

misaligned with the social objective: most subjects did not find the DCE, and their

devices were relatively distant from the optimum (Fig. 3). Subjects consistently

placed a positive weight on the socially optimal action profile (B,B) throughout the

experiment (Figs. 5b and 5d), and the average weight on this action profile did not

decrease significantly with experience (Fig. 4).

The analysis in Section 5.2 provides insight into how the relationship in Finding 1

arises. Initially, subjects tend to implement the unconstrained optimal device for each

game. The degree of alignment between the DCE and the SDO affects their success.

Subjects then adjust their devices towards the DCE but do this slowly. We formulate

Finding 2. Subjects initially design a device for each game that implements the

socially desirable outcome, µSD. By their final attempt, the modal device is the DCE,

µ∗; however, adjustments to this device are slower the further µ∗ is from µSD.

Support: In Round 1, the unconstrained optimal device, µSD, is the modal choice in
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Matching Pennies, Battle of the Sexes, and the two Chicken games, and is a salient

choice in Prisoner’s Dilemma. This device works well in Matching Pennies and Battle

of the Sexes, where the SDO aligns with the DCE. In other games, subjects need

to adjust their devices to account for incentive constraints. By Round 5, the DCE

becomes the modal choice across all games. While subjects do not, in the aggregate,

successfully implement the DCE in either version of Chicken, µ∗ is close enough to

µSD that subjects are able to find a CE with positive payoffs. In contrast, since the

DCE is maximally distant from the SDO in Prisoner’s Dilemma, adjustments are

insufficient, resulting in the lowest final performance in Round 5 across all games.

5.4.2 The Necessity of Randomization

Our performance results suggest that subjects had no difficulty designing devices that

generate recommendations at random. In particular, they successfully designed the

DCE when randomization (at least in the symmetric form) was required. We have:

Finding 3. Subjects are capable of implementing randomization of recommendations

with their devices.

Support: Performance is highest in Matching Pennies and Battle of the Sexes, both

of which necessitate randomization. In contrast, the DCE for Prisoner’s Dilemma

does not require randomization, and this is the game where aggregate performance

was lowest.

One might suspect that our experimental design encouraged subjects to overuse

randomization. However, we found no evidence of aversion to design devices offering

pure-strategy recommendations. Many subjects designed pure-strategy devices, in-

cluding those implementing the SDO in the Prisoner’s Dilemma and Chicken games

(Figs. 5a, 6a and 7a). Subjects also designed devices implementing the asymmetric

pure-strategy Nash equilibria in the Battle of the Sexes and Chicken games (Figs. 6, 7

and E5). Furthermore, we provided examples of devices recommending only a single

action profile in the instructions to demonstrate that such devices could be optimal
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given the objective.31

5.4.3 The Degree of Correlation

Focusing finally on the degree of correlation required in the DCE, we formulate:

Finding 4. Subjects are capable of designing devices with varying degrees of corre-

lation. However, they tend to struggle more with implementing partial correlation

compared to perfect correlation.

Support: Subjects achieved the highest TopScore in games requiring perfect correla-

tion (Battle of the Sexes) and no correlation (Matching Pennies). In contrast, the

TopScore was lower in each version of the Chicken game, where partial correlation

was required. However, this difficulty seems to be quantitative rather than qualita-

tive. The relatively high Score in the Chicken games indicates that subjects were

able to achieve at least partial correlation. Specifically, they successfully eliminated

the inefficient profile (R,R) and assigned some weight to the unconstrained optimal

profile (B,B).

While subjects had the least success in the Prisoner’s Dilemma, a game that

requires no correlation, they performed well in Matching Pennies, which also does

not require correlated behavior. Thus, the lack of correlation alone does not account

for the low performance in the Prisoner’s Dilemma.

6 Conclusion

Our main contribution in this paper is the development of a methodology for ex-

amining strategic sophistication while mitigating common issues such as strategic

31Romero and Rosokha (2023) found that individuals can randomize effectively in the indefinitely
repeated Prisoner’s Dilemma when given an appropriate interface. In contrast, our experiment
involves one-shot Prisoner’s Dilemma, where randomization does not yield a payoff to the subject.
Nevertheless, subjects still tend to use randomization strategies.
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uncertainty and social preferences. We achieve this by having subjects design recom-

mendation devices for the play of games for rational robot players, that only follow

their own recommendations if it is in their best interests given the distribution of

recommendations made to other players implied by their device.

Overall, subjects successfully designed recommendation devices for various games,

aiming to implement correlated equilibria that are Pareto efficient and fair. Their

performance significantly improved across rounds, with the modal device designed by

subjects in every game effectively implementing the desirable correlated equilibrium.

Performance, however, varied across games. Subjects excelled in designing devices

for Battle of the Sexes and Matching Pennies, where most successfully identified the

desirable correlated equilibrium, and those who did not still created devices that

were nearly optimal. While subjects found it more challenging to design the best

device for the two versions of the Chicken game, they were still able to implement

some correlated equilibria. In contrast, in Prisoner’s Dilemma, subjects struggled

significantly with the qualitative aspects of equilibrium reasoning driven by the game’s

strategic incentives. Most subjects did not solve the Prisoner’s Dilemma problem, as

they could not let go of the idea of recommending a socially desirable profile with a

strictly positive probability. This suggests that individuals face difficulties reconciling

strategic incentives with socially desirable outcomes.

Our findings imply that people approach equilibrium reasoning with a cooperative

mindset, even when dealing with non-cooperative incentives, particularly in scenarios

aimed at achieving socially desirable outcomes. It appears challenging for subjects to

accept that strategic incentives may conflict with desirable outcomes, and they often

do not realize that no device can utilize the socially efficient profile in the Prisoner’s

Dilemma. This tendency holds despite the strong strategic incentives present, where

each rational robot player has a strictly dominant strategy. That is, humans seem to

project their cooperative mindset onto robots.

The experimental framework proposed in this paper is flexible and can be adapted
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for investigating correlated equilibria in any two-player game. While we focused on

symmetric games, future research could explore asymmetric games and coordination

among more than two players. Moreover, although our experimental design with robot

players was intended to isolate individuals’ reasoning about equilibrium, it would be

valuable to study whether recommendations differ when made for humans instead of

robots. This would help distinguish between individuals’ strategic reasoning capabil-

ities and their perceptions of others’ abilities in strategic contexts. This promising

direction will be explored in future research.
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Appendix For Online Publication Only

A Experimental Instructions

Welcome

Welcome to this experiment in economic decision-making. Please read these instruc-

tions carefully as they explain how you earn money from the decisions you make. For

completing this experiment you are guaranteed the $10 show-up fee. Depending on

your actions, you can earn an additional amount as explained below. Your earnings

during the experiment will be computed in points that will be converted to the real

dollars at the end of the experiment at the rate of 1 point = $6, so more points means

more money.

Please do not talk with others for the duration of this experiment and silence all

mobile devices. If you have any questions, please raise your hand.

Overview

Your job will be to design recommendations to two intelligent robot players on how

they should play a game with one another. In this game, the two robot players have

to simultaneously choose between two actions, labeled Red and Blue. After making

their choices, each robot player receives a payoff in points that depends: (1) on the

action color they chose and (2) on the action color that the other player chose.

The payoffs of robot Player 1 and of robot Player 2 are shown in the payoff table

of the game. Each cell of the table corresponds to the chosen actions of both players.

The payoffs of robot Player 1 are shown in the lower left part of the cell, and the

payoffs of robot Player 2 are shown in the upper right part of the cell.

The figure below provides an example of the payoff table for a game. In this

case, if, say, Player 1 (P1) plays Blue and Player 2 (P2) plays Red, then the payoff
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to Player 1 is 2 points and the payoff to Player 2 is 5 points.

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Games will differ in their payoffs to each player. The specific payoffs will be known

to both the robot players and you.

The two robot players are not able to communicate with one another. Further,

each game will be played for multiple periods but the robot players in each period

will always be different (so that their actions will not depend on what was played in

the past).

Your task is to design a device that will make recommendations to both

players about which color action they should choose in each period. These recom-

mendations are separate, that is, each robot player knows only their own recommen-

dation from your device. However, the robot players know the design of your device

and use this knowledge to infer as much as possible about the recommendation the

other robot player received.

The robot players are not easily influenced and do not follow recommenda-

tions blindly. They are self-interested, intelligent and take into account that the

other robot player is self-interested and intelligent as well. When a particular color

action is recommended to a robot, it will investigate whether it is truly worthwhile

to follow this recommendation, using all the information from the design of your rec-

ommendation device. The robot player will do this by answering two questions: (a)

given the device and the recommendation received, what is the percentage chance

that the other robot player received each of their possible recommendations?; and

(b) given that the other robot player follows their recommendation, do I (the robot)

earn a higher payoff by following the recommendation given to me or by choosing the

other color action?
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You will design this recommendation device for five games that will differ in their

payoffs to the two players. You will design a separate device for each game. This will

happen sequentially. This means that you will first design the device for one game,

then, once completed, for the next game, and so on. For each game, there will be five

rounds during which you can update your recommendation device to try to increase

the amount of money that you take home with you today.

After reading these instructions, you will be asked several control questions. Next,

you will play three practice rounds. Right after the practice rounds, the main part

of the experiment (5 games with 5 rounds each) will start. After the main part, you

will be asked to answer several quiz questions and fill out a short survey. Following

completion of the survey, your participation in the study is over and you will be paid

your earnings.

Designing the recommendation device

For each game, your task is to design a device that makes separate recommendations

to Player 1 and to Player 2 as to which color action to choose, either Red or Blue.

With your device, the game will be played multiple periods. In each period, two

intelligent robot players will participate in the game, the row robot “Player 1” and

the column robot “Player 2”.

Your recommendation device will make use of a container filled with 24 balls.

Each ball can be split into two halves: one half is labeled 1 and the other half is

labeled 2. Your task is to select a color for each half of each ball, Red or Blue.

In other words, you will fill the container with 24 balls of four types, RR, RB, BR,

and BB, where the first letter corresponds to the half labeled 1 and the second letter

to the half labeled 2.

The picture below shows an example of the screen where you design a device.

You first choose the number of balls (out of 24) for which you want to color the half

labeled 1 Red or Blue. This choice is in the lower left part of your decision screen,
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labeled Recommendation to P1. Then, of those balls for which you colored the

half labeled 1 Red, you will chose the number of balls for which you want to color

the half labeled 2 Red or Blue. Similarly, out of those balls for which the half labeled

1 were colored Blue, you will chose the number of balls for which you want to color

the half labeled 2 Red or Blue. These two choices are in the upper right part of your

decision screen called Recommendation to P2. You can color the balls using either

a slider or by entering the exact number of Red balls in the box below the slider.

After you have made all selections, your device with the colored balls will be com-

plete. Below the device, the resulting Summary table will appear showing the total

number of balls of each type. You may wish to consult this summary table to better

comprehend how many balls of each type your device contains.

NOTE: you can achieve any desired device! For this, you do the following:

1. Count the number of balls in your desired device where the half labeled 1 is

Red. Insert this number as the Recommendation to P1.

2. Count the number of RR balls in the desired device, and insert this number in

the upper right part of the screen, under Recommendation to P2.

3. Count the number of BR balls in the desired device, and insert this number in

the middle right part of the screen, under Recommendation to P2.
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In the previous example, the device has 15 balls where the left part is Red: you can

count them inside the container, and you also can find it as a sum of 10 RR and 5 RB

balls in the second row of the Summary table. This number 15 is entered in the lower

left part of the screen as the Recommendation to P1. There are 10 RR balls, and

10 is entered in the upper right as the Recommendation to P2. Finally, there are

2 BR balls, and 2 is entered in the middle right part as the Recommendation to

P2.

You can adjust your device as many times as you want, until you click on the Next

button, at which point your device is finalized for the round.

After you design the device, it will be used to provide recommendations for many

periods of the game. Each period, the game will be played by a new pair of robot

players. One ball will be drawn at random and will be split in two halves. The half

labeled 1 will be given to Player 1 and the half labeled 2 will be given to Player 2.

The color of the piece of the ball given to each player represents the recommended

color action for each player.

The robot players know the design of your device, that is, the proportion

of colored balls of each type in the container. They use this knowledge in deciding

whether or not to follow the recommendation they received. If they can do better

by not following the recommendation of your device, then they will not follow the

recommendation of your device. Otherwise, they will follow it.

Examples of Recommendation Devices and Robots’ Reasoning

We discuss three examples for the game we introduced earlier:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1
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Example 1. Suppose you color all balls RR (i.e., both halves of all 24 balls are Red),

so that your resulting device looks as follows.

This device always recommends that Player 1 chooses Red and that Player 2 also

chooses Red. Even though Player 1 does not see the recommendation given to Player

2, by the design of the device, Player 1 knows that Player 2 is recommended to

choose Red. As such, Player 1 compares following the recommendation and receiving

a payoff of 0 points (Player 1’s payoff when both players play Red) to not following

the recommendation, choosing Blue instead and receiving a payoff of 2 points (Player

1’s payoff when Player 1 chooses Blue and Player 2 chooses Red). Since a payoff

of 0 from playing Red is smaller than 2 from playing Blue, Player 1 does not follow

the recommendation of Red. (Player 2 does not follow the recommendation as well.

Player 2 infers that Player 1 was recommended Red, and prefers to play Blue.)

In Example 1, Player 1 knew exactly what is recommended to Player 2 and Player

2 knew exactly what is recommended to Player 1. More generally, this will not be

the case.

Example 2. Suppose that you color 12 balls as RB and 12 balls as BB so that your

device is as shown below:
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Essentially, Player 2 is always recommended Blue, and Player 1 is recommended Red

or Blue with a chance of 50% each. While Player 1 knows that Player 2 is always

recommended Blue, Player 2 does not know the recommendation given to Player 1.

Player 2 only knows that Player 1 gets a recommendation of Red with a chance of

50% and gets a recommendation of Blue with a chance of 50%.

With this knowledge, Player 2 does not follow the recommendation of Blue. This

is because, if Player 2 chooses Blue, then Player 2 receives 3 points when Player 1

chooses Red (which occurs 50% of the time) and 1 point when Player 1 chooses Blue

(which occurs 50% of the time). This gives on average 0.5× 3 + 0.5× 1 = 2 points. If

Player 2 instead chooses Red, Player 2 receives 1 point when Player 1 chooses Red and

5 points when Player 1 chooses Blue, which is on average 0.5× 1 + 0.5× 5 = 3 points.

Hence, the average payoff from not following the recommendation and choosing Red

for Player 2 is higher than following the recommendation of Blue.

This illustrates the calculations that the self-interested, intelligent robots make in

deciding whether or not to follow the recommendations of your device. Note that the

ultimate reason Player 2 does not follow the recommendation of Blue in this example,

is because Player 1 is recommended to choose Blue too often (thereby incentivizing

Player 2 to play Red and grab the high payoff of 5). Just because Player 2 does

not follow the Blue recommendation does not necessarily mean Player 2 should be
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recommended to play Red!

Example 3. Consider the following device, where 18 balls are colored as RB and 6

balls are colored as BB.

Compared with Example 2, Player 2 is again always recommended Blue, but Player

1 is now more often recommended to play Red than Blue.

Consider the game from the perspective of Player 2. If Player 2 follows the rec-

ommendation to play Blue, and Player 1 follows its recommendations, then Player 2

will receive a payoff of 3 in 75% of all periods (that is when Player 1 is recommended

to play Red since 18/24 = .75 balls have the half labeled 1 colored Red) and a payoff

of 1 in 25% of all periods (that is when Player 1 is recommended to play Blue since

6/24=.25 balls have the half labeled 1 colored Blue). Player 2 thus expects to get 2.5

on average by following the recommendation (as 0.75×3+0.25×1 = 2.5). Not follow-

ing the recommendation and playing Red, will bring a payoff of 1 in 75% of all periods

and a payoff of 5 in 25% all periods i.e., 2 on average (as 0.75× 1 + 0.25× 5 = 2). It

is now better for Player 2 to follow the recommendation to play Blue.

We can also consider the game from the perspective of Player 1 who knows that

Player 2 was recommended Blue. Player 1 is indifferent between playing Red and

Blue, as the payoff will be 3 in either case (that is, when Player 2 plays Blue and

Player 1 plays either Red or Blue). Thus, Player 1 will follow the recommenda-
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tion Red, if received, and the recommendation Blue, if received. In this example,

all recommendations from this device will always be followed.

Your points for a round

For each game, you will participate in 5 rounds. At the beginning of the first round,

you will have to design the device. At the end of each round, you will receive feedback

on how well your device performed. At the start of each subsequent round, you will

have the opportunity to re-design the device.

Each round will give you a certain number of points, which convert into money

earnings at a fixed rate. We now describe how this amount of points is determined.

As stated, each round consists of robots playing the game for a very large number

of periods. In each period, a ball is drawn at random, which represents the recom-

mendation made to each robot player. The robot players decide whether or not to

follow their recommendations and play the game once. Then the ball is placed back

into the container, and a new period begins. A ball is drawn again for two new robot

players, and so on. The number of periods is so large that any particular ball in the

container will eventually be drawn at some point.

If in at least in one period, one of the robot players did not follow your recommen-

dation, then you will not receive any points in the round. That is, for you to receive

points, the robot players must always (that is, in all periods) follow the recommen-

dations that your device makes to them. In this case, your point earnings are equal

to the smallest of the two average payoffs, the average payoff earned by player

1 and the average payoff earned by player 2.

We return to our game and provide some examples of payoff calculations.
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P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Example 1. If you color all balls RR, then neither Player 1 nor Player 2 would

follow the recommendations from this device. You earn no points.

Example 2. If you color 12 balls as RB and 12 balls as BB, then Player 2 would not

follow the recommendations, as previously discussed. You earn no points.

Example 3. If you color 18 balls as RB and 6 balls as BB, then players would follow

your recommendations. Player 1 gets 3 points always with this device, and player 2

gets 2.5 points on average, as we calculated. The minimum of 3 and 2.5 is 2.5. Thus,

you earn 2.5 points.

Example 4. If you color all balls BR, you get this device.

Player 1 knows that Player 2 is recommended Red and follows the recommendation

Blue (as the payoff of 2 is not less than the payoff of 0 from not following this

recommendation). Player 2 knows that Player 1 is recommended Blue and follows

the recommendation Red (as the payoff of 5 is not less than the payoff of 1 from not

following this recommendation). Hence, you earn additional points with this device.

The minimum average payoff of 2 and 5 is 2. Thus, you earn 2 points.
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Feedback and updating the device

Between rounds, you will have a chance to update the design of your device (that is,

re-color the balls in the container of 24 balls).

After each round, you will receive feedback consisting of two parts. Above all,

you will learn whether the recommendations produced by your device were always

followed by the robot players or not.

Then, in the case the robot players always followed the recommendations of your

device, you will also learn whether it is possible to improve your device to receive

more points or, instead, the maximum possible payoff has been achieved. In the

case where the robot players did not always follow the recommendations, you will see

an example of a one-period realization (i.e., one ball drawn from your device) when

the recommendations were not followed and why one player chose not to follow the

recommendation.

Your total payoff for the experiment

At the end of the experiment, the computer will choose one of the five games at

random and you will receive the number of points you earned in the round for that

game with the highest payoff. This amount will be converted into dollars at the

rate of 1 point equal to $6. You will be paid only if you complete all rounds of the

experiment, the quiz, and the short survey.

This means that you will definitely earn the show-up fee of $10 in this experiment.

If, in addition, your maximum round earnings in the randomly selected game is, for

instance, 3 points, then you will receive a payment of 3 × $6 = $18 (in addition to

your guaranteed earnings of $10).

To summarize, the payoff structure of this experiment implies:

• you will definitely earn $10 in this experiment

• you want to do your best in every game to earn an additional amount of points/-
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money.

• you want to design a recommendation device where both players always follow

the recommendations

• you can improve your payoff by improving your recommendation device in a

given round (if the device is not yet giving you the highest possible payoff)

• you are encouraged to experiment between rounds by changing the color of the

balls in order to try to improve your payoff.

B Experiment Questions

Pre-Experiment Quiz

Question 1: Suppose that the game that the robot players participate in has the

following specific payoffs:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

If Player 1 chooses Blue and Player 2 chooses Blue, then:

(a) The payoff to Player 1 is 3 and the payoff to Player 2 is 3.

(b) The payoff to Player 1 is 5 and the payoff to Player 2 is 2.

(c) The payoff to Player 1 is 3 and the payoff to Player 2 is 1. [Correct ]

(d) The payoff to Player 1 is 1 and the payoff to Player 2 is 3.

12



Feedback: “The payoffs of two players are in the cell corresponding to their actions

(Red or Blue). The payoff of player 1 is in the lower left part of the cell and the

payoff of player 2 is in the upper right part of the cell.”

Question 2: Consider the same game

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Suppose that Player 2 thinks that Player 1 is going to choose Blue. Then,

(a) It is in Player 2’s best interest to choose Blue.

(b) It is in Player 2’s best interest to choose Red. [Correct ]

(c) It doesn’t matter whether Player 2 chooses Blue or Red.

(d) None of the above are true.

Feedback: “Player 2 thinks that player 1 plays Blue and thus look at the bottom row

of the table. Then, player 2 compares his/her payoff from playing Red (that is 5)

with his/her payoff from playing Blue (that is 1). Player 2 will choose the action

leading to the maximum of these two payoffs.”

Question 3: Consider the same game

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Suppose that Player 2 gets a recommendation to play Red. Then,

(a) Player 2 will follow this recommendation blindly.

13



(b) Player 2 will not follow this recommendation and will play Blue in any case.

(c) Player 2 will ask Player 1 what was recommended to Player 1 and will choose an

action depending on the response.

(d) None of the above are true. [Correct ]

Feedback: “Players cannot communicate. Also they do not follow their recommenda-

tions blindly but also do not reject all recommendations. Instead, players investigate

whether it is truly worthwhile for them to follow the recommendation using all the

information from the design of the recommendation device. They need information

about the recommendation device.”

Question 4: Your task in this experiment:

(a) To play four games, several times each, against humans.

(b) To play four games, several times each, against robots.

(c) To observe and describe how others play the games.

(d) To design recommending devices for given games that will be played by robots.

[Correct ]

Feedback: “As instructions explain, your task is to design recommendations to

two intelligent robot players on how they should play a game with one another. You

will go through a sequence of games and have several chances to improve the device.”

Question 5: The following picture displays a recommendation device.

14



Suppose that one ball is drawn out of this container at random. What is the chance

that this ball recommends to player 1 to choose Blue and, at the same time, it

recommends to player 2 to choose Red.

(a) 2 out of 24.

(b) 5 out of 24.

(c) 7 out of 24. [Correct ]

(d) 10 out of 24.

Feedback: “To answer this question, you need to count the number of balls with the

left side (1) being Blue and the right side (2) being Red.”

Question 6: Suppose that the game that the robot players participate in has the

following specific payoffs:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1
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Moreover, suppose that you design the following device:

Which of the following statements is true:

(a) Neither player 1 nor player 2 are willing to follow the recommendation made by

the device and you will earn no points in this round.

(b) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 3.5 points in this round.

(c) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 2 points in this round.[Correct ]

(d) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 5 points in this round.

Feedback: “This device always recommends player 1 to play Blue and player 2 to play

Red. With this device, each player will have a certainty about the recommendation

to another player. Checking the table of payoffs, we can see that player 1 prefers to

follow the recommendation (when player 2 plays Red, it is beneficial to player 1 to

play Blue). Similarly, player 2 prefers to follow the recommendation.

According to the instructions, for this round, you would get points based on the

smallest of the two average payoffs of players 1 and 2. In this case, player 1 will

always (for any of the balls drawn) get 2 and player 2 will always get 5. The smallest

of 2 and 5 is 2.”

16



Question 7: Suppose that in one of four games you are presented in the experiment,

in the first three rounds player 2 never followed the recommendation of the devices

you made.

Which of the following statements is true:

(a) You have a chance to get additional points for this game, only in the case when

you design a new device in the fourth round. [Correct ]

(b) You have no chance to get additional points for this experiment.

(c) You still can earn additional points in the experiment, but not for this game.

(d) If player 2 will follow the recommendation of the device you redesigned for the 4th

round in all periods of that round, you will get additional points in that round.

Feedback: “As the instructions explain, for a given game, you receive the number of

points you earned in the round for that game with the highest amount of points. This

means that if in the last round you will design such device that the recommendations

are always followed (by both players 1s and player 2s), you will get points from that

round and for this game.”

Question 8: Once you design your recommendation device in a round for a given

game, the game is played by robot players for multiple periods. Can a robot player

choose its action depending on how the game was played in previous periods?

(a) Yes, a robot player observes the actions played in the previous periods and can

react to them.

(b) Yes, if it allows a robot player to maximize a total payoff over all periods.

(c) No, in each period, two new robots play the game and they do not have informa-

tion about the previous periods. [Correct ]

(d) None of the above is true.
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Feedback: “Each game will be played for multiple periods but the robot players in

each round will always be different (so that their actions will not depend on what was

played in the past). In each period, when a particular color action is recommended

to them, they will investigate whether it is truly worthwhile for them to follow this

recommendation using all the information from the design of your recommendation

device.”

Question 9: Please follow the instructions shown on the screen below. [By moving

the sliders, subjects had to implement the distribution µRR = 11/24, µRB = 7/24,

µBR = 2/24 and µ∗BB = 4/24.]

Post-Experiment Cognitive Reflection Test (CRT)

• Question 1: Together, a mobile phone and laptop cost $1100. The laptop costs

1000 more dollars than the mobile phone. How much does the mobile phone

cost in dollars? [Correct: 50, Intuitive: 100 ]

• Question 2: It takes 5 bakers 5 hours to bake 5 cakes. How many hours would

it take 100 bakers to bake 100 cakes? [Correct: 5, Intuitive: 100 ]

• Question 3: In a field there is a group of rabbits. The population of the rabbits

doubles in size every day. If it would take 50 days for the rabbit population to
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completely cover the field, how many days would it take for the rabbits to cover

half of the field? [Correct: 49, Intuitive: 25 ]

• Question 4: If Charlie drinks one gallon of milk in 3 days, and Emerson drinks

one gallon of milk in 6 days, how many days would it take them to drink one

gallon of milk together? [Correct: 2, Intuitive: 4.5 ]

• Question 5: Simon decided to invest $2,000 in the stock market one day early

in 2008. Six months after he invested, on July 17, the stocks he had purchased

were down 50%. Fortunately for Simon, from July 17 to October 17, the stocks

he had purchased went up 75%. As of October 17, Simon has: [Answers: Lost

money in the stock market; Broken even in the stock market; Made money in

the stock market] [Correct: Lost money in the stock market, Intuitive: Made

money in the stock market ]

Post-Experiment 11-20 Game Question

Two highly intelligent and competitive individuals are playing the following game.

Each player must simultaneously announce an integer number between 11 and 20.

Then, the payoffs are determined as follows. Each player receives an amount of

dollars equal to the number the player announced. Moreover, if one of the players

announces a number that is exactly one less than their opponent, then this player

receives an additional reward of $20. Finally, if both players announce the same

number, each of them receives an extra $10.

For example, if player 1 says 17 and player 2 says 19, then player 1 receives 17

and player 2 receives 19. Or, if player 1 says 12 and player 2 says 13, then player 1

receives 32 and player 2 receives 13.

What do you think would be the number that one of these players would announce?

Or, in other words, if you were one of these two players which number would you

announce?
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C Feedback Screens

Figs. C1 to C3 display feedback provided to subjects.

Figure C1: Feedback for a device that implements a sub-optimal correlated equilibrium.

Figure C2: Feedback for a device that implements the desirable correlated equilibrium.
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Figure C3: Feedback for a device that is not a correlated equilibrium.

D Correlated Equilibria of Tested Games

All 5 games we tested, are presented in the left part of Table 1 in the paper. In this

appendix, for each of these games, we derive the set of correlated equilibria, that is

distributions over action profiles in {Red,Blue}×{Red,Blue} that satisfy Section 3.

We also solve problem (1) and find the desirable correlated equilibrium µ∗. Finally,

we show the recommendation device that implements this DCE, i.e., the device that

gives subjects the maximal payoff in each game.

D.1 Prisoner’s Dilemma

In Prisoner’s Dilemma, each player has a strictly dominant strategy to choose the

action Red. As a consequence, in the unique correlated equilibrium (which is, indeed,

the unique Nash equilibrium) µRR = 1 and µRB = µBR = µBB = 0. Consequently,

this is also the DCE. Thus, the maximum achievable payoff that can be earned in

this game is 4. Fig. D1 shows the device that earns this maximal payoff.
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Figure D1: Optimal Device in Prisoner’s Dilemma

D.2 Matching Pennies

Using Section 3, distribution µ is a correlated equilibrium in the Matching Pennies

game if it satisfies the following inequalities:

5µRR + 3µRB ≥ 3µRR + 5µRB , 3µBR + 5µBB ≥ 5µBR + 3µBB ,

3µRR + 5µBR ≥ 5µRR + 3µBR , 5µRB + 3µBB ≥ 3µRB + 5µBB,

which can be summarized as

µRR ≥ µRB ≥ µBB ≥ µBR ≥ µRR.

We conclude that there is a unique correlated equilibrium of this game with µ(a) = 1/4

for all a ∈ {R,B} × {R,B}. This is also precisely the unique Nash equilibrium in

mixed strategies, where each player independently randomizes over their available

actions. Consequently, this is also the DCE and the maximum achievable payoff for

this game is (1/2)× 5 + (1/2)× 3 = 4. Fig. D2 shows the device that would need to

be designed in the experiment to earn this maximal payoff.
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Figure D2: Optimal Device in Matching Pennies

D.3 Battle of the Sexes

Using Section 3, distribution µ is a correlated equilibrium if it satisfies the following

four inequalities:

6µRB ≥ 2µRR , 2µBR ≥ 6µBB , 6µBR ≥ 2µRR , 2µRB ≥ 6µBB,

which is equivalent to the condition that

min{µRB, µBR} ≥ max

{
3µBB,

1

3
µRR

}
.

The DCE solves problem (1). Clearly, at the optimum, µBB = µRR = 0, as the

strategies (B,B) and (R,R) result in 0 payoff for both robot players. Finally, to

maximize the minimum expected payoff of both robot players, we should set µRB =

µBR = 1/2. This achieves a maximum payoff of (1/2)×6+(1/2)×2 = 4 in this game.

Figure D3 displays the device that would need to be designed in the experiment to

earn this maximal payoff.
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Figure D3: Optimal Device in Battle of the Sexes

D.4 Chicken Version 1

Using Section 3, distribution µ is a correlated equilibrium if and only if it satisfies

the following four inequalities:

6µRB ≥ µRR + 5µRB , µBR + 5µBB ≥ 6µBB ,

6µBR ≥ µRR + 5µBR , µRB + 5µBB ≥ 6µBB,

which is equivalent to the condition

min{µRB, µBR} ≥ max{µRR, µBB}.

Given the payoff matrix, the objective function in (1) is maximized, when as much

weight as possible is put on µBB, as little weight as possible is put on µRR, and there

is a symmetry in the remaining two weights. Thus, the DCE in this case is

µRB = µBR = µBB = 1/3,

which earns a maximal payoff of (1/3)×1+(1/3)×6+(1/3)×5 = 4. Fig. D4 displays

the recommendation device that yields this maximal payoff.
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Figure D4: Optimal Device in Version 1 of Chicken

D.5 Chicken Version 2

Using Section 3, distribution µ constitutes a correlated equilibrium in this case if and

only if the following four constraints are satisfied:

6µRB ≥ 2µRR + 5µRB , 2µBR + 5µBB ≥ 6µBB ,

6µBR ≥ 2µRR + 5µBR , 2µRB + 5µBB ≥ 6µBB ,

which is equivalent to the condition

min{µRB, µBR} ≥
{

2µRR,
1

2
µBB

}
.

As in the first Chicken game, the objective function in (1) is maximized, when as

much weight as possible is put on µBB, as little weight as possible is put on µRR, and

there is a symmetry in the remaining two weights. The solution has

µRB = µBR =
1

2
µBB,

so that µRB = µBR = 1/4 and µBB = 1/2. This yields a maximal payoff equal to

(1/4)× 2 + (1/4)× 6 + (1/2)× 5 = 4.5. Fig. D5 displays the device that yields this

maximal payoff.
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Figure D5: Optimal Device in Version 2 of Chicken

E Additional Data Analysis

E.1 Feedback

When subjects failed to construct a device consistent with any CE in a given round,

they were shown a ball from their device where one robot player did not follow the

recommendation, along with an explanation for why this occurred (see Fig. C3). The

ball was selected randomly based on the device’s probability distribution. Here, we

discuss how subjects responded to this feedback.

Specifically, we are interested in how subjects adjusted their devices in response

to this feedback. A simple (though not necessarily optimal) heuristic is to reduce

the probability mass on the action profile corresponding to the shown ball. Table E1

reports the proportion of times subjects adjusted (either decreased, made no change,

or increased) the probability mass on the shown ball relative to the total number

of feedback instances for a given game. The largest possible number of feedback

instances for each game is 4× 100, as subjects could only respond to feedback during

the first four rounds of each game. However, if a CE was found in a round, no feedback

was provided, resulting in fewer actual feedback instances, N . (We also excluded any
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Game N Decrease No Change Increase

PD 302 0.712 0.086 0.202
MP 170 0.753 0.118 0.129
BoS 51 0.686 0.098 0.216
C1 170 0.753 0.100 0.147
C2 116 0.810 0.060 0.129

Table E1: The proportion of times subjects adjusted the probability mass on the ball shown
during feedback, based on N feedback instances provided during the first four rounds of
each game, before the DCE was reached.

reactions to feedback after subjects had found the DCE.) We observe that across all

games, subjects decreased the probability mass on the shown ball in more than 50%

of cases (significant at the 1% level). This suggests that subjects mostly reacted in a

systematic manner.

E.2 Additional Performance Measures

In the main text, we discuss performance using three performance measures: Top-

Score, Score, and N-RMSE. Here, we consider two additional performance measures:

CE and Selten.

CE is an indicator variable equal to 1 if a subject designed a CE and 0 otherwise.

This measure shows the fraction of subjects who succeeded in finding at least one

CE. Thus, it is equal to TopScore for games with a unique CE, and is different from

Score in all other games, as it does not consider a payoff that subjects get in different

CEs.

Selten is defined in Selten and Krischker (1982) as CE− V , where V is the volume

of the CE set relative to the space of all possible strategies. This volume is reported

in Table 1. This measure essentially penalizes the CE measure when finding a CE

randomly is easier.

Fig. E1 displays the three performance measures discussed in the paper, along

with these two additional measures. While the CE measure indicates that almost all
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Figure E1: The average (across all subjects) of the highest value in five rounds for each of
all performance measures in each game. Error bars represent 95% confidence intervals.

subjects found at least one CE in the Battle of the Sexes and both Chicken games,

the Selten measure, after correcting for the volume, reduces the CE and aligns more

closely with the Score measure used in the main text.

E.3 Performance Dynamics

We describe how the aggregate performance measures evolved over the five rounds

within each of the five games.32

Fig. E2 displays the dynamics across rounds for TopScore and Score measures.

We observe that average performance improves across rounds. In fact, performance

under both measures is significantly better in round 5 (R5) compared to round 1 (R1)

for all games. However, the rate of improvement diminishes over the five rounds: the

difference in either TopScore or Score between round 5 (R5) and round 3 (R3) is not

32Recall from footnote 21 that the raw data for these statistics had to be adjusted. Once a subject
achieved the DCE in a game, the devices submitted in all subsequent rounds were replaced with the
DCE device. We refer to the new data as an ‘amended’ data set.
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Figure E2: Evolution of the average of points-based performance measures, TopScore and
Score, across rounds for each game. Error bars represent 95% confidence intervals.
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Figure E3: Evolution of the average of distance-based performance measure, N-RMSE,
across rounds for each game. Error bars represent 95% confidence intervals.

significant for any game.

Given our amended dataset, we interpret TopScore in a given round as the fraction

of subjects who found the DCE in that round or earlier. According to Fig. E2a, most

subjects found the DCE quickly in both Battle of the Sexes and Matching Pennies:

on their first attempt in Battle of the Sexes and by their second attempt in Matching

Pennies. Furthermore, the rate at which subjects discover the DCE for the first time

decreases in subsequent rounds, suggesting that these games were relatively easy to

solve. In contrast, for Prisoner’s Dilemma and the two Chicken games, the rate of

finding the DCE remains relatively constant across rounds. This indicates that solving

these games requires more experimentation and deliberation, providing evidence that

these games are more complex to solve.

We perform the same analysis using our distance-based performance measure,

N-RMSE, as shown in Fig. E3. We observe a pattern similar to the points-based

measures in Fig. E2: performance improves significantly from round 1, but this im-

provement tapers off relatively quickly. The difference between N-RMSE in rounds 2
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and 5 is insignificant for any game.

Overall, we conclude that the experimental task allowed subjects to learn and

improve both through experience and by utilizing the feedback provided between

rounds. However, there are diminishing returns to performance improvement, sug-

gesting that full convergence to the DCE may require a larger number of rounds,

particularly for games where only a minority of subjects found the DCE by Round 5

(Prisoner’s Dilemma and both versions of Chicken).

E.4 Distribution of Recommendation Devices

Figs. E4 and E5 illustrate the evolution of the distributions of the recommendation

devices for the Matching Pennies and the Battles of the Sexes games both in the

space of expected payoffs (the top panels) and in the distribution space (the bottom

panels). These figures are analogous to Figs. 5 to 7 for three other games, discussed

in the main text.

Matching Pennies. Recall that overall performance in Matching Pennies was high

according to our performance measures (Fig. 3). This suggests that individual sub-

jects were successful in their design of recommendation devices to meet the DCE

objective in this game. Fig. E4d illustrates this point: the DCE (which coincides

with the unique Nash equilibrium in mixed strategies) is already the modal device

by round 1 and is the clear modal device by round 5. Moreover, recommendation de-

vices in round 5 that do not constitute correlated equilibria appear to be distributed

somewhat randomly around the unique Nash equilibrium, with all of these implying

expected payoffs close to those implied by the DCE (Fig. E4b). Thus, subjects appear

to recognize the zero-sum nature of Matching Pennies and no additional recommen-

dation devices emerge as focal by the final round.
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Figure E4: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Matching Pennies in round 1 vs. round 5.
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Figure E5: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Battle of the Sexes in round 1 vs. round 5.

Battle of the Sexes. Battle of the Sexes was another game in which subjects

performed well in terms of finding the DCE (Fig. 3). From Figs. E5a and E5c, we

see that the DCE is the modal response already in round 1, although some subjects

implement one of the two asymmetric Nash equilibria with their device. Moreover,

already in round 1, there are very few recommendation devices that yield payoffs

outside of the set of correlated-equilibrium payoffs. Experience serves to consolidate

this finding: by round 5 designed distributions are almost entirely in the set of cor-
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related equilibria (Fig. E5d) or the set of correlated equilibrium payoffs (Fig. E5b).33

The vast majority of these distributions fall on the DCE, as expected from the high

aggregate performance in this game.

E.5 Extended Correlate Analysis

Table E2 reports the average values and proportions (for categorical variables) of the

considered individual correlates including performance in the CRT test (CTRNcorr

and CTRNintuit) and the 11-20 game (StratSoph). To assess potential collinearity

among the correlates, we also report their pairwise correlations.

Ave/prop CRTNcorr CRTNintuit StratSoph GenderF StudyYear
CRTNcorr 2.44 -0.829 0.378 -0.439 0.347
CRTNintuit 1.68 -0.829 -0.288 0.316 -0.344
StratSoph 0.60 0.378 -0.288 -0.195 0.198
GenderF 0.54 -0.439 0.316 -0.195 -0.188
StudyYear 2.96 0.347 -0.344 0.198 -0.188

SocialSc 0.46 -0.240 0.140 -0.042 0.127 -0.315
Arts 0.03 0.053 -0.078 0.015 0.045 0.006
BiologicalSc 0.06 -0.128 0.107 0.022 0.064 0.118
Business 0.06 0.212 -0.221 -0.033 -0.189 0.191
Design 0.01 -0.132 0.151 -0.079 0.093 0.004
Economics 0.12 -0.038 0.117 -0.089 0.094 0.199
Engineering 0.11 0.192 -0.197 0.101 -0.060 0.206
HealthMed 0.02 -0.034 0.030 -0.019 0.132 0.005
Inform&CS 0.10 0.118 0.004 0.044 -0.294 -0.161
PhysicalSc 0.03 0.147 -0.154 0.092 0.045 0.006

Table E2: Average values or proportions (for categorical variables) and pairwise correla-
tions among the potential explanatory variables, with color coding ranging from dark blue
(strong negative) to intense red (strong positive). There are 100 individual observations.

The number of correct answers on the CRT test (CTRNcorr) is strongly negatively

correlated with the number of intuitive answers (CTRNIntuit). Consequently, only

CRTNcorr is included in the regression analysis.

33The percentage of subjects who designed the device implementing any correlated equilibrium
changed from 78% in round 1 to 97% in round 5.
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Table E3 reports the complete results of the regression analysis for the Score and

Top Score measures.

Measure Score=Top Score Score Top Score

PD MP BoS C1 C2 BoS C1 C2

Intercept
0.1326 0.4631∗∗ 0.8958∗∗∗ 0.6969∗∗∗ 0.6798∗∗∗ 0.7787∗∗∗−0.2664 0.2179

(0.1703) (0.1785) (0.1010) (0.1228) (0.0990) (0.1915) (0.1685) (0.1816)

GameOrder
−0.0627∗ 0.0346 −0.0244 0.0235 0.0075 −0.0564∗ 0.0725∗∗ 0.0162
(0.0317) (0.0310) (0.0165) (0.0211) (0.0184) (0.0314) (0.0290) (0.0337)

CRTNcorr
−0.0159 0.0618∗∗ 0.0349∗∗ −0.0025 0.0311∗ 0.0581∗∗ 0.0101 0.0255
(0.0299) (0.0309) (0.0146) (0.0187) (0.0162) (0.0278) (0.0257) (0.0297)

StratSoph
0.0809 0.0746 0.0144 0.0728∗ 0.0528 0.0666 0.0742 −0.0293

(0.0623) (0.0641) (0.0301) (0.0388) (0.0336) (0.0572) (0.0532) (0.0616)

GenderF
−0.0392 0.0834 −0.0221 −0.0805 0.0368 −0.0426 0.0856 −0.2222∗∗

(0.1029) (0.1055) (0.0509) (0.0644) (0.0573) (0.0965) (0.0883) (0.1052)

StudyYear
0.1184∗∗∗−0.0247 0.0096 0.0020 0.0033 0.0035 0.0151 0.0213

(0.0446) (0.0457) (0.0216) (0.0277) (0.0241) (0.0410) (0.0380) (0.0443)

Arts
−0.2799 −0.0939 −0.1339 0.0043 0.0188 −0.1814 −0.1815 0.0834
(0.2573) (0.2652) (0.1250) (0.1607) (0.1396) (0.2370) (0.2204) (0.2561)

BiologicalSc
−0.0296 −0.3279 −0.2123∗∗ −0.0226 −0.0448 −0.0020 0.0410 −0.0368
(0.1917) (0.1974) (0.0944) (0.1199) (0.1036) (0.1791) (0.1645) (0.1900)

Business
−0.1185 0.0799 −0.0783 0.0175 −0.0346 −0.0954 0.5297∗∗∗ 0.4430∗∗

(0.2053) (0.2068) (0.0975) (0.1245) (0.1078) (0.1849) (0.1709) (0.1976)

Design
−0.1354 0.4238 0.1463 0.1586 0.0994 0.3661 −0.1546 −0.0759
(0.4439) (0.4493) (0.2128) (0.2736) (0.2395) (0.4036) (0.3754) (0.4393)

Economics
0.2895∗ 0.0141 0.0359 0.1044 0.0344 0.1502 0.1401 −0.1565

(0.1472) (0.1520) (0.0711) (0.0920) (0.0793) (0.1349) (0.1262) (0.1455)

Engineering
0.3360∗∗ 0.0349 −0.0230 0.0810 0.0526 0.0559 0.1256 0.2326

(0.1525) (0.1570) (0.0739) (0.0952) (0.0833) (0.1402) (0.1307) (0.1529)

HealthMed
−0.2379 −0.2026 −0.3818∗∗ −0.4666∗∗ 0.0482 −0.1707 −0.2118 0.3798
(0.3135) (0.3225) (0.1529) (0.1956) (0.1715) (0.2899) (0.2685) (0.3145)

Inform&CS
0.0491 0.0437 0.0005 −0.0997 0.0338 0.0876 0.0064 0.1510

(0.1587) (0.1630) (0.0770) (0.0992) (0.0858) (0.1460) (0.1361) (0.1573)

PhysicalSc
0.7509∗∗∗ 0.1067 −0.1574 −0.1185 −0.1755 −0.2242 −0.0472 −0.2602

(0.2633) (0.2690) (0.1269) (0.1686) (0.1416) (0.2407) (0.2313) (0.2597)

R2 0.3326 0.1689 0.2865 0.1869 0.1402 0.2075 0.2272 0.2730

* 10%, ** 5%, *** 1% levels of significance (two-sided t-test)

Table E3: Regressions of the highest (over five rounds) Score and Top Score measures on
the set of correlates. The dummy variable for the Social science major is the base category.
Each regression uses 100 observations.
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