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1 Introduction

Cooperation in repeated interactions is important for much socio-economic activity. How-

ever, despite an extensive experimental literature, it is still unclear what exactly determines

cooperative behavior in prisoner’s dilemma settings (see Dal Bó and Fréchette (2018) for a

survey). One common observation is that subjects sometimes cooperate even in a one-shot

prisoner’s dilemma. Equally, subjects sometimes cooperate too little when a dilemma is

indefinitely repeated and the continuation probability is sufficiently high. However, rather

than interpreting either behavior as mistaken, the literature instead has focused on many

possible confounds, including diverse beliefs about opponents’ strategies, heterogeneous risk

attitudes, social preferences and cognitive limitations.

In an effort to simplify the analysis, this study introduces a novel experimental design

that deliberately reduces or eliminates at least three confounding factors - multiple equilibria,

strategic uncertainty, and social preferences. The experiment involves subjects playing a

series of indefinitely repeated prisoner’s dilemma (IRPD) games with different continuation

probabilities δ against a robot opponent known to play the Grim trigger strategy.1. This

enables a focus on the cognitive task of trading off present gains against future rewards,

relying on basic dynamic programming arguments, effectively converting a strategic problem

into an individual decision-making problem. Here the optimal policy is simple in theory: a

subject should cooperate in each round if and only if the continuation probability δ is above

a critical level, here 0.5. And since opponent behavior is perfectly predictable here, we can

observe whether subjects implement the optimal policy over the entire supergame, rather

than only in the first round as in much existing experimental analysis of repeated games.

In the baseline experiment, subjects faced a set of continuation probabilities δs skewed to-

wards lower values (and thus shorter duration supergames), where it is theoretically optimal

to always cooperate in two thirds of the supergames and always defect in the remaining one

1The Grim Trigger strategy prescribes cooperation until the opponent’s first defection, after which the
player defects permanently for the remainder of the supergame. While Tit-for-Tat (TFT) is a natural
alternative, it has several disadvantages; see Section 3 for a discussion
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third. This baseline was faced by subjects from two pools: a traditional group of university

students (referred to as “Lab” subjects) and a more representative population of Amazon

Mechanical Turk (AMT) workers (referred to as “Mturkers”). As a robustness check, a

different group of university subjects faced a high-δ treatment involving a set of continua-

tion probabilities δs skewed towards higher values (and thus longer duration supergames),

comparable to prior repeated-game literature.2 There, it is theoretically optimal to always

cooperate in two thirds of the supergames and always defect otherwise.

Despite our simple setup, we find that all three samples of subjects behave in a manner

that is strikingly different from the predictions of the rational choice framework used to

explain cooperative behavior. Overall, across all supergames, only 2% (Lab), 1% (AMT),

and 3% (high-δ) of subjects behave perfectly consistently with the rational choice predictions;

only 5% (Lab), 3% (AMT), and 8% (high-δ) do that at least about 95% of the time. On

average, subjects cooperate too much in the first round, with the share of decisions exceeding

theoretically optimal by about 15% (Lab), 19% (AMT), and 21% (high-δ).

These very low frequencies of rational play across all treatments and subject pools in-

dicate that the rational choice framework for explaining cooperative behavior could be less

empirically relevant than commonly assumed. Admittedly, our design does not involve hu-

man opponents, but it is difficult to imagine that subjects would make fewer errors when

confronted with the additional complexities of strategic uncertainty, the existence of multi-

ple equilibria and uncertainty regarding others’ preferences and beliefs, that feature in the

standard setting.

Using subjects’ choices in the first rounds of each supergame as a clear upper bound

for the overall measure of rational play, we find that only 2% (Lab), 3% (AMT), and 7%

(high-δ) of subjects behave perfectly consistently with the rational choice predictions at the

start of each supergame. We further find that first round cooperation is strongly increasing

in the continuation probability δ, from 10% (Lab), 26% (AMT), and 15.4% (high-δ) when

2In the high-δ design, continuation value δ was fixed for four consecutive supergames to promote equilib-
rium learning, and subjects faced the standard laboratory conditions.
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δ = 0.1 to 76% (Lab) and 74% (AMT) when δ = 0.7 to 77.7% (high-δ) when δ = 0.85. This

responsiveness to the continuation probability δ (particularly in the Lab pool) is much greater

than estimates based on Dal Bó and Fréchette (2018) in standard subject versus subject

experiments, which suggests that our design is successful in reducing strategic uncertainty.

As noted, our methodology allows for a detailed examination of behavior in rounds be-

yond the initial one. Our analysis reveals significant deviations from the optimal strategy.

First, 52% (Lab), 54% (AMT), and 40% (high-δ) of subjects cooperate at least once after

already having defected in a supergame (and, thus, after triggering the defection by the

robot opponent for the rest of the supergame), a strictly dominated behavior that is difficult

to rationalize. Further, 24% (Lab), 30% (AMT), and 34% (high-δ) of subjects make this

type of mistake repeatedly, in at least 3 out of 13 relevant supergames. While the frequency

of such behavior diminishes with experience, it never completely disappears.

Second, subjects commonly defect after having begun the play of a supergame by coop-

erating. In contrast, the theory suggests that, given initial cooperative play, a player should

continue cooperating for the duration of the supergame. Although the supergames have an

unknown random end, subjects appear to be engaging in what we call “end-timing”, which

is gambling on the end of a supergame, defecting in the round they guess will be the last

round of the supergame.3 This “end-timing” strategy is similar to “sniping” in auctions (see

Roth and Ockenfels (2002)), and we find that such “end-timing” behavior increases with

experience. We are able to identify these behaviors only because of our novel, single-person

experimental design, and our findings offer an alternative interpretation of results from other

repeated game experiments involving matched pairs of human participants.45

3As is standard in indefinitely repeated games, we employ a constant termination probability of 1 − δ,
where δ is fixed and known to subjects. Subjects may nonetheless hold the non-Bayesian belief that the
probability of termination increases with the expected length of a supergame. Alternatively, Mengel et al.
(2022) find that past realized supergame lengths matter for subjects’ decisions in subsequent supergames.

4This “end-timing” behavior was an unexpected finding - see pre-registration of the project on the AEA
RCT registry, https://doi.org/10.1257/rct.6318-1.0.

5Romero and Rosokha (2018) and Cooper and Kagel (2023) also report decreasing cooperation rates
in indefinitely repeated prisoner’s dilemma game experiments. However in those settings, the decrease in
cooperation may be caused by beliefs that it is the cooperation by opponents which may be about to end.
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Our results thus show that subjects do respond to the payoffs – but only partially, fre-

quently making significant mistakes. And, behind these aggregate results, there is consid-

erable heterogeneity - some subjects never cooperate while others always do. To explain

this diversity of rationality and biases, we propose and test a novel model of behavioral

inattention which predicts responsiveness to payoffs while allowing for inclinations and a

substantial error rate, and where rational behaviour arises as a special case. We adapt the

approach of Gabaix (2019) and assume that there is an unknown payoff associated with an

unknown state of the world, which the agent seeks to match with her action. Yet she might

be inattentive to the payoff-generating process, including the continuation probabilities δ,

the opponent’s strategy, design features, and so on. Our formulation of inattention is conve-

nient as it directly implies a probit choice rule with two predictions. First, subjects will only

noisily respond to expected payoffs, with the error rate decreasing in their cognitive ability.

Second, individuals with less precise grasp of the decision problem will be more influenced by

their own “default” prior payoff which is typically obtained in comparable situations outside

the laboratory.

Consistently with the first prediction of this simple model, we find that subjects with

higher test scores from a cognitive reflection test (CRT) tend to earn higher payoffs, make

fewer errors of cooperating after triggering the opponent’s irreparable defection, behave closer

to theoretical predictions, and, indicatively, engage in end-timing. The second prediction

may explain why, in all three samples, choices to cooperate in the initial round of a supergame

(before any response by the computer opponent) are correlated with subjects’ intrinsic level

of patience (elicited and interpreted as a default prior for cooperation) - but only for those

subjects with lower, not higher, cognitive test scores. In contrast, the prediction of the

standard theory of repeated games is independent of individual characteristics (beyond risk

and/or social preferences).

Experimental economists have used robot players for control purposes in a number of

studies.6 Two prior studies, by Roth and Murnighan (1978) and Murnighan and Roth (1983),

6For instance, Houser and Kurzban (2002) and Johnson et al. (2002) used robot players to remove the
influence of social preferences in applications involving finitely repeated games. For surveys of experiments
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are most closely related in having a population of subjects play the repeated PD game against

a fixed strategy, as well as being the first studies to run experiments on supergames with

an uncertain end. However, subjects in those studies faced some strategic uncertainty as

they were not informed of the strategy they faced or that their opponent was in fact the

experimenter.7 By contrast, in this experiment we instruct subjects that they are playing

against a programmed opponent who plays the Grim trigger strategy, and precisely what this

means. Duffy and Xie (2016) consider play against robot players known to play the Grim

trigger strategy but in an n-player Prisoner’s Dilemma game under random matching, where

they vary n and the stage game payoffs but not δ. Also related is Andreoni and Miller (1993)

who study play of finitely repeated PD games when there is a known probability that the

opponent could be a robot tit-for-tat player (and not another human subject). They find

that cooperation increases with the probability of facing such a robot player.

Recently, subjects’ individual characteristics have been found to be correlated with coop-

eration in the indefinitely repeated prisoner’s dilemma game (e.g., Davis et al. (2016), Kölle

et al. (2020) and Gill and Rosokha (2022)). Proto et al. (2019) (see also Proto et al. (2022))

also find higher cognitive ability players being more cooperative, making fewer mistakes and

earning higher payoffs. However, in all of these studies involving human vs. human subject

pairings, there is no unique optimum policy as there is in our study. Consequently, any

errors must be inferred. For example, Proto et al. (2019) assume that playing defect directly

after both players chose to cooperate is an error in implementation. However, our exper-

iment reveals that such behavior may represent an attempt to guess the final round of a

supergame. Further, as noted, with our design we can also identify the dominated behavior

of cooperating after one has previously defected.

combining human subjects and robot players see March (2021) and Bao et al. (2022).
7In Roth and Murnighan (1978), subjects “were told that they played a programmed opponent, but were

not told what strategy he would be using” (p.194). The programmed opponent was in fact an experimenter
playing the Tit for Tat (or “matching”) strategy. In Murnighan and Roth (1983), subjects “were told that
they would be playing a different individual in each of the three sessions but that the person’s identity
would not be revealed. Actually all of the subjects played against the experimenter who implemented either
matching [Tit for Tat] or [the] unforgiving strategy [Grim trigger]” (p.289). Roth and Murnighan (1978)
explain that such design choices were made to “control for differences in subjects’ behavior due to differences
in their opponents” (p.194).
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Recently and independently, the repeated play by human subjects against robot strategies

was also explored experimentally, albeit with different designs and research objectives. In

Reverberi et al. (2021), subjects played repeated games against robot opponents but the game

and the strategy faced could change randomly over time. They then look at the interaction

between the complexity of the strategy subjects face and their cognitive ability in determining

the frequency of mistakes. Normann and Sternberg (2023) investigate whether algorithmic

pricing facilitates collusion, in a design involving three and four firm oligopolies where one

firm’s prices are determined by an algorithm, and point out that interactions between humans

and algorithms or robots may have increasing practical importance. Finally, Blonski et al.

(2025) has human subjects play against two types of computer algorithm. However, in all of

these studies subjects were not informed exactly what the algorithmic strategies were and

so were subject to strategic uncertainty.

Surprisingly, despite the fundamental importance of dynamic optimization in contem-

porary economic theory, only a few experiments, Noussair and Olson (1997) and Carbone

and Duffy (2014), explored subjects’ capacity for dynamic optimization and also found de-

viations from optimal behavior. In our study, the problem at hand is even simpler as it

does not involve some changing, continuous state variable such as capital or wealth, instead

focusing on an arguably more intuitive trade-off between the immediate and future gains

from cooperation.

Our methodology shares similarities with the approach of Charness and Levin (2009),

who experimentally demonstrate the winner’s curse in a single person bidding task. In

both studies, simplifying the environment allows identification of cognitive failures that are

harder to detect in more complex strategic settings. In our case, the failure is an inability to

maintain a consistent strategy in a stationary environment, leading to suboptimal behavior

absent strategic uncertainty. A key distinction (aside from the different game) is our within-

subject design, where subjects face both cooperative and non-cooperative optimal conditions.

Thus, our study of repeated interactions builds on the methodology of Duffy et al. (2021) and

Charness et al. (2021), who also used experimental designs with contrasting environments.
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2 Theory and Hypotheses

In our experiment, subjects play the indefinitely repeated prisoner’s dilemma with known

continuation probability δ against a computer playing a known fixed strategy, the Grim

trigger strategy. The specific payoffs subjects faced in the stage game are given in (1),

X Y

X 75, 75 15,120

Y 120, 15 30, 30

(1)

where X (Y ) denote the cooperate (defect) actions.

2.1 Insights from the Theory of Repeated Games

The main theoretical prediction tested in our experiment derives from the Folk Theorem for

repeated games, which states that if players are sufficiently patient, then any pure-action

profile yielding payoffs that strictly dominate the pure-action minimax is a subgame-perfect

equilibrium of the repeated game in which this action profile is played every period (Mailath

and Samuelson, 2006, p.69). In laboratory indefinitely repeated games, “patience” is proxied

by a high continuation probability, δ. In our setup, one player (the computer) follows a Grim

Trigger strategy, reducing the environment to a single-person decision problem with a unique

optimal policy. Assuming risk neutrality, the optimal strategy is to cooperate (defect) in all

rounds if δ is above (below) the critical threshold δ∗ = 0.5 for our parameterization (1).

To see this, note that since the computer plays a fixed Grim Trigger strategy, it begins

each supergame by cooperating, and continues to do so as long as the human also cooperates.

It switches permanently to defection after any human defection. Given the fixed continuation

probability δ, the expected payoff from always cooperating (X) is

75 + 75δ + 75δ2 + · · · = 75

1− δ
, (2)
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while the expected payoff from defecting once in the first period (Y ) is

120 + 30δ + 30δ2 + · · · = 120 +
30δ

1− δ
. (3)

Simple algebra shows that cooperation yields a higher payoff than defecting when δ > 0.5,

so the critical continuation probability is δ∗ = 0.5.

This assumes risk neutrality. Risk aversion could change these calculations. For example,

for CRRA preferences, one can verify numerically that the critical value δ∗ is increasing in

the degree of risk aversion, so potentially defection becomes optimal for values of δ for which

cooperation is optimal under risk neutrality. However, to change any predictions for our

current parameters, the requisite CRRA risk-aversion parameter is implausibly high. For

example, to make defection optimal when δ = 0.67 (the lowest value of δ we use for which

cooperation is optimal under risk neutrality), a CRRA parameter of more than 1.1 is needed.8

Thus, we do not expect risk attitudes to affect play in our games.

Since the continuation probability δ is constant over time, the decision problem is station-

ary : if cooperation is optimal in period 1, it is optimal in every subsequent period. Hence, it

cannot be optimal to switch within a supergame from cooperate to defect.9 Moreover, given

the computer’s fixed Grim Trigger strategy, once a subject defects and triggers permanent

punishment, it is optimal to keep defecting rather than switch back to cooperation. This

yields the following simple hypothesis.

Hypothesis 1. Rational Play: subjects should play Cooperate/X (Defect/Y ) in every round

of every supergame when δ > (<) δ∗ = 0.5.

Our design removes three confounding factors from the standard two-player repeated

Prisoner’s Dilemma. First, it eliminates multiple equilibria. When δ is sufficiently high to

8Andersen et al. (2008) estimate the average CRRA risk-aversion parameter using controlled experiments
with field subjects in Denmark as 0.741, and with estimated standard deviation of only 0.056. Hence, 1.1 is
more than six standard deviations above the mean.

9In contrast, if one were playing a finitely repeated dilemma with known length against a known Grim
opponent, the optimal strategy is to cooperate until the penultimate round and defect in the last. This very
different prediction is one of the reasons why we concentrate on uncertain length supergames here.
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support cooperation, the standard game admits infinitely many equilibria, creating difficult

coordination problems for subjects. With a Grim Trigger computer opponent, the equilib-

rium set collapses to a singleton: always cooperate or always defect, depending on δ.

Second, our design minimizes strategic uncertainty, which arises in standard experiments

because subjects do not know their opponent’s strategy. Indeed, a simplification used by

Dal Bó and Fréchette (2018), following Blonski et al. (2011), is to suppose strategies are

limited to Grim Trigger and Always Defect, and show that there exists a δRD > δ∗ such that

Grim Trigger (and thus initial cooperation) is risk-dominant (RD) if and only if δ > δRD.

Thus, while cooperation is an equilibrium for δ > δ∗, strategic uncertainty can impede

cooperation unless δ > δRD, a higher hurdle.

Third, our design should remove other-regarding social preferences as a driver of behav-

ior. Social preferences often matter in repeated-game experiments (see, e.g., Camerer (2003);

Chaudhuri (2008)). In the repeated Prisoner’s Dilemma, Bernheim and Stark (1988) and

Duffy and Muñoz-Garćıa (2012) show that altruism lowers the critical continuation proba-

bility δ∗, allowing cooperation even when δ < δ∗. Moreover, if subjects believe others have

social preferences, even self-interested players may cooperate more (Andreoni and Samuel-

son, 2006), creating an interaction with strategic uncertainty. In our design, however, the

opponent is a computer known to play Grim Trigger, which both delivers a unique optimal

response (eliminating strategic uncertainty) and makes altruistic motives or beliefs about

the opponent’s altruism unlikely. Thus, multiple equilibria, strategic uncertainty, and social

preferences—and their interactions—are minimized, if not eliminated, by our design.

2.2 A Simple Cognitive Model

The above theory predicts an optimal policy for the repeated game that is independent

of individual characteristics. In this section, we present a simple model that can be used

to explain heterogeneity in deviations from optimality in single-person decision problems.

Importantly, this model generates the novel and testable prediction that subjects with lower
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cognitive ability both make more mistakes and are also more influenced by irrelevant non-

cognitive factors.

We assume that subject i faces a single-person decision problem. Based on prior experi-

ence, she expects an initial default payoff di, interpreted as a typical payoff to cooperation

outside the laboratory (a subject’s non-cognitive characteristic). In the lab, faced with a

supergame with continuation probability δ, she seeks to determine the optimal action by in-

trospection, and updates the payoff to cooperation to fit the circumstances. Our innovation

is to model this by assuming she receives a signal the informativeness of which depends on

her cognitive ability, which varies across individuals. As in Enke and Graeber (2023), we

further assume that she recognizes her cognitive limitations and places greater weight on the

default payoff the higher is her cognitive uncertainty.

Let the true relative return to cooperation (the payoff to cooperation minus the payoff

to defection) be π(δ), where π(·) is strictly increasing and, given our parameters, π(1
2
) = 0.

Adapting Gabaix (2019)’s simple Gaussian framework,10 we assume subject i subjectively

estimates π(δ) as normally distributed with mean di and variance σ2, i.e., π(δ) ∼ N(di, σ
2).

Thus, her initial evaluation is influenced by her outside default di, which varies across subjects

(while, for simplicity, σ2 is common).

With further cognitive introspection, subject i can obtain a noisy payoff signal si equal

to the true value π(δ) plus noise εi ∼ N(0, σ2
i ), or si(δ) = π(δ) + εi. The noisiness of the

signal varies across individuals through σ2
i ; higher cognitive ability implies lower σ2

i and

thus a more precise signal. Following Gabaix (2019) and standard Bayesian updating, the

posterior estimate of π(δ) is a weighted average of the signal and the prior, or Pi(π(δ) | si) =

λisi(δ) + (1− λi)di, with weight determined by relative variances, λi =
σ2

σ2+σ2
i
. Note that as

cognitive noise σ2
i goes to zero, the weight λi goes to one and the posterior estimate Pi is

closely clustered around the true payoff π. However, for a subject with high σ2
i , the posterior

estimate is instead very close to the individual’s default payoff di.

10Our model leads to the choice of cooperation as being characterized by a probit choice rule, which is
similar to the rational inattention model of Matějka and McKay (2015) which results in a logit choice rule.

10



Recall that, given our definition of π as the relative payoff to cooperation, the individual

estimates that cooperation is preferable to defection if the posterior estimate Pi > 0.11 Thus,

when facing a decision problem with continuation probability δ, the subject’s probability of

cooperation Ci is the probability that Pi is positive:

Ci(δ) = Pr

(
si +

1− λi

λi

di > 0

)
= Φ

(
π(δ) +

σ2
i

σ2
di

)
(4)

where Φ is the normal CDF of εi with variance σ2
i . Thus, the individual’s actions follow

a probit in which the probability of cooperation depends on both the true payoff and the

individual-specific default payoff.

Further, individuals with higher cognitive ability, and thus lower cognitive noise σ2
i ,

place less weight on the default payoff di and more weight on the true payoff π. This has

two implications. First, because π(δ) is increasing in the continuation probability δ, those

with higher cognitive ability/lower noise should be more sensitive to δ in their cooperation

choices.12 Second, the probability of cooperation C will be closer to its optimal value,

resulting in higher ability (lower noise) individuals earning higher payoffs.

Hypothesis 2. For high noise (low cognitive ability) subjects, the probability of cooperation is

more influenced by their default payoff value to cooperation (their non-cognitive characteris-

tics) and less influenced by the true payoff to cooperation (and, thus, the current continuation

probability δ), resulting in lower average payoffs, than for low noise (high ability) subjects.

3 Experimental Design

The main experimental task consisted of 24 indefinitely repeated prisoner’s dilemma games,

or “supergames,” played against a computer program known to use the Grim trigger strategy.

11We depart slightly from Gabaix (2019) at this point, because he considers a continuous action space
rather than the discrete choice of cooperation versus defection here.

12Specifically, ∂C/∂δ is proportional to Φ′(·), which is decreasing in σi around the critical point π(δ) = 0,
by properties of the normal distribution.
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We represented the stage game in normal form, with both players’ payoffs common knowl-

edge, to ensure comparability with human-versus-human studies of the prisoner’s dilemma

that use that same format. The payoff matrix for the stage game was identical across all

treatment conditions and is shown in (1). Subjects were told that the rows referred to their

actions, the columns to the computer’s actions, and that the first number in each cell (in

bold) was their payoff in points, while the second (in italics) was the computer’s payoff.

The 24 indefinitely repeated games were chosen with the following considerations. First,

we wanted subjects to have some experience with the same continuation probability, and we

also wanted to vary the continuation probability δ so as to assess the subject’s attentiveness

to the nature of the supergame they were playing. We chose to have them face 6 different

continuation probabilities 4 times each, which yields the 24 supergame total.

The set of six continuation probabilities, δ ∈ {0.1, 0.25, 0.33, 0.4, 0.67, 0.7}, was selected

according to several criteria. First, under specification (1), the expected total theoretical

payoff averaged across these values of δ is identical for subjects who are biased toward always

cooperating or always defecting. Second, the expected payoff from always following the

theoretically optimal strategy, relative to either of these fully biased strategies, is substantial,

ensuring a clear payoff distinction. Finally, because the threshold continuation probability

for sustaining cooperation in the stage game (1) is δ∗ = 0.5, we sought to avoid a setting

in which the simple heuristic of cooperating in 50% of the supergames coincides with the

optimal policy. Under our design, optimal play instead entails cooperating in only 8 of the

24 supergames (those with δ = 0.67 or 0.7) and defecting in the remaining 16. Thus, unlike

most existing studies, our distribution of continuation probabilities is intentionally weighted

toward shorter expected supergame durations. As discussed in Section 6, we later replicate

our experiment using higher values of δ to assess robustness.

We ran our experiment with Grim Trigger as the only programmed strategy. While

Tit-for-Tat (TFT) may seem a reasonable alternative to Grim, it provides a much weaker

restriction on optimal strategies: cooperation after defection is not necessarily an error

against TFT while it is against Grim. Thus, the identification of optimal play is significantly
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more difficult if the robot player plays TFT rather than Grim, and for this reason we elected

to consider only the Grim strategy.

The experiment was computerized using oTree (Chen et al. (2016)) software and con-

ducted online. Subjects received written instructions for the 24 IRPD games (referred to

neutrally as “sequences”) they would play, then completed a comprehension quiz testing

their understanding of payoff outcomes, the Grim trigger strategy used by the computer

program, and how the continuation probability affected game duration (see Appendix A.1

for the instructions and quiz). Although the quiz was not incentivized, subjects could not

proceed to the main task until all questions were answered correctly. Example screenshots

appear in Appendix A.3.

After subjects were presented the list of all continuation probabilities δ, but before play

of the fist supergame, each subject was asked to provide their belief as to the proportion of

times they would choose the cooperative action (referred to neutrally as action “X”) in each

of the first rounds of the 24 sequences (supergames) that they would face, given knowledge

that they would face 4 supergames for each of the 6 different δ values (details in Appendix

A.2). After this “Prediction” belief was elicited, they played the 24 supergames against the

computer opponent. We collected this prediction belief to measure how much/little attention

subjects paid to the structure of the game as per the experimental instructions, and indeed,

we use this prediction data later on in the evaluation of our model of inattentive behavior.13

Half the subjects faced a sequence of randomly drawn continuation probabilities δ, four

supergames for each of six δ values, total of 24 supergames.14 For the other half, the order of

supergames was reversed.15 (See Tables A1 and A2 in Appendix A.6 for the sequence of ran-

domly drawn continuation probabilities δ, realized durations and their expected durations.)

Subjects were told that at the end of the session, six supergames — one for each δ —

13While one could argue that such elicitation may anchor subsequent behavior, as we will show later,
consistently with the inattention model, this “Prediction” variable is correlated with the behavior of only a
certain subset of subjects.

14Supergame lengths were drawn using a random number generator, and subjects were informed of this
procedure. To reduce noise, the same supergame lengths were used for all participants.

15See Appendix B.3 for a discussion of order effects.
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would be randomly selected for payment. During play of the 24 supergames, subjects were

always informed of the probability that each supergame (sequence) would continue with

another round. They were also reminded of the strategy (X or Y ) that their computer

opponent would play in each round (following the Grim trigger strategy and based on the

history of play in all prior rounds of the current supergame) on the same decision screen

where they made their own action choice (X or Y ) for that same round (see the screenshots

in Appendix A.3 Figures A1-A2). Thus, any strategic uncertainty regarding the play of the

computer player should have been eliminated.

3.1 Subject Pools and Experimental Earnings

We recruited two gender-balanced subject samples, university students (Lab) and Amazon

Mechanical Turk workers (AMT), using the same experimental program for both groups.

The first pool (henceforth, Lab subjects) consisted of 100 undergraduates (52% female)

recruited via Sona Systems from the Experimental Social Science pool at the University of

California, Irvine. The mean age was 21.5 years (range 18–34). Subjects represented diverse

majors: 36 in engineering, 25 in social sciences, 21 in life sciences, 9 in physical sciences,

7 in education, 5 in arts and humanities, and 3 in business studies (double majors double-

counted). Sessions with these lab subjects were conducted online via Zoom in the aftermath

of the Covid pandemic (late 2020) where the experimenter verified each participant’s iden-

tity, monitored activity, and remained available to answer questions throughout the session,

and thus was continuously present to ensure attention and supervision comparable to con-

ventional lab settings. (In Section 6, we report similar results from standard, in-person lab

sessions conducted in 2025.)

We also recruited 149 AMT subjects residing in the United States (henceforth, AMT

subjects). There were equal numbers of males and females, with one subject preferring not

to disclose gender (coded as 0.5). The AMT subjects were considerably older than the Lab

sample, ranging from 21–75 years with a mean of 39.8 years. (Appendix Table B2 formally
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compares the two samples.) Their educational attainment was more varied, including two

participants without a high school diploma.

In both subject pools, subjects were informed that their total point earnings from six

randomly chosen supergames (one for each δ value) would be multiplied by USD $0.01 to

determine their monetary earnings from the repeated PD games. Thus, both groups faced

identical variable earnings, allowing direct comparison. Fixed show-up payments differed—$7

for Lab and $1 for AMT subjects—reflecting standard norms for laboratory versus online

recruitment (see Rand (2012)). Lab subjects’ total earnings averaged $17.90 for a one-hour

extended session.16 AMT subjects earned an average of $10.37 for a one-hour session.

Exactly half of the Lab subjects (50/100, or 4 of 8 sessions) and nearly half of the AMT

subjects (74/149) faced the “long” order (first supergame δ = 0.67), while the remainder

faced the reverse order (starting with δ = 0.33).

4 Results

Both subject populations completed 24 supergames, each lasting at least one round. Owing

to random termination, 11 supergames ended after one round, while the remaining 13 lasted

2–5 rounds. Each subject therefore made 24 first-round and 24 subsequent-round choices,

for a total of 48 (see Appendix Table A2). Given our parameters, the theoretically optimal

strategy is to cooperate in all rounds of the 8 supergames with δ ∈ {0.67, 0.7} (26 cooperative

choices) and to defect in all rounds of the remaining 16 supergames (22 defections).

4.1 The Headline Result

Figure 1 summarizes the full dataset, separately for the Lab and AMT samples. For each

of the six δ values, it reports the shares of cooperate and defect actions pooled over all

16After completing the 24 repeated PD games, Lab subjects (only) were randomly paired for another
two-player task, not reported here, in which they could earn an additional $1.00–1.70.
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Figure 1: Cooperation and Defection rates across all rounds of the four supergames in chronological order
(first horizontal axis) of each of the six δ values (second horizontal axis). Left panel: 100 Lab subjects. Right
panel: 149 AMT subjects.

rounds within each of the four supergames (labeled 1–4 on the first horizontal axis), with

the corresponding δ shown on the second horizontal axis. Three broad features stand out.

First, cooperation is not driven to zero in the four supergames with δ < δ∗ = 0.5, and

cooperation is less than full for the two δ values above δ∗. Second, beginning with the

second supergame, behavior changes little across the remaining supergames for a given δ,

suggesting limited learning over time. Third, AMT participants are farther from the optimal

policy than Lab participants, especially in the supergames with δ < δ∗. If we focus only on

first round behavior, we find similar patterns of behavior (Appendix B, Table B1).

These aggregate patterns reflect substantial deviation from standard game-theoretic pre-

dictions (Hypothesis 1). As shown in Figure 2, only 2 of 100 Lab participants (2%) and 1 of

149 AMT participants (0.7%) behaved perfectly optimally in all rounds of all supergames.

In both samples, fewer than 5% made three or fewer errors out of 48 choices (i.e., at least

45 optimal choices, or 93.75%). About 10% in each sample (10% Lab; 10.7% AMT) made

at least 42 optimal choices (87.5%). Appendix B.4 reports the full distribution of individual

counts of cooperative (and hence optimal) choices.
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Figure 2: Left: Frequency distributions and kernel densities of per-subject counts of optimal choices across
all supergames (48 decisions per subject): Lab (N=100) vs. AMT (N=149) subjects. Right: Cumulative
distributions of optimal choice counts for both the Lab and AMT samples in the same graph.

Finding 1. Across all 48 decisions in all 24 supergames, the fraction of subjects who behaved

according to standard game-theoretic predictions (either perfectly or near-perfectly) does not

exceed 5%. About 90% in both samples made fewer than 42 theoretically optimal choices out

of 48 (87.5 %).

As one would expect, Lab subjects behaved significantly closer to the theoretical optimum

than AMT subjects (Kolmogorov–Smirnov one-sided test D = 0.1799, p = 0.021), though

this difference narrows among those with higher rates of optimal play (see Figure 2).

4.2 First Round Behavior

Following the prior studies, we look at first-round choices made before any feedback to

capture subjects’ initial strategic tendencies. Given our design, the optimal strategy is to

cooperate in all rounds of the eight supergames with δ = {0.67, 0.7} and defect in all others.

Thus, perfectly optimal play implies 8 cooperative and 16 defecting first-round choices. By

design, the theoretically optimal pattern is skewed toward defection in first rounds, as most

δs are below 0.5, and toward cooperation in later rounds, when higher δ values make such

cooperation optimal.
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Figure 3: Left: Frequency distributions and kernel densities of per-subject counts of optimal choices in
first round choices across all 24 supergames (24 decisions per subject): Lab (N=100) vs. AMT (N=149)
subjects. Right: Both cumulative distributions on the same graph.

Figure 3 displays the distribution of optimal first-round choices across 24 supergames for

both Lab and AMT samples. As shown, only a small fraction of subjects behave exactly in

line with equilibrium predictions in these first rounds: specifically, 2 of 100 subjects (2%) in

the Lab sample and 5 of 149 subjects (3.36%) in the AMT sample. Moreover, fewer than

17% of subjects in either sample made three or fewer mistakes (i.e., at least 21 optimal first-

round choices out of 24, or 87.5%). While Lab subjects performed significantly closer to the

theoretical benchmark than AMT subjects (Kolmogorov–Smirnov one-sided testD = 0.2197,

p = 0.003), this advantage narrows among those achieving the highest rates of optimal play.

The left panel of Figure 4 displays the overall frequency of first round optimal play by

continuation probability δ. First round optimal play is highest when δ is relatively low

(δ ∈ {0.1, 0.25}) and most subjects optimally defect. It is also high when δ is relatively high

(δ ∈ {0.67, 0.7}) and most subjects optimally cooperate. First-round optimal play is lowest

at δ ∈ {0.33, 0.4}, where subjects cooperated excessively despite these values lying below

the (unknown) threshold δ∗ = 0.5. This tendency is especially strong at δ = 0.4, where over

half the subjects in both samples cooperated suboptimally.

This pattern is broadly consistent with a stochastic choice model such as the inattention

model of Section 2.2 or a logit, where the frequency of optimal behavior is increasing in
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Figure 4: Patterns of optimality, cooperation and defection: Left panel: population shares of theoretically
optimal choices in the first rounds of all supergames by the continuation probability δ (see also the leftmost
set of bars in the right panel). Right panel: Average per-subject counts of cooperation versus defection,
split by continuation probability δ (the first row of the horizontal axis scale) and by the round number of
a supergame (the second row of the horizontal axis scale). Starting from round 2, a distinction is made
between undominated cooperation and dominated cooperation after defection (CaD). The later rounds were
never reached for some δ values (see Appendix Table A2). Lab: 100 subjects, 2,400 supergames, AMT: 149
subjects, 3,576 supergames.

payoff differences. However, as shown in Appendix B.2 while the cost of first round mistakes

is indeed lowest (0) for a δ value equal to δ∗, and these costs rise as δ departs from δ∗, the

increase in these costs is asymmetric, with relatively lower costs for δ values less than δ∗ and

relatively higher costs for δ values greater than δ∗. When cooperation is the optimal round

1 action, a single initial defection triggers permanent punishment, so the subject can never

return to the cooperative path. By contrast, when defection is optimal, an initial incorrect

cooperation choice need only delay convergence to the optimal outcome.

At the same time, the evidence that these incentive differences can account for the ob-

served behavior is mixed. Figure 4 (and later on Figure 13) show that first round departures

from the theoretical optimum are smallest for the lowest δ value of 0.10 and not for the

highest δ value of 0.70, so the costs of mistakes alone cannot fully explain these deviations

from theoretical predictions.

This excessive cooperation cannot be attributed to risk aversion either, since — as noted

in Section 2.1 — risk aversion should instead lead to excessive defection. Rather, these
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apparent mistakes are better explained by the behavioral inattention theory of Section 2.2.

In such binary stochastic choice models (or simple Probit or Logit models), the rate of

optimal choice is lowest when the expected-payoff difference is smallest, near the critical

value δ∗ = 0.5. This is precisely what we observe in the left panel of Figure 4.17

Finding 2. In the first rounds of supergames, subjects in both samples cooperated in excess

of the theoretical optimum—on average by 44.1% in the Lab and 55.9% in the AMT sample.

Excessive cooperation is most pronounced at intermediate continuation probabilities, δ ∈

0.33, 0.4. Lab subjects were significantly more sensitive to changes in δ than AMT subjects.

4.3 Behavior Over All Rounds: Cooperation After Defection (CaD)

Our design allows us to examine behavior beyond the first rounds of the supergames. Given

our parameterization and random draws, 11 supergames ended after the first round and 13

continued (see Appendix Tables A1 and A2). The right panel of Figure 4 shows average

per-subject counts of cooperation versus defection by continuation probability δ for the first

round and for rounds 2–5 (no data exist beyond round 5). As shown, cooperation rises sharply

with increases in δ, a finding confirmed later on in the mixed-effects probit results of Table

3, specifications (1)–(2). First-round cooperation rates range from 9.5% (Lab) and 25.5%

(AMT) when δ = 0.1, to 76.25% (Lab) and 73.83% (AMT) when δ = 0.7. For the Lab

subjects, this responsiveness far exceeds that observed in standard subject-versus-subject

experiments.18 In contrast, AMT subjects are less responsive, particularly at δ = 0.1.

Since the robot opponent followed the Grim trigger strategy, any defection in a supergame

induced defection by the opponent in all remaining rounds. Subjects were quizzed on their

understanding of this strategy prior to play of the games. Further, subjects were explicitly

informed of the strategy the robot would play in each round before they made their own

17Because payoffs are nonlinear, stochastic choice models predict an asymmetric mistake rate around
δ∗ = 0.5, with optimal behavior more frequent at δ = 0.67 than at δ = 0.33.

18Using the probit estimates in (Dal Bó and Fréchette, 2018, p.66, Table 4), we calculate that in subject-to-
subject experiments using our continuation probabilities, cooperation would vary only from 45.5% (δ = 0.1)
to 56% (δ = 0.7) among inexperienced subjects. Even after 25 supergames, cooperation in such experiments
is predicted to vary only from 16.1% (δ = 0.1) to 62.7% (δ = 0.7).
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decision. Thus, choosing to cooperate after defecting earlier in the same supergame (CaD)

is dominated for any δ and constitutes a strategic error. In the right panel of Figure 4,

such suboptimal cooperation (CaD) is distinguished from non-erroneous cooperation in the

cooperation counts. Among the 13 supergames lasting more than one round, the share of

CaD errors is 7.57% for Lab subjects and 11.47% for AMT subjects.

Figure 5: Strategic errors of dominated cooperation after defection (CaD) in 13 relevant supergames (i.e.,
those lasting longer than one round). Left: Distribution of per-subject counts of instances of cooperation
after defection (CaD). Right: Per-subject counts of CaD instances vs. count of supergames with those
instances. Bubble size is proportional to the share of subjects. (100 Lab subjects, 149 AMT subjects).

As the left panel of Figure 5 shows, slightly less than half of subjects (48% for Lab

and 45.64% for AMT) never made the strategic error of CaD, and 20% of the Lab subjects

and 28.86% of the AMT subjects made at least 4 dominated CaD choices. Some such

choices could be intentional, e.g., due to a desire to verify the correctness of the displayed

information about the computer opponent’s behavior. Others could be due to a genuine

“trembling hand” error of accidentally pressing the “defect” button without noticing it.

In either case, an attentive payoff-maximizing subject would likely refrain from repeatedly

making such dominated CaD choices in multiple supergames.19

Given the possibility of trembling-hand behavior, we consider the number of supergames

in which the strategic error of CaD occurs at least once. The right panel of Figure 5 compares

the total count of CaD errors per subject (vertical axis) with the number of supergames

19Kloosterman (2020) also finds that subjects in repeated, human vs. human prisoner’s dilemma games,
can surprisingly return to cooperation after defection.
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containing such errors (horizontal axis). Most strategic errors occur only once per supergame

(as shown by bubbles on the diagonal), yet their overall extent is substantial: 24% of Lab

and 29.53% of AMT subjects made CaD errors in at least 3 of the 13 relevant supergames

(those lasting more than one round). This suggests that some dominated CaD behavior may

reflect inattention or limited strategic understanding (though recall that subjects had to pass

a quiz before play). While the prevalence of CaD errors is relatively small, it nevertheless

complicates interpretation of deviations from theoretically optimal behavior.

Finding 3. Over all rounds of all supergames:

(a) Cooperation (defection) increases (decreases) with the continuation probability δ.

(b) A majority of subjects (52% in Lab, 54.36% in AMT) made at least one strategic

error by cooperating after previously defecting (CaD) within the same supergame, triggering

a “grim” response. Such dominated cooperation accounts for 7.58% of relevant observations

in the Lab and 11.47% in AMT, with 24% of Lab and 29.53% of AMT subjects making this

error in at least 3 of the 13 supergames lasting more than one round.

4.4 Overall Point Totals

In this section we focus on total awarded points, which is the sum of points earned over

all 48 decisions. This serves as a theoretical measure of the payoff consequences resulting

from subjects’ behavior. First, recall that the theoretically optimal policy of cooperating

(defecting) in every round of every supergame when δ > (<)0.5 (see Hypothesis 1) is derived

ex ante, before the lengths of each supergame are realised. One can calculate that, given the

realization of random supergame terminations, the ex ante optimal play would result in an

overall total of 4,050 points ex post.20

Figure 6 reports on subjects’ point totals. As this figure shows, empirically overall point

20The theoretically optimal point total of 4,050 points is calculated as follows: A player earns 75 points in
each round of supergames with δ ∈ {0.67, 0.7} (26 decisions) plus 120 points in the first rounds (16 decisions)
and 30 points in the subsequent rounds (6 decisions) of the supergames with δ ∈ {0.1, 0.25, 0.33, 0.4}.
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totals range from 3, 285 to 4, 185 points for the Lab sample and from 3, 195 to 4, 185 for the

AMT sample with a mean (st. dev.) of 3,835.05 (203.38) for Lab and 3,766.21 (240.58) for

AMT. Note that the lowest ex post point total that is achievable here is quite substantial

at 2,745 points.21 This ex post lower bound can be seen as the “fixed” component of the

overall point total, and any overall point total in excess of that amount can be seen as the

“variable” component. It is easy to see that, on average, the Lab subjects earned only 83.5%

and the AMT subjects only 78.3% of the “variable” component of the overall point totals

that could be achieved by following the theoretically optimal policy.

As Figure 6 further reveals, some Lab subjects earned as little as 41.4% and some AMT

subjects as little as 33.7% of the “variable” component achievable by following the optimal

policy. Furthermore, 16% of Lab subjects and 28.86% of AMT subjects could have increased

their total point earnings to 3,600 points by simply choosing either always to cooperate

(All-C) or to always defect (All-D),22 which is 65.5% of the “variable” component achievable

by following the theoretically optimal policy. This observation suggests that, among other

deviations, strategic errors (CaD) reduce overall point totals.

As Figure 6 further shows, the mode for the Lab sample is at the theoretically optimal

point total of 4,050, and this point total is also relatively frequent among the AMT subjects.

Yet, strikingly, the maximum point total is still higher in both samples. Overall, 19% of the

Lab subjects and 16.11% of the AMT subjects were able to achieve at least the theoretically

optimal point value of 4,050, despite only two subjects in the Lab sample and one subject in

the AMT sample actually behaving in a way that was fully theoretically optimal (in all 48

choices). Thus, given the random realization of the supergames, some subjects were able to

achieve at least as much as the theoretically optimal point total despite pursuing strategies

21This ex post theoretical minimum of 2,745 points arises from making the strategic mistake of cooperating
after defecting and is calculated as follows. In the 11 supergames lasting only one round, one achieves the
lowest payoff of 75 by cooperating (11 decisions). But in the supergames lasting longer than one round, the
lowest payoff is obtained by defecting in the first round and earning 120 (13 decisions) and earning only 15
from cooperating thereafter (24 decisions).

22Recall that the expected payoffs to these two extremely biased strategies are the same by design. Ex
post, by cooperating always, in every round of every supergame, one would earn 75 in each of 48 decisions;
and by defecting always one would earn 120 in all first rounds (24 decisions) and 30 thereafter (24 decisions).
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Figure 6: Distribution of overall point totals, or the sum of point earnings across all 48 decisions. Ex
post theoretical point total from following the ex ante optimal policy is 4,050, while the ex post theoretical
minimum and (omniscient) maximum point totals are 2,745 and 4,680, respectively.

that were not theoretically optimal. A potential explanation for this mystery is provided in

the next Section 4.5.

Finding 4. Lab subjects earned 83.5% and AMT subjects 78.3% of what could be achieved

relative to the ex post theoretical minimum by following the ex ante optimal policy. Overall,

16% of Lab and 28.86% of AMT subjects earned less than they could have by always cooper-

ating or always defecting. Notably, 17% of Lab and 15.43% of AMT subjects achieved totals

at least as high as the theoretical optimum—without always following the optimal strategy.

4.5 “End-Timing” (DaC)

Note that when playing against a robot that uses the Grim trigger strategy, one could

earn the highest feasible payoff if one knew exactly when each supergame would end, by

cooperating at first but defecting in the final round. Since subjects in our study did not know
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when a supergame would end, they could not execute this “end-timing” strategy perfectly.23

Nevertheless, some subjects appear to be attempting this, perhaps forming subjective beliefs

about the end of each supergame.24 This is a form of “gambler’s fallacy”—the belief that,

because the supergame has not ended in earlier rounds, the probability that it ends in

the current round has increased (see, e.g., Cowan (1969)), even though the termination

probability in fact remains constant.

We formally define the “end-timing” strategy as consistently defecting after the earlier

play of cooperation in the same supergame, or DaC for short. Such an end-timing strategy

involves riding a cooperative wave and gambling on its end, and thus is risky as it is most

profitable if the first defection happens in the final round of the supergame. It is thus possible

that subjects employ a δ-specific “end-timing” strategy, believing that the supergame is

highly likely to end at its expected length, even though the continuation probability δ in

reality does not change. Note that risk attitudes of subjects cannot in themselves explain this

behavior. As noted in Section 2.1, under CRRA preferences the threshold δ∗ is increasing in

risk aversion, so that risk averse agents would be less likely to cooperate in our experiment,

and, if it were optimal for them to defect, they would begin defecting from the first round.25

Indeed, Figure 7 (left) shows that, for some continuation probabilities δ, some subjects

defect for the first time (thus triggering subsequent defection by the automated opponent)

later in the sequence, rather than in the first round (if ever) as predicted by the theory.26

Further, as Figure 7 (right) shows, the share of supergames where subjects always defected

23Note that in both subject pools the maximum realised overall point total was 4,185 points – which is far
below the (omniscient) maximum 4,680 points from perfect play of the end-timing strategy. This suggests
that there was no information exchange/leakage across subjects in our experiment.

24Suppose a subject believes that the continuation probability is δ in the initial rounds but (incorrectly)
believes that the experimenter will stop the supergame with probability one at some final round T . Then
one can calculate that, when δ > δ∗ = 1

2 , the optimal strategy is to cooperate in every round up to round T
but defect at round T .

25Dal Bó and Fréchette (2018) report that existing experiments find no clear link between risk aversion
and cooperation.

26Note that the expected duration of a sequence, 1
1−δ , as calculated from the perspective of round 1, as

well as the average realized length of the sequences in the experiment, are both increasing with δ – see Table
A2. Mengel et al. (2022) report that subjects respond to the realized supergame length, and are more likely
to cooperate when they have experienced supergames of longer duration.
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Figure 7: Patterns of cooperation and defection. Left: Average per-subject counts of first defection within a
supergame by δ and round number. Right: The population shares of the behavioral patterns in a supergame,
by δ value. By construction, the four strategies, CaD, DaC, All-D and All-C are mutually exclusive. (Lab:
100 subjects, 2,400 supergames; AMT: 149 subjects, 3,576 supergames.)

(All-D) declines as the continuation probability δ increases. However, this does not lead to

greater use of the always cooperate (All-C) strategy as δ increases. Instead, as δ (and thus

the expected duration of a supergame) rises, both the prevalence of strategic errors (CaD)

and “end-timing” (DaC) strategies increase. Interpreting All-C strategies is complicated by

attrition, as a subject may have intended to time their defection, but the supergame ended

earlier than expected. Similarly, All-D strategies in low-δ supergames may not only reflect

theoretically optimal behavior but may also be observationally equivalent to end-timing.

Indeed, if behavior were theoretically optimal, then in the mixed-effects probit regres-

sions, the difference of the coefficients from the baseline of δ = 0.1 would be insignificant for

δ = {0.25, 0.33, 0.4} and significant for δ = {0.67, 0.7}. Moreover, the round dummies would

all differ insignificantly from the baseline of the first round. Instead, as Table 3 (specifica-

tions 1-2) reveals, subjects’ tendency to choose cooperation increases with δ, but decreases

significantly with the round number, consistent with the use of the end-timing strategy.

The left panel of Figure 8 shows that only 22% of Lab subjects and 30.9% of AMT

subjects never engaged in end-timing, i.e., never switched from cooperation to defection

within the same supergame (CaD). However, as the right panel of Figure 8 shows, some

apparent end-timing behavior may be unintentional, reflecting “mistakes” by subjects who
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Figure 8: Left: Distribution of per-subject counts of supergames with “end-timing” (DaC) among 13
relevant supergames. Right: Per-subject counts of supergames with strategic errors (CaD) vs. those with
end-timing (DaC). Bubble size is proportional to the share of subjects (100 Lab, 149 AMT).

make frequent strategic errors (CaD), i.e., those with higher counts on the horizontal axis of

the scatterplots. Yet, a few subjects who rarely commit strategic errors (CaD) (those near

zero on the horizontal axis) appear to engage in end-timing behavior.

Finding 5. Some subjects appear to use a non-optimal “end-timing” strategy, attempting

to time their first defection to the unknown final round of a supergame. Following this risky

strategy enabled a few subjects, by chance, to earn more than the theoretically optimal payoff.

4.6 Learning Over Time

As Table 1 shows, subjects in both pools respond to their experience, changing their play in

the second half of the experiment (last 12 supergames) relative to the first (first 12). While

they make fewer dominated CaD errors27 and cooperate less per round, both subject pools

show a clear increase in end-timing activity (DaC). Overall, the improvement in optimal play

per round, though significant, remains modest — rising from 64% (59%) in the first half to

66% (62%) in the second for Lab (AMT) samples. Over time, only AMT subjects move

toward theoretically optimal behavior within a supergame and earn slightly more points.

27As Figure B4 in the Appendix shows, while the incidence of dominated CaD errors declines over time,
it does not disappear entirely, comprising 4% for Lab and 7% for AMT subjects in the second half of play.
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Learning
1st Half 2nd Half

t-stat df pvalue
Mean StDev Mean StDev

Lab Cooperate 0.52 0.50 0.48 0.50 2.63 4798 0.01***
Per Round Optimal 0.64 0.48 0.66 0.47 -1.72 4798 0.09*
(N=4,800) CaD 0.05 0.22 0.03 0.16 4.24 4798 0.00***†

Optimal (All-D+All-C) 0.59 0.49 0.62 0.49 -1.33 2398 0.18
Lab Optimal All-D 0.42 0.49 0.44 0.50 -1.44 2398 0.15

Optimal All-C 0.17 0.38 0.17 0.38 0.16 2398 0.87
Per Supergame Suboptimal All-D 0.04 0.20 0.05 0.22 -1.15 2398 0.25

Suboptimal All-C 0.19 0.39 0.15 0.36 2.55 2398 0.01**
(N=2,400) CaD 0.08 0.27 0.04 0.20 3.89 2398 0.00***†

DaC (End-Time) 0.10 0.30 0.14 0.35 -3.11 2398 0.00***
Point Total 158.20 71.33 161.40 71.46 -1.08 2398 0.28

AMT Cooperate 0.57 0.50 0.54 0.50 2.07 7150 0.04**
Per Round Optimal 0.59 0.49 0.62 0.49 -2.51 7150 0.01**
(N=7,152) CaD 0.07 0.25 0.05 0.22 3.05 7150 0.00***

Optimal (All-D+All-C) 0.52 0.50 0.57 0.50 -2.55 3574 0.01**
AMT Optimal All-D 0.35 0.48 0.40 0.49 -2.87 3574 0.00***

Optimal All-C 0.17 0.38 0.17 0.38 0.31 3574 0.76
Per Supergame Suboptimal All-D 0.04 0.20 0.04 0.20 0.17 3574 0.87

Suboptimal All-C 0.25 0.44 0.21 0.41 3.38 3574 0.00***†
(N=3,576) CaD 0.10 0.30 0.07 0.25 3.54 3574 0.00***†

DaC (End-Time) 0.08 0.27 0.12 0.32 -3.96 3574 0.00***†
Point Total 154.70 71.72 159.20 72.50 -1.85 3574 0.06*

Table 1: The effect of learning, first half (first 12 sequences) vs second half (last 12 sequences): Means and
standard deviations, and t-tests of differences between the two halves. DF stands for degrees of freedom or
Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz Errors. Pvalue stands for
Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

Finding 6. Over time, subjects learn to commit fewer dominated CaD errors, and move

closer to theoretically optimal behavior. However, the play of dominated CaD does not dis-

appear over time, and, moreover, the frequency with which subjects engage in end-timing

behavior (DaC) increases over time.

4.7 Classifying the Patterns of Play Within Each Supergame

In the existing IRPD experiments, it is common to classify subjects’ play using more than

a dozen of strategies of which Grim or Tit-For-Tat (TFT) are the most commonly known

(Dal Bó and Fréchette, 2018, Section 2.5). Yet here the computer opponent is never first to

defect, and never forgives, ruling out identifying these or more complex strategies, even if

they could be optimal in repeated interactions among humans.

Instead, our two design innovations enable to not only distinguish between optimal and

suboptimal stationary strategies All-C and All-D (by conditioning on δs) but also to docu-
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ment the prevalence of novel, non-stationary suboptimal strategies, end-timing and cooperate

after defect, which do not fit existing classifications. Here, subjects’ within-supergame be-

havior can be classified into only six mutually exclusive types: optimal All-C, optimal All-D,

suboptimal All-C, suboptimal All-D, strategic errors (CaD), and end-timing (DaC).28

Figure 9: Subject heterogeneity in patterns of choices within 24 supergames, by subject, ordered by the
count of supergames with (combined optimal and suboptimal) All-Defect choices (100 Lab subjects and 149
AMT subjects). The theoretically optimal strategy involves always defecting in 16 supergames and always
cooperating in the remaining 8 (solid red horizontal line).

As Figure 9 shows, there is no dominant pattern in subjects’ play. Both non-stationary

play (CaD and DaC) and stationary play (All-C and All-D), whether optimal or not, tend

to co-exist. The two (of 100) Lab subjects and eight (of 149) AMT subjects who always

cooperated are shown by dark and light green bars meeting at the solid red line on the far

left of each panel. Single subjects in each pool who always defected appear as dark and

light blue bars meeting at the red line on the far right. The two Lab subjects and one AMT

subject who always made theoretically optimal choices are represented by dark green and

28If the robot opponent instead played Tit-for-Tat, the number of possible play patterns would increase
to at least eight, further complicating interpretation and analysis.
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dark blue bars meeting at the red line toward the right end of each panel.

Finding 7. There is notable heterogeneity in subjects’ choices to cooperate or defect, without

any representative pattern. Only two of 100 Lab subjects and one of 149 AMT subjects always

followed the theoretically optimal strategy. Two (one) Lab subjects and eight (one) AMT

subjects were fully biased toward cooperation (defection). The remaining subjects pursued

the non-stationary suboptimal strategies of end-timing and cooperate after defect.

5 Individual Differences and Behavioral Inattention

According to the behavioral inattention model of Section 2.2, subjects’ cognitive abilities are

a key determinant of their behavior. We use each subject’s total score on seven Cognitive

Reflection Test (CRT7) questions as a proxy measure of reflective cognitive style. The mean

(st. dev.) CRT7 score was 3.78 (2.26) for Lab subjects and 3.58 (2.17) for AMT subjects,

with a median of 4 for both (see Figure B6, left panel). There is no significant difference in

CRT7 scores between the two subject pools (two-sided t-test = 0.72, p = 0.48).

5.1 The Effect of Cognitive Abilities

As Table 2 shows, consistent with Hypothesis 2 of Section 2.2, the CRT7 score is positively

correlated with overall point totals (specifications 1-2) and negatively with the number of

supergames involving strategic errors (dominated CaD) (specifications 3-4). For AMT sub-

jects only, the count of theoretically optimal choices (specification 6) is positively correlated

with CRT7. For Lab subjects (specification 5), the relationship is marginal, but the overall

fit, as indicated by the F statistic, is poor.

For both subject pools, the count of apparent end-timing behavior (DaC) (specifications

7-8) is not correlated with the CRT7 score, or with any other characteristic. Yet, as discussed

earlier in Section 4.5, choosing the theoretically optimal strategy can be observationally
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Overall Point Totals Dominated(CaD) Theor.Optimal End-Time(DaC) Th.Opt.+End-T(DaC)
(OLS) (Tobit, ll=0) (Tobit, ul=24) (Tobit, ll=0) (Tobit, ul=24)

(1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT (9) Lab (10) AMT
CRT7 26.37*** 61.74***† -0.51*** -0.94***† 0.32* 0.98***† 0.11 0.04 0.46** 1.06***†

(9.32) (7.05) (0.16) (0.17) (0.19) (0.16) (0.14) (0.12) (0.19) (0.16)
Female -65.92 -81.49** 1.40** 2.15*** 0.09 -1.05 -0.88 0.51 -0.52 -0.74

(41.98) (31.99) (0.69) (0.70) (0.80) (0.71) (0.59) (0.53) (0.82) (0.74)
Age -4.85 -0.67 0.12 0.02 0.25 0.05 -0.24* -0.04 0.07 0.02

(9.17) (1.50) (0.14) (0.03) (0.18) (0.04) (0.14) (0.03) (0.18) (0.04)
Order Long 57.11 -44.90 -0.22 -0.30 0.87 -1.16 0.34 -0.25 1.01 -1.42*

(38.27) (32.17) (0.68) (0.73) (0.79) (0.72) (0.59) (0.53) (0.78) (0.74)
Constant 3845.38***† 3635.03***† -1.03 2.11 7.46* 8.58***† 7.47** 3.00** 13.78*** 11.82***†

(212.24) (70.31) (3.06) (1.60) (3.95) (1.59) (3.09) (1.18) (4.19) (1.60)
F 5.47 25.26 4.52 10.11 1.44 14.89 1.80 0.76 2.72 15.18
p 0.00 0.00 0.00 0.00 0.23 0.00 0.14 0.56 0.03 0.00
Nobs. 100 149 100 149 100 149 100 149 100 149

Table 2: Individual differences in rationality. (Significance: * 0.10 ** 0.05 *** 0.01 ***† 0.001).

equivalent to an end-timing strategy. For example, when δ < 0.5, immediately defecting is

both optimal and consistent with end-timing. Yet, by construction, the theoretically optimal

and DaC plays are mutually exclusive. To address this, we report, in specifications 9 and

10, a combined count of whether subjects follow either the theoretically optimal strategy

(i.e., either All-D for δ < 0.5 or All-C for δ > 0.5), or engage in end-timing (i.e., consistent

defection after cooperation, or DaC). This is positively correlated with the CRT7 score for

both subject pools, in contrast to the above negative correlation with dominated CaD errors.

In contrast, the CRT7 score alone has no effect on the choice to cooperate, as seen in

Table 3 (specifications 3–4), which reports average marginals (dy/dx) from mixed-effects

probit regressions of the choice to cooperate or defect, controlling for demographics, CRT7

score, and other personal characteristics.29,30

Finding 8. Subjects with higher CRT7 scores earn higher payoffs, make fewer errors, and

behave closer to theoretical predictions. They may also be more likely to engage in end-timing.

29Note that Table 3 presents marginals, rather than odds, so that the same explanatory variable in different
models can have different statistical significance despite similar coefficients and robust errors.

30Note that while the coefficient on the female dummy in specifications 3-4 of Table 3 is signifi-
cantly negative, and the CRT7 score is negatively correlated with being female for the Lab subjects
(r = −0.2365, p = 0.0178) but not for the AMT subjects (r = −0.0625, p = 0.4497), the coefficient on
the CRT7 score remains insignificant if we exclude the age and gender demographic variables, or other
individual characteristics (results available on request).
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Marginals, dy/dx) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.23***† 0.08***† 0.22***† 0.08***† 0.24***† 0.08*** 0.18***† 0.09**

(0.03) (0.02) (0.03) (0.02) (0.04) (0.03) (0.04) (0.03)
δ=0.33 0.31***† 0.18***† 0.30***† 0.18***† 0.31***† 0.14***† 0.28***† 0.24***†

(0.03) (0.03) (0.03) (0.03) (0.05) (0.03) (0.05) (0.04)
δ=0.4 0.47***† 0.28***† 0.46***† 0.28***† 0.44***† 0.21***† 0.46***† 0.37***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
δ=0.67 0.66***† 0.42***† 0.65***† 0.42***† 0.61***† 0.29***† 0.68***† 0.60***†

(0.04) (0.03) (0.04) (0.03) (0.06) (0.04) (0.06) (0.04)
δ=0.7 0.69***† 0.46***† 0.68***† 0.45***† 0.62***† 0.33***† 0.73***† 0.63***†

(0.04) (0.04) (0.04) (0.04) (0.06) (0.04) (0.06) (0.05)
Round 2 -0.04 0.03 -0.04 0.03 -0.00 0.03 -0.09** -0.02

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.03)
Round 3 -0.12***† 0.04 -0.12***† 0.04 -0.06 0.06* -0.20***† -0.06

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.04)
Round 4 -0.19***† -0.02 -0.18***† -0.02 -0.10* 0.04 -0.28***† -0.16***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
Round 5 -0.17*** -0.13*** -0.17*** -0.13*** -0.13* -0.10* -0.23*** -0.23***†

(0.05) (0.04) (0.05) (0.04) (0.07) (0.06) (0.08) (0.06)
Supergame -0.06*** -0.06*** -0.06*** -0.06*** -0.09*** -0.04 -0.03 -0.09****

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
Order Long 0.05 0.03 0.06 0.04 0.07 0.06 0.04 0.04

(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.05) (0.06)
Prior Defect -0.20***† -0.23***† -0.20***† -0.23***† -0.17***† -0.19***† -0.23***† -0.22***†

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.03)
CRT7 -0.00 0.01

(0.01) (0.01)
Prediction 0.24*** 0.19*** 0.19 0.08 0.23**** 0.24***

(0.09) (0.06) (0.15) (0.08) (0.07) (0.09)
Female -0.08** -0.08** -0.08 -0.11** -0.07 -0.05

(0.04) (0.04) (0.06) (0.05) (0.06) (0.05)
Age -0.01 -0.00 -0.01 -0.00 -0.01 0.00

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
Risk -0.00 -0.01 -0.01 -0.02* 0.00 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
Patience 0.02 0.01 0.04***† 0.03* -0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
Punishment 0.00 -0.01 0.01 0.00 -0.01 -0.02**

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Altruism -0.02 -0.00 -0.02 -0.01 -0.02 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
Reciprocity 0.02 -0.01 0.01 -0.02 0.05 0.00

(0.02) (0.01) (0.02) (0.01) (0.04) (0.01)
Retribution -0.01 0.01 0.00 0.01 -0.02** 0.01

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Trust 0.00 0.01 -0.01 0.00 0.02* 0.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table 3: Choices to cooperate: mixed-effects probit regressions, marginals (dy/dx), robust errors in paren-
theses. (See Table B4 for the corresponding odds.) “Supergame” is the supergame number in the sequence
of supergames (scaled down by 24),“Order Long” is a dummy variable for whether the first supergame in
the sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior
rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative
choices in Round 1 across all 24 supergames (scaled down by 100). Chi2 and corresponding p-values are
from the odds regressions (see Table B4). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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5.2 Behavioral Inattention

The less obvious prediction of Hypothesis 2 of Section 2.2 is that, when deciding whether

to cooperate or defect, individuals with lower cognitive ability (lower attention) tend to

rely more on default values, while those with higher cognitive ability (higher attention)

respond more to the structure of the game. To test this hypothesis, we split both samples

by the median CRT7 score (equal to 4). Table 3 reports average marginals (dy/dx) from

mixed-effects probit regressions of the choice to cooperate or defect across all 48 rounds

of the prisoners’ dilemma (for odds, see Table B4 in the Appendix). As specifications 7–8

show, subjects with higher proxies for cognitive ability (CRT7>4) respond more strongly

to the continuation probability δ, are less likely to cooperate after defection within the

same supergame (i.e., make fewer CaD errors), and more frequently follow the end-timing

strategy, as indicated by negative and significant round-dummy coefficients. In contrast, as

specifications 5–6 show, lower-ability subjects (CRT7≤4) exhibit no systematic sensitivity

to the round number. These regression results are summarized visually in Figure 10.

These regressions further show that both lower and higher CRT7 groups each have a

single significant factor consistently correlated with their decision to cooperate across both

samples. In the lower CRT7 group (Table 3, specifications 5–6), those with higher self-

reported Patience tend to cooperate more frequently (and, vice versa, those with higher self-

reported impatience tend to defect more frequently)31 — significantly among Lab subjects

and marginally among AMT subjects.32 Interestingly, Fehr and Leibbrandt (2011) find that

patience measures are highly correlated with cooperative behavior in a field experiment.

Patience has also been found to influence cooperation in laboratory experiments (Davis

et al. (2016)). Other correlations in the lower CRT7 group are significant in only one subject

pool: being female was significantly negatively correlated with cooperation for the AMT

31The proxy for Patience is taken from Falk et al. (2018): “How willing are you to give up something that
is beneficial for you today in order to benefit more from that in the future?” (see Appendix A.4).

32Importantly, the Patience measure was marginally higher for the higher CRT7 group of the Lab subjects
(one-sided t = 1.3718, p = 0.0866), and there was no difference between the two CRT7 groups of the AMT
subjects (two-sided t = 0.2802, p = 0.7798).
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Figure 10: Inattention: each subjects’ patterns of play within supergames (out of 24 supergames), split by
median CRT7. Patterns are ordered by the count of supergames with combined optimal and sub-optimal
All-Defect choices. The theoretically optimal strategy is represented by the horizontal line, with always
defecting in 16 supergames and always cooperating in 8 supergames. (100 Lab and 149 AMT subjects.)

subjects only, and risk-prone AMT subjects only cooperated marginally less frequently.33

33The Risk measure is also from Falk et al. (2018): “In general, how willing are you to take risks?” (see
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In contrast, in the higher CRT7 group (Table 3, specifications 7–8), no personal char-

acteristics systematically explain subjects’ cooperative choices, as predicted by behavioral

inattention theory. (Cooperation was, however, significantly negatively correlated with Ret-

ribution for Lab subjects and with Punishment for AMT subjects.) Instead, Round 1 choices

(the regression baseline) are strongly correlated with the “Prediction” variable, elicited be-

fore any choices were made, possibly reflecting subjects’ understanding of the task.34

Finding 9. Subject behavior is broadly consistent with a simple model of inattention. Coop-

erative choices by subjects with lower proxies for cognitive ability (higher attention) correlate

with an elicited proxy for patience. In contrast, cooperative choices by those with higher prox-

ies for cognitive ability (lower attention) depend more on the game’s structure, correlating

not with individual characteristics but with an elicited proxy for understanding that structure.

6 Laboratory Robustness Check with Higher δ Values

We conducted additional sessions to address referees’ concerns about the robustness of our

results.35 These sessions differed in four key respects. First, to ensure full experimental

control, they were conducted in person at the UC Irvine laboratory: instructions were read

aloud, and subjects completed all tasks individually at workstations. Second, we used higher

continuation probabilities, δ ∈ {0.1, 0.4, 0.67, 0.75, 0.8, 0.85}, producing longer supergames

comparable to prior repeated-game studies. Third, δ values were implemented in blocks of

Appendix A.4). As Table 3 shows, there is no robust, significant relationship between this proxy for risk
propensity and cooperation in the first rounds. This contrasts with the theoretical prediction in Section 2.1
that risk-averse subjects should cooperate less, and risk-prone subjects more.

34Before making any choices, subjects were asked what percentage of their Round 1 choices across all 24
supergames would be cooperative (see Section 3). The mean (st. dev.) of this “Prediction” variable for Lab
subjects was 60.96 (29.57) with a median of 62, while for AMT subjects it was 66.64 (27.04) with a median
of 72, with no significant difference between the two pools (two-sided t-test = 1.56, p = 0.12, see Figure
B6, right panel). By comparison, the optimal choice is 1

3 (33.33%). In a Tobit regression, this measure
is significantly negatively correlated with “Altruism” (p = 0.01) and marginally positively correlated with
“Retribution” (p = 0.10), but only for AMT subjects; for Lab subjects, there is no correlation (results
available on request). Finally, the Prediction variable is significantly correlated with subjects’ actual first-
round choices (r = 0.3517, p = 0.0003 for Lab and r = 0.2350, p = 0.0039 for AMT).

35A pre-registration of the design of these new sessions can be found at the AEA RCT Registry
https://doi.org/10.1257/rct.15844.
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four supergames rather than randomly, allowing learning within each δ-block; instructions

were modified accordingly. Finally, we added an incentivized risk-elicitation task follow-

ing Holt and Laury (2002), as risk attitudes may influence optimal play (see Section 2.1);

the original experiment used only an unincentivized Likert-scale measure. Implementation

details appear in Appendix C.1–C.3.

We recruited a new, gender-balanced panel of 101 UC Irvine undergraduates distinct

from the original sample. Average earnings were $26.52—higher than in the initial sessions

due to longer games under higher average δ and a $3 increase in the show-up payment.

These modifications provide several robustness checks on our original findings. Despite

the changes, behavior closely parallels the main treatment: error rates remain high, strate-

gies are non-stationary, cooperation often follows defection, and many subjects exhibit end-

timing. Elicited risk attitudes show no explanatory power.

Each subject completed 24 supergames, each lasting at least one round. Eleven ended

after a single round, while the remaining 13 lasted 2–15 rounds, yielding 24 first-round and 75

subsequent-round choices (99 total decisions; see Appendix Table C2). Given the parameters,

the optimal strategy is to defect in all rounds of the eight supergames with δ ∈ {0.1, 0.4} (11

decisions) and to cooperate in all rounds of the remaining sixteen supergames (88 decisions).

6.1 High Delta Sessions: The Headline Result

In the high-δ treatment, most δ values exceed δ∗ = 0.5 by design, so theoretically optimal

choices are skewed toward cooperation both initially and later; hence, in this follow-up

experiment, defection is often suboptimal. The theoretically optimal strategy here is to

defect in all rounds of supergames with δ = {0.1, 0.4} and to cooperate in all others. Thus,

perfectly optimal play entails 16 cooperative first-round choices (and 8 defections) and 72

cooperative choices in the remaining 75 rounds (and 3 defections), a total of 88 cooperative

choices out of 99.
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Figure 11: High δs: Cooperation and Defection rates across all rounds of the four supergames in chrono-
logical order (first horizontal axis) of each of the six δ values (second horizontal axis). (N=101 subjects.)

Figure 11 (the high-δ analogue of Figure 1 for the baseline treatment) summarizes be-

havior in the high-δ treatment. Overall, the pattern closely resembles the baseline: the rate

of cooperative play is positive for the two δ values below the cutoff δ∗ = 0.5 and is less than

full cooperation for all four δ values above δ∗, contrary to Hypothesis 1. Learning across

supergames, while being potentially better than in the baseline, remains mixed, despite here

the four supergames of each δ were played consecutively, potentially facilitating learning.

These aggregate patterns translate into low rates of fully optimal behavior. As Figure 12

(the high-δ analogue of Figure 2) shows, only 3 of 101 subjects (3%) played perfectly opti-

mally. Only 8 subjects (7.9%) made at least 93 optimal choices out of 99 (93.9%), slightly

above the share in the main experiment, while 17 subjects (16.8%) achieved at least 87

optimal choices (87.9%), versus roughly 10% in the main experiment. Overall, the mean

(s.d.) number of optimal choices was 57.2 (26.41) with a median of 60, and subjects made

significantly fewer optimal choices than predicted (one-sided t-test: t = 15.8992, p < 0.001).

Finding 10. In high-δ Lab sample, across 99 decisions in 24 supergames, fewer than 8%

of subjects behaved in line with standard game-theoretic predictions. About 83% made fewer

than 87 of 99 theoretically optimal choices (87.9%).
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Figure 12: High δs: Frequency and cumulative distributions of per-subject counts of optimal choices across
all supergames (99 decisions per subject, N=101 subjects).

6.2 High Delta Sessions: Response to δ

In the first rounds of supergames in the high-δ sessions, subjects’ cooperation increases

almost monotonically with the continuation probability δ, though this tendency flattens at

higher values (similar to the baseline). This pattern, visible in the leftmost group of bars

in the right panel of Figure 13, is confirmed by the mixed-effects probit regressions in Table

C5, specifications 1-2. First-round cooperation rates are 15.4% when δ = 0.1, 70.05% when

δ = 0.67, and 77.7% when δ = 0.85, consistent with previous findings (see footnote 18). As in

the main experiment, subjects respond less when continuation probabilities are intermediate

- see the left panel of Figure 13 - and nearly half cooperate suboptimally in the first round

when δ = 0.4 < δ∗ = 0.5. Such excessive cooperation cannot be explained by risk aversion

(further confirmed by our risk-aversion measure), while subjects again cooperate too little

when δ > δ∗, particularly at δ = 0.67 (right panel of Figure 13).

Finding 11. In high-δ Lab sample, in every round of a supergame, the rate of cooperation

(defection) tends to (weakly) increase (decrease) with continuation probability δ. However,

there is a pronounced tendency toward excessive cooperation at the “intermediate” continu-

ation probability δ = 0.4.
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Figure 13: High δs: Patterns of optimality, cooperation, and defection: Left panel: Population shares of
theoretically optimal first-round choices across all supergames, by continuation probability δ (see also the
leftmost bars in the right panel). Right panel: Average per-subject counts of cooperation versus defection,
by continuation probability δ (first row of the horizontal axis) and by supergame round number (second
row of the horizontal axis). From round 2 onward, we distinguish between undominated cooperation and
dominated cooperation after defection (CaD). Later rounds were not reached for some δ values (see Table
C2). (N=101 subjects, 2,424 supergames.)

6.3 High Delta Sessions: First Round Behavior

Figures 13 and 14 show the subjects’ first-round behavior in the high-δ session supergames

(before any experience). Again, only a small fraction, 7 subjects out of 101 (6.9%), behaved

perfectly as predicted and made 16 (8) choices to cooperate (defect) in the first rounds across

all 24 supergames. In contrast to the baseline experiment, 30 out of 101 subjects (29.7%)

made no more than 3 mistakes out of 24 first round choices (i.e., at least 21 optimal choices

out of 24, or 87.5% of choices). However, given the mean (st.dev.) of optimal decisions in

the first round of 17.8 (4.60) and the median of 19, the subjects made significantly fewer

optimal decisions in the first round than predicted (one-sided t-test t = 13.5346, p = 0.0000).

Finding 12. In high-δ Lab sample, in the first rounds, compared to the theoretical optimum,

subjects behave suboptimally, cooperating too much (too little) for low (high) continuation

probabilities.
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Figure 14: High δs: Left: Frequency and cumulative distributions of per-subject counts of optimal choices
in first round choices across all 24 supergames. (N=101 subjects, 24 decisions each.)

6.4 High Delta Sessions: Cooperation after Defection (CaD)

Section 4.3 introduced the strategic error of dominated choice to cooperate after defecting

earlier within the same supergame (CaD). In the right panel of Figure 13, among the relevant

observations (in the 13 supergames lasting more than one round), the overall share of CaD

errors is 5.7%, lower than in the baseline study. However, as Figure 15 (left) shows, the

incidence of such errors per subject is greater than in the baseline, as fewer subjects, only

39.6%, never made the strategic error of CaD, and 34.65% of subjects made at least 4

dominated CaD choices. Figure 15 (right) shows that, again, at 33.7%, a greater share

of subjects make errors in at least 3 out of the 13 relevant supergames than in the main

experiment (see an example of subject 207 making CaD errors in 10 supergames in Table 4).

Furthermore, only 36% of subjects made only one strategic CaD error per supergame.

The increased frequency of mistakes per subject in the follow-up experiment could be

simply due to longer supergames in the follow-up study, with subjects making more than

twice as many choices in the follow-up study (99 vs 48), increasing the chances of the “trem-

bling hand” mistake. While the prevalence of CaD errors is relatively small, it nevertheless

underscores the challenge of interpreting the deviations from the theoretically optimal be-
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havior in the more complex environments of the classical RIPD experiments, as those involve

relatively long supergames and thus greater number of choices.

Figure 15: High δs: Strategic errors of dominated cooperation after defection (CaD) in 13 relevant su-
pergames (i.e., those lasting longer than one round). Left: Distribution of per-subject counts of instances
of cooperation after defection (CaD). Right: Per-subject counts of CaD instances vs. count of supergames
with those instances. Bubble size is proportional to the share of subjects (N=101 subjects).

Finding 13. In high-δ Lab sample, about three-fifths of subjects made at least one strategic

error of cooperating after previously defecting (CaD) within the same supergame, and roughly

one-third of subjects made dominated choices in at least 3 of the 13 supergames lasting more

than one round. Such excessive cooperation accounts for 5.7% of relevant observations.

6.5 High Delta Sessions: “End-Timing” (DaC)

Recall that the theoretically optimal strategy is stationary—either defect immediately when

δ < δ∗ or never defect at all. However, against a Grim-trigger robot, a subject could do better

by perfectly timing defection — cooperating in all but the final round of each supergame

and defecting only in the last round to gain the temptation payoff without triggering any

punishment. In Section 4.5, we defined the “end-timing” strategy as consistently defecting

after the earlier play of cooperation in the same supergame, or DaC.

Indeed, Figure 16 (left) shows that, for all continuation probabilities δ > 0.1, some

subjects follow non-stationary strategies: they defect for the first time (thus triggering sub-

sequent defection by the automated opponent) later in the supergame, rather than in the

41



first round (if ever) as predicted by the theory. Furthermore, as Figure 16 (right) shows, as δ

(and thus the expected duration of a supergame) increases, both the prevalence of strategic

errors (CaD) and “end-timing” (DaC) strategies broadly increase.

Figure 16: High δs: Patterns of cooperation and defection. Left: Average per-subject counts of first
defection within a supergame by δ and round number. Right: The population shares of the behavioral
patterns in a supergame, by δ value. By construction, the four strategies, CaD, DaC, All-D and All-C are
mutually exclusive. (N=101 subjects, 2,424 supergames.)

Again, by looking at the mixed-effects probit regressions reported on in Table C5 (spec-

ifications 1-2), we observe that subjects’ tendency to choose cooperation broadly increases

with δ rather than change in a step-wise fashion predicted by the standard theory. The effect

of the round number is not as clear cut as in the baseline treatment (Table 3), but there

is also a tendency for cooperation to broadly decrease with the round number for relatively

low round numbers, which is broadly consistent with the use of the end-timing strategy.

Figure 17: High δs: Left: Distribution of per-subject counts of supergames with “end-timing” (DaC),
among 13 relevant supergames. Right: Per-subject counts of supergames with strategic errors (CaD) vs.
supergames with end-timing (DaC). Bubble size is proportional to the share of subjects (N=101 subjects).

The left panel of Figure 17 shows that only 24.75% of subjects never used the end-timing
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strategy. As the right panel of Figure 17 shows, some potential end-timing behavior may

be unintentional, amounting to “mistakes” by subjects who make frequent strategic errors

(CaD), i.e., those with higher counts on the horizontal axis of the scatterplots. Yet a few

subjects who never or almost never commit strategic errors (CaD) (those closer to zero on

the horizontal axis indicating CaD errors) appear to be engaged in end-timing behavior.

Recall that the baseline treatment, by design, is biased toward lower continuation proba-

bilities δ and thus shorter supergames on average. As a result, interpreting subjects’ strate-

gies there is complicated by attrition, as a subject might have intended to time their defection,

but a supergame ended earlier than expected. In contrast, our high-δ treatment is biased

toward higher continuation probabilities so supergames last longer on average and display

greater variance in duration. Consequently, some lasted substantially longer (or shorter)

than expected, allowing us to clearly detect when subjects used end-timing strategies. For

example, subject 503 in Table 4 appears to have “gambled” by defecting in what they be-

lieved was the final round—though, given the realized draws, this strategy proved ex post

unsuccessful (all subjects’ play patterns are available upon request). As discussed earlier,

such a strategy is less risky when continuation probabilities δ are relatively low (as in the

baseline experiment) than when they are high, as in the follow-up. As shown in Appendix D,

neither risk-attitude measure affects the likelihood of pursuing end-timing (see Table C4).

Finding 14. In the high-δ Lab sample, some subjects appear to use risky “end-timing” strat-

egy where they attempt to time their first defection to the unknown final round of a supergame.

Given the higher variance of the duration of the long-horizon supergames, no subject was able

to earn more than the theoretically optimal payoff in the long-horizon treatment.

6.6 High Delta Sessions: Overall Point Totals

Given the realization of random supergame terminations in high-δ treatment, the ex ante

optimal play would result in an overall total of 7,650 points earned over all 99 decisions
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Supergame δ Duration Subject 207 (CRT7 = 0) Subject 503 (CRT7 = 5)
1 0.67 3 DDD============ CCD============

2 0.67 2 CC============= CC=============

3 0.67 1 C============== C==============

4 0.67 3 DDC============ CCD============

5 0.85 6 DDDDDD========= CCCCCD=========

6 0.85 1 D============== C==============

7 0.85 15 CCDDDCDDCCDCCDD CCCCCDDDDDDDDDD

8 0.85 10 DCDDCDCDDD===== CCCCCCDDDD=====

9 0.10 1 C============== D==============

10 0.10 1 D============== D==============

11 0.10 1 D============== D==============

12 0.10 1 C============== D==============

13 0.80 5 CDCDD========== CCCCD==========

14 0.80 15 CCDCDCDCDCCDCDD CCCCDDDDDDDDDDD

15 0.80 4 DCDD=========== CCCC===========

16 0.80 1 C============== C==============

17 0.75 6 DCDDCD========= CCCDDD=========

18 0.75 1 C============== C==============

19 0.75 10 DDCDCDCDCD===== CCCDDDDDDD=====

20 0.75 5 DCCDC========== CCCDD==========

21 0.40 4 DDCD=========== CDDD===========

22 0.40 1 C============== C==============

23 0.40 1 D============== C==============

24 0.40 1 C============== C==============

Table 4: High δs: Examples of subjects engaging in non-stationary play. Subject 207: dominated cooper-
ation after defection (CaD) vs. subject 503: end-timing (DaC). Both subjects faced Long order.

ex post.36 As in the baseline study, the lowest possible ex post point total (or the “fixed”

component of the overall point total) is again quite substantial at 3,510 points.37

Figure 18 reports on subjects’ total awarded points earned over all 99 decisions. Empir-

ically overall point totals range from 4, 620 to 7, 650 points, with two modes (at 4 subjects

each) at 7,425 (All-Cooperate) and slightly lower 7,155, while 3 subjects behaved perfectly

theoretically optimal earning 7,650 points. The mean (st.dev.) is 6,428.8 (867.7) - higher

than in the baseline study simply because of the longer supergames. On average, subjects

earned less than in the baseline study, only 70.5% of the “variable” component of the overall

point totals achievable by following the theoretically optimal policy.38 The worst performing

subject earned only 26.8% of the “variable” component achievable by following the optimal

36The theoretically optimal point total is a sum of 75 points in each round of supergames with δ ∈
{0.67, 0.7, 0.8, 0.85} (88 decisions) plus 120 points in the first rounds (8 decisions) and 30 points in the
subsequent rounds (3 decisions) of the supergames with δ ∈ {0.1, 0.4}.

37As in footnote 21, the ex post theoretical minimum of 3,510 points arises from CaD errors, with 75
points from cooperating in each of the 11 supergames lasting only one round (11 choices); plus 120 points
from defecting in the first round (13 choices) and 15 points from cooperating thereafter (75 choices) in each
of the 13 supergames lasting longer than one round).

38As in the baseline study, this is calculated as the share of the average point totals in excess of the
theoretical minimum relatively to the 4,140 theoretically optimal point totals in excess of the minimum.
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policy (again, quite miserably relatively to the baseline study). Moreover, 11.9% of subjects

could have increased their total point totals to the level of 5,130 points (39.1% of the optimal

“variable” component) by simply choosing to always defect (All-D). And, strikingly, 85.6%

of subjects could have earned 7,425 point totals (94.6% of the optimal “variable” component)

by choosing to always cooperate (All-C)! (Recall that the follow-up experiment has higher

deltas, and thus is biased by design towards cooperation.) These observations suggest that,

among other deviations, strategic errors (CaD) reduce overall point totals.

Finally, if subjects were omniscient and perfectly knew when will be the final round

of a supergame, the end-timing (DaC) strategy in our high-δ treatment yields an ex post

maximum point total of 8,505 — about 11% higher than the theoretical maximum. Yet,

here, no subject earned more than the theoretically optimal payoff, confirming that the end-

timing behavior is not profitable in a riskier environment of high continuation probabilities

(with a higher chance of both very short and very long supergames).39

Figure 18: High δs: Distribution of overall point totals, or the sum of point earnings across all 99 decisions.
Ex post theoretical point total from following the ex ante optimal policy is 7,650, while the ex post theoretical
minimum and (omniscient) maximum point totals are 3,510 and 8,505, respectively. (N=101 subjects.)

Finding 15. In high-δ Lab sample, on average, subjects earned only 70.5% of what could be

achieved relative to the ex post theoretical minimum by following the ex ante optimal policy.

39Again, this also suggests there was no information exchange or leakage between participants, or that any
such information was not used to maximize payoffs.
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11.9% of subjects achieved lower point totals than what they could have achieved by always

defecting. No subject was able to achieve more than the theoretically optimal point totals.

6.7 High Delta Sessions: Learning Over Time

Do subjects learn to play the theoretically optimal strategy and make fewer dominated errors

(such as CaD) as they gain experience in the high-δ sessions, where supergames with the

same δ value are played consecutively in blocks? Here, as in the baseline treatment, there

is clear evidence of learning over time, from the first to the second halves of the sessions

(see the top panel of Table 5, which is comparable to Table 1), though interpretation is

complicated by the order of δ-blocks (see Appendix Figure C5). Subjects make significantly

fewer dominated CaD errors as they gain experience, although such errors do not vanish

entirely, occurring in 5.7% of supergames in the second half of play. They also cooperate

more often, shifting away from both optimal and suboptimal All-D strategies and toward

All-C strategies. Given that the high-δ treatment naturally favors cooperative play, this

behavioral shift results in a higher overall frequency of optimal choices.

Unlike in the baseline treatment, subjects here faced each continuation probability δ in

blocks of four supergames. The bottom panel of Table 5, considers learning within these δ-

blocks, between the first and last two supergames of the same δ-value. We find that subjects

make fewer optimal decisions and use “end-time” (DaC) strategies significantly more often

in the second half of these δ-blocks. This pattern is reflected in fewer optimal and more

suboptimal All-C choices. Interestingly, the frequency of strategic (CaD) errors remains

statistically unchanged within δ-blocks.

Finding 16. In high-δ Lab sample, from the first to the second halves of sessions, subjects

make fewer dominated CaD errors and move closer to the theoretical optimum. However,

dominated CaD play persists, and end-timing (DaC) behavior increases—significantly so only

within a δ-block.

Other findings for the high-δ treatment closely mirror those reported earlier for the base-
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Learning: Within Session
1st Half (SG 1-12) 2nd Half (SG 13-24)

t-stat df pvalue
Mean StDev Mean StDev

Per Round Cooperate 0.51 0.50 0.64 0.48 -13.13 9997 0.00****
Optimal 0.52 0.50 0.64 0.48 -12.19 9997 0.00****

(N=9999) CaD 0.06 0.24 0.03 0.16 7.69 9997 0.00****
Per Supergame Optimal (All-D+All-C) 0.56 0.50 0.63 0.48 -3.60 2422 0.00****

Optimal All-D 0.25 0.43 0.20 0.40 2.89 2422 0.00***
Optimal All-C 0.31 0.46 0.43 0.50 -6.19 2422 0.00****

(N=2424) Suboptimal All-D 0.13 0.34 0.08 0.27 4.48 2422 0.00****
Suboptimal All-C 0.07 0.26 0.11 0.32 -3.50 2422 0.00****
CaD 0.13 0.34 0.06 0.23 6.25 2422 0.00****
DaC (End-Time) 0.11 0.31 0.13 0.33 -1.20 2422 0.23
Point Total 259.10 227.20 276.60 249.60 -1.80 2422 0.07*

Learning: Within Delta Blocks
1st Half (first 2 SG) 2nd Half (last 2 SG)

t-stat df pvalue
Mean StDev Mean StDev

Per Round Cooperate 0.58 0.49 0.57 0.50 1.44 9997 0.15
Optimal 0.60 0.49 0.56 0.50 4.68 9997 0.00****

(N=9999) CaD 0.04 0.20 0.04 0.20 -0.16 9997 0.87
Per Supergame Optimal (All-D+All-C) 0.63 0.48 0.55 0.50 4.02 2422 0.00****

Optimal All-D 0.24 0.43 0.21 0.41 1.81 2422 0.07*
Optimal All-C 0.40 0.49 0.35 0.48 2.53 2422 0.01**

(N=2424) Suboptimal All-D 0.09 0.29 0.11 0.32 -1.67 2422 0.10*
Suboptimal All-C 0.08 0.27 0.11 0.31 -1.96 2422 0.05**
CaD 0.09 0.29 0.10 0.30 -0.77 2422 0.44
DaC (End-Time) 0.10 0.30 0.13 0.34 -2.09 2422 0.04**
Point Total 268.20 233.90 267.50 243.70 0.08 2422 0.94

Table 5: High δs: Top panel: Means, standard deviations, and t-tests comparing the first (12) and second
(12) supergames of each session. Bottom panel: Within-δ-block comparisons (4 supergames per block), first
vs. second half (2 supergames each). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.) (N=101 subjects.)

line treatment and are reported in Appendix C. As before, subjects fall into six types with no

dominant pattern: only three of 101 always chose the theoretically optimal action, and higher

CRT scores align with more payoff-maximizing behavior. Overall, behavior is consistent with

our simple inattention model: cooperative choices by lower-ability (more attentive) subjects

correlate with patience, while those by higher-ability (less attentive) subjects depend more

on game structure than individual traits.

7 Conclusion

We report an experiment testing fundamental aspects of the standard game-theoretic model

of repeated interactions, using both student and AMT subjects. In the repeated prisoner’s

dilemma, subjects played against a robot programmed with the Grim trigger strategy, con-

verting the game into a single-person decision problem with a unique optimal strategy and

eliminating confounds such as strategic uncertainty, social preferences, and multiple equilib-
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ria. Subjects completed many supergames with varying continuation probabilities, allowing

classification of within-supergame play into distinct behavioral patterns and linking devia-

tions from the theoretical optimum to individual characteristics, especially cognitive ability.

Only 1–2% of subjects behaved fully consistently with rational choice predictions, and

just 3–5% did so more than 95% of the time. These low frequencies suggest that strict ratio-

nal choice models may have limited empirical relevance for cooperative behavior. Behavioral

models that incorporate errors or stochastic choice, such as logit or quantal response equilib-

rium, appear more suitable. In particular, the inattention model introduced here accounts

for systematic biases, connects them to cognitive ability, and accommodates heterogeneity

across individuals.

Our simplified individual-choice design pinpoints subjects’ mistakes and shows how indi-

vidual characteristics explain them. A majority (52–54%) made at least one strategic error

of cooperating after defection, and some followed an end-timing strategy—defecting after

initially cooperating (DaC)—which can yield higher payoffs than the theoretical optimum.

Such behavior extends beyond standard theory and highlights the value of experimental

evaluation. These patterns correlate with cognitive ability, and differences between high-

and low-ability subjects align with a simple model of inattention.

We hope our findings help refine theoretical and empirical work on repeated strategic

interaction and clarify the boundary between deliberate strategies and errors in such envi-

ronments.

48



References

Ackerman, R. (2014): “The diminishing criterion model for metacognitive regulation of
time investment.” Journal of Experimental Psychology: General, 143, 1349–1368.

Agranov, M. and P. Ortoleva (2017): “Stochastic choice and preferences for random-
ization,” Journal of Political Economy, 125, 40–68.

Andersen, S., G. W. Harrison, M. I. Lau, and E. E. Rutström (2008): “Eliciting
risk and time preferences,” Econometrica, 76, 583–618.

Andreoni, J. and J. H. Miller (1993): “Rational cooperation in the finitely repeated
prisoner’s dilemma: Experimental evidence,” The Economic Journal, 103, 570–585.

Andreoni, J. and L. Samuelson (2006): “Building rational cooperation,” Journal of
Economic Theory, 127, 117–154.
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Appendices (For Online Publication Only)

A Appendix: Experimental Instructions and Questions

This Appendix contains the instructions, quiz questions, belief elicitation, and post-experimental
questions in the order in which subjects encountered these in our original, baseline study.

A.1 Repeated PD Game Instructions and Comprehension Quiz

You will participate in 24 sequences. Each sequence consists of one or more rounds.

In each round, you play a game.

Specifically, you will have to choose between action X or action Y. Your opponent also
chooses between action X or action Y.

The combination of your action choice and that of your opponent results in one of the four
cells shown in the payoff table below (which will be the same table in each round).

X Y
X 75, 75 15,120
Y 120, 15 30, 30

In this table, the rows refer to your action and the columns refer to your opponent’s actions.
The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is your opponent’s payoff in points. Thus for example, if you choose X
and your opponent chooses Y, then you earn 15 points and your opponent earns 120 points.

In all 24 sequences, you will play this game against the computer. That is, your opponent
is a computer program.

The rule the computer follows in choosing between action X or Y is this:

• In the first round of each sequence the computer will always choose X.

• Starting from the second round of each sequence, the computer’s choice will be com-
pletely determined by your previous choices in that sequence:

– If you have ever chosen Y in previous round(s) of the current sequence, the com-
puter will choose Y in all remaining rounds of the current sequence.

– Otherwise, the computer will choose X.
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There is no randomness in the computer’s choice, and its choice does not depend on your
choices in any sequences other than the current one.

After choices are made by you and the computer, you learn the results of the round, specif-
ically, your point earnings and those earned by the computer. A random number generator
is used to determine whether the current sequence continues on with another round, or if
the current round is the last round of the sequence.

Whether the sequence continues with another round or not depends on the probability (or
chance) of continuation for the sequence. This continuation probability for a sequence is
prominently displayed on your decision screen and remains constant for all rounds of a
given sequence. However, this continuation probability can change at the start of each
new sequence, so please pay careful attention to announcements about the continuation
probability for each new sequence. Whether a sequence continues depends on whether at
the end of a round the random number generator drew a number in the interval [1,100] that
is less than or equal to the continuation probability (in percent).

For example, if the continuation probability in a sequence is 40%, then, after round 1 of
the sequence, which is always played, there is a 40% chance that the sequence continues
on to round 2 and a 60% chance that round 1 is the last round of the sequence. Whether
continuation occurs depends on whether the random number generator drew a number from
1 to 100 that is less than or equal to 40. If it did, then the sequence continues on to round
2. If it did not, then round 1 is the final round of the sequence. If the sequence continues on
to round 2, then after that round is played, there is again a 40% chance that the sequence
continues on to round 3 and a 60% chance that round 2 is the last round of the sequence,
again determined by the random number generator for that round. And so on.

Thus, the higher is the continuation probability (chance), the more rounds you should expect
to play in the sequence. But since the continuation probability is always less than 100%,
there is no guarantee that any sequence continues beyond round 1.

At the end of the experiment, you will be paid your point earnings from six sequences,
randomly selected so that each selected sequence has a different continuation probability.
Each point you earn over all rounds in each of the 6 randomly selected sequences is worth
$0.01 in US dollars, that is, the greater are your point earnings, the greater are your money
earnings.

Comprehension quiz

Now that you have read the instructions, before proceeding, we ask that you answer the
following comprehension questions. For your convenience, we repeat the payoff table below,
which you will need to answer some of these questions. In this table, the rows indicate your
choice and the columns indicate the computer’s choices.
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X Y
X 75, 75 15,120
Y 120, 15 30, 30

The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is the computer’s payoff in points.

Questions

1. If, in a round, you chose X and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

2. If, in a round, you chose Y and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

3. If, in a round, you chose Y and the computer program chose Y, what is your payoff in
points for the round? What is the computer program’s payoff?

4. If you have chosen Y in any prior round of the current sequence, what will the computer
program choose in the current round of the sequence? Choose: X or Y

5. True or false: At the start of each sequence, you will know exactly how many rounds
will be played in the sequence. Choose: True or False

6. True or false: If, in a sequence, the continuation probability is 75%, then you can
expect that there will be more rounds in that sequence, on average, than in a sequence
with a continuation probability of 25%. Choose True or False

A.2 Belief Elicitation

After a subject had successfully completed all quiz questions, they were asked to provide
their belief as to the proportion of times they would choose action X (the cooperative
action) in each of the first rounds of the 24 sequences (supergames) that they would play.
Prior to making this choice they were told that they would play 4 supergames for each of
the 6 different delta values. After submitting their belief regarding their overall play of the
cooperative action, the experiment proceeded on to the first indefinitely repeated PD game.

A.3 Repeated PD Games: Screenshots

For each indefinitely repeated PD game (referred to as a “sequence”) subjects were clearly
instructed about the continuation probability for that repeated game. E.g., the screenshots
shown in Figures A1-A2 provide an illustration of the screens that subjects faced in the first

55



Figure A1: (Top) Start screen for a new sequence. (Middle) Main decision screen for a period in the
sequence. (Bottom) Results screen for a period in the sequence.
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Figure A2: (Top) Decision screen for a continuation period in the sequence, noting what the robot player
will do, based on the history of play. (Bottom) Screen for the final period of a sequence noting that based
on the random drawn, the sequence has ended.
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round (Figure A1) and in continuation rounds (Figure A2) of the first supergame of the
“orderlong” treatment, which had a continuation probability of 0.67 and lasted for 4 rounds.

In this illustration, the subject chooses Y (defect) in all 4 rounds and the computer
program responds accordingly. Note that subjects were always informed in advance about
the computer opponent’s decision for each round based on the round number, the history of
play and the prescriptions of the Grim trigger strategy. For instance, in round 1 (Figure A1)
the subject is instructed: “Since this is the first round of a sequence the computer will always
choose X.” After the subject chose Y in the first round of Sequence 1, in the second round
of the sequence (Figure A2) the subject is instructed: “Based on your choices in previous
rounds of this sequence the computer will choose Y”.

A.4 Personality Questions

After the main task, subjects were asked to complete the following “questionnaire” by clicking
on radio buttons from 0,1,2,..10 to report their answers to each question.40

Questionnaire

We now ask for your willingness to act in a certain way in 2 different areas. Please indicate
your answer on a scale from 0 to 10, where 0 means you are “completely unwilling to do so”
and a 10 means you are “very willing to do so”. You can also use any numbers between 0
and 10 to indicate where you fall on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

1. In general, how willing are you to take risks?

2. How willing are you to give up something that is beneficial for you today in order to
benefit more from that in the future?

3. How willing are you to punish someone who treats you unfairly, even if there may be
costs for you?

4. How willing are you to give to good causes without expecting anything in return?

How well do the following statements describe you as a person? Please indicate your answer
on a scale from 0 to 10. A 0 means “does not describe me at all” and a 10 means “describes
me perfectly”. You can also use any numbers between 0 and 10 to indicate where you fall
on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

5. When someone does me a favor I am willing to return it.

6. If I am treated very unjustly, I will take revenge at the first occasion, even if there is
a cost to do so.

40Taken from Falk et al. (2018).
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7. I assume that people have only the best intentions.

A.5 CRT questions

Subjects were asked to provide numerical answers to the following cognitive reflection test
(CRT) questions.41

1. The ages of Anna and Barbara add up to 30 years. Anna is 20 years older than Barbara.
How old is Barbara?

2. If it takes 2 nurses 2 minutes to check 2 patients, how many minutes does it take 40
nurses to check 40 patients?

3. On a loaf of bread, there is a patch of mold. Every day, the patch doubles in size. If
it takes 24 days for the patch to cover the entire loaf of bread, how many days would
it take for the patch to cover half of the loaf of bread?

4. If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water
in 12 days, how many days would it take them to drink one barrel of water together?

5. A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for
$90. How much profit has he made, in dollars?

6. Jerry received both the 15th highest and the 15th lowest mark in the class. How many
students are in the class?

7. A turtle starts crawling up a 6-yard-high rock wall in the morning. During each day it
crawls 3 yards and during the night it slips back 2 yards. How many days will it take
the turtle to reach the top of the wall?

A.6 Continuation Probabilities and Realizations

Tables A1 and A2 report on the continuation probabilities δ for each of the 24 sequences
along with the actual number of rounds played for the two treatment orders.

41Based on Toplak et al. (2014) and Ackerman (2014).
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OrderShort OrderLong
Sequence δ No.Rounds δ No. Rounds

1 0.33 1 0.67 4
2 0.7 4 0.33 1
3 0.1 1 0.4 2
4 0.67 2 0.25 1
5 0.4 3 0.7 3
6 0.7 2 0.33 2
7 0.25 1 0.7 5
8 0.33 2 0.4 1
9 0.67 4 0.67 2
10 0.4 1 0.1 1
11 0.1 1 0.25 1
12 0.25 2 0.1 1
13 0.1 1 0.25 2
14 0.25 1 0.1 1
15 0.1 1 0.4 1
16 0.67 2 0.67 4
17 0.4 1 0.33 2
18 0.7 5 0.25 1
19 0.33 2 0.7 2
20 0.7 3 0.4 3
21 0.25 1 0.67 2
22 0.4 2 0.1 1
23 0.33 1 0.7 4
24 0.67 4 0.33 1

Totals 48 48

Table A1: Continuation probabilities δ and the number of rounds played for each of the 24 sequences, both
treatment orders (one order is just the reverse of the other).

Delta Duration Duration (Rounds) Number of

δ Expected
(

1
1−δ

)
Realized (Ave.) 1 2 3 4 5 Supergames Choices

.1 1.11 1.00 4 0 0 0 0 4 4

.25 1.33 1.25 3 1 0 0 0 4 5

.33 1.49 1.50 2 2 0 0 0 4 6

.4 1.67 1.75 2 1 1 0 0 4 7

.67 3.03 3.00 0 2 0 2 0 4 12

.7 3.33 3.50 0 1 1 1 1 4 14
Total Supergames 11 7 2 3 1 24
Total Choices 24 13 6 4 1 48

Table A2: The distribution of the supergames, split by continuation probabilities δ. That is, out of 24
supergames, 11 lasted only 11 rounds, 7 only two rounds, and so on. The average theoretical and realized
supergame durations are 1.99 rounds and 2 rounds, respectively.

B Further Results Baseline Treatment

B.1 Evolution of first-round Behavior

Analogous to Figure 1, which reports average cooperation and defection rates across all
rounds of supergames 1–4 for each δ, Figure B1 reports the corresponding rates for the first
round only. Specifically, it shows first-round cooperation and defection rates for each of the
four supergames at each of the six baseline-treatment δ values. The results are similar to
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Figure 1: again, cooperation is not driven to zero in the four games with δ < δ∗ = 0.5, and
is less than full for the two δ values above δ∗. There is again not much evidence of learning
after the second supergame, and AMT participants are farther from the optimal policy than
Lab participants.

Figure B1: Cooperation and Defection rates in first rounds of the four supergames (first horizontal axis)
of each of the six δ values (second horizontal axis) Left: Lab (N=100), Right: AMT (N=149).

B.2 Cost of first-round Mistakes

For each supergame, we quantify the ex-ante expected payoff loss from the observed round-
1 action relative to the expected-payoff maximizing benchmark for the given continuation
probability δ. Let a1 ∈ {C,D} denote the subject’s actual round-1 choice and let a∗1(δ) denote
the benchmark round-1 choice. We focus on round 1 because it is observed for every subject
in every supergame. To isolate the marginal payoff consequence of an incorrect round-1
classification, we evaluate a one-shot deviation loss: we switch only the round-1 action and
then assume optimal continuation thereafter, given the grim-trigger state induced by the
round-1 outcome.

Define the ex-ante (EA) loss as

LEA(δ) ≡ E[Π(a∗1(δ))− Π(a1) | δ] ,

where the expectation integrates over the stochastic termination process. The loss is zero
when a1 = a∗1(δ) and increases with the foregone continuation value.

Because the benchmark action switches at δ∗ = 0.5, the relevant mistake differs across
regions. If δ > δ∗, the benchmark prescribes cooperation; a round-1 defection triggers
permanent punishment under grim trigger, implying

LEA(δ) =
75

1− δ
−

(
120 +

30δ

1− δ

)
= 45 · 2δ − 1

1− δ
= 90 · δ − δ∗

1− δ
, δ > δ∗.
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If δ < δ∗, the benchmark prescribes defection; a round-1 cooperation choice delays defection
by one period and the optimal recovery is to defect from round 2 onward, yielding

LEA(δ) =

(
120 +

30δ

1− δ

)
−

(
75 + 120δ +

30δ2

1− δ

)
= 45(1− 2δ) = 90(δ∗ − δ), δ < δ∗.

At δ = δ∗ = 0.5, the two actions are payoff-equivalent and LEA(δ∗) = 0.

Table B1 reports the implied losses (in points) for the δ values used in the baseline study
and in the high-δ treatment discussed in section 6. The loss is mechanically small near the
cutoff where δ = δ∗ and is asymmetric across regions: when cooperation is optimal (δ > δ∗),
a round-1 defection irreversibly shifts play to the punishment path, whereas when defection
is optimal (δ < δ∗), a round-1 cooperation choice only delays implementation of the defection
path by one period, if players understand their mistake and correct it.

Table B1: Ex-ante loss from a round 1 mistake (in points)
δ

Treatment 0.10 0.25 0.33 0.40 0.67 0.70 0.75 0.80 0.85
Baseline treatment 36.0 22.5 15.3 9.0 46.36 60.0
High-δ treatment 36.0 9.0 46.36 90.0 135.0 210.0

B.3 Order Effects

As Mengel et al. (2022) documented, early exposure to relatively long sequences could affect
subsequent behavior in the prisoner’s dilemma, potentially leading to an order effect.

For the Lab subject pool, while the mean (st. dev.) first-round per-subject counts of
cooperation in the reverse and long orders are 10.96 (6.48) and 12.10 (4.86), respectively (out
of 24), this difference is insignificant (t = 1.00, Kolmogorov-Smirnov one-sided p = 0.278).
The corresponding mean (st.dev.) overall counts are, respectively, 25.52 (9.29) and 22.66
(12.83) (out of 48), with the difference still insignificant (t = 1.28, Kolmogorov-Smirnov one-
sided p = 0.198). As for the optimal choices, the first-round counts are higher in the long
treatment, with mean (st. dev.) being, respectively, 16.2 (3.49) and 17.42 (3.91), but this
difference is only significant based on the Kolmogorov-Smirnov test (one-sided p = 0.034),
and only marginally based on t-test (t = 1.65, p = 0.051). The overall optimal choice counts
are, again, higher in the long order treatment (with mean (st. dev.) of 32.54 (8.16) in long
order, and 29.56 (7.76) in reverse), but this is marginally significant only based on t-test
(t = 1.87, p = 0.032), but not based on Kolmogorov-Smirnov test (one-sided p = 0.135).

For the AMT subject pool, while the mean (st. dev.) first-round per-subject counts of
cooperation in the reverse and long orders are 11.96 (5.96) and 12.99 (6.16), respectively (out
of 24), this difference is insignificant (t = 1.03, Kolmogorov-Smirnov one-sided p = 0.217).
The corresponding mean (st.dev.) overall counts are, respectively, 25.96 (11.21) and 27.38
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(11.97) (out of 48), with the difference still insignificant (t = 0.75, Kolmogorov-Smirnov
one-sided p = 0.410). As for the optimal choices, the first-round mean (st. dev.) counts are,
respectively, 16.45 (4.45) and 14.53 (4.40), thus – in contrast to the Lab – significantly lower
in the long treatment (t = 2.68, p = 0.0042, Kolmogorov-Smirnov one-sided p = 0.011).
The overall optimal choice counts are, again, lower in the long order treatment (with mean
(st.dev.) of 27.12 (9.03) in long order, and 30.71 (9.21) in reverse), and this is significant
(t = 2.40, p = 0.0089, Kolmogorov-Smirnov one-sided p = 0.038.

Importantly, for both subject pools, once one controls for subjects’ individual differences,
the order effect is not discernible in mixed effects panel regressions in Table 3.

Finding 17. There is no consistent order effect in either subject sample.

B.4 More on Cooperation and Optimality

In Section 4.1 we showed the distributions of subjects’ optimal choices at the very beginning
of each supergame and overall, respectively. We now look at these choices in more details.

We start with the decisions in Round 1 of each supergame. For each subject pool, Figure
B2 presents the frequency distributions of choices to cooperate (bottom left panels) and
of optimal choices (top panels). The bottom right panels further provide two-dimensional
distributions of the cooperative and optimal choices, where the possible choice combinations
are restricted to the polygons delineated by the dashed lines. As the histograms show,
subjects in both pools tend to excessively cooperate in the first round of each supergame,
far above the theoretical prediction of 8. The mean (st. dev.) count of cooperative choices is
11.53 (5.73) for Lab and 12.47 (6.06) for AMT (with no significant difference across the two
pools, see Table B2). As a result, the mean (st.dev.) count of theoretically optimal choices
per subject is 16.81 (3.74) for Lab, which is significantly higher than 15.50 (4.52) for AMT.
Both pools are prominently short of the theoretical prediction of 24.

Turning to the overall choice counts, Figure B3 presents the two-dimensional distributions
of cooperative and optimal choices and the corresponding marginal distributions for all 48
choices in all 24 supergames. The mean (st. dev.) of the overall count of cooperative choices
is only 24.09 (11.24) for Lab, which is significantly lower than the theoretical prediction of
26 (one-sided t = 1.670, p = 0.046). Interestingly, the AMT subjects’ choice to cooperate are
26.66 (11.58), and thus on average are not significantly different from the predicted value of
26 (two-sided t = 0.701, p = 0.4847). However, for both subject pools, cooperative choices
are often sub-optimal – as depicted by the two-dimensional distributions in the bottom right
panels for each subject pool in Figure B3. (The shapes of the polygons for the overall
choices in the bottom right panels are due to the possibility of dominated CaD choices,
described in Section 4.3.) Indeed, for both subject pools, the overall optimal choice counts
are significantly short of the theoretical prediction of 48, with a mean (st. dev.) of 31.05
(8.06) for Lab, which is marginally greater than 28.93 (9.27) for AMT (see Figure B2).
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Figure B2: Choices in the first rounds each supergame: Lab (N=100) vs. AMT (N=149) subjects.
Two-dimensional distributions of per-subject counts of cooperation and of optimal choices across all 24
supergames, together for the frequency distributions of cooperative (bottom left) and optimal (top right)
choices. Bubble size is proportional to the share of subjects.
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Figure B3: Choices in all rounds: Lab (N=100) vs. AMT (N=149) subjects. Two-dimensional distribu-
tions of per-subject counts of cooperation and of optimal choices across all 24 supergames, together for the
frequency distributions of cooperative (bottom left) and optimal (top right) choices. Bubble size is propor-
tional to the share of subjects.
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In other words, early excessive cooperation in the first rounds is followed by the subse-
quent defection. The mean (st. dev.) of cooperation counts in the subsequent rounds (given
by the difference in the overall and first round cooperation counts) is only 12.56 (6.29) for
Lab and 14.19 (6.58) for AMT, both significantly lower than the theoretical prediction of
18 (p = 0.000). Note that this is despite the excessive cooperation of 1.82 counts per Lab
subject and 2.75 counts per AMT subject on average due to strategic (CaD) errors.

Finding 18. For both subject pools, compared with the theoretical predictions, on average,
subjects cooperate too much at the beginning of supergames with δ < 0.5 and stop cooperating
too early in supergames with δ > 0.5, with only 64.69% for Lab and 60.27% for AMT of all
choices being theoretically optimal.

As Figures B2 and B3 show, there is a significant heterogeneity in subjects’ behavior
(particularly for AMT), without any clear “representative” pattern. The initial heterogeneity
of play in the first rounds in Figure B2 (bottom right panels for each subject pool) is further
amplified by the heterogeneous strategies employed by the subjects in the subsequent rounds,
depicted in the corresponding panels in Figure B3.

As the bottom right bottom panels of Figure B3 for each subject pool show, there are
three similarly sized clusters (about 3-7% of each subject pool) at each of the three corners
of the polygon. Only two (out of 100) Lab and one (out of 149) AMT subjects made perfect
theoretically optimal choices, in the far right corners of the corresponding polygons. Further
only three and five such subjects, respectively, made up to three suboptimal choices.

In the top corner, two Lab subjects and eight AMT subjects always cooperated, and
two further subjects in each pool defected up to three times. In the bottom corner, a single
subject in each pool always defected, and further four subjects in each pool cooperated up
to three times. The presence of strategic CaD errors complicates the interpretation of the
remaining subjects, most of whom are located away from the boundaries, in the center of
the figures. Many of those observations represent the overall early excessive cooperation in
the first rounds followed by the subsequent defection within a supergame, possibly due to
some form of previously under-reported “end-timing” strategies (see Section 4.5).

Finding 19. In both subject pools, perfect and near-perfect theoretically optimal behavior
is rare, with only 5% of the Lab and 4.69% of the AMT subjects making no more than
3 theoretically sub-optimal choices. These shares are of similar order of magnitude as the
shares of subjects who defected no more than 3 times in both pools (4% Lab and 6.71% AMT),
and who cooperated no more than 3 times in both pools (5% Lab and 3.36% AMT).

B.5 Learning

In Figure B4, one can observe an increase in the “end-timing” activities in the both subject
pools by comparing those in the first few supergames to that in the last few (further supported
by the tests in Table 1). As this same Figure reveals, while the incidence of dominated CaD
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errors decline over time, they do not disappear entirely. Figure B5 further presents the
patterns of intra-supergame play across all 24 sequences, split by the sequence order.

Figure B4: Subject behavior over the sequence of 24 supergames, by subject pool. Both supergame
sequence orders are pooled together so a supergame with a given number could involve different continuation
probabilities δ and corresponding optimal actions, depending on the sequence order.

B.6 Comparison of Lab and AMT Subjects

The regression results of Table 3 (and the corresponding odds in Table B4) are summarized
visually in Figure 10, showing that the two subject groups differ in their patterns of play.
Subjects in the lower CRT7 group (two top panels of Figure 10) make relatively more frequent
strategic errors (CaD) and engage in suboptimal consistent defecting behavior (Suboptimal
All-D). By contrast, subjects in the higher CRT7 group (bottom two panels) are closer to
the theoretically optimal policy and engage in end-timing behavior (DaC) more often.

Figure 10 further reveals differences in patterns of behavior between the two subject pools
(see also Table B2). The top two panels showing behavior by subjects with CRT7 scores less
than or equal to the median score are consistent with the earlier insights of Arechar et al.
(2018) and Snowberg and Yariv (2021) that the Lab subjects are less prone to pro-social
behaviour and less likely to make mistakes as compared with the AMT subjects. However,
the bottom two panels, showing behavior by subjects whose CRT7 scores are strictly above
the median suggest that there is hardly any difference in patterns of behavior across the
two subject pools, despite apparent individual differences in non-cognitive characteristics.
Indeed, this visual observation is further confirmed by formal t-tests in Table B3.
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Figure B5: Subject behavior over the sequence of 24 supergames, by sequence order and subject pool.

Finding 20. The behavior of subjects with relatively high cognitive costs (CRT7 scores weakly
below the median) differs markedly for Lab and AMT subject pools. In contrast, there is little
difference in the behaviour of subjects with relatively low cognitive costs (CRT7 scores above
the median) across the two pools, despite differences in their non-cognitive characteristics.

Figure B6 presents the distributions of the two key variables for the inattention model,
CRT7 and Prediction variable. As Table B2 shows, the two subject pools do not differ
significantly in the means of these two variables.
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Lab vs. AMT
Lab (N=100) AMT (N=149)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.52 0.50 0.50 0.50 0.31 247 0.76
Age* 21.49 2.46 39.74 10.49 -20.42 171.45 0.00***†
CRT7 3.78 2.26 3.58 2.17 0.71 247 0.48
Risk 6.28 1.87 5.15 2.69 3.64 247 0.00***†
Patience 7.72 1.97 7.62 1.84 0.42 247 0.67
Punishment 4.84 2.51 4.07 2.97 2.14 247 0.03**
Altruism 7.10 2.26 7.44 2.50 -1.08 247 0.28
Reciprocity 9.08 1.23 8.38 1.93 3.20 247 0.00***
Retribution 3.42 2.32 3.15 2.99 0.77 247 0.44
Trust 4.48 2.22 5.73 2.58 -3.97 247 0.00***†
Prediction 60.96 29.57 66.64 27.04 -1.56 247 0.12
Quiz Errors* 1.40 3.38 2.69 7.34 -1.86 222.91 0.06*
Points Total 3835.10 203.40 3766.20 240.60 2.35 247 0.02**
Round 1: Cooperate 11.53 5.73 12.47 6.06 -1.23 247 0.22
Round 1: Optimal 16.81 3.74 15.50 4.52 2.40 247 0.02**
Total: Cooperate 24.09 11.24 26.66 11.58 -1.74 247 0.08*
Total: Optimal 31.05 8.06 28.93 9.27 1.87 247 0.06*
Total: CaD 1.82 2.56 2.75 4.09 -2.03 247 0.04**
Supergames: Optimal 14.44 3.92 13.07 4.88 2.34 247 0.02**
Supergames: Optimal All-D 10.31 3.96 8.95 4.67 2.40 247 0.02**
Supergames: Optimal All-C 4.13 2.83 4.13 2.96 0.01 247 0.99
Supergames: Suboptimal All-D 1.14 2.18 1.02 1.85 0.47 247 0.64
Supergames: Suboptimal All-C 4.09 3.59 5.52 4.58 -2.63 247 0.01*
Supergames: CaD 1.50 2.05 2.05 2.82 -1.66 247 0.10*
Supergames: DaC (End-Time) 2.83 2.37 2.34 2.26 1.66 247 0.10*

Table B2: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

Figure B6: Frequency distributions of CRT7 scores (left panel) and of the “Prediction” variable (right
panel).
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Lab vs. AMT: CRT7 > 4
Lab (N=44) AMT (N=55)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.41 0.50 0.46 0.50 -0.54 97 0.59
Age* 21.45 2.39 39.95 10.09 -13.14 61.45 0.00***†
CRT7 5.96 0.78 5.95 0.80 0.06 97 0.95
Risk 6.39 2.08 4.42 2.08 4.68 97 0.00***†
Patience 8.02 1.52 7.67 1.53 1.14 97 0.26
Punishment 5.11 2.54 3.71 2.39 2.83 97 0.01***
Altruism 6.55 2.54 7.42 2.23 -1.82 97 0.07*
Reciprocity 9.09 1.07 8.60 1.54 1.80 97 0.08*
Retribution 3.55 2.05 2.75 2.17 1.87 97 0.06*
Trust 4.16 1.88 5.42 2.28 -2.95 97 0.00***
Prediction 59.52 31.98 70.35 26.41 -1.84 97 0.07*
Quiz Errors 0.66 1.45 0.51 1.03 0.60 97 0.55
Points Total 3898.00 176.80 3917.50 183.80 -0.53 97 0.59
Round 1: Cooperate 12.32 5.26 13.02 5.34 -0.65 97 0.52
Round 1: Optimal 17.41 3.49 17.56 4.52 -0.19 97 0.85
Total: Cooperate 25.32 10.29 29.09 10.03 -1.84 97 0.07*
Total: Optimal 33.50 7.17 34.87 7.81 -0.90 97 0.37
Total: CaD 0.86 1.50 0.98 1.80 -0.35 97 0.73
Supergames: Optimal 15.16 3.95 15.51 4.55 -0.40 97 0.69
Supergames: Optimal All-D 10.43 3.88 9.98 4.54 0.52 97 0.60
Supergames: Optimal All-C 4.73 2.52 5.53 2.62 -1.54 97 0.13
Supergames: Suboptimal All-D 0.86 2.16 0.42 1.29 1.27 97 0.21
Supergames: Suboptimal All-C 4.05 3.29 4.84 4.52 -0.97 97 0.33
Supergames: CaD 0.71 1.23 0.82 1.44 -0.42 97 0.68
Supergames: DaC (End-Time) 3.23 2.61 2.42 2.37 1.62 97 0.11

Lab vs. AMT: CRT7 ≤ 4
Lab (N=56) AMT (N=94)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.61 0.49 0.52 0.50 1.02 148 0.31
Age* 21.52 2.53 39.63 10.77 -15.59 109.43 0.00***†
CRT7 2.07 1.40 2.19 1.35 -0.52 148 0.60
Risk 6.20 1.69 5.59 2.91 1.43 148 0.15
Patience 7.48 2.24 7.59 2.00 -0.29 148 0.77
Punishment 4.63 2.50 4.28 3.25 0.69 148 0.49
Altruism 7.54 1.94 7.45 2.65 0.22 148 0.83
Reciprocity 9.07 1.35 8.26 2.13 2.58 148 0.01**
Retribution 3.32 2.52 3.38 3.37 -0.12 148 0.91
Trust 4.73 2.44 5.92 2.74 -2.66 148 0.01
Prediction 62.09 27.77 64.47 27.30 -0.51 148 0.61
Quiz Errors* 1.98 4.25 3.96 8.98 -1.82 142.15 0.07*
Points Total 3785.60 210.70 3677.70 225.90 2.90 148 0.00***
Round 1: Cooperate 10.91 6.05 12.15 6.45 -1.16 148 0.25
Round 1: Optimal 16.34 3.89 14.30 4.07 3.02 148 0.00***
Total: Cooperate 23.13 11.93 25.24 12.22 -1.04 148 0.30
Total: Optimal 29.13 8.26 25.45 8.26 2.64 148 0.01***
Total: CaD 2.57 2.95 3.79 4.66 -1.75 148 0.08*
Supergames: Optimal 13.88 3.83 11.65 4.51 3.09 148 0.00***
Supergames: Optimal All-D 10.21 4.05 8.34 4.66 2.50 148 0.01**
Supergames: Optimal All-C 3.66 2.99 3.31 2.85 0.72 148 0.47
Supergames: Suboptimal All-D 1.36 2.19 1.37 2.04 -0.04 148 0.97
Supergames: Suboptimal All-C 4.13 3.83 5.93 4.59 -2.47 148 0.01**
Supergames: CaD 2.13 2.34 2.77 3.17 -1.31 148 0.19
Supergames: DaC (End-Time) 2.52 2.13 2.29 2.20 0.63 148 0.53

Table B3: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Odds) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.90***† 0.31***† 0.89***† 0.31***† 0.92***† 0.28*** 0.87***† 0.43**

(0.14) (0.08) (0.13) (0.08) (0.17) (0.10) (0.23) (0.18)
δ=0.33 1.23***† 0.68***† 1.22***† 0.68***† 1.17***† 0.50***† 1.36***† 1.21***†

(0.15) (0.10) (0.15) (0.10) (0.20) (0.11) (0.25) (0.20)
δ=0.4 1.88***† 1.04***† 1.87***† 1.04***† 1.67***† 0.73***† 2.22***† 1.86***†

(0.17) (0.12) (0.17) (0.12) (0.20) (0.13) (0.33) (0.24)
δ=0.67 2.65***† 1.56***† 2.65***† 1.56***† 2.30***† 1.00***† 3.29***† 3.03***†

(0.21) (0.15) (0.21) (0.15) (0.25) (0.16) (0.40) (0.29)
δ=0.7 2.76***† 1.70***† 2.76***† 1.70***† 2.32***† 1.15***† 3.53***† 3.15***†

(0.22) (0.15) (0.22) (0.15) (0.26) (0.16) (0.44) (0.33)
Round 2 -0.14 0.10 -0.14 0.09 -0.02 0.09 -0.43** -0.10

(0.10) (0.08) (0.10) (0.08) (0.12) (0.10) (0.20) (0.15)
Round 3 -0.47***† 0.15 -0.47***† 0.15 -0.22 0.23* -0.98***† -0.29

(0.14) (0.10) (0.14) (0.10) (0.17) (0.12) (0.26) (0.18)
Round 4 -0.74***† -0.06 -0.75***† -0.07 -0.39* 0.14 -1.37***† -0.83***†

(0.17) (0.12) (0.17) (0.12) (0.21) (0.13) (0.30) (0.23)
Round 5 -0.69*** -0.48*** -0.70*** -0.49*** -0.48* -0.35* -1.09*** -1.14***†

(0.22) (0.16) (0.22) (0.16) (0.28) (0.20) (0.40) (0.33)
Supergame -0.26*** -0.23*** -0.26*** -0.23*** -0.33*** -0.15 -0.16 -0.47****

(0.09) (0.09) (0.09) (0.09) (0.12) (0.11) (0.16) (0.14)
Order Long 0.18 0.12 0.22 0.14 0.26 0.22 0.22 0.19

(0.17) (0.14) (0.16) (0.16) (0.21) (0.21) (0.23) (0.31)
Prior Defect -0.81***† -0.86***† -0.80***† -0.85***† -0.64***† -0.65***† -1.13***† -1.13***†

(0.12) (0.11) (0.12) (0.11) (0.14) (0.14) (0.22) (0.18)
CRT7 -0.00 0.03

(0.04) (0.03)
Prediction 0.97*** 0.72*** 0.70 0.27 1.12*** 1.21**

(0.36) (0.24) (0.54) (0.29) (0.37) (0.48)
Female -0.33* -0.31** -0.32 -0.39** -0.35 -0.25

(0.17) (0.15) (0.22) (0.19) (0.28) (0.25)
Age -0.03 -0.01 -0.03 -0.01 -0.05 0.01

(0.02) (0.01) (0.04) (0.01) (0.04) (0.02)
Risk -0.01 -0.05 -0.03 -0.09* 0.02 -0.02

(0.06) (0.04) (0.08) (0.05) (0.09) (0.08)
Patience 0.07 0.03 0.14*** 0.11* -0.09 -0.04

(0.04) (0.05) (0.04) (0.07) (0.09) (0.10)
Punishment 0.01 -0.02 0.03 0.02 -0.03 -0.11*

(0.05) (0.04) (0.07) (0.04) (0.06) (0.06)
Altruism -0.06 -0.02 -0.09 -0.04 -0.09 -0.01

(0.05) (0.03) (0.06) (0.04) (0.08) (0.07)
Reciprocity 0.07 -0.04 0.04 -0.06 0.26 0.02

(0.07) (0.03) (0.08) (0.05) (0.18) (0.06)
Retribution -0.04 0.05 0.01 0.04 -0.10* 0.06

(0.04) (0.03) (0.06) (0.05) (0.05) (0.07)
Trust 0.01 0.02 -0.03 0.00 0.09 0.02

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
Constant -1.61***† -0.73***† -2.05*** -0.68 -1.67 0.11 -2.31 -1.85*

(0.19) (0.13) (0.78) (0.51) (1.07) (0.55) (1.80) (1.11)
chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table B4: Choices to cooperate: mixed-effects probit regressions, odds, robust errors in parentheses.
(See Table 3 for the corresponding marginals.) “Supergame” is the supergame number in the sequence of
supergames (scaled down by 24), “Order Long” is a dummy variable for whether the first supergame in the
sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior
rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative
choices in Round 1 across all 24 supergames (scaled down by 100). (Significance * 0.10 ** 0.05 *** 0.01 ***†
0.001.)
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C High Delta Treatments Experimental Procedures and

Further Results

C.1 Experimental Instructions and Questions

The Repeated PD Game Instructions and Comprehension Quiz are essentially the same as
for the original design Appendix A. The only change to the instructions was in the following
paragraph, which begins in the same way in the original instructions, but is modified to allow
four sequences in a row of the same δ value: “Whether the sequence continues with another
round or not depends on the probability (or chance) of continuation for the sequence. This
continuation probability for a sequence is prominently displayed on your decision screen and
remains constant for all rounds of a given sequence. However, this continuation probability
will change after every four sequences, so please pay careful attention to announcements
about the continuation probability for each new sequence. Whether a sequence continues
depends on whether at the end of a round the random number generator drew a number in
the interval [1,100] that is less than or equal to the continuation probability (in percent).”

C.2 Holt-Laury Risk Elicitation

The high delta treatments included an incentivized Holt–Laury risk-elicitation task (Holt
and Laury, 2002) administered after the main PD game and before the personality and CRT
questions. This task is explained in the following instructions given to subjects:

Additional money earning task

In this task you have the opportunity to earn an additional payment. You will choose
between 2 different lotteries: lottery A or lottery B. You will choose between lottery A or
lottery B ten different times. These ten choices are shown below in ten different rows.
The dollar amounts in lotteries A and B will always be the same. The probabilities in
lotteries A and B will change from row to row. For both lotteries A and B, the probability
of the bigger dollar amount starts at 1/10 (10%) and increases to 10/10 (100%). For both
lotteries A and B, the probability of the smaller dollar amount starts at 9/10 (90%) and
decreases to 0/10 (0%). You can choose either A or B for each lottery pair.

After you have made all ten choices, the computer program will randomly select one of
your ten choices (one of the ten rows). All rows are equally likely to be chosen. Your lottery
choice for the chosen row (A or B) will then be implemented. The computer program will
choose a random integer uniformly from 1 to 100 inclusive and this number determines your
payoff for your selected lottery. For example, lottery A in row 1 pays $2 if the randomly
drawn integer is 1-10 and $1.60 if the randomly drawn integer is 11-100.

Note that your possible earnings from this lottery choice task are: $0.10, $1.60, $2.00 or
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Figure C1: Screenshot of Holt Laury Lottery Choice Task

$3.85. These earnings will be added to your payoff from the main task.

C.3 Experimental Design: Continuation Probabilities and Real-
izations

Tables C1 and C2 report on the continuation probabilities δ for each of the 24 supergames
(SG) of the high delta treatments along with the actual number of rounds played for the two
treatment orders.

C.4 High Deltas: Order Effects

In the long order and reverse order treatments, respectively, there were 51 subjects (18 males
and 33 females) and 50 subjects (18 males and 32 females); the mean (st.dev.) age was 20.53
(2.02) and 20.54 (2.30); the mean (st.dev.) CRT7 was 3.63 (2.38) and 3.60 (2.59).

The mean (st. dev.) first-round per-subject counts of cooperation (out of 24) is signif-
icantly higher in the long order 16.25 (5.50) vs. 13.30 (5.68) in the reverse one (t = 2.66,
p = 0.0046, Kolmogorov-Smirnov one-sided p = 0.001). The corresponding mean (st.dev.)
overall counts (out of 99) remain to be higher in the long order at 59.63 (22.57) than 53.88
(25.77) in the reverse order, but the difference is insignificant (t = 1.19, Kolmogorov-Smirnov
one-sided p = 0.271). As for the optimal choices, the first-round counts are higher in the re-
verse treatment, with mean (st. dev.) being, respectively, 18.46 (4.79) and 17.16 (4.36), but
the difference is insignificant (t = 1.43, Kolmogorov-Smirnov one-sided p = 0.017). Impor-
tantly, once one controls for subjects’ individual differences, the order effect is not discernible
in mixed effects panel regressions in Table C5.

Finding 21. There is no consistent order effect in either subject sample.
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OrderShort OrderLong
Supergame δ No.Rounds δ No. Rounds

1 0.4 1 0.67 3
2 0.4 1 0.67 2
3 0.4 1 0.67 1
4 0.4 4 0.67 3
5 0.75 5 0.85 6
6 0.75 10 0.85 1
7 0.75 1 0.85 15
8 0.75 6 0.85 10
9 0.8 1 0.1 1
10 0.8 4 0.1 1
11 0.8 15 0.1 1
12 0.8 5 0.1 1
13 0.1 1 0.8 5
14 0.1 1 0.8 15
15 0.1 1 0.8 4
16 0.1 1 0.8 1
17 0.85 10 0.75 6
18 0.85 15 0.75 1
19 0.85 1 0.75 10
20 0.85 6 0.75 5
21 0.67 3 0.4 4
22 0.67 1 0.4 1
23 0.67 2 0.4 1
24 0.67 3 0.4 1

Totals 99 99

Table C1: Continuation probabilities δ and the number of rounds played for each of the 24 supergames,
both treatment orders (one order is the reverse of the other).

Delta Number of Supergames (SGs) of Duration / Rounds Total

δ Exp.
(

1
1−δ

)
Real. (Ave.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SGs

0.1 1.11 1.00 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0.4 1.67 1.75 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4

0.67 3.03 2.25 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 4
0.75 4.00 5.50 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 4
0.8 5.00 6.25 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 4

0.85 6.67 8.00 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 4
Total SGs 11 1 2 2 2 2 0 0 0 2 0 0 0 0 2 24

Total Choices in SGs per Duration 11 2 6 8 10 12 0 0 0 20 0 0 0 0 30 99

Delta Number of Choices / Round Total
δ Round → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Choices

0.1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0.4 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 7

0.67 4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 9
0.75 4 3 3 3 3 2 1 1 1 1 0 0 0 0 0 22
0.8 4 3 3 3 2 1 1 1 1 1 1 1 1 1 1 25

0.85 4 3 3 3 3 3 2 2 2 2 1 1 1 1 1 32
Total Choices 24 13 12 10 8 6 4 4 4 4 2 2 2 2 2 99

Table C2: The distribution of the supergames, split by continuation probabilities δ. That is, out of 24
supergames, 11 lasted only 1 round, 1 lasted only two rounds, and so on. The average theoretical and realized
supergame durations are 3.58 and 4.13 rounds, respectively.

C.5 High Deltas: More on Cooperation and Optimality

In the high-delta treatment, Figure C2 furher presents the frequency distributions of co-
operation (bottom left) and of optimal choices (top). The bottom right panel shows the
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two-dimensional distribution of cooperative and optimal choices, where the dashed lines
delineate polygons restricting the possible choice combinations. As seen, subjects tend
to cooperate insufficiently in the first rounds, with the mean (st.dev.) count of first-
round cooperative choices, 14.79 (5.76), significantly below the theoretical prediction of
16 (t = 2.11, p = 0.0187). As a result, the mean (st.dev.) count of theoretically optimal
first-round choices per subject is 17.80 (4.60), well short of the theoretical prediction of 24.

Figure C2: Choices in the first rounds each supergame: two-dimensional distributions of per-subject counts
of cooperation and of optimal choices across all 24 supergames, and the frequency distributions of cooperative
(bottom left) and optimal (top right) choices. Bubble size is proportional to the share of subjects (N=101).

Figure C3 further presents the two-dimensional distributions of cooperative and optimal
choices and the corresponding marginal distributions for all 99 choices in all 24 supergames.
The mean (st.dev.) of the overall count of cooperative choices is only 56.78 (24.26), promi-
nently short of the theoretical prediction of 88. Moreover, cooperative choices are often
sub-optimal – as depicted by the two-dimensional distribution in the bottom right panel
in Figure C3 (where the shape of the polygon is due to the possibility of dominated CaD
choices, see Section 6.4). Indeed, with a mean (st.dev.) of 57.22 (26.41), the overall optimal
choice counts are prominently short of the theoretical prediction of 99.

In other words, subjects start by cooperating insufficiently in the first rounds, and thus
can never “catch up” in the subsequent rounds. The suboptimal decisions are further aggra-
vated by the excessive cooperation due to strategic (CaD) errors.

Finding 22. Compared with the theoretical predictions, on average, subjects cooperate too
little at the beginning of the supergames with δ > 0.5, with only 57.80% of all choices being

75



Figure C3: Choices in all 99 rounds: two-dimensional distributions of per-subject counts of cooperation
and of optimal choices across all 24 supergames, and the frequency distributions of cooperative (bottom left)
and optimal (top right) choices. Bubble size is proportional to the share of subjects (N=101).

theoretically optimal.

As Figures C2 and C3 show, there is a significant heterogeneity in subjects’ behav-
ior, without any clear “representative” pattern. The initial heterogeneity of play in the
first rounds in Figure C2 (bottom right) is further amplified by the subjects’ heterogeneous
strategies in the subsequent rounds, depicted in the corresponding panels in Figure C3.

As the bottom right bottom panels of Figure C3 show, only three (out of 99) subjects
made perfect theoretically optimal choices (in the far right corner of the polygon), and only
two additional subjects made at most three suboptimal choices. In the top corner, two
subjects always cooperated, and just one further subject defected four times. In the bottom
corner, a single subject always defected, and further three subjects cooperated up to four
times. The presence of strategic CaD errors complicates the interpretation of the remaining
subjects, most of whom are located away from the boundaries, in the center of the figures,
with some subjects also following “end-timing” strategies (see Section 6.5).

Finding 23. In both subject pools, perfect and near-perfect theoretically optimal behavior is
rare, with only 5% of the subjects making no more than 3 theoretically sub-optimal choices.
These shares are of similar order of magnitude as the shares of subjects who defected no
more than 4 times, and who cooperated no more than 4 times (3 and four, respectively).
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C.6 Random vs. Blocks of Deltas

Does experience playing supergames in blocks with the same δ facilitate learning across
supergames? This comparison is also motivated by the deliberate-randomization hypothesis
emphasized by Agranov and Ortoleva (2017), who study whether behavior changes when
identical decision problems are repeated in a row versus repeated at a distance.

From the set of six δ values in the treatments of our experiment, three appear in both the
baseline (random order) and high-δ (blocks) treatments: δ ∈ {0.1, 0.4, 0.67}. As Figure C4
(student samples only) shows, there are differences between the random-order presentation
of supergames (baseline) and the blocked presentation (high-δ), but these differences do not
exhibit a clear pattern. In particular, the rate of optimal choices is higher under blocks only
at δ = 0.4 (the value closest to δ∗, where defection is optimal). This lack of a clear pattern
is confirmed by the formal tests in Table C3: for δ ∈ {0.1, 0.4, 0.67}, the rate of optimal
choices under blocks is, respectively, lower, higher, and essentially unchanged relative to the
baseline.

Figure C4: Cooperation and Defection rates across the supergames with δ ∈ {0.1, 0.4, 0.67} which appear
both in the baseline and high-δ treatment (student samples only). Left: Lab sample (N=100), right: high-δ
sample (N=101).

Interpreting error rates and payoffs is complicated by random realizations of supergame
lengths (see Tables A2 and C2). For δ ∈ {0.1, 0.4, 0.67}, the total number of decisions was
{4, 7, 12} in the baseline and {4, 7, 9} in the high-δ treatment. As a result, subjects earned
higher total points for δ = 0.67 in the baseline simply because they made more decisions in
that treatment. Moreover, some dominated errors—for example, cooperating after defection
(CaD)—cannot arise in supergames that last only one round. Thus, the opportunity to
make such mistakes was identical for δ = 0.1 in both treatments (all supergames lasted
one round), but it was greater in the baseline for both δ = 0.4 and δ = 0.67: for δ = 0.4
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(respectively, δ = 0.67), only two (respectively, zero) supergames lasted one round in the
baseline, compared to three (respectively, one) in the high-δ treatment. Indeed, in the
supergames which lasted longer than a single round (see Table C3, last table subsection for
δ ∈ {0.4, 0.67}), the ranking of normalized point totals for δ = 0.4 is reversed as, while, there
is no significant difference in optimal choices and dominated CaDs, the rate of end-timing
is marginally greater in the baseline (where, by chance, end-timing was profitable overall).
And, for δ = 0.67, there is no significant difference across any variable of interest in such
longer supergames.

Random vs. Blocks
Random (Lab) Blocks (high-δ)

t-stat df pvalue
Mean StDev Mean StDev

δ=0.1 (N=804) Cooperate 0.095 0.294 0.153 0.361 -2.52 802 0.012**
Per Round Optimal 0.905 0.294 0.847 0.361 2.52 802 0.012**
δ=0.1 (N=804) Optimal (All-D+All-C) 0.905 0.294 0.847 0.361 2.52 802 0.012**
Per Supergame Point Total 115.7 13.21 113.1 16.24 2.52 802 0.012**

Point Total Per Round 115.7 13.21 113.1 16.24 2.52 802 0.012**

δ=0.4 (N=1407) Cooperate 0.483 0.500 0.380 0.486 3.89 1405 0.000***†
Per Round Optimal 0.517 0.500 0.620 0.486 -3.89 1405 0.000***†

CaD 0.033 0.178 0.034 0.181 -0.11 1405 0.91
δ=0.4 (N=804) Optimal (All-D+All-C) 0.357 0.480 0.488 0.500 -3.76 802 0.000***†
Per Supergame Point Total 138.8 54.85 132.4 66.22 1.51 802 0.13

Point Total per Round 83.87 19.72 88.14 26.30 -2.61 802 0.009***
δ=0.4 (N=301) Optimal (All-D+All-C) 0.330 0.471 0.426 0.497 -1.63 299 0.10
Per Supergame CaD per Round 0.040 0.126 0.059 0.128 -1.25 299 0.21
Lasting DaC (End-Time) 0.335 0.473 0.228 0.421 1.93 299 0.06*
>1 round Point Total per Round 75.41 12.40 58.96 10.37 11.46 299 0.000***†
δ=0.67 (N=2109) Cooperate 0.661 0.474 0.623 0.485 1.81 2107 0.07*
Per Round Optimal 0.613 0.487 0.590 0.492 1.06 2107 0.29

CaD 0.048 0.215 0.033 0.179 1.74 2107 0.08*
δ=0.67 (N=804) Optimal (All-D+All-C) 0.520 0.500 0.537 0.499 -0.49 802 0.63
Per Supergame Point Total 213.7 69.22 167.7 59.16 10.13 802 0.000***†

Point Total per Round 72.62 10.38 76.78 14.42 -4.70 802 0.000***†
δ=0.67 (N=703) Optimal (All-D+All-C) 0.520 0.500 0.469 0.500 1.34 701 0.18
Per Supergame CaD per Round 0.043 0.127 0.036 0.121 0.65 701 0.51
Lasting DaC (End-Time) 0.212 0.410 0.215 0.411 -0.07 701 0.95
>1 round Point Total per Round 72.62 10.38 73.51 10.26 -1.14 701 0.25

Table C3: The effect of the order of supergames with the same δ value: Means, standard deviations,
and t-tests comparing the baseline (random order) and high-δ (blocks), for each δ ∈ {0.1, 0.4, 0.67} which
appeared both in baseline and high-delta treatments (student samples only). (Significance * 0.10 ** 0.05
*** 0.01 ***† 0.001.)

Finding 24. For each δ ∈ {0.1, 0.4, 0.67} that appears in both the baseline and high-δ treat-
ments, we find no systematic effect of presenting supergames in blocks with a common δ on
either the frequency of optimal play or realized payoffs.

C.7 High Deltas: Learning

In Figure C5 (top panel), one can observe an increase in “end-timing” activity by comparing
the frequency of such DaC behavior in the first few supergames to that in the last few (and
further supported by the tests in Table 5). Further, while the frequency of of dominated
CaD errors declines over time, such behavior does not disappear entirely. Figure C5 (bottom
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panel) further presents the patterns of intra-supergame play across all 24 sequences, split by
the treatment order (long first or the reverse).

Figure C5: Subject behavior over the sequence of 24 supergames. Top panel: both supergame orders are
pooled together so a supergame with a given number could involve different continuation probabilities δ and
corresponding optimal actions, depending on the order treatment. Bottom panel: split by order treatment.
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C.8 High Deltas: The Patterns of Play Within Each Supergame

We classify subjects’ patterns of play within each supergame into 6 mutually exclusive types:
optimal All-C, optimal All-D, suboptimal All-C, suboptimal All-D, strategic errors (CaD),
and end-timing (DaC). As in the baseline, there is no prevalent pattern to subjects’ play -
see Figure C6. Out of 101 subjects, only three subjects always made perfect, theoretically
optimal choices (depicted by dark green and dark blue bars joined at the solid red line close
to the middle). Two (one) subjects who always cooperated (defected) are depicted by dark
and light bars joined at the solid red line, green on the far left (for All-C) and blue on the
far right (for All-D). Both types of non-constant play (CaD and DaC) and both optimal and
suboptimal constant play (All-C and All-D) all tend to co-exist in subjects’ patterns of play.

Figure C6: Subject heterogeneity in patterns of choices within supergames, out of 24 supergames, by
subject, ordered by the count of supergames with (combined optimal and sub-optimal) All-Defect choices
(N=101 subjects). The theoretically optimal strategy involves always defecting in 8 supergames and always
cooperating in the remaining 16 supergames (depicted by the solid red horizontal line).

Finding 25. As in the baseline, there is a notable heterogeneity in subjects’ choices in the
longer horizon treatment, without any representative pattern. Only three out of 101 subjects
always followed the theoretically optimal strategy. Two (one) subjects are fully biased towards
cooperation (defection). The rest of the subjects appear to pursue strategies that are neither
theoretically optimal nor purely biased.

C.9 High Deltas: The Effect of Cognitive Abilities

The mean (st.dev.) of the CRT7 score was 3.61 (2.47), with a median of 4 (Figure C7, left).
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Figure C7: Frequency distributions of CRT7 scores (left) and of the “Prediction” variable (right).

As in the baseline, the CRT7 score predicts the rational aspects of subjects’ behavior
(see Table C4, even-numbered specifications). Unlike in the baseline, CRT7 does not predict
end-timing; instead, end-timing is predicted by being male. The gender coefficient in the
odd-numbered specifications may partly reflect the strong correlation between CRT7 and
gender (r = 0.4275, p = 0.0000). (An analysis of gender effects are beyond the scope
of this paper). The effect of the CRT7 score remains even if one controls for personality
characteristics (see specifications 11-20 in the bottom panel), of which only the number of
safe Holt-Laury lottery choices is marginally significant.

Again, the CRT7 score on its own has no effect on the choice to cooperate which can
be seen in specifications 3-4 of Table C5, which contains average marginals (dy/dx) from
mixed-effects probit regressions. The same applies to the number of safe Holt-Laury choices.

Finding 26. Higher CRT7 subjects are more likely to make payoff-maximizing choices.
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Overall Point Totals Dominated(CaD) Theor.Optimal End-Time(DaC) Th.Opt.+End-T(DaC)
(OLS) (Tobit, ll=0) (Tobit, ul=24) (Tobit, ll=0) (Tobit, ul=24)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CRT7 67.61* 114.82*** -0.51*** -0.71**** 0.27 0.51** 0.01 0.16 0.33 0.71***

(39.37) (35.15) (0.19) (0.19) (0.21) (0.20) (0.13) (0.13) (0.23) (0.22)
Female -495.87*** 2.25** -2.61*** -1.79*** -4.35****

(170.22) (0.91) (0.95) (0.65) (1.06)
Age 47.45* -0.10 0.20 -0.02 0.18

(27.77) (0.19) (0.17) (0.12) (0.19)
Order Long 42.08 36.78 -0.74 -0.69 -1.92** -1.95** 1.19** 1.18* -1.05 -1.09

(159.09) (165.03) (0.82) (0.85) (0.87) (0.91) (0.58) (0.60) (0.95) (1.03)
Constant 5508.00**** 5995.26**** 3.91 3.95**** 11.86*** 13.43**** 3.21 1.21* 15.77**** 15.22****

(627.11) (169.44) (4.12) (0.80) (3.89) (0.83) (2.71) (0.63) (3.95) (0.94)
F 8.03 5.81 5.83 7.69 7.15 4.14 3.11 2.56 9.16 5.21
p 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.08 0.00 0.01

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
CRT7 52.54 91.26** -0.49** -0.67*** 0.19 0.36* -0.01 0.12 0.24 0.54**

(46.06) (40.93) (0.21) (0.21) (0.22) (0.20) (0.13) (0.14) (0.25) (0.24)
Female -466.60** 2.44** -2.16** -1.87*** -3.90***

(197.44) (1.00) (1.03) (0.68) (1.16)
Age 45.77 -0.09 0.20 -0.04 0.17

(32.05) (0.19) (0.19) (0.11) (0.19)
Lottery 80.98 86.74 -0.40* -0.43* 0.43* 0.45* 0.15 0.17 0.54* 0.58*

(50.51) (53.21) (0.24) (0.24) (0.25) (0.26) (0.18) (0.19) (0.27) (0.31)
Risk -22.18 -2.64 0.25 0.16 0.03 0.12 -0.09 -0.01 0.03 0.20

(45.13) (45.85) (0.26) (0.27) (0.22) (0.23) (0.15) (0.16) (0.26) (0.29)
Patience 40.62 34.96 -0.14 -0.10 0.20 0.18 0.09 0.06 0.27 0.22

(47.84) (48.98) (0.25) (0.26) (0.23) (0.24) (0.17) (0.17) (0.24) (0.28)
Punishment -17.43 -3.75 0.15 0.08 0.06 0.13 -0.05 0.01 0.05 0.16

(42.13) (42.15) (0.20) (0.21) (0.19) (0.20) (0.15) (0.15) (0.22) (0.22)
Altruism -31.52 -53.25 0.04 0.13 -0.21 -0.31 -0.18 -0.27 -0.44 -0.61*

(49.87) (50.91) (0.26) (0.27) (0.24) (0.25) (0.17) (0.18) (0.29) (0.32)
Reciprocity 58.88 93.73 0.09 -0.07 0.30 0.46 0.07 0.18 0.29 0.55

(75.11) (78.16) (0.40) (0.40) (0.42) (0.45) (0.23) (0.25) (0.47) (0.52)
Retribution 55.86 51.20 -0.10 -0.08 0.38* 0.36 -0.30* -0.33* 0.14 0.11

(40.36) (41.43) (0.22) (0.23) (0.21) (0.22) (0.17) (0.17) (0.26) (0.28)
Trust 6.84 6.24 -0.15 -0.15 0.00 -0.00 0.11 0.10 0.05 0.03

(35.27) (36.25) (0.18) (0.19) (0.19) (0.19) (0.11) (0.11) (0.18) (0.20)
orderlong 27.94 37.90 -0.57 -0.57 -1.97** -1.92** 1.15** 1.21** -1.04 -0.96

(158.63) (161.76) (0.78) (0.81) (0.84) (0.86) (0.55) (0.58) (0.92) (0.97)
Constant 4449.01**** 4640.18**** 5.00 6.86** 4.70 5.38 3.99 0.66 9.92** 7.53**

(930.57) (664.56) (5.08) (3.20) (5.28) (3.44) (3.72) (2.76) (4.91) (3.65)
F 3.37 2.74 2.59 2.33 4.30 3.34 2.03 1.75 4.94 3.15
p 0.00 0.01 0.01 0.02 0.00 0.00 0.03 0.08 0.00 0.00

Table C4: Individual differences in rationality, N=101 subjects. (Signif.: *0.10 **0.05 ***0.01 ***†0.001).
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Cooperate All Split by Median CRT
(Marginals, dy/dx) CRT7 ≤ Med CRT7 > Med
delta=0.4 0.24**** 0.23**** 0.21**** 0.22****

(0.03) (0.03) (0.04) (0.04)
delta=0.67 0.37**** 0.35**** 0.31**** 0.34****

(0.03) (0.03) (0.04) (0.04)
delta=0.75 0.46**** 0.44**** 0.42**** 0.41****

(0.03) (0.03) (0.04) (0.03)
delta=0.8 0.46**** 0.43**** 0.41**** 0.41****

(0.03) (0.03) (0.05) (0.03)
delta=0.85 0.49**** 0.47**** 0.44**** 0.44****

(0.04) (0.03) (0.05) (0.04)
Round 2 0.11**** 0.10**** 0.11**** 0.09**

(0.02) (0.02) (0.03) (0.03)
Round 3 0.13**** 0.12**** 0.17**** 0.04

(0.03) (0.02) (0.03) (0.04)
Round 4 0.08*** 0.08*** 0.12**** 0.00

(0.03) (0.03) (0.03) (0.04)
Round 5 0.07** 0.06** 0.11*** -0.01

(0.03) (0.03) (0.04) (0.04)
Round 6 0.02 0.02 0.07* -0.05

(0.03) (0.03) (0.04) (0.04)
Round 7 0.02 0.01 0.06 -0.05

(0.03) (0.03) (0.04) (0.04)
Round 8 -0.01 -0.01 0.06 -0.08**

(0.03) (0.03) (0.04) (0.04)
Round 9 0.03 0.02 0.07* -0.03

(0.03) (0.03) (0.04) (0.04)
Round 10 0.02 0.02 0.06 -0.04

(0.03) (0.03) (0.04) (0.03)
Round 11 -0.01 -0.01 0.04 -0.06

(0.03) (0.03) (0.05) (0.04)
Round 12 -0.02 -0.02 0.07 -0.13***

(0.04) (0.04) (0.04) (0.05)
Round 13 -0.02 -0.02 0.03 -0.07

(0.04) (0.04) (0.05) (0.05)
Round 14 -0.03 -0.03 0.02 -0.07

(0.04) (0.03) (0.05) (0.05)
Round 15 -0.00 -0.00 0.05 -0.07

(0.03) (0.03) (0.04) (0.05)
Supergame 0.01**** 0.01**** 0.01**** 0.00****

(0.00) (0.00) (0.00) (0.00)
orderlong 0.04 0.02 0.02 -0.03

(0.03) (0.02) (0.04) (0.03)
Prior Defect -0.46**** -0.43**** -0.46**** -0.38****

(0.01) (0.01) (0.02) (0.02)
CRT7 -0.00

(0.01)
Female 0.01 0.04 -0.00

(0.03) (0.05) (0.02)
Age 0.01** 0.01 0.01

(0.00) (0.01) (0.00)
Prediction 0.02**** 0.01** 0.03****

(0.01) (0.01) (0.01)
Lottery 0.00 0.00 0.00

(0.01) (0.01) (0.01)
Risk 0.00 0.00 -0.00

(0.00) (0.01) (0.00)
Patience 0.01 0.02** -0.00

(0.01) (0.01) (0.01)
Punishment -0.00 -0.00 -0.00

(0.01) (0.01) (0.01)
Altruism -0.00 -0.01 0.00

(0.01) (0.01) (0.01)
Reciprocity 0.00 0.00 0.01

(0.01) (0.01) (0.01)
Retribution 0.01** 0.01 0.01*

(0.00) (0.01) (0.00)
Trust 0.00 -0.01 -0.00

(0.00) (0.01) (0.00)
chi2
p
N 9999 9999 5841 4158

Table C5: Choices to cooperate: mixed-effects probit regressions, marginals (dy/dx), robust errors in
parentheses. (See Table C6 for the corresponding odds.) “Supergame” is the supergame number in the
sequence of supergames (scaled down by 24), “Order Long” is a dummy variable for whether the first
supergame in the sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject
defected in prior rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their
own cooperative choices in Round 1 across all 24 supergames (scaled down by 100), “Lottery” is the number
of safe choices in Holt-Laury elicitation. Median CRT7 is 4. (N =101 subjects.) Chi2 and corresponding
p-values are from the odds regressions (see Table C6). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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C.10 High Deltas: Behavioral Inattention

As in the baseline treatment, we will check here the predictions of the simple inattention
theory presented in Section 2.2. In deciding whether to cooperate or defect, individuals with
lower cognitive ability (lower attention) will tend to be influenced more by their default
values. In contrast, those with higher cognitive ability (higher attention) will tend to be
influenced by the structure of the game.

To explore these hypotheses, we again split our samples in two, according to the median
CRT7 score (equal to 4). Table C5 presents average marginals (dy/dx) from mixed-effects
probit regressions of the choice to cooperate or defect in all 99 rounds of the prisoner’s
dilemma game (for odds ratios, see Table C6 in the Appendix). The differences between
the two subject types are broadly similar to what was found in the baseline treatment.
Subjects with relatively high proxies for cognitive ability (CRT7>4, 42 subjects) tend to
cooperate (weakly) more than lower CRT7 subjects (CRT7≤4, 59 subjects) for δ ≥ 0.4
(see specifications 3 and 4). As the longer-horizon treatment involved longer supergames
by design and thus is biased towards cooperation, higher CRT7 subjects do not exhibit
any systematic sensitivity to the low round numbers, but they tend to defect in the higher
rounds (here, in rounds 8 and 12), consistent with following the end-timing strategy. As in
the baseline treatment, cooperation of lower CRT7 subjects is strongly negatively correlated
with their self-reported measure of Patience, which also was marginally higher for the higher
CRT7 group (one-sided t = 1.54, p = 0.0629). Note that neither measure of attitudes
towards risk is correlated with the decision to cooperate for either subject type.

Comparing Tables C5 and 3, one may spot some qualitative differences in the behavior
which, at first glance, are less consistent with the predictions of the rational inattention
model. Yet the interpretation of subject choices in longer supergames is more complex than
in the shorter ones of the baseline treatment, as there is more room for multiple mistakes
within a longer supergame. Looking at subjects’ patterns of play (available upon request),
lower CRT7 subjects tend to switch from defection to cooperation and back to defection,
and so on. This is possibly why lower CRT7 subjects appear as if they tend to cooperate
less in response to their prior defection, and to cooperate more in lower-numbered rounds
(relative to the baseline of the supergames with δ = 0.1, which all lasted one round only).

Furthermore, while the behavior of higher CRT7 subjects is more consistent with their
own Prediction variable, there is some weaker relationship for lower CRT7 subjects as well.
However, this latter relationship appears to be driven mostly by subjects with the median
CRT7 score of 4—as once the median CRT7 subjects are, instead, ascribed to the higher
CRT7 type, the differences between the two types become notably more pronounced (results
available upon request). Interestingly, the mean (st. dev.) of the “Prediction” variable was
59.70 (30.28) with a median of 67—bang on the optimal choice of 2

3
(66.67%)—see Figure

C7, right panel.

Finding 27. Subject behavior is broadly consistent with a simple model of inattention. Co-
operative choices made by subjects with a lower proxy for cognitive ability (lower attention)
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correlate with an elicited proxy for their degree of patience. In contrast, cooperative choices
made by those with a higher proxy for cognitive ability (higher attention) are more affected
by the structure of the game, and do not correlate with their individual characteristics.

The above regression results are summarized visually in Figure C8 which shows that the
two groups of subjects, divided by CRT7 score, exhibit different patterns of play. Subjects
in the lower CRT7 group (the left panel of Figure C8 make relatively more frequent strategic
errors (CaD) and more suboptimal consistent defection behavior (Suboptimal All-D). By
contrast, subjects in the higher CRT7 group (the right panel of Figure C8) are closer to the
theoretically optimal policy and engage in end-timing behavior (DaC) more often.

Figure C8: Inattention: subjects’ patterns of choices within supergames (out of 24 supergames), split by
median CRT7. Patterns are presented for each subject, ordered by the count of supergames with (combined
optimal and sub-optimal) All-Defect choices (N=101 subjects). The theoretically optimal strategy involves
always defecting in 8 supergames and always cooperating in the remaining 16 supergames (represented by
the horizontal line).

C.11 Behavioral Inattention: Further Results

Figure C7 presents the distributions of the two key variables for the inattention model, CRT7
and the Prediction variable. Table C6 presents the odds corresponding to the regressions of
Table C5.
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Cooperate All Split by Median CRT
(Marginals, dy/dx) CRT7 ≤ Med CRT7 > Med
delta=0.4 1.08**** 1.08**** 0.86**** 1.44****

(0.13) (0.13) (0.16) (0.20)
delta=0.67 1.63**** 1.63**** 1.28**** 2.21****

(0.16) (0.16) (0.20) (0.29)
delta=0.75 2.04**** 2.04**** 1.73**** 2.62****

(0.16) (0.16) (0.21) (0.25)
delta=0.8 2.04**** 2.04**** 1.69**** 2.64****

(0.17) (0.17) (0.22) (0.30)
delta=0.85 2.20**** 2.20**** 1.84**** 2.85****

(0.18) (0.18) (0.22) (0.34)
Round 2 0.48**** 0.48**** 0.48**** 0.55***

(0.10) (0.10) (0.12) (0.19)
Round 3 0.58**** 0.58**** 0.72**** 0.28

(0.11) (0.11) (0.13) (0.22)
Round 4 0.36*** 0.36*** 0.52**** 0.02

(0.12) (0.12) (0.14) (0.26)
Round 5 0.29** 0.29** 0.46*** -0.07

(0.12) (0.12) (0.14) (0.26)
Round 6 0.10 0.09 0.30* -0.34

(0.14) (0.14) (0.16) (0.26)
Round 7 0.07 0.06 0.25 -0.33

(0.14) (0.14) (0.18) (0.25)
Round 8 -0.02 -0.03 0.23 -0.54*

(0.14) (0.14) (0.17) (0.28)
Round 9 0.12 0.11 0.30* -0.22

(0.13) (0.13) (0.16) (0.25)
Round 10 0.09 0.09 0.27 -0.24

(0.13) (0.13) (0.17) (0.23)
Round 11 -0.04 -0.04 0.16 -0.38

(0.15) (0.15) (0.19) (0.25)
Round 12 -0.11 -0.11 0.28 -0.85**

(0.17) (0.17) (0.18) (0.34)
Round 13 -0.11 -0.12 0.11 -0.48

(0.17) (0.17) (0.21) (0.33)
Round 14 -0.12 -0.12 0.09 -0.43

(0.16) (0.16) (0.19) (0.31)
Round 15 -0.02 -0.02 0.23 -0.43

(0.15) (0.15) (0.17) (0.31)
Supergame 0.02**** 0.02**** 0.02**** 0.03****

(0.00) (0.00) (0.01) (0.01)
orderlong 0.18 0.10 0.09 -0.16

(0.12) (0.11) (0.15) (0.20)
Prior Defect -2.04**** -2.04**** -1.90**** -2.43****

(0.10) (0.10) (0.13) (0.18)
CRT7 -0.01

(0.03)
Female 0.04 0.17 -0.02

(0.13) (0.22) (0.15)
Age 0.04** 0.05 0.04

(0.02) (0.03) (0.03)
Prediction 0.09**** 0.05** 0.19****

(0.03) (0.03) (0.06)
Lottery 0.02 0.00 0.01

(0.04) (0.04) (0.06)
Risk 0.00 0.00 -0.03

(0.02) (0.04) (0.02)
Patience 0.05 0.10** -0.00

(0.03) (0.04) (0.05)
Punishment -0.00 -0.00 -0.00

(0.03) (0.04) (0.03)
Altruism -0.01 -0.04 0.01

(0.04) (0.03) (0.05)
Reciprocity 0.02 0.00 0.08

(0.04) (0.04) (0.08)
Retribution 0.06** 0.05 0.05*

(0.02) (0.04) (0.03)
Trust 0.00 -0.03 -0.00

(0.02) (0.04) (0.03)
Constant -1.53**** -3.69**** -3.32**** -4.70****

(0.14) (0.64) (0.99) (1.13)
chi2 1014.88 1174.30 831.35 11034.10
p 0.00 0.00 0.00 0.00
N 9999 9999 5841 4158

Table C6: Choices to cooperate: mixed-effects probit regressions, odds, robust errors in parentheses. (See
Table C5 for the corresponding marginals.) “Supergame” is the supergame number in the sequence of
supergames (scaled down by 24), “Order Long” is a dummy variable for whether the first supergame in the
sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior
rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative
choices in Round 1 across all 24 supergames (scaled down by 100), “Lottery” is the number of safe choices
in Holt-Laury elicitation. Median CRT7 is 4. (N =101 subjects.) (Significance * 0.10 ** 0.05 *** 0.01 ****
0.001.)
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