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1 Introduction

The world consists of heterogeneous agents who differ from one another in numerous respects.

Modeling such heterogeneity presents the economics profession with a number of challenges.

For instance, which dimensions of heterogeneity are the most empirically relevant? What

range of heterogeneity should be allowed? Do agents simply differ in their preferences or do

they also depart in various predictable degrees from the rational choice framework? In this

chapter we show how experimental evidence on agent-type heterogeneity can be used to an-

swer these questions and how experimental evidence has been used to construct parsimonious

yet rich heterogeneous agent models. We further demonstrate how such experimentally vali-

dated heterogeneous agent models can explain a number of important economic phenomena

that would be difficult to explain using the standard homogeneous, rational actor approach.

As a motivating example, consider the pricing of assets subject to uncertain dividend re-

alizations. Experimental tests, beginning with Smith et al. (1988), have consistently found

that individual subjects over-price such assets relative to the asset’s rational expectations

fundamental value (see Palan (2013) for a survey). On the other hand, once a group of sub-

jects has experienced a price “bubble,” they are less prone to exhibit mis-pricing in repeated

interactions. Thus, inexperience and experience provide one dimension of heterogeneity that

can matter for the incidence of price bubbles, as documented by Dufwenberg et al. (2005).

An alternative dimension on which to consider heterogeneous agents is in terms of the cogni-

tive abilities of the subjects themselves. Bosch-Rosa, Meissner and Bosch-Domenech (2018)

and Hanaki et al. (2017) report that the mixture of cognitive abilities in a population of

agents, as measured by simple tests, matters for the incidence of asset price bubbles. In par-

ticular, they find that bubbles are less likely among more cognitively sophisticated subjects

and more likely among groups with mixed cognitive abilities.

The development of heterogeneous agent models has come about as the result of the

failure of homogeneous, representative agent models to adequately capture micro-level prop-

erties of macroeconomic and financial time series data. A further reason is development of

advanced computing power that enabled the use of computational algorithms to solve the

more complicated economic models with heterogeneous agents beginning in the second half

of the 1990s, e.g., with Campbell (1998), Den Haan (1996) and Krusell and Smith (1998).

These researchers and others in the large literature on heterogeneous agent models that has

blossomed since (see surveys, e.g., by Heathcoate et al. (2009) Krueger et al. (2016), and

Ragot (2018)) have sought to match distributional data on wealth, employment, wage earn-

ings, and educational status, among other factors, using models where agents are allowed

to differ in these dimensions and others and where markets are incomplete. At the same

time, data on certain features of these heterogeneous-agent models, for instance data on in-

dividual’s cognitive abilities, or their expectations about future variables, are not generally
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available, and so modelers have often used the short-cut assumption that agents are un-

boundedly rational and possess rational expectations. Nevertheless, agents can differ in the

boundedness of their rationality and in their forecast specifications and these differences are

often important, micro-level building blocks for heterogeneous-agent representations, e.g.,

in the literature on learning in macroeconomics (Sargent (1993), Brock and Hommes (1997,

1998), Grandmont (1998) and Evans and Honkaphoja (2001)). Perhaps as a consequence,

some researchers have began to conduct controlled experiments addressing expectation for-

mation and the extent of bounded rationality in the laboratory. A further use of laboratory

experiments has been to address questions of equilibrium selection in settings, e.g., bank

runs, where there can be multiple rational expectations equilibria, and where theory is silent

about the conditions under which a particular equilibrium is selected.

The use of controlled laboratory experimental evidence to validate as well as to provide

evidence for heterogeneous agent models is a relatively recent methodology, but it has also

spawned the development of the literature in agent-based modeling (see Duffy (2006) for

a survey). Once a laboratory experiment has been programmed, it is a simple matter to

automate the responses of the human subjects with robot players. Some laboratory experi-

ments involve interactions between human subjects and robot players in an effort to reduce

noise, e.g., Hommes et al. (2005), discussed below. Gode and Sunder (1993) took the logical

step of completely replacing the human subjects with robot players in their exploration of

behavior in continuous double oral auctions, and this work was influential in the blossom-

ing of the agent-based approach to social science research. Many agent-based modelers use

experimental data to calibrate or validate their heterogeneous agents, but most do not, as

they find the constraints of laboratory environments too confining. In this chapter we dis-

cuss the development of heterogeneous agent models that were conditioned on experimental

data, or that were used to validate experimental findings. In some instances (e.g., Arifovic

et al. (2017) discussed in section 4.2.2) heterogeneous agent models are used to help design

experiments.

The experimental evidence we discuss comes primarily from studies involving the “con-

venience sample” of university student subjects. This population has been dismissed by

some with the dubious claim that students “are not real people” (List (2011, p. 4)). Field

data studies involving “real actors” might seem to be more empirically valid, but these stud-

ies often involve a considerable loss of control relative to laboratory studies that can make

causal inference more difficult, if not impossible (Falk and Heckman (2009)). In defense of

the use of undergraduate subjects, we note that economic models are often so general and

parsimonious that there do not exist any real-world “professionals” who might be expected

to outperform student subjects. Indeed, Frechette (2015) reports that among 13 experimen-

tal studies that have compared the performance of student subjects with professionals, the
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professionals do no better than the student subjects in 9 of these studies. Among the other

4 studies, professionals are closer than students to theoretical predictions in just 1 study,

while students are closer than professionals in the other 3 studies! Thus, it seems that not

much is lost, and greater control is gained by examining data from laboratory experiments

with student subjects. Indeed, in several instances there are striking parallels between the

heterogeneity observed in the laboratory and that found in studies using non-experimental

field data.

This survey adds to, builds upon and extends several prior reviews of the experimental

evidence for heterogeneity and the use of such data as a rationale for heterogeneous agent

modeling. Duffy (2006) provides a survey detailing the complementarities between human

subject experiments and agent-based models, which necessarily involve heterogeneous, in-

teracting agents possessing various degrees of rationality. Many heterogeneous agent models

are derived in the context of macroeconomic or financial market settings, which we also focus

on here.1 Prior surveys of experiments related to macroeconomics and finance can be found

in Assenza et al. (2014), Duffy (2006, 2010, 2016) and Hommes (2011, 2013). In addition

to providing an update to these surveys, we emphasize the role of heterogeneity in agent or

subject types for better understanding aggregate phenomena.

The rest of the chapter is organized as follows. Section 2 discusses heterogeneity and

bounded rationality in both optimization and forecasting tasks. This section discusses in-

troduces a distinction between learning to optimize and learning to forecast experiments.

Section 3 discusses the consequences of heterogeneous types for monetary policy. Finally,

section 4 discusses evidence for heterogeneity in equilibrium selection among models of inter-

est to macro economists, including bank run models and network economy models admitting

multiple types of payments.

2 Heterogeneity and Bounded Rationality in Decision

Making

In this section we discuss evidence that experimental subjects’ choices depart in several

different ways from the homogeneous rational actor model. Specifically we focus on the

dynamics of group decision making, individual intertemporal optimization and expectation

formation. We wish to emphasize at the outset that we view the homogeneous rational actor

model as an important benchmark for economic analysis. Indeed, without this benchmark,

we would not be able to characterize the many ways in which agents exhibit heterogeneous

1For heterogeneous agent models derived from games or microeconomic settings, see Mauersberger and
Nagel (2018) appearing in this volume.
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behavior.

2.1 Group Decisions on Provision of a Public Good

One of the simplest group decision-making experiments that reliably reveals heterogeneity in

decision-making among members of a group is the linear public goods game, as first studied

by Isaac and Walker (1988). This is a N -player game and while it is typically played in the

laboratory with small numbers of subjects, in principle, it can be played with any population

of size N , and so we include it here in our discussion of macroeconomic experiments.2 In

this game, the N players repeatedly decide whether or not to contribute some portion of

their (typically common) endowment, w, to a public account with the remainder going to

their private account. Contributions to the public account yield a public good benefit to all

N players. Denote the amount that agent i contributes to the public account by ci. In the

public good game, player i’s payoff is given by:

πi = w − ci + M

N∑
j=1

cj (1)

The key assumption made in this game is that 1/N < M < 1. While it would be efficient

for all to set ci = w, in which case πi = MNw > w by the assumption that M > 1/N , since

the marginal per capita return (MPCR) to contributing to the public good, M < 1, it is in

fact a dominant strategy for each individual agent to contribute nothing to the public good,

i.e., to set ci = 0. Thus, this public good game is essentially an N -player prisoner’s dilemma

game.

By contrast with the rational choice prediction of no contribution, subjects in experimen-

tal public good games generally do contribute positive amounts to the public good, though

these amounts decline with repetition of the game. Figure 1 shows a typical pattern of giving

to the public account (public good) over 12 periods when N = 4 and M = 0.4. Subjects

were incentivized to maximize the payoff function πi in every period of the experiment. As

the figure shows, on average subjects contribute about 1/2 of their endowment to the public

good in the first period, but this contribution declines to nearly zero by the 12th and final

period.

The pattern of over-contribution and gradual decay in contributions to public goods can

be accounted for by heterogeneity in the choices of subject participants. Evidence for such

2Indeed, Isaac, Walker and Williams (1992) report experiments with large group sizes of N = 40 and
N = 100. More generally, we regard games with N ≤ 2 to be the domain of game theory or decision
theory (and the subject of the chapter by Mauersberger and Nagel (2018), while games with N > 3 present
aggregation issues and games with large N tend to approximate the competitive market conditions that are
often assumed to hold in macroeconomic and finance settings.
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Figure 1: Fraction of endowment contributed to the public good in 4-player public good

games with M = 0.4 under fixed matchings. Averages from eight 4-player groups. Source:

Duffy and Lafky (2016).

heterogeneity has been produced by Fischbacher et al. (2001) using a simple “strategy-

method” design.3 In this design, subjects are presented with the payoff function of the

public good game with N = 4, w = 20 and M = 0.4 and were asked to make two types of

decisions. The first decision was to indicate how much they would contribute. The second de-

cision involved completion of a contribution schedule showing how much each subject would

contribute conditional on the average contribution of the other 3 subjects in their group.

Specifically, for each (integer) average contribution amount the other 3 subjects, 0,1,2,...20

of their 20 token endowment, each subject supplied 21 conditional responses indicating how

much they would conditionally contribute. Finally, subjects were matched in groups of four.

One, randomly chosen subject’s decision was made according to his contribution table while

the other three subjects’ choices were made according to their unconditional contribution

decision; since the determination of which decision was chosen was random, subjects were

incentivized to seriously consider both decisions. Then subjects were paid according to the

outcome of their group’s total contribution. The results of this experiment are nicely sum-

marized in Figure 2 which reports on the average contribution schedule amounts of selected

classes of subjects. The contribution schedules of 22 of the 44 subjects (i.e. 50%) are consis-

tent with reciprocity or conditional cooperation as indicated by the close alignment of the

conditional cooperation amounts with the 45 degree line. Thirteen subjects (i.e. about 30%)

3In a strategy method experiment, one elicits each subject’s complete contingent strategy as opposed to
simply asking subjects to make a choice. The strategy is then typically played on the subjects’ behalf, thus
incentivizing subjects to truthfully reveal their strategy.
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Figure 2: Type heterogeneity in a one-shot public good game. Source: Fischbacher et al.

2001

are classified as purely selfish (perfectly rational) as they submitted a contribution schedule

with 0 for all 21 entries. Six subjects (or 14%) are hybrids between conditional cooperators

and selfish types exhibiting the hump-shaped pattern; they are conditionally cooperative up

to point (around 1/2 of ω) and then are more free-riding. The remaining 6 percent are not

easily classifiable.

Importantly, this heterogeneity in contribution decisions can be used to account for the

pattern of initial over-contribution to the public good and the subsequent decay in such

contributions over time. For instance, Ambrus and Pathak (2011) show that the presence of

two player types, selfish and reciprocating, conditional cooperators alone suffices to generate

this pattern. The initial positive contribution levels are all due to the conditional coopera-

tors who start out contributing positive amounts. By contrast, the selfish types contribute

nothing. At the end of each round, individual payoffs, πi, are realized and the group payoff

component, M
∑N

i=1 ci can be inferred (or more typically, it is simply revealed). The condi-

tional cooperators learn that the group average is less than would obtain if all others were

contributing levels similar to their own contribution levels and so these types conditionally

adjust their giving downward in the next round, given this new information. This down-

ward adjustment explains the decline in contributions over time. Note that this pattern of

behavior requires some measure of both of these two distinct, heterogeneous player types, a
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theme that we will see again and again in this chapter.

In addition to the over-contribution and decay pattern in public good experiments, there

are other features of this environment pointing to heterogeneity in subject behavior. For in-

stance, while average contributions in public goods games begin at around 50% of the total

endowment, typically more than half of subjects begin by equally splitting their endowment

between the private and public accounts. There is also considerable variation in individual

contributions as a percentage of endowment. Individual contributions show no consistent

monotonic pattern over time. Some increase, some decrease, and some have a zig-zag pat-

tern. Thus, subject behavior in this environment is best described as being ’persistently’

heterogeneous. Further, increases in the MPCR lead to an increase in the average rate of

contributions, especially in small group sizes. Additionally, increases in the size of the group

also lead to an increase in the average rate of contributions. This is particularly true in later

repetitions and for small values of the MPCR. Finally, there is a “restart effect”; that is, if

after 10 periods the subjects are told the game is restarting, then contributions in period 11

increase relative to those in period 10.

Standard theory provides little help in understanding this degree of heterogeneity in

choices and behavior over time. But this behavior can be accounted for by individual evo-

lutionary learning model (IEL) proposed by Arifovic and Ledyard (2012). The IEL model

is based on an evolutionary process which is individual, and not social. In IEL, each agent

is assumed to carry a collection of possible strategies in their memory. These remembered

strategies are continually evaluated and the better ones are used with higher probability.

IEL is particularly well-suited to repeated games with large strategy spaces such as subsets

of the real line. We discuss the details of IEL implementation and other applications where

it is used for validation of experimental data in section 5. Here, we focus on the results

related to public good games.

Arifovic and Ledyard (2012), extend the payoff function (equation 1) used in the public

goods experiments to include altruism and envy considerations and assume that the extent

of these other-regarding preferences vary across agents. In other words, some agents can

be completely selfish, some more or less altruistic as well as more or less envious. This

corresponds to the interpretation that human subjects walk into the lab with given type of

other regarding preference.

In order to incorporate other regarding preferences into the IEL learning, Arifovic and

Ledyard used the following utility (payoff function):

ui(c) = πi(c) + βiπ̄(c) − γi max{0, π̄(c) − πi(c)}. (2)

where πi(c) is the standard public good payoff as given in equation 1, π̄(c) is the average

payoff of all N players (revealed at the end of each round), βi ≥ 0 indicates how altruistic
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player i is4, and γi ≥ 0 defines how ’spiteful’ or ’envious’ agent i is. That is, i loses utility

when i’s payoff is below the average payoff in this group. Arifovic and Ledyard model the

heterogeneity by assuming that each subject i comes to the lab endowed with a value of

(βi, γi) which is distributed, independently and identically, in the population according to a

distribution F (β, γ).

With linear other-regarding preferences (ORP), for given (N,M) and heterogeneity across

(β, γ), there are only three types of Nash Equilibrium strategies: free riding or selfishness

(ci = 0), fully contributing or altruism (ci = w), and contributing an amount equal to the

average or fair-minded behavior (ci = c̄ = (
∑

i c
i)/N). Thus, the introduction of ORP

adds the possibility of different equilibrium levels of contributions. However, the theory is

still static, i.e., it predicts constant levels of contribution, and thus, cannot account for the

observed patterns of PG experimental behavior.

Arifovic and Ledyard further assume a specific distribution of types, F (·). Some agents,

P% of the population, are purely ”selfish”; that is, they have the type (0,0). The rest, (1-

P)% of the population, have other-regarding preferences where the (βi, γi) are distributed

identically, independently, and uniformly on [0, B] × [0, G].

They use Isaac and Walker data (IW) to find the ’good’ values for (P, B, G).5 For each

IW treatment, (M, N), and for each parameter triple, (P, B, G), they conducted 40 trials.

Each trial involves a draw of a new type from F (·) for each agent. Those types were selected

randomly as follows. Each agent became selfish with probability P . If her type turned out

to be selfish, then her utility was based only on her own payoff. That is, βi = γi = 0. If

the agent did not become selfish, then a set of values of βi and γi was drawn uniformly

and independently from the ranges [0, B], and [0, G] respectively. Arifovic and Ledyard

conducted a grid search over the values of P , B, and G to minimize the NMSE between the

simulation and experimental data. The data they used was average contribution over all ten

periods and average contribution over the last three periods.

Figure 3 shows the simulated and experimental data for N = 4 and for two values of M ,

a low of 0.3 and a high of 0.75 and Figure 4 shows the same for N = 10.

Further, Arifovic and Ledyard check how their model performs, using the parameter

values estimated from IW, when transferred to a different experimental data set. Here, we

illustrate the exercise by presenting data related to Andreoni (1995). He used (N, M) =

(5, 0.5) and conducted two treatments, Regular and Rank. 6 In Figure 5, we present the

pattern of average contributions for Andreoni’s data and for the IEL simulations.

4Here altruism refers to a preference for higher values of the average payoff to all agents.
5In their approach to learning in general, AL’s methodology is to find parameters that provide a ’loose’

fit for one set of data, and then use these parameters to generate simulation data for other experiments.
6In the Regular treatment the subjects’ payoffs were the same as in IW. In the Rank treatment they were

paid according to their rank.
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Figure 3: IEL and experimental data for N = 4

Figure 4: IEL and experimental data for N = 10

Finally, Arifovic and Ledyard were also able to ’generate’ the restart effect, which has

been a huge puzzle for both theory and simulation models. Andreoni (1988) was the first

to present the restart effect results (later replicated by Croson (1996)). The key finding

was that average contributions increased after the restart but then began to decline again.

Figure 6. Arifovic and Ledyard demonstrate the robustness of the IELORP to a wide range

of changes in its parameter values.7 In general, the IEL model is robust to changes in its

parameter values across different applications.

2.2 Intertemporal Optimization

A workhorse framework for intertemporal optimization is the lifecycle model of consumption

and savings due to Modigliani and Brumberg (1954) and Ando and Modigliani (1963). An

7Robustness in terms of changes in the parameter values of a learning/adaptive model is not common
feature of the behavioral models. Usually, they are parameterized to fit a specific experiment, and, usually,
are not robust to slight parameter changes. However, this is not the case with IEL.
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Figure 5: IEL and Andreoni’s Regular and Rank treatment

Figure 6: Restart Effect - IEL compared to Andreoni (1988) and Croson (1996)

experimental evaluation of this model was first performed by Johnson et al. (2001). In their

experiment, subjects were asked to suppose that they had just turned 35 and would live for

40 more periods (years) before dying at age 75. They would get an annual salary of $25,000

until retirement at age 65, after which they would get 0. Individuals could borrow or save at

a known, constant 4 percent interest rate and it was also known that there was no inflation,

discounting, taxes or other expenses to be paid nor any uncertainty. Consumption choices

were made once per year (period) and what was not consumed was automatically saved. In

one treatment using this environment, subjects were asked to make 40 choices as to how

much they would consume in every period (year), and they could condition these choices

on information about their accumulated asset position (from savings). Subjects were paid a

flat fee for their answers, as there was no objective right or wrong answer to these decisions.

However, in a later treatment, the same subjects were asked to reconsider the exact same

lifecycle problem and rank their preferences over five different financially feasible lifetime

consumption profiles, each of which exhausted their resources in the final 75th period of life.

The five consumption profile choices were:

1. $21,841 per year, every year, i.e., constant consumption.
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Profile Number 1(0%) 2(2%) 3(4%) 4(-2%) 5(Step)

First Choice .23 .31 .25 .13 .08

Second Choice .23 .44 .15 .11 .07

Table 1: Frequency of Subjects Choosing Alternative Profiles

2. $16,008 at age 35, growing by 2% per year thereafter.

3. $11,240 at age 35, growing by 4% per year thereafter.

4. $28,592 at age 35. falling by 2% per year thereafter.

5. $23,420 from age 35 until age 65, then $10,921 from 65 to 75.

The distribution of subjects’ consumption profile choices is shown in Table 1

First, as is evident from Table 1, subjects clearly exhibit heterogeneous preferences with

regard to lifecycle consumption profiles, with a majority of subjects favoring positive growth

in their consumption profile over time. Second, Johnson et al. examined the relationship

between subjects’ consumption choices over 40 periods (from age 35-75) in the first treatment

to their expressed first choice consumption profile in the later treatment. Specifically, they

calculate the average annual absolute percentage deviation between each subject’s most

preferred consumption profile and his/her actual consumption choices. For those whose

preferred profile was the constant consumption profile, the mean deviation is 15 percent;

for those preferring the 2 percent, 4 percent, -2 percent or the step function profile, the

mean deviations were 21, 25, 37 and 46 percent, respectively. Thus, not only are subjects

heterogeneous in their preferences, they are also heterogeneous in the bounded rationality

of their decision-making.

A criticism of the Johnson et al. experiment is that the payoffs subjects faced were

hypothetical and their true preferences were unknown. Subsequent experiments testing in-

tertemporal consumption-savings policies have sought to remedy this problem by inducing

subjects to hold specific (concave) preferences over consumption so that the subjects can be

rewarded on the basis of how close their lifecycle consumption profile is to the theoretically

optimal consumption path.8 See for example, Carbone and Hey (2004), Carbone (2006),

Ballinger et al. (2003, 2011), Carbone and Duffy (2014) and Meissner (2016). As in Johnson

et al., there is no uncertainty about how long agents will live and the lifecycle income process

is known, and possibly stochastic. These studies also report that in certain environments,

subject’s consumption choices deviate substantially from the unconditional optimal path or

8In these experiments, the utility function over consumption in period t, u(ct) converts a subject’s con-
sumption choice into money earnings using the induced mapping u, which is typically a concave function.

11



even the conditionally optimal path that conditions on a subject’s current asset position

(wealth). Carbone and Hey (2004) identify four player types, (i) those who understand the

basic nature of the problem and behave in a near optimal-manner, ii) those who are pre-

occupied with present consumption and discount the future heavily; (iii) those who seem to

like to accumulate wealth and build up large asset positions and (iv) those who engage in

consumption bingeing, building up stocks of wealth over cycles of around 4 or 5 periods and

then consuming all of that wealth. Ballinger et al. (2001) report that cognitive abilities,

as measured by performance in two non-verbal, visually oriented tests (the Beta III test

and a working-memory span test) are correlated with performance in lifecycle consumption

planning. Those with high cognitive abilities, perform better (closer to the optimal path)

than those with lower cognitive abilities, controlling for demographic and other non-cognitive

characteristics.

Even within the same incentivized lifecycle consumption-savings problem, subjects ex-

hibit heterogeneity with respect to their departures from the optimal or conditionally optimal

consumption path. For instance, Duffy and Li (2017) study a lifecycle consumption/savings

problem with no uncertainty or discounting, where subjects have induced logarithmic prefer-

ences over consumption and face a known lifecycle income profile, and a known fixed interest

rate on savings. The optimal consumption path in this environment is increasing over the

lifecycle (due to the positive interest rate and lack of any discounting), as shown in panel a

of Figure 7, but the behavior of subjects is at odds with this prediction; the mean percentage

by which subjects deviate from the conditionally optimal consumption path (together with

a 95% confidence interval) is shown in panel b of Figure 7.

(a) Optimal Consumption (b) Percent Deviation from the Optimal Path

Figure 7: Optimal consumption path and percent deviation from optimal path in the exper-

iment of Duffy and Li (2017)
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As Figure 7(b) clearly reveals, on average, individuals consume more than the optimal

amount in the first 17 periods (equivalent to 39 years in model time) and, as a consequence,

they have less savings later in life so that in those later periods they under-consume relative

to the optimal consumption path. Duffy and Li report that this aggregate, over-consumption

followed by under-consumption pattern can be explained by heterogeneity in subject’s life-

cycle consumption and savings decisions. They report that nearly 50 percent of subjects

can be regarded as hand-to-mouth consumers, consuming all (or nearly all of their income)

in each period while the remaining subjects can be characterized as conditionally optimal

consumers, who make calculation mistakes and who can be viewed as re-optimizing their

consumption/savings plan at each new period of the lifecycle, conditional on current asset

holdings. The presence of the two types explains both the over and under consumption

phenomenon and its magnitude. When income is greater than the conditionally optimal

path, as in the early periods of life, the presence of hand-to mouth consumers means that

average consumption is greater than optimal. When income is less than the conditionally

optimal amount in the later (retirement) periods of life, the presence of the hand-to-mouth

consumers means that average consumption is below the conditionally optimal level. In-

terestingly, Campbell and Mankiw (1989) used a similar, two-type model with 50 percent

hand-to-mouth consumers and 50 percent rational consumers to explain volatility in aggre-

gate U.S. quarterly consumption data.

2.3 Expectation Formation

Heterogeneity in expectation formation is also well documented using laboratory experi-

ments. In many models in macroeconomics and finance, expectations matter for optimizing

choices, and the results of those choices in turn determine the realizations of the variables

that agents were forecasting. This belief–outcome interaction can be complicated for sub-

jects (not to mention theorists), and so typically experimentalists have asked subjects to

choose actions with expectations implicit, or to form expectations only and to be paid on

the basis of the accuracy of those expectations, see, e.g., Schmalensee (1976), Dywer et al.

(1983), Smith Suchanek and Williams (1988) and Kelley and Friedman (2002).

For instance, in one early experiment, Hey (1994) asked subjects to forecast a random

time series variable, Xt. The law of motion for Xt was autoregressive, i.e., Xt = μ+ρXt−1+εt,

where μ, and ρ are fixed parameters and εt is a mean zero noise term with variance σ2, but

subjects were not aware of this data generating process. They could choose a prior history

of k ≤ 50 past values for Xt and after observing this history, they were asked to form

forecasts. They were incentivized to form accurate forecasts in each of 20 periods, t, as the

payoff function for each subject, i, in each period t, was a quadratic scoring rule of the form

πi = max
[
a − b(Xe

i,t − Xt)
2, 0
]
, where Xe

i,t denotes subject i’s time t expectation of Xt; the
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actual value of Xt was revealed ex-post and then earnings were determined. Hey reports

that few subjects, just 2 out of 48 (4%), formed the rational expectation, EX = μ
1−ρ

, while

2/3 (66%) of subjects could be characterized as adaptive learners. The remaining 30% were

not characterizable using either rational or adaptive expectations!

Asset Pricing Experiments

Hey’s experiment has an exogenous data generating process. To capture endogenous belief-

outcome interaction, it is necessary for expectations to matter for the variables that subjects

are forecasting. A simple framework in which this is the case is an asset pricing model

studied experimentally by Hommes et al. (2005). In this model there is a 1 period, risk free

bond paying a known, fixed return of r per period and long-lived risky asset (e.g., a stock)

paying stochastic, i.i.d. dividends each period with a mean value of d̄. The co-existence of

these two types of assets requires, via arbitrage, that the price of the risky asset is given by:

pt =
1

1 + r
(pe

t+1 + d̄). (3)

where pe
t+1 is the time expectation of the risky asset at time t+1. Under rational expectations,

pe
t+1 = pt = pf ≡ d̄

r
, so that the rational expectation equilibrium (REE) price path should

be pt = pf . Hommes et al. (2005) study whether subjects can price the asset consistent

with this rational expectations prediction in a laboratory experiment. However, they study

a slightly altered version of this pricing equation wherein the price of the risky asset is

generated by:

pt =
1

1 + r

(
(1 − ηt)p

e
t+1 + ηtp

f + d̄ + εt

)
,

where εt is a mean zero noise term and ηt ∈ (0, 1) is a time-varying weight assigned to

fundamental traders’ price forecasts, i.e., those who correctly price the asset according to its

fundamental value, pf . The remaining weight, (1−ηt), is given to non-fundamental, adaptive

learning agents. In the Hommes et al. (2005) experiment, the fundamental traders are robot

players, and the weight assigned to their rational expectations price forecast, ηt, diminishes

as the system converges. The human subjects, six per group, comprise the non-fundamental

forecasters. In each period t, each human subject i forms a forecast of the price in period

t + 1, pe
i,t, and each is paid according to the ex-post accuracy of their own forecast using

the same quadratic scoring rule as in Hey’ study. Differently from Hey, the experiment is

a group-decision making task since pe
t+1 in the equation used to determine pt is taken to be

the average of the six human subjects’ forecasts, i.e., pe
t+1 = 1

6

∑6
i=1 pe

i,t+1. Notice further

that expectations now matter for actual price realizations so that there is belief-outcome

interaction. Subjects in the experiment were asked to forecast a price for the asset in the

interval [0, 100] and were not told any details of the equation determining the realization
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of pt, though they know r and d̄ and, in principle, could compute pf = d̄
r
. In contrast to

Hey (1994), subjects in the Hommes et al. design have the incentive to coordinate their

expectations over time, so heterogeneity should now only be transitory, and may disappear

with experience; the presence of the robot fundamental traders helps in this regard. A

further difference is that subjects in the Hommes et al. experiment make forecasts of the

price in period t + 1 in period t, but the price they forecast in period t is not revealed until

period t + 2, so, in effect, they are forecasting two periods ahead.

Figure 8: Individual price forecasts (pe
t+1) over time, from Hommes et al. 2005

Figure 8 shows the time series of price forecasts over 50 periods from ten different groups

of six forecasters. Several observations are evident. First, only a few groups (2,5) have

converged to the REE price, equal to 60 in this experiment by the end of 50 periods. These

groups were found to be comprised of individuals whose forecast rules were of an AR(1)

nature, including naive best response, pe
t+1 = pt−1 or past averaging pe

t+1 = 1
t−1

∑t−1
j=1 pt−j.

Second, there is tremendous coordination on price forecasts within each group, a kind of

group specific expectation norm. Third, many groups’ expectations result in an oscillatory

path for prices that sometimes appears to be convergent (groups 4,7,10) and sometimes

not (groups 1,6,8,9). Both sets of groups are found to be employing an AR(2) expectation

formation process of the form: pe
t+1 = α + βpt−1 + γ (pt−1 − pt−2). The estimated value of γ

is found to be positive, indicating that if subjects see a positive (negative) trend in the past

two prices, they expect prices to continue to increase (decrease). This trend-extrapolation

behavior explains the oscillatory pattern for prices in these groups. Finally, some groups’
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expectation rule, e.g. group 3, are simply not well understood. Hommes et al. conclude that

75 percent of their subjects can be classified using linear adaptive rules that depart from the

rational expectations equilibrium prediction.

Hommes et al. (2008) studied a slightly different version of this same experiment where

pf = 60 as before but where the robot players and the noise term were eliminated and the

price forecast interval was enlarged by a factor of 10 to [0, 1000]. Their aim was to explore

the possibility of rational bubbles, which can be derived as follows. Using the law of iterated

expectations, we can expand the price equation as: pt =
∑n

i=1(1+ r)−id̄+(1+ r)−nEt(pt+n).

Taking the limit as n goes to infinity, pt =
∑∞

i=1(1 + r)−id̄ + limn→∞(1 + r)−nEt(pt+n).

Assuming a limit exists, denote the last term by bt, so that the rational expectations solution

consists of a fundamental and a bubble term pt = pf +bt. To be a rational bubble, the bubble

term must grow at rate r. Hommes et al. did not find evidence for rational bubbles in this

strict sense, but they did report that in 5 of their six experiments, prices periodically hit

the upper bound of 1000 – more than 15 times fundamentals– before trending down again.

They show that this pattern in again driven by positive feedback, trend-following expectation

formation rules. Hüsler et al. (2013), using Hommes’ data, showed that for the groups in

which bubbles arose, the bubble growth rate was “super-exponential”. In particular, the rate

of change of prices is well approximated by an equation of the form log
(

pt

pt−1

)
= r + γpt−1,

where γ > 0 is the anchoring weight placed on the more recent price; the positive weight on

the latter means that the prices grows at a rate greater than r (super-exponential). Hüsler et

al. further show that alternative functional forms for the growth rate of prices (exponential

growth or anchoring on lagged returns as opposed to lagged prices) do not perform as well

in explaining the path of price bubbles.

The heterogeneity of expectation formation rules means that a single model of adaptive

behavior will not suffice to explain the experimental data from these asset pricing exper-

iments. Anufriev and Hommes (2012) therefore propose the use of a heuristic switching

model, based on Brock and Hommes (1997) to explain the experimental data of Hommes

et al. (2005 and 2008). In this simulation model, the price forecasts of several heuristic

models, pe
h,t+1, indexed by h get aggregated up with weights nh,t to generate the mean price

expectation that enters the data generating equation of the model:

p̄e
t+1 =

H∑
h=1

nh,tp
e
h,t+1

The fitness of rule h is updated every period based on past performance,

Uh,t−1 = μUh,t−2 − (pt−1 − pe
t−1)

2

where μ ∈ (0, 1) denotes a memory term. Finally the fitness of each heuristic is used to
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Figure 9: Experimental Data versus One-Step Ahead Prediction from Anufriev and

Hommes’s HSM for Group 6 of Hommes et al. 2005

determine the weight given to it in the expectation equation for p̄e
t+1:

nh,t = λnh,t−1 + (1 − λ)
eβUh,t−1∑H
h=1 eβUh,t−1

.

The four heuristic rules for expectation formation were:

1. Adaptive Expectations (ADA): pe
t+1 = 0.65pt−1 + 0.35pe

t

2. Weak Trend Following (WTR): pe
t+1 = pt−1 + 0.4(pt−1 − pt−2)

3. Strong Trend Following (STR): pe
t+1 = pt−1 + 1.3(pt−1 − pt−2)

4. Anchoring and Adjustment (LAA): pe
t+1 = 0.5((t − 1)−1

∑t−1
j=0 pj + pt−1) + (pt−1 − pt−2)

These rules were motivated by the estimation results of subjects’ individual forecasts, where

similare learning rules with only a few significant lags were quite common.

The first rule is a standard adaptive expectations rule while the second and third rules are

“trend” following rules, that seek to exploit trends in the most two recent price realizations

(between dates t − 1 and t − 2). The final rule is a flexible anchoring and adjustment

rule which puts weight on the hypothesized fundamental price, approximated by the sample

average, (t − 1)−1
∑t−1

j=0 pj , and also gives some weight to price trends.

The model is initialized with equal weights on all four heuristics and a specific choice

of parameter values, β = 0.4, η = 0.7 and δ = 0.9. In- and out-of sample simulations

provide a good fit to the experimental data. An example is shown in Figure 9, which reports

simulation results for group 6 in the asset pricing experiment, which followed an oscillatory

path around the REE. As the figure reveals, all four rules in the heuristic switching model

initially have some weight, but ultimately the more flexible anchoring and adjustment rule

(LAA) becomes dominant in explaining the persistent fluctuations in prices; the adaptive

(ADA) and the two trend following rules (WTR and STR) miss the turning points in prices
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and are thus given less weight over time. In other groups, especially those that converge to

the REE, all rules have similar forecasting success and thus all four continue to have weight

in the heuristic switching model over time.

Cobweb model experiments

A second experimental environment in which there is belief-outcome interaction and evidence

for heterogeneous expectations is the Cobweb model of Ezekiel (1938) which is the framework

first used by Muth (1972) to formulate the rational expectations hypothesis. This model

consists of equations for the demand and supply of a single, perishable good. Demand is a

decreasing function of the period t, market price, D(pt), while supply, which must be chosen

one period in advance, is an increasing function of the price expected to prevail at time t,

S(pe
t ), based on information available through period t − 1. Hommes et al. (2007) elicit

price forecasts from i=1,2...,6 subjects, and given these forecasts they optimally solve for the

supply that each forecaster i would bring to the market. Thus aggregate supply is given by∑6
i=1 S(pe

i,t) and, since the demand side is exogenously given, market clearing implies that

the equilibrium price is given by:

pt = D−1

(
6∑

i=1

S(pe
i,t)

)
+ εt (4)

where εt is an added i.i.d. mean 0 noise term reflecting fundamental uncertainty. Subjects

were incentivized to chose pe
i,t as close to pt as possible as their payoff function was again

determined by a quadratic-loss scoring rule. The main treatment variable was a supply func-

tion parameter that varied the amount of nonlinearity in supply, and so affected whether

the steady state price, p∗, was stable, unstable or strongly unstable under Ezekiel’s bench-

mark choice of naive expectations, pe
t = pt−1, though for more general adaptive learning

specifications, the steady state could be stable and the limit of the learning process. The

main issue they examined was the validity of the RE prediction that pe
t = p∗t + ε. They

found that the REH found some support in the case where the steady state was stable under

naive expectations, but that it did not predict well in the unstable or strongly unstable

environments. More precisely, while the mean realized price over the sample of 50 periods

was always close to p∗ the sample variance was larger and more persistent the greater was

the instability of the system under the naive expectations benchmark. Off-the-shelf adaptive

learning processes such as past averaging of prices or error-correction approaches were also

not as useful in explaining experimental data from the Cobweb model as these models led

to too regular fluctuations and predictable autocorrelation patterns not found in the data.

Indeed, an explanation of these findings also requires an explicitly heterogeneous-agent

model. Arifovic (1994) was the first to use a genetic algorithm to explain experimental
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findings for the cobweb model similar to those reported by Hommes et al. (2007). Genetic

algorithms are computer programs that mimic naturally occurring evolutionary processes:

selection based on relative fitness, reproduction and mutation on a population of candidate

solutions to an optimization problem. These algorithms, first developed by Holland (1975)

(see also Goldberg (1989)), have been shown to be ideal function optimizers for “rugged

landscapes” as the population basis of the search and the evolution of new strategies over

time avoids the possibility that the algorithm gets stuck at (prematurely converges to) local

optima. In a typical Genetic Algorithm, there exists a population of candidate solutions

or “chromosomes” coded in some manner, typically a binary encoding. There is a also a

fitness criterion, e.g., a profit, utility or payoff function that is the objective of the op-

timization problem and that is used to evaluate the chromosomes. Initial populations of

solutions (chromosomes) are typically randomly generated, over some reasonable domain for

the solution space. Then solutions are evaluated for their fitness. The most fit solutions are

probablisitically more likely to survive into the next “generation” of candidate strategies in

a reproduction step to the algorithm. This reproduction step is followed by a crossover step,

where pairs of solution strings are randomly matched, a cut-point is randomly determined

and the genetic material (binary encodings to one side of the cut point) are swapped in a

process mimicking genetic recombination. Finally, encodings are subject to some mutation

as well, with some small probability, e.g., a bit is flipped from a 0 to a 1 or vice versa. This

process then repeats over multiple generations until some convergence criterion is met or

a maximum number of generations has passed. Along this path, genetic algorithms thus

consist of very heterogeneous populations of candidates solutions or strategies. In Arifovic’s

(1994) application to the Cobweb model, the population of chromosomes represented a pop-

ulation of different firms’ decision rules as to how much quantity to bring to the market

in a given period (demand was automated). Aggregate quantity together with exogenous

market demand determined the market price, which was used to evaluate each firm’s profits,

the fitness criterion. Arifovic found that genetic algorithm simulations, like the experiments

of Hommes et al. converged to the rational expectations solution in the stable case and to

a neighborhood of the REE in the unstable case, and that the volatility of the heteroge-

neous agent genetic algorithm was a good approximation to the heterogeneity observed in

experimental data. While Arifovic’s simulations considered the optimal quantity decision

of firms, Hommes and Lux (2013) used a genetic algorithm model on populations of price

forecasts in order to address the price volatility in the Hommes et al. (2007) Cobweb model

experiments as the system was made more unstable. Like Arifovic (1994), they found that

simulations of the genetic algorithm for price forecasts yielded a good match to the experi-

mental data. This match to the experimental data relies upon the genetic algorithm’s use of

past fitness, its heterogeneity of different solutions, and the genetic operators, which allow
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for the development of new strategies.

More recently, Arifovic and co-authors have begun working with multiple population ge-

netic algorithms, one population for each decision-maker. These algorithms, which Arifovic

refers to as “individual evolutionary learning” (IEL) algorithms are close cousins to genetic

algorithms. In addition to having different populations of strategies (different GAs) for each

decision-maker, IEL avoids the use of the crossover operation of the genetic algorithm (mu-

tation alone often suffices for experimentation) and it allows for more dynamic specifications

of the strategy space, permitting the evolution of conditional strategies. The IEL algorithm

was described earlier in connection with the public good game (sees section 2.1) and will

also be discussed later in connection with experimental studies of equilibrium selection (bank

runs (3.1) and adoption of new payment systems (3.3)).

Positive versus negative feedback

The asset market experiment and the cobweb model experiments differ in two important

dimensions. First, in the Cobweb model, (equation (4)), pt = f(pe
t ), requiring one step-

ahead-forecasts for prices. By contrast in the asset market experiment, (equation (3)) pt =

f(pe
t+1), requiring two step-ahead forecasts for prices. Second, and more importantly, in the

asset market experiment, there is positive feedback between price expectations and price

realizations, i.e., ∂f/∂pe
t+1 > 0 while in the Cobweb model there is negative feedback, i.e.,

∂f/∂pe
t < 0. Positive feedback mechanisms, as in the asset pricing model are associated with

strategic complementarities; an increase on one agent’s price forecast causes others to choose

higher price forecasts as well. By contrast, negative feedback systems are associated with

strategic substitutability; a higher price forecast (higher expected demand) by one oligopolist

provides incentives for the another oligopolist to lower his or her price forecast.9 It turns

out that this difference matters for the speed of convergence to the rational expectations

equilibrium, as shown in experimental research by Fehr and Tyran (2001, 2008), Potters

and Suetens (2009), Sutan and Willinger (2009), Heemeijer et al. (2009) and Cooper et al.

(2017). Here we focus on the work of Fehr and Tyran, Heemeijer et al. and Cooper et al.

In Fehr and Tyran (2001), human subjects play a 4-player “price-setting” game. In each

of 2T periods, subject i chooses a price Pi and earns a real payoff that is a function of the

time t average price chosen by other players, P−i,t and the time t nominal money supply Mt:

πi,t = f
(
Pi, P̄−i,t, Mt

)
The function f yields a unique, dominance-solvable equilibrium for every value of M ,

is homogeneous of degree 0 in all arguments, and fP−i,t ≥ 0, so there is a weak, strategic

9See, e.g., Haltiwanger and Waldman (1989).
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complementarity in price-setting. They conduct a treatment where subjects’ earnings are

paid according to the above, real payoff function. In addition, there is also a nominal payoff

treatment where subjects’ earnings are reported to them in nominal terms, P−i,tπi. In both

of these treatments, there is a nominal shock: the nominal money supply is known to be a

constant level M for the first T periods and then to decline to a permanently lower level λM

, λ < 1 for the last T periods. The question is then whether subjects will adjust their prices

downward at date T from P to λP .

Their results show that, in the real payoff treatment, the adjustment to a new, equilibrium

nominal price, λP occurred almost instantaneously. However, the adjustment in the second,

nominal payoff treatment was very sluggish, with nominal prices adjusting slowly to the new

equilibrium. Fehr and Tyran characterize this as money illusion that depends on whether

subjects are paid in real, price adjusted or in nominal terms. This adjustment is more

difficult in the normal payoff function treatment where subjects have to correctly deflate

their nominal payoff function. In addition, arising from the strategic complementarity in

price settings, the failure of some subjects to adjust to the nominal shocks may make it a

best response for others who are not subject to money illusion to only partially adjust to

the shock.

In order to isolate the latter possibility, Fehr and Tyran (2001) also conduct individual-

decision making experiments under both the real and nominal payoff functions where the

other n−1 players are known to the human subjects to be robot players that are not subject

to money illusion and that adjust prices downward proportional too the shock, at the time

of the shock. Their results show that, in this treatment, the extent of price sluggishness is

greatly reduced.

Fehr and Tyran (2008) consider not only the prior case where there is a strategic com-

plementarity in price setting, but also the case where there is a strategic substitutability

in price setting, i.e. fP−i,t ≤ 0. Their results show that money illusion and the resulting

nominal inertia in response to a fully anticipated monetary shock is greatly reduced in the

case of strategic substitutes relative to the case of strategic complements. This leads to much

faster adjustment toward the post-shock equilibrium.

Heemeijer et al. (2009) studied two simple linear models for price determination:

pt =
20

21
(123 − pe

t ) + εt (negative feedback) pt = 20
21

(3 + pe
t ) + εt (positive feedback)

where pe
t was taken to be the average of 6 subject forecasts for pt. Both models have the same

rational expectations equilibrium prediction, namely that pt = 60 + εt. Nevertheless, that

path by which groups of 6 subjects learned this equilibrium was very different depending on

whether they were in the positive or negative feedback treatment. Under negative feedback,

convergence obtained rather quickly, within 5 periods, on average. However, under positive

21



Figure 10: Absolute Deviation of Median Market Price from the REE Price Over 50 Rounds,

Positive versus Negative Feedback Treatments, Pooled Data: Source Heemeijer et. al. (2009)

feedback, there was only a very slow oscillatory movement toward the equilibrium price of

60. Indeed, average prices and volatility under positive feedback were significantly greater at

the 5% significance level as compared with the negative feedback case. Figure 10 illustrates

the absolute difference between the median market price and the equilibrium price over all

groups and the 50 rounds of Heemeijer et al.’s experiment.

The explanation for this difference again lies in the value of different forecasting rules

in the two environments. When there is positive feedback, if enough agents use trend-

following rules, other forecasters find that trend following is profitable and prices often

deviate substantially from fundamentals. By contrast, in markets with negative feedback,

as the number of individuals adopting trend following rules becomes sufficiently great, the

incentives for contrarian, fundamental-based strategies become greater and so trend-following

strategies do not survive very long in such negative feedback systems. Bao et al. (2012)

consider the same two models, but examine how subjects react to unanticipated shocks to

the fundamental value of the price. They report that under the negative feedback system,

there is a rapid adjustment to the new, post-shock equilibrium, but under the positive

feedback system, the adjustment to the shock is slow; initially the price under-reacts to the

change, but over time there is over-reaction. Bao et al. use a heuristic switching model to

explain this under- and over-reaction pattern.

Within a given type of feedback (positive or negative), players can also be heterogeneous

with regard to their depths of reasoning, i.e., their beliefs about others —see the chapter

by Mauersberger and Nagel (2018) for further details in the context of the Beauty Contest

Game, (Nagel (1995)). They can also be heterogeneous in terms of their knowledge of the

data generating process or the history of play by others. For instance, Cooper et al. (2017)

induce heterogeneity about the history of play by periodically replacing players in an N-player

beauty contest game with new players, coincident with changing the (interior) equilibrium
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period of the game. They find that the periodic addition of a single, inexperienced player

(and removal of an experienced player) in a population of size 4, can have large effects on

the speed of convergence to the new equilibrium when the environment is characterized by

strategic complementarities (positive feedback) but not when it is characterized by strategic

substitutability (positive feedback). This pattern follows from the manner in which the

experienced subjects react to the play of the inexperienced subjects; in the substitutes case,

too high (or too low) a choice by the inexperienced subject can be counteracted by lower

(higher) choices by the experienced subjects but in the complements (positive feedback)

environment, the experienced subjects find it more difficult to counteract the errant behavior

of the inexperienced subject and thus convergence to the new equilibrium occurs more slowly.

These findings show how even a small amount of heterogeneity can nevertheless have large,

differential impacts on outcomes.

2.4 Learning to Forecast vs. Learning to Optimize Experimental

Designs

The expectation formation experiments discussed in the previous section decouple the ex-

pectation formation problem from optimization decisions. This is a common practice in the

macroeconomic learning literature as well (see, e.g. Evans and Honkapohja (2001)).10 The

maintained assumption is that while agents may be boundedly rational in expectation forma-

tion, they have no trouble optimizing given their incorrect forecasts. The experiments that

have followed this approach are known as “learning to forecast” experiments, since subjects’

only aim to get the expectation of future variables correct; indeed, subjects usually have no

other knowledge of the system they are operating in (a topic we shall return to shortly). The

trading decisions necessary to assure arbitrage between the two assets in the asset market

or profit maximization in the cobweb model commodity market are simply automated for

subjects. Indeed, in the experiments of Hommes et al. (2005, 2008), subjects are simply

instructed that they are forecast “advisors” to some firm.

The use of such learning to forecast experiments dates back to the work of Marimon and

Sunder (1993, 1994) who studied savings behavior in two period overlapping generations

models. They found that in old age (period 2) subjects were often failing to spend all of

their savings, so they chose to automate the problem so that subjects, in the first, young

period of their lives only had to forecast the price level that would prevail in the second and

final period of their lives when they were old. Given this price forecast, the optimal saving

and consumption decisions was automatically computed for subjects.

10See the chapter by Branch and McGough (2018) for modeling bounded rationality in forecasting as well
as bounded rationality in decision-making in macroeconomic models.
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However as we have seen in the public good and intertemporal consumption/savings

experiments, some subjects are not very good at solving optimization problems (or applying

backward induction). In those “learning to optimize” experiments, subject forecasts are

not explicitly elicited but are rather implicit in subjects’ optimizing decisions. Nevertheless,

it is instructive to understand the extent to which subjects can both form expectations

and optimize conditional on those expectations. Such an exercise was considered by Bao,

Hommes and Duffy (2013) who compared the performance of subjects in learning to forecast

and learning to optimize treatments of the cobweb model experiment (described above) as

well as additional treatments where subjects did both tasks (forecast and optimize) or in the

case where subjects are simply forecasting prices, their payoffs were determined according to

a quadratic loss scoring rule between their forecasted price and the actual price resulting from

the average forecasts of a group of 6 subjects. In the learning to optimize treatment, the six

subjects were in the role of supplier choosing a quantity of the good in period t, qi,t, to bring

to the market. The payoff to each of the 6 subjects was given by the net profit resulting from

this quantity choice, i.e., πi,t = ptqi,t − c(qi,t), where pt is the actual market price determined

via the market clearing condition and c was an induced (and known) cost function. In a

third treatment subjects were asked to form both forecasts and choose quantities while in a

fourth treatment, subjects were matched in teams, where the forecasting task was performed

by one team member and the optimizing by another, and they shared the equal weighted

payoff from both activities.

Bao et al. (2013) report that the speed of convergence to the RE price is fastest when

subjects only have to forecast prices, that is, in the learning-to-forecast experiment. In

second place, is the treatment where one subject is specialized in forecasting and the other

is specialized in optimizing. In third place was the treatment where subjects were asked to

make optimal quantity decisions only (learning to optimize), followed by the treatment where

subjects were asked to both forecast and optimize, which had the slowest time to convergence.

Heterogeneity in price forecasts and quantity decisions was also significantly greatest in this

last treatment where subjects had to perform both forecasting and optimizing roles. The

elicitation of the two different decisions reveals that a majority of subjects 59.5% were not

making quantity decisions that were optimal given their price forecasts. By contrast, in the

team setting, quantity decisions were optimal given price forecasts for a majority of subject

pairs (69.4%), suggesting that heterogeneity in price forecast/quantity outcomes may be

reduced in teams relative to individuals. Bao et al. further report that subjects’ forecast

rules in this negative feedback environment were a mix of adaptive and contrarian rules,

with more than 50 percent of subjects being classified as adaptive learners.11

11Bao et al. (2017) study learning to forecast versus learning to optimize in a positive feedback system.
They find that asset bubbles are a robust feature and even larger in magnitude under the learning-to-optimize
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2.5 Adaptive versus Eductive Learning

The studies of expectation formation discussed in the prior sections presume that agents have

limited or no knowledge of the data generating process for the variables they are seeking to

forecast. It is natural to think that agents in such settings would adapt their expectations of

the variables they are forecasting over time in an inductive manner based on past outcomes,

to develop new forecasts that better approximate the data generating process. A second

approach to modeling learning asks not whether an equilibrium is eventually reached under

adaptive learning, but whether the equilibrium is eductively stable, in the sense of Guesnerie

(1992, 2002). Eductive learning departs from adaptive learning in that all agents perfectly

know the data generating process, and assuming common knowledge of the rationality of

other actors can deduce that the equilibrium path associated with that process is associated

with a particular REE, thereby facilitating coordination on that REE. Eductive stability can

be illustrated with respect to the same Cobweb model used to study adaptive learning. In

a linear demand and supply model, the market clearing price in a Cobweb economy is given

by:

pt = μ + αp̄e
t + εt

where p̄e
t+1 denotes the average of all supplier’s forecasts and εt is again an i.i.d. mean 0 noise

term. Assume now that μ and α are constants known to all forecasters; under the adaptive

expectations view, these parameters are unknown and have to be learned. The equation for

pt yields a unique rational expectations equilibrium in which:

p∗t = p̄e,∗
t + εt, where p̄e,∗

t =
μ

1 − α

The REE can be shown to be eductively stable provided that |α| < 1. Intuitively, if this

condition is satisfied, then starting from any initial price, an iterative reasoning process,

performed in notional or mental time, leads agents to the REE. By contrast, as Evans

(2001) has pointed out, the REE is stable under adaptive learning so long as α < 1, which is

a less restrictive condition. Bao and Duffy (2016) exploit this difference to assess the extent

to which subjects can be characterized as either adaptive or eductive learners. To conduct

this test, they had to put the two theories on an informationally equivalent footing; since

the eductive approach assumes complete knowledge of the data generating process while

adaptive learning does not, they chose to inform subjects of the equation for prices including

the values they chose for μ = 60 and α ∈ {−.5,−.9,−2,−4}. In one treatment, subjects

were matched in groups of three and the average forecast of the three players was used to

determine p̄e
t in each of 50 periods; subjects were again paid according to a proper scoring

rule. Figure 11 shows the evolution of these average forecasts over time for 10 different

cohorts in each of the four treatments where α = .5, .9, −2, and −4, respectively.

treatments.

25



Figure 11: Average expectations of prices over time in the Oligopoly treatment of Bao and

Duffy, four different values for α: 0.5, 0.9, −2.0 and −4.0

When |α| < 1, consistent with both the adaptive and eductive learning hypotheses,

expectations converged to REE. However, in the two treatments where α < −1, convergence

was slower or did not occur within the time frame of the experiment. Bao and Duffy show

that these differing results are due to the presence of roughly equal numbers of adaptive and

eductive type players (as a well as a sizable fraction of subjects who are not classifiable). The

presence of the two types and the relative influence of each matters for whether the system

converges or does not converge to the REE, evidence once again that type heterogeneity

matters.

3 Heterogeneity and Monetary Policy

We then turn to a more complicated setting, the New Keynesian model of monetary policy,

where coordination problems can arise if the equilibrium of the model is not determinate

or locally unique (indeterminate). Generally speaking, central banks wish to avoid such

settings, in favor of those where the equilibrium is unique, and there is a large theoretical and

experimental literature addressing the extent to which policy can play such a coordinating

role.

3.1 New Keynesian Experiments

A number of recent papers has focused on studying the effects of monetary policy in forward-

looking versions of the sticky price, New Keynesian model (as developed in Woodford, 2003):
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xt = Etxt+1 − σ−1 (it − Etπt+1 − rn
t ) (5)

πt = βEtπt+1 + κxt (6)

it = f(Etπt+1, Etxt+1) (7)

rn
t = ρrn

t−1 + εt . (8)

The first equation for the output gap, xt, is the expectational IS curve, with σ representing

the intertemporal elasticity of substitution. The second equation for the inflation, πt, is

the New Keynesian Phillips curve, with β equal to the period discount factor, and κ is a

parameter that captures the stickiness of the prices. Finally, the third equation represents

the specification of the central bank’s policy rule for the nominal interest rate it, and with the

assumption of rational expectations. Expectations of future inflation and output gap play

a crucial role in the dynamics of the system. The central bank manages these expectations

through its choice of an interest rate (policy) rule.

A number of recent papers have studied the behavior of the above system in the context

of learning-to-forecast experiments. In these experiments, subjects are asked to forecast next

period’s inflation rate and output gap and then, subjects’ mean or median expectations for

inflation and the output gap are substituted into equations (5) and (6) in place of rational

expectations. The experimental studies investigate issues related to the stability of economies

under different interest rate policy rules, the role of the expectational channel in the reduction

of the variance of output and inflation, and the role of different monetary policies in the

management of the economies at the zero-lower bound. In these types of settings, there is

heterogeneity of subjects’ expectations which play a crucial role in the dynamics and stability

of these economies over time.

For example, Pfajfar and Zakelj (2014) simplify the model by using xt−1 as the naive ex-

pectation for Etxt+1, and study only expectations of inflation in a laboratory environment.

Thus, in these experiments subjects are asked to forecast just inflation, knowing only quali-

tative features of the underlying model and seeing historical time series on inflation, output

gap and interest rates. In addition, they add AR(1) shocks to (5) and (6), respectively. The

average of 9 subjects’ inflation forecasts is used to replace Etπt+1. They study two kinds of

policy rules of the form:

it = γ(π̄ − π̄t) + π̄ (9)

were π̄ is the central bank’s target inflation and π̄t is either actual inflation at time t or time

t expectation of the inflation rate at t+1. Thus, the first one is a contemporaneous rule that
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requires the central bank to respond to current deviations from the inflation target and the

second one is a forward looking rule where the central bank reacts to deviations of expected

inflation from the target. The other treatment variable is γ that takes 3 different values,

1.35, 1.5, and 4. The Taylor principle is satisfied for all of the values which implies, that,

under rational expectations, the equilibrium is determinate (locally) and stable, again locally,

under a certain specification of adaptive learning. When policy conditions on expectations

of (t + 1) inflation, the policy with higher γ is much more effective in reducing the standard

deviations of inflation expectations. Overall, the policy that conditions on current πt rather

than on future Etπt+1 delivers best performance in terms of stabilization of the experimental

economies both in terms of inflation variability and output fluctuations. Essentially, the πt

rule is reducing the weight that subjects’ expectations play.

In addition, the paper analyzes the heterogeneity of subjects expectations by considering

different expectational models. Besides rational expectations, the authors also consider 12

alternative expectation formation models studied in the literature. To characterize subjects’

expectation formation process, a new test for rationality based on the difference between

their perceived law of motion and the actual law of motion is also introduced in a heteroge-

neous expectations environment. Overall, only 30% to 45% of subjects conform to rational

expectations while other subjects’ behavior can be explained by trend extrapolation, adap-

tive learning or sticky information. More importantly, switching between different models

fits the experimental data far better than a single model.

Assenza et al. (2014) discuss how monetary policy can manage self-organization of het-

erogeneous expectations in a lab experiment. Their experimental design uses the contem-

poraneous inflation targeting rule (without output gap) and small IID shocks instead of

autocorrelated shocks that have been implemented in other experiments. The 3 main treat-

ments feature different Taylor rule reaction coefficients and inflation targets. In treatment

(a), monetary policy is weakly responsive (the reaction coefficient equals 1) and the inflation

target is 2%. Treatment (b) includes aggressive monetary policy (the reaction coefficient

equals 1.5) and the same 2% benchmark inflation target. Treatment (c) is implemented by

increasing the inflation target to 3.5% while preserving the aggressive nature of monetary

policy.

Two types of aggregate patterns are observed in treatment (a): convergence to a non-

fundamental steady state and exploding inflation and output (see figure 12). All the sessions

in treatment (b) exhibit nice convergence to the fundamental steady state (see figure 13).

Both convergence to the fundamental steady state and persistent oscillations emerge in

treatment (c) (see figure 14). The stabilizing effects of monetary policy come from the

aggressiveness of the policy rule, not the inflation target.

The authors also adopt a heuristics switching model developed by Anufriev and Hommes
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Figure 12: Experimental Results in Assenza et al. (2014): Weakly Responsive Monetary

Policy

Blue thick line: realized inflation; green thick line: realized output gap; thin lines: individual forecasts for inflation and the

output gap.

Figure 13: Experimental Results in Assenza et al. (2014): Aggressive Monetary Policy

Blue thick line: realized inflation; green thick line: realized output gap; thin lines: individual forecasts for inflation and the

output gap.

(2012) in which agents switch between 4 different forecasting rules by evaluating their rela-

tive past performance (described earlier in the chapter). Simulation results demonstrate that

all types of aggregate patterns observed in the experiment can be replicated by the heuris-

tics switching model. Hommes et al. (2017) replicate the experimental results from the
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Figure 14: Experimental Results in Assenza et al. (2014): Aggressive Monetary Policy and

High Inflation Target

Bluethick line: realized inflation; green thick line: realized output gap; thin lines: individual forecasts for inflation and the

output gap.

Assenza et al. learning-to-forecast experiment using a genetic algorithm over price forecasts.

The genetic algorithm simulations match the experimental data in terms of the response to

different policy rules.

Mauersberger (2018) introduces a new, learning-to-forecast experimental design within

a micro-founded NK framework, where subjects forecast individual, rather than aggregate,

outcomes in an economy based on the linearized heterogeneous expectations New Keynesian

model (Woodford (2013)). Unlike Woodford (2013) which features an exogenous preference

shock and a mark-up shock, there are no exogenous shocks in the Mauersberger’s setup.

Subjects are randomly assigned to be either household advisors or firm advisors. House-

holds, firms and the central bank are computerized. Household advisors are asked to forecast

the deviation of household’s real expenditure from its long run, steady state level (called

’usual level’ in the experiment). Firm advisors need to submit forecasts of the deviation

of a firm’s optimal price in the next period from the current general price level. Aggre-

gate outcomes are computed using medians of subjects’ expectations and choices made by

computerized households and firms that are based on these expectations.

Like other experiments, Mauersberger studies the effects of monetary policies that differ

in the degree of aggressiveness. He uses a contemporaneous, inflation targeting rule with a

zero lower bound, i.e. :

it = max(0, ī + φπ(πt − π̄)) (10)

where ī is a steady state level of the nominal interest rate.
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However, his results differ from the previous experimental literature as he finds that

a much stronger Taylor rule is required for stability and convergence of the experimental

economies within 50 periods, i.e., the convergence to the rational expectations steady state

can only be obtained when the Taylor rule reaction coefficient is equal to 3. At the group

level, heterogeneity is rather pronounced for lower Taylor rule coefficients (0.5 or 1.5), but

it vanishes under a more aggressive monetary policy. 12

Mauersberger uses Thompson sampling algorithm (Thompson (1933)) to explain expec-

tation formation in his experiment. This is the algorithm where agents update their beliefs

in a Bayesian manner. However, agents do not choose the optimal action implied by the

posterior. Instead, they make a random draw from the posterior each time that an action

must be taken and best respond to this random draw. Using the method of simulated paths

where two initial experimental observations are used to update the algorithm, and, after-

wards, the dynamic paths of the economies are solely determined by the algorithms’ choices

and outcomes, Mauresberger shows that Thompson sampling performs well in capturing the

features of the experimental data. It generates quite a bit of heterogeneity and volatility for

φπ equal to 0.5 and 1.5. However, these are substantially reduced in case of φπ = 3.

He then compares the performance of Thompson sampling to a number of learning/adaptive

models that have been standardly used to investigate expectations in macroeconomic envi-

ronments: two forms of adaptive learning, least-square learning and constant gain learning

(Evans and Honkapohja (2001)), and the heuristic-switching model (Anufriev and Hommes

(2012)) which was discussed earlier in the chapter. In addition to the mean-squared error

calculated over 50 periods, he uses other statistical measures to better assess the behavior

of the models, such as the first and second moments, the mean squared distance from the

REE and an index of intra-period dispersion. The heuristic-switching model results in a

relatively fast convergence to the rational expectations steady state even when the Taylor

rule coefficient is 1.5, which is at odds with Mauersberger’s experimental data. Comparing

Thompson sampling and the three other benchmark models, Thompson sampling provides

a good fit to the data along a number of dimensions (convergence, volatility patterns, indi-

vidual dispersion etc.).

3.2 New Keynesian Experiments at the Zero Lower Bound

Further evidence for the need for heterogeneous agent models comes from experiments that

study the effects of monetary and fiscal policy on subjects’ expectations in the New Keynesian

model when interest rates are near the zero lower bound, as they were in much of the

developed world in the period following the 2007-08 global financial crisis. These experiments

12Note that, for example, Assenza et al. (2014) experimental results indicate convergence for the Taylor
rule inflation coefficient of 1.5.
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reveal a variety of reactions to policy efforts to stimulate the economy when interest rates

cannot be driven lower. Arifovic and Petersen (2017) study the effects of monetary and fiscal

policy on subjects’ expectations in learning-to-forecast experiment using a linearized New

Keynesian framework described in (5), (6), and (8).

Compared with the earlier experiments that we discussed, Arifovic and Petersen introduce

a binding constraint on nominal interest rates13. The nominal interest rate is i∗ = 75 basis

points in the steady state, and cannot be reduced below zero in the event of sufficiently low

inflation or output gap. Thus, the Taylor rule in their experimental economy is given by:

it =

⎧⎨
⎩i∗ + φπ(πt − π∗

t ) + φxxt if it ≥ 0

0, otherwise,
(11)

They selected their shock sequences using a social evolutionary learning algorithm in

Arifovic et al. (2012) and the same set of shock sequences is used in all treatments. In order

to push the laboratory economies towards the zero lower bound, large exogenous demand

shocks are introduced in the middle of the shock sequences.

Arifovic and Petersen conduct four different treatments. In their baseline treatment, the

central bank implements a standard Taylor rule and a constant inflation target (Constant).

The state-dependent target treatment and the directional state-dependent treatment are

designed to test the effectiveness of quantitative and qualitative forward guidance through

explicitly announcing either the state-dependent inflation target (quantitative forward guid-

ance, SD), or the direction in which the target is moving (qualitative forward guidance, Dir.

SD). Finally, by adding an expansionary Ricardian fiscal policy to the baseline treatment,

the fiscal policy treatment (FP) allows the authors to evaluate the effects of both monetary

and fiscal policy near the zero lower bound.

They find that the state-dependent inflation target (SD and Dir. SD) treatments do

not bring significantly greater stability than the standard Taylor rule (Constant) treatment.

This is more pronounced when fundamentals improve slowly. Arifovic and Petersen argue

that poorer performance of the state-dependent inflation target policies is due to a loss of

confidence in the central bank’s ability to stabilize the economy. If the confidence in inflation

targeting is lost during the crisis, expectations diverge further and further away from the

target inflation values. In these experimental economies, the central bank is fully commit-

ted to its state-dependent policy to keep interest rates low even after the economy starts

recovering. Unlike the rational expectations framework, where credibility and commitment

are equated, in the experimental economies, subjects do not necessarily perceive the central

bank’s announcements as credible. As Arifovic and Petersen put it, “subjects need to see it

13Note that Mauersberger (2018) also implements the same constraint. However, the focus of his study is
not on the policies related to zero lower bound.

32



to believe it”.

On the other hand, anticipated fiscal policy intervention (FP treatment) results in signif-

icantly faster and more stable recoveries. The explanation for this behavior is most likely re-

lated to the fact that state-dependent inflation targeting monetary policies provide a promise

of future recovery when future is uncertain while anticipated expansionary fiscal policy stim-

ulates demand with certainty.

Hommes et al. (2015) also design a learning-to-forecast experiment to evaluate the effects

of monetary and fiscal policy at the zero lower bound. By adopting a non-linear New Key-

nesian framework with multiple equilibria (a low inflation steady state and a targeted high

inflation steady state), the authors can test the implications of adaptive learning models near

the zero lower bound. More specifically, with aggressive monetary policy and a fixed amount

of government spending, only the targeted steady state is locally stable under learning. The

local instability of the low inflation steady state makes deflationary spirals possible under

large pessimistic shocks. Another theoretical prediction is that the targeted steady state is

globally stable under learning if both aggressive monetary policy and a fiscal switching rule

that further increases government spending at the zero lower bound are implemented.

The four treatments are constructed based on variations along two dimensions. The first

dimension is a type of policy regime: the policy regime M is a combination of aggressive

monetary policy and constant government spending while the policy regime F replaces con-

stant government spending with the fiscal switching rule. The second dimension is related

to two types of expectational shocks: In scenario P, pessimistic expectations are induced by

making “historical” information about inflation and net output accessible to subjects at the

beginning of the experiment; in scenario S, late expectational shocks are realized in the form

of “bad” newspaper reports.

In treatment MP, 5 out of 7 groups succumb to deflationary spirals because monetary

policy cannot eliminate the adverse effects of initial pessimism. In treatment MS, monetary

policy seems to be effective as 3 out of 7 groups converge to the targeted steady state

despite the onset of late expectational shocks (see figure 15). In the two treatments with the

fiscal switching rule, neither form of expectational shocks is destructive enough to generate

deflationary spirals as all groups converge to the targeted steady state eventually (see figure

16). The slow convergences in some groups are due to the fact that the fiscal switching rule

can only anchor subjects’ inflation expectations when net output recovers.

4 Heterogeneity in Equilibrium Selection

Models that admit a multiplicity of equilibria are commonplace in economics, but they pose

a real challenge as they invalidate the use of standard comparative statics analysis; if one
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Figure 15: Hommes et al. (2015): Aggressive Monetary Policy Only, for pessimistic expec-

tations (top panels) and “bad news” shocks (bottom panels)

Overview of experimental results of the 4 treatments, 7 groups each. Left panels: realized inflation. Right panels: realized net

output. Dashed lines depict targeted equilibrium levels. Shaded areas indicate expectational news shocks.

Figure 16: Hommes et al. (2015): Aggressive Monetary Policy and Fiscal Switching Rule,

for pessimistic expectations (top panels) and “bad news” shocks (bottom panels)

Overview of experimental results of the 4 treatments, 7 groups each. Left panels: realized inflation. Right panels: realized net

output. Dashed lines depict targeted equilibrium levels. Shaded areas indicate expectational news shocks.

does not know which equilibrium to focus on, it is not possible to determine how changes in

the exogenous variables or parameters of the model affect the endogenous variables of the

model. A potential solution to this problem is to use experimental evidence to validate a

focus on a particular equilibrium. In certain cases, this approach works well, but in other

cases, as we shall see, there is also heterogeneity in the equilibrium that groups of subjects

coordinate upon, and heterogeneous agent models help to understand this phenomenon.

We first consider the case of bank run models, where there generally exist two equilibria,
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one where all depositors keep their money in the bank and another where all run on the

bank to withdraw their deposits Second, we consider coordination problems and equilibrium

selection in the adoption of new payment methods. In these two applications, we show

how heterogeneity in agent types and behaviors is a main driver of the equilibrium selection

process.

4.1 Bank Runs

The experimental literature on bank runs demonstrates how heterogeneity of subjects’ ex-

pectations influences outcomes and equilibrium selection using the canonical bank run model

of Diamond and Dybvig (1983). This intertemporal model involves just three periods. In

period 0, all depositors deposit their endowments of money into a bank, which has exclu-

sive access to a long-term investment opportunity. The depositors are willing to deposit

their funds with the bank because the contract the bank offers the depositors provides the

depositors with insurance against uncertain liquidity shocks. In period 1, some fraction of

depositors learn that they have immediate liquidity needs (are impatient) and must with-

draw their deposits early. The remaining fraction learn they are patient and can wait to

withdraw their deposit in the final period 2. The bank uses its knowledge of these fractions

in optimally deriving the deposit contract, which stipulates that depositors may withdraw

the whole of their unit endowment at date 1 while those who wait until period 2 to withdraw

can earn R > 1. While there exists a separating, Pareto efficient equilibrium where impa-

tient types withdraw early in period 1 and patient types wait until the final period 2, there

also exists an inefficient pooling equilibrium where uncertainty about the behavior of other

patient types causes all patient types to withdraw their deposits in period 1 which results

in a bank run. In this case, the bank has to liquidate its long-term investment in period 1

and depending on the liquidation value of this investment, it may have insufficient funds to

honor its deposit contract in period 1.

The possibility of this bank-run equilibrium is the focus of a number of experimental stud-

ies including Madiés (2006), Garratt and Keister (2009), Schotter and Yorulmazer (2009),

Arifovic et al. (2013), Arifovic and Jiang (2016), Kiss et al. (2012, 2016), and Brown et

al. (2016). Here we will focus on the papers by Arifovic et al. (2013) and Arifovic and

Jiang (2017) as the experimental results are followed by modelling of their dynamics using

evolutionary algorithms, but we briefly summarize the other experimental studies of bank

runs.

These studies typically dispense with the non-strategic impatient types (or model them

using robot players) and consider n-player coordination games were all players are patient,

or strategic, i.e. they can choose to withdraw in period 1 or 2. Madiés was the first to

demonstrate that for certain parameterizations of the model, an inefficient run equilibrium
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can be selected by laboratory subjects, though less than full (partial runs) are more com-

mon. Further he showed that a suspension of convertibility or full (but not partial) deposit

insurance can work to prevent such runs. Similarly, Garratt and Keister (2009) showed that

inefficient run equilibrium were not selected unless some subjects faced stochastic liquidity

demand shocks causing them to withdraw early. Schotter and Yorulmazer (2009) consider

the case where the bank run is already in progress and consider how insider information

about the solvency of the bank matters for the speed and severity of the panic. Kiss et al.

(2012) examine whether observability of prior depositors withdrawal decisions in a sequential

move game or lack of such observability in a simultaneous move game together with varying

rates of and deposit insurance affects the incidence of bank runs. They find that without

observability, both full and partial deposit insurance are effective in decreasing the incidence

of bank runs, while with observability, neither level of deposit insurance coverage makes

much difference. Kiss et al. (2016) focus further on observability, examining the precise

social network structure of which depositors decisions are observed by subsequent deposi-

tors. They report that the social network structure matters for the incidence of bank runs.

Chakravarty et al. (2016), Duffy et al. (2017) and Choi et al. (2017) have recently reported

experiments examining how deposit withdrawals at one bank can have contagious effects on

withdrawal decisions at other connected banks, (2, 4 and 6-15 banks respectively), using a

variety of different interbank network structures; the main takeaway from this research is

that details of the network structure matter for the incidence of such contagions.

Arifovic et al. (2013) use the 2-period version of the DD model with N = 10 patient

subjects who play the role of depositors. They start with one unit of money deposited with

the bank and choose to withdraw early or wait. If all subjects choose to withdraw early in the

first period, the payment is fixed at 1, and if all choose to withdraw later, in period 2, they

all receive a payoff of R = 2. Arifovic et al. vary the rate of return, r, to withdrawing early

(r < R). This rate determines the value of the coordination parameter η which measures

the minimum fraction of depositors required to wait so that waiting entails a higher payoff

than withdrawing. In other words, if the fraction of subjects who choose to wait is greater

than η, those who choose to wait receive a higher payoff than those who choose to withdraw.

Otherwise, if the fraction of those who choose to wait falls below the value of η, then these

patient subjects receive a lower payoff. Thus, the payoff to the depositor who chooses to

withdraw is

π1 = min

{
r,

N

e

}
, (12)

and the payoff for those who choose to wait is

π2 = max

{
0,

N − er

N − e
R

}
. (13)

Note that if e > ê ≡ N/r, the bank will not have enough money to pay all early withdrawers
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the promised rate r, and those who choose to all those who decide to withdraw, and those

who choose to wait will receive zero payoff.

Arifovic et al. ran experimental sessions with 7 or 9 phases where each phase corre-

sponded to one value of η, and lasted for 10 experimental periods. The values of η changed

in the ascending, descending and randomized order to control for the ’order’ effect. They

find that whether coordination-based bank runs occur depends on the value of the coordi-

nation parameter, η. In particular, the value of the coordination parameter can be divided

into three regions: “run”, “no-run” and “indeterminacy”, characterized respectively by high

(with η > 0.8), low (with η < 0.5) and intermediate (with η between 0.6 and 0.7) values of

the parameter. When the coordination parameter lies in the run (no-run) region, strategic

uncertainty is low: subjects are almost unanimous in their choices, and all experimental

economies stay close or converge to the run (no-run) equilibrium. In games with the coor-

dination parameter located in the indeterminacy region, subjects are much less certain as

to what the ‘right’ choice is; as a result, the outcomes of the experimental economies vary

widely and become difficult to predict.

Figure 17 shows their results for the values of η between 0.1 and 0.9, for sessions 9 - 20.

The values of η are given on top of each panel, and the number of subjects (out of 10) who

were not withdrawing, on the left side of each panel.

In order to capture the learning effect in the experimental data, Arifovic et al. combine

the evolutionary algorithm (Temzelides, 1997) with logit regression models to estimate the

rate of experimentation from the experimental data. 14 The evolutionary algorithm consists

of two elements. The first is myopic best response, which, in the context of the DD model,

is “withdraw” if the number of depositors choosing to wait in the previous period, zt−1,

(i.e. N − et) is ≤ z∗, the number of depositors who choose to wait that equated the payoffs

associated with ’wait’ or ’withdraw’. Otherwise, the best response is to wait. In the context

of this model, experimentation means to flip one’s strategy from “withdraw” to “wait” or

vice versa.

In the experiments, subjects have information about r (and subjects can deduce η from

the payoff tables throughout the experiment). Subjects are not directly informed about zt−1,

but most of the time, subjects can refer to the payoff table to deduce zt−1 from their own

payoffs in the past period. For the evolutionary algorithm, Arifovic et al. assume that if

a subject cannot deduce whether zt−1 > z∗, she skips the first part of the algorithm and

does not update her strategy; otherwise, she updates her strategy to the best response.

For experimentation, we assume that if a subject can deduce the exact value of zt−1, her

experimentation rate depends on zt−1 and η; otherwise, her experimentation rate depends

14Temzelides (1997) proves a limiting case that as the probability of experimentation approaches zero the
economy stays at the no-run equilibrium with probability 1 when η < 0.5.
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only on η. The value of the rate of experimentation is to be estimated from the experimental

data with logit models. They sort all the observations on the subjects’ individual behavior

depending on whether or not they were able to observe or deduce zt−1 and best respond to

it. Then, they estimate rates of experimentation for different groups using logit regressions.

Using the estimated rates of experimentation, they evaluate the performance of the algorithm

in two ways. The first one is to use the algorithm’s simulated paths and compare the

outcomes with the experimental economies. The second is to use one set of data, the Chinese

data, to estimate the rate of experimentation, and apply the algorithm to predict the action

choice in each of the Canadian observations. 15 The algorithm performed well in terms of

predictive power along both dimensions.

Given the above described results, in a follow-up paper, Arifovic and Jiang (2017) intro-

duce an extrinsic “sunspot” variable to the above model and investigate how it affects the

coordination outcome. Their hypothesis was that the power of the sunspot as a coordination

device increases with the extent of strategic uncertainty. To test this hypothesis, they chose

three experimental treatments with three values of the coordination parameter – 0.2, 0.9

and 0.7. Under their hypothesis, the power of the extrinsic signal is likely to be very weak

when η = 0.2, weak when η = 0.9, and strong when η = 0.7. 16 Their results show that

the randomly generated ’sunspot’ announcements did no affect the outcomes of the sessions

that were conducted for either η = 0.2 that all converged to the ’no-run’ equilibrium or for

η = 0.9 where they all converged to the run equilibrium. Where the announcement ’evolved’

into serving as a coordination device was in the sessions conducted with η = 0.7. The results

observed in these sessions are shown in Figure 18. The circles on the upper edges of the

panels represent periods when ’optimistic’ announcements were broadcasted, and the circles

on the lower edges represent periods when ’pessimistic’ announcements were broadcasted.

(These data were not presented to the subjects on their graphical interface.) The solid lines

present the number of subjects who decided to wait in each period (out of 10). The figure

illustrates that in 4 out of 6 sessions the subjects coordinated on following the extrinsic

variable.

4.2 Adoption of a New Payment System

To conclude our chapter on the role of heterogeneity of expectations we describe the work

of Arifovic, Duffy and Jiang (2017), ADJ, on the adoption of a new payment system. This

15They ran experiments at one location in China, and two locations in Canada.
16The announcements that all subjects receive had the following wording :‘The forecast is that e∗ or more

people will choose to withdraw,’ or ‘The forecast is that e∗ or fewer people will choose to withdraw.’ A
specific integer number that equalizes the payoffs of ’withdraw’ and ’wait’ for a given η was substituted for
e∗ in the experimental instructions.
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Figure 17: Arifovic et al. (2013) results for different values of η, values of η are given on top

of each panel, and number of subjects who chose to ’wait’ on the y-axis

is another important coordination problem, where heterogeneity in agent behavior plays an

important role in equilibirum selection.

ADJ develop a model of the introduction of a new payment instrument, ”e-money,” that

competes with the existing payment method, ”cash”. The new payment method is more

efficient for both buyers and sellers in terms of per transaction costs. Such cost-saving

motive lies behind the various attempts to introduce a new payment method.

In their theoretical environment, there are a large number of buyers (consumers) and

sellers (firms) in the market, each of unit measure. Each seller i ∈ [0, 1] is endowed with

1 unit of good i. The seller derives zero utility from consuming her own good and instead

tries to sell his good to buyers. The price of the good is fixed at one. Each buyer j ∈ [0, 1]

is endowed with 1 unit of money. In each period, the buyer visits all sellers in a random

order. The buyer would like to consume one and only one unit of good from each seller, and

the utility from consuming each good is u > 1.

There are two payment methods: cash and e-money. Each cash transaction incurs a cost,

τb, to buyers, and a cost, τs, to sellers. The per transaction costs for e-money are τ e
b and τ e

s

for buyers and sellers, respectively. Sellers have to pay an up-front cost, F > 0, that enables

them to accept e-money payments.17

17For example, to rent or purchase a terminal to process e-money transactions.
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Figure 18: Arifovic and Jiang (2016) results for the value of the coordination parameter

η = 0.7, N = 10

In the beginning of each trading period, sellers decide whether to accept e-money at the

one-time fixed cost of F or not. Cash, being the traditional (and legally recognized) payment

method, is universally accepted by all sellers. Simultaneous with the sellers’ decision, buyers

make a portfolio choice as to how to divide their money holdings between cash and e-money.

After sellers have made acceptance decisions and buyers have made portfolio decisions, the

buyers then go shopping, visiting all of the stores in a random order. When a buyer enters

store i, she buys one unit of good i if the means of payment are compatible. Otherwise,

there is no trade.

Under the certain assumptions about the cost structure of the model, such that e-money

saves on per transaction costs for both buyers and sellers; that buyers prefer cash trading to

no trading; the net benefit to the society of carrying all transactions in e-money is positive;

and that F ≤ 1 − τ e
s , there are exist at least two symmetric, pure strategy equilibria. See

Figure (19).

In one of these equilibria, mb = ms = 1: all sellers accept e-money, and all buyers allocate

all of their endowment to e-money – call this the all-e-money equilibrium (this equilibrium

always exists provided that F ≤ 1 − τ e
s ). There is a second symmetric pure strategy

equilibrium where mb = ms = 0 and e-money is not accepted by any seller or held by any

buyer – call this the all- cash equilibrium. In both equilibria, there is no payment mismatch,

and the number of transactions is maximized at 1. In the case where F = τs − τ e
s , there

exists a continuum of possible equilibria in which ms ∈ (0, 1) and mb = ms.

The e-money equilibrium is socially optimal as it minimizes total transactions cost. Note
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Figure 19: Symmetric Equilibria

that buyers are always better off in the all- e-money equilibrium relative to the all cash

equilibrium. The seller’s relative payoff in the two equilibria, however, depends on the fixed

cost, F , and on the savings on per transaction costs from the use of payment 2. If F = τs−τ e
s ,

then the seller’s payoff is the same in the cash and e-money equilibria; if F < τs − τ e
s , then

the seller’s payoff is higher in the e-money equilibrium than in the cash equilibrium; finally,

if F > τs − τ e
s , then the seller’s payoff is lower in the e-money equilibrium than in the cash

equilibrium

4.2.1 Experimental Design and Results

The experimental set-up was designed to match the model as closely as possible, but without

the continuum of buyers and sellers of unit mass. They conduct experiment with 14 subjects

in each session, who are randomly and equally divided into roles of sellers (7) and buyers (7).

The roles remained fixed during a session. The subjects played a repeated, market game,

that consisted of 20 markets per session.

Each market consists of two stages. The first stage is a payment choice stage. Each buyer

was endowed with seven experimental money (EM) units and had to decide how to allocate

his/her seven EM between the two payment methods. At the same time, sellers decide

whether or not to accept the new payment method; they always accept the old payment

method, cash in the experiment.

During the second stage, each buyer visits each seller in a randomly determined order.

Depending on whether or not a seller accepts payment 2 and what a buyer has in their
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portfolio the transition may or may not take place.18

In addition to making payment choices in the first stage, subjects were also asked to

forecast other participants’ payment choices for that market.

They main treatment variable is the fixed cost to accept the new payment method, T ,

which a seller has to pay at the beginning of each period if she accepts payment two. They

use three different values, T = 1.6, 2.8, and 3.5, and conduct 4 sessions for each treatment.

In all treatments τ e
s = τ e

b = 0.1, and τs = τb = 0.5

Their results show that the new payment method will take off if the fixed cost is low

so that both sides benefit by switching to the new payment method. If the fixed cost is

high such that the seller endures a loss in the equilibrium where the new payment method is

used relative to the equilibrium where it is not accepted, some sellers nevertheless respond

by accepting the new payment method initially, fearing to lose business, but they mostly

eventually learn over time to resist the new payment method and pull the economy back to

the old payment method. If neither side displays much will-power to move behavior toward

one equilibrium or the other, then the economy may linger in the middle ground between

the two equilibria.

4.2.2 Learning and Prediction

The theoretical model described above is static and thus, cannot account for diverse patterns

of behavior observed in experimental economies. It also has multiple equilibria, and the

theory does not provide guidance as to which equilibrium will be selected. On the other

hand the adoption of a payment method is inherently a dynamic process. ADJ experiment

suggests that this dynamic process involves some learning over the repeated markets of our

design. The heterogeneity of subjects’ expectations and subsequent action, their adaptation

and interaction results in selection of different outcomes.

In order to model this dynamic environment inhabited by agents with heterogeneous

expectation, ADJ implement the IEL in order to emulate their experimental environment.

Thus, each of the seven artificial buyers and sellers in their evolutionary model has as a set

of J rules; each rule consists of a single number. For buyer i, i ∈ {1, 2, ..., 7}, a rule mi
b,j(t) ∈

{0, 1, ..., 7}, where j ∈ {1, 2, ..., J}, represents the number of EM units the buyer places in

e-money in market t. For seller i ∈ {1, 2, ..., 7}, a rule mi
s,j(t) ∈ [0, 1], where j ∈ {1, 2, ..., J}

and J is the total number of rules, represents the probability that the seller accepts e-money.

The updating of the algorithm is done in a usual way (the pseudo code is given in the

Appendix), and involves experimentation, computation of hypothetical payoffs, replication,

and the selection of the action that is actually used in a given market. The way the hypo-

thetical payoffs are computed is key to the algorithms good performance in capturing the

18If seller accepts both payments, then the transaction will always take place.
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Figure 20: Experimental Data and Simulated Data for Four Treatments of Arifovic et al.

(2017).

dynamics observed in the experimental sessions. 19

They first simulated the model for the values of T that were used in the experiments.

The simile tons showed a really good fit to the experimental data. Given the model’s good

performance, ADJ used it to investigate what minimum value of T has to be to have the IEL

converge to the payment 1 equilibrium. They found that this happens when T = 4. Then,

they tested the model in the new experimental treatment with T = 4.5. The experimental

sessions converge very close to the all-payment-1 equilibrium.

Figure (20) presents the time path of payment choice averaged across the experimental

sessions and across the simulated sessions. The first row of panels represent the averages

over 4 sessions for each T , the second row of the panels are the averages over the selected

number of 4 simulations. The third row represents averages over 50 IEL simulations for each

T . the same number of simulations for each T over.

In figure 20 we present data from our experiments and our IEL simulations, for four

values of T .

19Space limitations do not allow us to describe the algorithm in full detail, but interested readers can look
at ADJ, 2017.
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5 Conclusion

Heterogeneity in agents’ expectations and decision-making is well documented in the exper-

imental literature. The evidence we have surveyed in this chapter makes a solid case for

the use of heterogeneous agent models to better comprehend such questions as lifecycle con-

sumption and savings, contributions to public goods and expectation formation. Heteroge-

neous agent models are also important for understanding how agents approach coordination

problems and predicting which equilibrium they may choose to coordinate upon. Two com-

putational models of heterogeneous agent behavior, the individual evolutionary model and

the heuristic switching models are shown to do well in terms of their fitting to experimental

data.

Nevertheless, these heterogeneous-agent models have their limitations. The heterogeneity

they capture is all within an individual. For instance, the heuristic switching model is

essentially a homogeneous agent model where different heuristics are applied probabilistically.

The IEL model imposes heterogeneity exogenously according to the genetic operators. Future

work on the modeling of heterogeneous agents could explore how heterogeneity takes place

both between and within individuals and how such heterogeneity might arise endogenously

rather than being exogenously imposed.

The evidence we provide on heterogeneity also stands in contrast to much agent-based

modeling and macroeconomic researchers solving heterogeneous agent models using compu-

tational methods. The latter seek to replicate heterogeneity observed in data at the aggregate

level, e.g., wealth distributions, or the distributions of city sizes. In this effort, the empirical

validity comes from the aggregate distributional or emergent outcomes that their models are

able to generate and not from the empirical validity of individual-level heterogeneous agent

characteristics. In our view, the more micro-level validation of individual behavior that we

focused on in this survey is an important check on the internal validity of heterogeneous agent

models and should be viewed as complementary to the more aggregate-level validation.

We conclude by emphasizing that heterogeneous agent behavior is commonplace and not

something that needs to be fixed. Sometimes heterogeneity is a persistent phenomenon, as

in differences in cognitive abilities or types, but at other times heterogeneity may be a more

transient phenomenon, as in the process by which agents come to learn a strongly stable

rational expectations equilibrium. If one’s concern is with long run behavior in stationary

environments that are not subject to shocks, then heterogeneous agent models might not hold

much appeal. But in a world that is frequently buffeted by shocks, the short-to-medium-run

reactions of agents might be more the phenomena to study, and such data can be collected

in the laboratory and used to construct and validate heterogeneous agent models.

Even in the stationary environments that are not subject to shocks, in cases where there

is a strong positive feedback (near unit root), heterogeneity of expectations matters, and
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coordination on boom and bust cycles may arise and may be explained by heterogeneous

agent models.
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