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and copying the most successful payoff opportunity uncovered thus far. We formulate

a novel model of sequential innovation versus imitation decisions made by a group of n

regret minimizing agents. We analyze the consequences of complete versus incomplete
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1 Introduction

In many contexts where consumers or firms face uncertainty, they do so in an environment

that is novel to them. The first firm to enter a market does so when the returns to their

research and development are unclear. The first time consumers encounter a new item they

must decide whether or not to acquire it. On a personal level, we face this scenario when we

choose how to order off a menu in a restaurant that we have never been to before.

For those who follow the first mover (the “innovator”), the decision space is doubled:

“followers” must decide whether to imitate the innovator or to further innovate themselves

and perhaps push the innovation frontier forward. The standard procedure, as in all of

economic decision making, is to weigh the benefits and costs of further innovation versus

imitation. However, there are many different types of uncertainty and incentive structures

that can affect how agents make such decisions. For example, individuals might know the

distribution of possible outcomes from further innovation and so behave as expected payoff

maximizers in choosing between innovation or imitation. More realistically, they may not

know the distribution of possible payoffs from further innovation (the case of ambiguity) in

which case they might act as regret minimizers. A further complication is whether innovation

precludes imitation, or whether imitation is always possible independently of whether an

agent chooses to innovate or not. If one can simply abandon failed innovations, i.e., those

leading to payoffs that are worse than the current best innovation, and instead imitate the

currently best available innovation, then that incentive structure will change the dynamics

of innovation, even when agents are placed in an ambiguous setting.

In this paper, we use theory and experiments to address the innovate versus imitate deci-

sion. We have in mind the decisions to innovate or imitate as made by firms, in particular.1

By innovation, we have in mind the choice of a new product or service, production process,

marketing strategy or organizational structure resulting in a different payoff to the firm. By

imitation, we mean copying these same choices made by another firm, and thereby obtaining

the same payoff as that firm. For example, smart phone manufacturers can choose to innovate

in the design of a new phone or copy/match feature from other phone manufacturers.

1Nevertheless, we think the innovation/imitation framework that we introduce is relevant to other actors
as well including consumers and governments.
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In addressing this decision, we consider cases where the distribution of innovation payoff

outcomes is known or is unknown to firms, who are always informed of the best innovation

payoff uncovered in the game thus far. In these two environments, we further consider

the case where firms can choose to imitate or “recall” the currently best innovation payoff

in the event that their innovation payoff is lower (innovation failure) as well as the case

where firms cannot recall that best innovation payoff outcome in the event of unsuccessful

innovation, that is, the case where innovation precludes imitation. We characterize firms as

regret minimizing, which, in our setting degenerates to utility maximizing behavior when

the distribution of innovation opportunities is made known.

Our theory predicts that firms behave differently depending on the incentive and informa-

tional structures that they face. Specifically, firms are predicted to play probabilistically in

situations where they face ambiguous innovation payoff distributions, but deterministically

when the distribution of payoffs from innovation is known. Further, the expected maximum

innovation value (or draw) increases when we allow for recall (imitation following unsuccess-

ful innovation). The four different conditions also give rise to four different values for the

expected number of innovation attempts (or draws) and the expected maximum draw. We

test all of these predictions of our novel, sequential innovate versus imitate model using an

experiment that elicits subjects’ probabilities of innovating.

Our experimental results reveal that behavior is generally well described by our model.

Behavior is closest to the theoretical predictions in the case where subjects cannot recall the

current best innovation payoff in the event of worse innovation outcomes, and furthest from

model predictions when subjects have the ability to recall, especially when recall interacts

with ambiguity. Our evidence is based on analysis of subjects’ deviations from model pre-

dictions, specifically, their innovation stopping behavior, the expected number of innovation

decisions and the expected maximum payoff value from innovation. We speculate that the

inability to imitate the current best available innovations (the absence of recall) makes sub-

jects think harder about the choice problem they face, which results in a closer accordance

between subjects’ behavior and the predictions of our model. This problem is amplified

when subjects are placed in conditions of recall and ambiguous innovation outcomes, a situ-

ation where one also feels the effects of ambiguity aversion (Borghans et al., 2009). We also
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find that elicited risk preferences play no role in innovation choices nor do any individual

subject-level characteristics.

This paper is related to theoretical work in several areas: evolutionary innovation versus

imitative behavior, ambiguity aversion, strategic experimentation and search. The trade-off

between innovative and imitation behavior has been explored theoretically in the literature

on research and development and changes in productivity (König et al. 2016), development

of new products (Ofek and Turut 2008), in the composition of industrial structure (Iwai

1984, 2000), and as coexisting behaviors among firms in evolutionary models (Hommes and

Zeppini (2014). In these models, firms typically face a continuous strategy space, instead of a

binary strategy space as in this paper. They also possess information about the distribution

of payoff-relevant variables, allowing for belief formation and utility or profit maximization.

Our work is influenced by the literature on ambiguity aversion, or aversion to unknown

risks, which occurs when some aspect(s) of the distribution of possible states of the world

are unknown, so that agents are not able to assign probabilities to states of the world. This

notion dates back to the work of David Hume (1739). Knight (1921) made a distinction

between risk, where the probabilities of all possible states of nature are known (distributional

information is complete), and uncertainty where this is not the case. Ellsberg (1961) added

the term ‘ambiguity’ to describe settings in between “complete ignorance” and risk, where

decision makers have less than perfect confidence in their estimates of relative likelihoods.2

Decision making under ambiguity has been formalized in models of maxmin expected utility

(Gilboa and Schmeidler 1989), Choquet expected utility (Gilboa and Schmeidler 1994), and

models that allow violations of the reduction of compound lotteries axiom (Halevy 2007).

Ambiguity preferences have been studied extensively in the laboratory, with findings that

point to high levels of ambiguity aversion, ambiguity prudence, and ambiguity temperance

(Abdellaoui et al. 2015, Baillon et al. 2018). We model ambiguity averse individuals as regret

minimizers, or agents who apply minimax strategies, similar to the work of Bergemann and

Schlag (2011) and Renou and Schlag (2010), where agents encounter uncertainty about the

distribution of stochastic elements and seek to minimize their regret given the state of the

world that is the least favorable. Our study focuses on a simplified version of these models,

2Uncertainty is now used as an umbrella term to describe both risk and ambiguity.
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where agents do not need to consider a continuum of strategies. This results in a simple

minimax mixed strategy prediction when the distribution over payoffs is ambiguous and a

unique threshold prediction when that ambiguity is resolved.

We think that the modeling of agents as regret minimizers comes quite naturally in

our ambiguous information setting. Regret minimization might also be a quite reasonable

assumption in the presence of agency problems. If decisions are made by a manager rather

than by the firm owner, regret minimization, rather than expected profit maximization,

might be the more relevant objective. Nevertheless, we are not aware of any application of

regret minimization to a firm’s choice of whether to innovate or imitate. There is evidence

that regret minimization explains behavior in a variety of other choice settings including

consumer choice (Simonson, 1992), recreation choice, (Boeri et al. 2012), transportation

choice (Chorus et al. 2008), and health choices (Boeri et al. 2013). Regret minimization has

also been used to understand behavior in a variety of laboratory games including the Travelers

Dilemma, the Centipede Game, Nash bargaining, and Bertrand competition (Halpern and

Pass 2012).

Our model is also related to the literature on strategic experimentation in multi-agent

settings. In this literature, agents face double-armed bandit problems and must decide how

to divide their decisions between a safe option and a risky option with a true payoff plus

noise (Bolton and Harris 1999, Keller et al. 2005). Over time, agents learn the true payoff

by witnessing the realized payoffs of other agents who “experiment”, or receive payoffs from

the risky strategy. Our game has a similar flavor to it, though agents who play in our

unknown distribution setting have limits on their information sets that are not present in

the standard strategic experimentation framework. Namely, our agents only see the current

maximum payoff value obtained, and the game is one-shot, so learning is quite limited. In

a laboratory setting, it is possible that subjects may learn about the distribution of payoffs

through their own payoffs resulting from strategic experimentation, though recall complicates

this process by censoring the observation of payoffs that fall below the current maximum.

Finally, our model is also reminiscent of certain types of search models in that there is an

optimal stopping rule for further innovation. For example, in labor search models (see, e.g.

Lippman and McCall (1976)) a worker with a current wage offer in hand has to repeatedly
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consider whether to accept that offer or to pay the opportunity cost of waiting to sample

again from the distribution of possible wage offers. In that literature, a distinction is usually

made between the case where wage offers not immediately accepted are lost, and the case

where past wage offers are retained, which are referred to as sampling without or with recall.

We adopt this same recall /no recall terminology in our innovate-versus-imitate model. The

main difference between our model and labor search models is that the search process for

the best innovation in our model is a sequential move game played by n different agents

(firms), and not a model of repeated, individual decision-making. Firms in our model only

get a single opportunity to innovate, and they take as given the value of the current best

innovation as determined earlier in the game by another firm. Further, we study the case

of both known distributions and unknown distributions (ambiguity) for the distribution of

rewards to innovation.

This paper takes elements from each of these different strains of the literature and com-

bines them to ask how a firm might approach the risky task of innovating where the payoff to

further innovation is either known or unknown within the context of a single shot innovate or

imitate game. Our model provides a rational choice explanation as to why firms’ innovation

efforts may not lead to the best of all possible products and are instead quite homogeneous,

for example, why all smart phones seem to be roughly the same; if the distribution of rewards

from innovations is known and stationary, then at some point, the costs of further innovation

cannot be rationalized and all firms switch to imitating one another. It is less clear what

happens in a world where the distribution of rewards from innovation are unknown (ambigu-

ity). Indeed, central to our study is our evaluation of the reasonableness of modeling agents

as regret minimizers. Further, we examine whether the ability to copy the best outcome

of another individual, an explicit choice of imitation, increases the likelihood that an agent

obtains the maximum payoff possible in a game. Indeed, there is much anecdotal evidence

that costless imitation, rather than retarding innovation, actually fosters further innovation

(Raustiala and Sprigman (2012)).3

The rest of the paper is organized as follows. Section 2 presents the game and our

3See also Engel and Kleine (2015) for a related experiment examining a budget-constrained choice between
costly innovation and costly imitation.
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theoretical predictions; section 3 describes our experimental design; section 4 presents our

experimental hypotheses; section 5 reports on the results of the experiment and tests of

our hypotheses; finally, section 6 concludes with a summary of the main findings and some

suggestions for future research.

2 Theory

2.1 Known Distribution

Consider the following sequential move, n-player game. Agent i must choose between a costly

lottery or simply accepting the highest lottery payoff realization achieved by agents who have

moved earlier in the game. We interpret the former choice as “innovation” and the latter as

“imitation”. The lottery is a random draw from a continuous probability distribution F (θ).

Specifically, let X denote a random variable with distribution F (θ), and let xi denote agent

i’s realization of that random variable (lottery draw). We denote the full prior history of

lottery realizations up to round t by Ht = {x1, . . . , xt−1} and the maximum of this set by

xmax = max {Ht}. We assume that an agent’s index, i ∈ I, the set of all n agents, also

denotes the time period, or order, in which agents make their decision. We further assume

that the cost to choosing the lottery (choosing to innovate) in any time period is fixed and

equal to c. Each agent begins the game with an endowment, e, which may be used to

purchase lotteries.

The payoff function is given by:

πi =

 xi − c+ e if innovate

xmax + e if imitate
(1)

which states that agent i faces the decision of either taking the lottery draw, xi ∼ F (θ) at

cost c or taking the highest of the previous innovations (imitation).

This “no recall” case can be justified as follows. In addition to the cost of innovating, c,

choosing to innovate may be so costly in terms of time and effort that switching, ex-post,

following a failed innovation to a strategy of imitation is simply not possible. Alternatively,
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one can imagine that there are legal restrictions, e.g., patents and copy-writes, that make

it costly to imitate the innovations of others, for example, a smart phone manufacturer has

to pay licensing fees to use a technology patented by a rival. With such costs, our no recall

condition can be viewed as capturing the case where payment of the cost of innovation, c,

precludes payment of the licensing fees or legal costs needed to imitate the innovations of

others, so that imitation following a failed innovation is no longer possible.4

We characterize our agents as expected regret minimizers. Let r(xmax, x, j) be the regret

resulting from action j when the payoff from imitating is xmax and the innovation payoff

draw is x. Regret is then a piecewise-defined function:

r(xmax, x, j) =

 max{x− c, xmax} − xmax if imitate

max{x− c, xmax} − (x− c) if innovate
(2)

Taking expectations reduces this problem to one of expected utility maximization where

agents should choose to innovate whenever E(X)−xmax ≥ c, and choose to imitate otherwise.

The model makes the following prediction:

Proposition 1. In the case where agents are not allowed to recall, for some k ∈ I, agent k
will be the first to imitate and all agents, i > k, will also choose to imitate.

Proof. Under the assumption that agents play rationally, they will continue to choose to

pay for lottery draws, that is they will choose to innovate, so long as the expected regret

from innovating is lower than the expected regret from imitating. Assuming that F (θ) is a

well-behaved continuous probability distribution, the expected regret from innovating will

be increasing in xmax. Conversely, the expected regret from imitating is decreasing in xmax

and reaches zero as xmax approaches the upper limit of the support.

By the intermediate value theorem, there exists an xmax such that the expected regret

4To provide one motivating example of our no recall case, in 1982 the gaming company Atari, Inc.
contacted with Universal Pictures to produce a video game based on the movie ET. The licensing fees alone
cost Atari $20-25 million, a very high figure for the time. This was one of the first video games based on a
movie, but the development was rushed due to the necessity of shipping the game for Christmas. In total,
the game was programmed from scratch in 5 and a half weeks and no time was given to audience testing. 3.5
million games were shipped to stores, but only 1 million were ever sold, and Atari experienced huge losses.
The licensing fees, unsold game product and decline in the popularity of the Atari 2600 game console led
to the collapse and sale of Atari. Somewhat ironically, Steven Spielberg, the director of ET, had urged the
developer to imitate Namcos Pacman video game, but Atari felt it was too derivative (Brumfiel 2017).
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from innovating and imitating are equivalent, for a c small enough. Thus, there is some j ∈ I
for which the expected regret from the two strategies are exactly equal, or expected regret

from imitating will be less than expected regret from innovating. At this point, the jth agent

will be either indifferent between imitating and innovating or strictly prefer to imitate. If

the jth agent innovates, then the first agent who will imitate will be k = j + 1 and if the

jth agent imitates, the first agent who will imitate will be k = j. For all agents i > k, the

expected regret from innovating is larger than the expected regret from imitating, and such

agents will all choose to imitate.

In the “no recall” condition, the point at which agents should switch from innovate to

imitate is xmax = E[X]− c.
There is also the possibility that investing in innovation is not so costly as to preclude

imitation in the event of a failed innovation. In such a case, if innovation is unsuccessful,

agent i can always “recall” (receive) the imitation payoff xmax, but in that case agent i must

still pay the cost of innovating, c. We call this condition “recall”, following the convention

from labor search models (Mortensen, 1986; Stokey et al. 1989).

πi =

 max{xi, xmax} − c+ e if innovate

xmax + e if imitate
(3)

Under recall, our regret function becomes

r(xmax, x, j) =

 max{x− c, xmax} − xmax if imitate

max{min{x− c, c}, 0} if innovate
(4)

A regret minimizer’s objective is to pick the strategy that produces the minimum expected

regret, which is

E[r(xmax, X, j)|X > xmax]

=


E[(X − c)− xmax|X − c > xmax]× P (X − c > xmax) if imitate

E[xmax − (X − c)|xmax < X ≤ xmax + c]× P (xmax < X ≤ xmax + c)

+c× P (X ≤ xmax) if innovate.
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Our agent will choose to innovate when the expected regret from imitating is greater than

the expected regret from innovating.

Proposition 2. In the case where agents are allowed to recall, there will be some agent/period
k ∈ I such that all agents i < k will innovate and all agents j ≥ k will imitate.

The proof for Proposition 2 follows the same form as that of Proposition 1 and is excluded

for brevity.

We are assuming that imitation is always a costless possibility in the recall setting,

and is costless at the time of deciding between innovation and imitation in the no recall

setting. As noted earlier, in many environments there are legal restrictions, e.g., patents and

copyrights, on imitation of others’ innovations that might prevent imitation or that make

imitation costly, e.g. for copying features of smart phones. On the other hand, there are also

industries where there is effectively no cost to imitation. For example, for historical and legal

reasons, imitation is common and effectively costless in the fashion, financial services, and

restaurant food industries (Raustiala and Sprigman (2012)). Still, we can easily allow for

costly imitation by requiring agents to pay a cost, d, if they choose to imitate. In the recall

setting, this imitation cost would remain the same if the firm chose to imitate rather than

to innovate, or later chose to imitate following a failed innovation (recall). However, in the

no recall treatment, the imitation cost would change from d at the innovate/imitate choice

stage to being effectively infinite in the case of a failed innovation, capturing the inability to

recall.

While we set d to 0 in our experiment, changing d to be positive only changes a constant

in our theory. Such a change would decrease the number of agents who play imitate and

increase k in expectation, ceteris paribus. Without loss of generality, we will focus on a single

cost, c, for innovation rather than a cost d, for imitation, though one can also think of our

innovation cost as the net cost of the two actions, i.e., (c− d).

2.2 Unknown Distribution

More realistically, agents or firms are unlikely to know the distribution of possible payoffs

from innovation, and we also consider this case. In such a setting, we suppose that agents do
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know something about the innovation prospects they face. Specifically while agents do not

know the distribution of possible payoffs, we assume that the support of possible innovation

outcomes, [a, b], is perfectly and commonly known, a setting that corresponds to the case of

ambiguity, as discussed earlier.5

As before, let r(xmax, x, j) be the regret resulting from action j with the payoffs from

imitating being xmax and from innovating being the draw x. Regret is then modeled as it

was in equation (2), where recall is not allowed.

Proposition 3. In the case where agents are not allowed to recall, agents will play the mixed
strategy p∗ = xmax−a+c

b−a , where p∗ is the equilibrium probability that an agent imitates.

Proof. We start by finding the distribution, F , that maximizes regret in our framework. To

this end, we examine the expected regret function r(p, F, xmax), where p is the probability

that an agent chooses to imitate.

r(p, F, xmax) =

∫ b

a

[p ∗ r(xmax, x, Im) + (1− p)r(xmax, x, In)] dF (x) (5)

It is assumed that b − c > xmax ≥ a so that imitation does not dominate. We examine

the two degenerate distributions where all mass lies at the boundaries of the support, which

maximizes regret, i.e., F = δb and F = δa, where payoffs from innovation are at their most

extreme.

In the case where F = δb, the expected regret is

p [max{b− c, xmax} − xmax] + (1− p) [max{b− c, xmax} − (b− c)]

which simplifies to

p [b− c− xmax] + (1− p)0 = p [b− c− xmax] .

In the second case, where F = δa, expected regret is found to be

(1− p) [xmax − a+ c] .

5That is, we do not consider the case of complete ignorance!
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It follows that the regret from F = δb will be higher than the regret from F = δa when

p [b− c− xmax] ≥ (1− p) [xmax − a+ c] ,

which simplifies to
xmax − a− c

b− a ≤ p.

Similarly for the case where F = δa,

xmax − a− c
b− a ≥ p.

Let p∗ = xmax−a−c
b−a . Then we return to our regret minimization problem, where we wish

to minimize

MR(p, F, xmax) ≡ max
F∈Ω

r(p, F, xmax) = p(b− c−xmax)1(p ≥ p∗) + (1−p)(xmax+ c)1(p < p∗).

(6)

We minimize this function by finding the mixing probabilities for our agents.

∂(MR)

∂p
=

a− c− xmax if p < p∗

b− c− xmax if p > p∗

This function reaches a minimum at p∗.

Using a similar method we can find a solution to the regret minimization problem faced

by agents who have the ability to recall xmax in the event of a worse payoff from innovation.

Here, the only thing that changes is when we consider the case where F = δa. In that case,

when there is recall, agents know they cannot do worse than the current maximum draw,

thus the expected regret under F = δa will be (1− p)c instead of (1− p)[xmax − a+ c].

Proposition 4. In the case where agents are allowed to recall, they will play the mixed
strategy p∗ = c

b−xmax
, where p∗ is the equilibrium probability that an agent imitates.

The proof follows the same form as the proof provided for proposition 3, noting that we

revert to our formulation of regret under recall found in (4).
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Propositions 1-4 provide sharp testable predictions as to the strategies that agents should

play in our innovate versus imitate game. In the next section, we describe our experimental

design for evaluating these theoretical predictions.

3 Experimental Design

The model makes distinct predictions about stopping rules, innovation probabilities, and

how they differ depending on whether the distribution is known as well as on the ability to

recall prior payoffs in the event of an unsuccessful innovation. Thus our experiment employs

a 2 × 2 experimental design where the two treatment variables are: 1) knowledge/lack of

knowledge about the distribution of possible payoffs from innovation and 2) the presence or

absence of the ability to recall the maximum prior payoff from innovation in the event that

an innovation choice leads to a lower payoff. Table 1 provides a summary.

No Recall Recall
Known Distribution KDNR KDR

Unknown Distribution UDNR UDR

Table 1: The four treatments of the experiment

In each of these four treatments, subjects participated in 4 different stages: the main

decision consisting of 1) ten, 10-round, 10-player innovate/imitate games, 2) a risk elicitation

task, 3) a cognitive reflection task, and 4) a short demographic survey.

3.1 The main task

In the first and main stage, subjects participate in ten, 10-round “games” with a fixed group

of n = 10 subjects. At the start of each game, subjects were assigned a random number from

1 to 10 representing their position in the order of moves for the current game. A subject

was never informed of their position number. Thus, subjects did not know precisely how

many other subjects had come before them or how many others would follow them.6 For

each round of each game, one of the 10 subjects took a turn deciding whether or not to take

6The only inference a subject could have made with certainty was that they were not the first mover if
their screen showed xmax 6= 0.
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a draw from a payoff distribution (known or unknown) or copy the highest payoff drawn in

the current game thus far by subjects who had drawn before them in that game, i.e., xmax.

For the first player to draw in round 1 of each game, xmax was set to 0.

The distribution we used in both treatments (known and unknown) was a finely dis-

cretized approximation of the symmetric triangular distribution, with support [0, 100] and a

modal peak of 50. The theory is agnostic when it comes to the choice of distribution, and

the triangular distribution was chosen for its continuous properties, which conforms to the

assumptions of the theory. Additionally, we believe this particular continuous distribution

calls attention to the unconditional mean, which important for calculating the risk-neutral

stopping rule under known distribution conditions. Also, when judging the probability of

receiving a draw above xmax, subjects unfamiliar with integration need not be familiar with

concepts from calculus – in principle, they only need to know how to calculate the area of

a triangle. Draws from that distribution were truncated at the hundredths place. Though

unlikely, it was possible for subjects to draw the same number more than once. In practice

this never occurred.

In the known distribution (KD) treatments, subjects were told about the distribution

of innovation payoffs, while in the unknown treatment subjects were only informed of the

support of the unknown distribution, [0,100]. Specifically, in the KD treatments, subjects

were shown a graph of the distribution they were drawing from featuring the finite range of

the support as well as the triangular distribution from which innovation draws were made,

including the modal peak of that distribution and its value. Figure 1 displays a screen shot

of the main decision screen for the known distribution treatment. The dashed line indicates

the current value of xmax in the current game, and this value was updated with changes to

xmax as they occurred. The value of xmax was reset to 0 at the start of each new 10 round

game.

The decision screen for the unknown (UD) treatments is not shown, but it is similar in

all respects except that the triangle distribution is not shown; rather, subjects just see the

support interval for possible innovation draws, [0, 100] and a dashed line again indicates the

current value of xmax. Subjects in the unknown treatment were specifically instructed that

the distribution of payoffs from choosing to draw (innovate) was unknown to them and could
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be any distribution.7

In all treatments, subjects knew their payoff function and the value of xmax at the time

they were asked to make a choice of whether to innovate (draw) or imitate (not draw). In

making choices, subjects could choose between two buttons, Do Not Draw (Imitate) or Draw

(Innovate), which indicated either a 0% or 100% chance to take a draw. In addition, subjects

also had access to a randomization device to make probabilistic decisions consistent with the

mixed strategy prediction of our UD treatments –see again Figure 1. Subjects could enter a

probability with which they would take a draw (innovate) from the payoff distribution, which

also determined the probability that they did not take a draw, and instead copied the highest

payoff received by previous subjects. If subjects entered a probability, then the decision to

draw (innovate) was made for them with that probability by the computer program and the

decision to not draw (imitate) was made for them by the computer program with 1 minus

their entered probability.

In each game, subjects were endowed with e = 10 points and were informed that taking

a draw in that game would cost them this 10 point endowment, i.e., in terms of the theory,

we set c = e = 10. If they did not take a draw (did not innovate), then they would keep their

10 point endowment, and get the payoff from imitation, xmax. In sessions where recall was

available, when a subject took a draw and that draw was below the current maximum, xmax,

their draw was automatically replaced by the current maximum, xmax for payoff calculation

purposes. In neither case did a draw below the current maximum change the current value

of xmax. That is, the current value of xmax was determined at the 10 player game level and

would always be defined as the current maximum draw taken in a game up until that round;

this means that the value of xmax was non-decreasing over the 10 rounds of a game. Prior

to the start of each new game, xmax was reset to 0.

Subjects made one innovation/imitation choice per game, according to their position

number for that game. For each of the 10 games, position numbers were randomly and

anonymously assigned; subjects were never informed of their position number in a game and

7We realize that subjects might update their pessimistic priors using observations of the current maxima
across multiple games. However, subjects were never told that the distribution did not change from game
to game (which was in fact the case), no history of draws (other than xmax was shown to them, and density
estimation with small sample sizes is unlikely to update priors in a significant manner.
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Figure 1: The main decision screen for the known distribution treatment.
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position could not be inferred from any information displayed on the decision screen. When

the program advanced to the round number that matched their position order, the subject

was shown the current value of xmax and asked to make their decision.

Every session consisted of 10 subjects playing 10 games. Since each game lasted 10

rounds, each subject made only one decision in one round per game. At the end of the

experiment, one game was picked at random for payment.

3.2 Risk Elicitation Stage

After the 10 games were played, each subject advanced to the risk elicitation stage. In the

risk elicitation stage, subjects were presented with 6 gambles as in Dave et al. (2010). The

subject was told to pick the gamble they most preferred and the computer would randomly

determine a payoff, conditional on their choice. The risk elicitation stage can be seen in

Figure 2.

Figure 2: The risk elicitation screen.

Assuming subjects exhibit CRRA risk preferences, we can find ranges of the coefficient

of relative risk aversion, r, by comparing adjacent lotteries in the table of possibilities. This

further allows us to classify subjects as risk-averse, risk-neutral, or risk-loving in our analysis.

We report the modal range of coefficient of relative risk aversion in Table 2, below.
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3.3 Cognitive Reflection Task and Survey Stages

After completion of the risk elicitation stage, subjects proceeded to a survey stage. In this

stage, subjects first answered three cognitive reflection test (CRT) questions and then pro-

ceeded to answer demographic questions. The latter questions covered nationality, ethnicity,

age, major, and GPA. An illustration of the cognitive reflection task question screen is shown

in Figure 3.

Figure 3: A cognitive reflection task screen.

Following the survey stage, subjects were informed of their experimental earnings, risk

elicitation earnings, the show-up payment, and their grand total earnings. Subjects were

then paid discreetly.

3.4 Subjects and Data Collection

The experiments were conducted at the University of California, Irvine at the Experimental

Social Sciences Laboratory (ESSL). Subjects were undergraduate students at UC Irvine with

no prior experience with the game. These subjects were recruited using the SONA systems

software.

We collected data from 5 groups of 10 players for each of the four treatments (cells) of

our experimental design. Thus we have data on the behavior of 5 × 10 × 4 = 200 subjects.

For the first stage, main decision task, we chose one game randomly from all 10 games played
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and converted subjects’ point earnings from the chosen game into money earnings at a fixed

and known rate 1 point = $0.15 USD. For the second stage, subjects earned money in an

incentivized risk elicitation following the design of Dave et al. (2010). Subjects could earn

between $0.20 and $7.00 in this stage. The CRT and demographic survey questions in the

final stage were unincentivized.

The total average payment was ∼$22, including a $7 show up payment. On average,

subjects spent about an hour in the laboratory, and of that time about 20 minutes were

spent reviewing instructions verbally and taking a comprehension quiz. The remaining 40

minutes were devoted to the experiment, which used a web browser and was programmed in

Python using the oTree package (Chen et al. 2016).

Some statistics on our subject population, as taken from our demographic survey, are

provided in Table 2.

Age
19.94
(1.94)

GPA 3.01-3.50

CRT score
1.13

(1.15)
CRRA coef. 0.50<r<0.71
% female 70%

Table 2: Descriptive statistics regarding the subject population; primarily means with stan-
dard errors in parentheses.

4 Hypotheses

Based on our theory and experimental design, we have several related hypotheses about

behavior in our four different treatments – known distribution without recall (KDNR), known

distribution with recall (KDR), unknown distribution without recall (UDNR), and unknown

distribution with recall (UDR).

Our main hypothesis is that subjects will behave in accordance with our theoretical pre-

dictions. That is, a subject’s propensity to draw (innovate) will match the deterministic or

probabilistic predictions of the theory. Further, when the distribution is known, we hypoth-

esize that subjects will draw up to the maximum predicted threshold and imitate thereafter
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in the manner characterized by either proposition 2 when there is recall or proposition 1

when there is no recall.

Hypothesis 1. The probabilities of drawing from the distribution will match those predicted
by the theory. When the distribution is known, subjects will choose to draw if xmax is below
a certain threshold and will imitate otherwise. When the distribution is unknown, subjects
will employ probabilistic regret minimizing strategies that are functions of xmax.

For the parameterization of the model we implement, the threshold or probability values

are shown in the first two rows of Table 3. Note in particular that the threshold for KDNR <

KDR. The probability in UDNR is linear in xmax and nonlinear in UDR, and, in expectation,

for a given xmax the probability of innovation is higher in UDR than in UDNR.

No Recall (NR) Recall (R)

Known Dist. (KD)

Probability
Threshold
Exp. Max

Exp. # Draws

Deterministic
40.00†

60.90
1.47

Deterministic
46.89†

64.71
1.78

Unknown Dist. (UD)

Probability
Threshold
Exp. Max

Exp. # Draws

(b−c)−xmax

b−a
None
69.33
4.13

(b−c)−xmax

b−xmax
None
77.00
6.16

Table 3: Thresholds and expected maxima for each treatment. †See the online Appendix for
details.

In addition to considering individual subject behavior we also simulated theoretical play

by 10 agents, playing according to theoretical predictions in all four treatments of our ex-

periment 100,000 times. We use these simulated distributions to make additional aggregate,

game-level distributional hypotheses.

Hypothesis 2. The mean number of draws and the expected maximum draw will correspond
to the simulation results reported on in Table 3.

From our simulation results, the mean number of draws and the expected maximum draw

across our four treatments should follow the order KDNR < KDR < UDNR < UDR.

We note that in the case of known distributions, our theory presumes risk neutral risk

preferences. However our subjects may not be risk-neutral with respect to uncertain money
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earnings. Departures from the assumption of risk neutral preferences may affect subject’s

propensity to innovate. Specifically, subjects who are risk-averse might stop innovating before

our predicted thresholds or exhibit lower probabilities of drawing. Conversely, risk-loving

subjects might continue drawing (innovating) after our predicted thresholds or exhibit high

probabilities of drawing. Other attributes that might explain departures from risk neutral

predictions include subjects’ cognitive abilities, which we measure using GPA and CRT

scores.

Hypothesis 3. Deviations from risk-neutral play are correlated with individual risk prefer-
ences or other personal attributes.

5 Experimental Results

The theory makes predictions about a few main outcome measures. For each measure,

we compare behavior the theory’s predictions with subjects’ deterministic or probabilistic

propensity to innovate (or draw), given the current, realized value for xmax at the time the

subject made their innovation/imitation choice. First, we look at individual–level behavior

versus predicted behavior across the four different treatments. These analyses make signif-

icant use of deviations from theoretical predictions. Second, we compare behavior within

a game (10 subjects playing for 10 rounds) with numerical results we generated from large

simulations of agents playing exactly according to the strategies predicted by our theory.

We use the comparison of the experimental data with the simulation analysis to address the

expected maximum draw and number of draws and indifference thresholds (in the case where

distributional information is known). When possible we compare these measures across the

different treatments as well as with the predicted values for each treatment. Our main results

are summarized in Findings 1-3 which map directly to evaluation of Hypotheses 1-3.

5.1 Deviation analysis

We first consider the difference between subjects’ probability of drawing (innovating) and

the predicted probabilities, using the root mean squared error. From our experimental data

we have subject’s elicited probabilities of taking a draw from the known or unknown in-
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novation distribution and our theory makes predictions about the probabilities that a risk

neutral agent would choose when confronted with different values for xmax, the current max-

imum value drawn in a game. We compute the squared deviations of actual from predicted

probabilities using the metric

devi,t = (pi,t − p̂i,t)2

where pi,t is the subject’s reported probability of drawing (innovating) and p̂it is the predicted

probability of a risk-neutral agent drawing. Note that both probabilities are conditional on

the value of xmax that the subject faced at time t. We take the square root of these squared

deviations to create round-averaged probabilities, which are reported in Figure 4, separated

according to the four different treatments. Subjects follow the theoretical predictions most

closely in the two no recall treatments, KDNR and UDNR. The root mean squared error

(RMSE) of deviations from predictions in the no recall treatments are significantly smaller

than those of the recall treatments (p < 0.01, two-tailed Mann-Whitney U-test) and the

RMSE of deviations in the KDR treatment are smaller than those in the UDR treatment

(p < 0.01, two-tailed Mann-Whitney U-test). Figure 4 also supports the notion that subjects’

decisions are consistent with the predictions of our regret minimization model in the UDNR

treatment, but less consistent in the UDR treatment.
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Figure 4: Average deviations from the regret minimizing model

We further decompose our sample into early games versus late games to look for evidence

of subject learning. We define the early rounds as the first five rounds and the late rounds

as the last five rounds. Figure 5 demonstrates that, though the differences are minor in most

cases, subjects tend to follow the model predictions a little better with experience. This

same figure also supports the notion that subjects in the KDR and UDR treatments fail to

take advantage of the recall opportunity, especially in the first five games.
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Figure 5: Average deviations from the regret minimizing model, early and late rounds of
sessions.Theoretical predictions are based upon the actual current xmax values in an experi-
mental game.

5.1.1 Bifurcated drawing sequence

We define a “bifurcated drawing sequence” as a 10-round game in which there is a one-

time-only switch-over from innovation to imitation. Our theory predicts that when the

distribution is known, as in our KD treatments, all games should involve such bifurcated

drawing sequences. In neither the no recall nor the recall condition of the KD treatments

do subjects bifurcate perfectly (p < 0.01, two-tailed Mann-Whitney U-test). However, when

subjects do bifurcate, the maximum draw achieved within a game is significantly higher
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than when they do not bifurcate (p < 0.01, two-tailed Mann-Whitney U-test). This finding

indicates that when the theory is followed more closely, payoff outcomes are better. Indeed,

when subjects adhere to the predicted bifurcating behavior, their payoffs are, on average,

∼$2.09 higher than when they do not, a significant difference. Moreover, there is a significant

negative correlation between earnings and the root mean squared error (p < 0.01, two-tailed

Mann-Whitney U-test). These two facts indicate that when subjects play according to the

theoretical predictions, they stand to earn considerably more than if they depart from these

predictions.

5.2 Threshold Analysis

5.2.1 Known Distribution

We next consider whether subjects in the known distribution treatments (KDR and KDNR)

were playing according to the thresholds predicted by the theory as reported in Table 3. We

estimate each subject i’s threshold using logit regressions of the form Pr[Innovationi|xmax,i] =

α + βxmax,i + εi, where Pr[Innovationi|xmax,i is an indicator variable for whether a subject

attempted to innovate (draw=1) or not (imitate=0), conditional on the current value of xmax,i

that he/she faced. After estimating this equation, we take the ratio of the estimated values

−α̂
β̂

, as an indicator of the threshold of indifference between drawing and not drawing.8 Errors

are clustered at the subject level. We estimate thresholds at both the game and treatment

levels.

8In a logistic regression, we estimate Pr[Innovation|xmax] = [1 + exp(−α− βxmax)]−1. The indifference
threshold is the value of x∗max for which Pr[Innovation|xmax] = 0.5, which is equal to the ratio of the
estimates, −α̂

β̂
.
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Figure 6: Estimated threshold in games by treatment

Figure 6 shows the average of the estimated thresholds in every game for the KDNR

and KDR treatments along with time trends and the model threshold values for xmax for

which subjects are predicted to be indifferent between innovating and imitation arising from

Propositions 3 and 4. Figure 6 supports the notion that subjects’ behavior is consistent

with the model when they are in the no recall condition, KDNR. In the KDR treatment, the

trend in estimated thresholds is more strongly positive, and subjects in the KDR treatment

had marginally significantly higher estimated indifference points in the last five games as

compared with the first five games (p = .10, two-tailed Mann-Whitney U-test), indicating

that subjects are adjusting their behavior with experience.

KDNR KDR
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)
Prediction
Average

(s.e.)
p-value

Obs

40.00
42.54
(3.47)
0.47
500

40.00
43.10
(3.49)
0.38
500

40.00
43.76
(2.73)
0.17
500

46.86
44.13
(4.61)
0.56
500

46.86
58.70
(1.81)
<0.01
500

46.86
51.55
(2.75)
0.09
500

Table 4: Thresholds by treatment

Table 4 reports the average thresholds (Average) for which subjects are estimated to be

indifferent between drawing and not drawing in each treatment and the associated standard

errors using all data of each known distribution treatment (500 observations).9 The p-

values report on tests of the null hypothesis of no difference between these average estimated

9A corresponding session-level threshold analysis is available in the online Appendix A.5 in Table 11.
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thresholds and the predicted thresholds of the theory.10. We further average over the first

five and last five games to show the effects of learning. We acquire standard errors using

1000 repetitions of nonparametric bootstrapping of the logit regression specification given

earlier. We see that in both treatments, the data align closely with model predictions. We

do note, however, that subjects in games 6-10 of KDR stray significantly above the predicted

threshold (p < 0.01, two-tailed Mann-Whitney U-test), a result of a more strongly positive

trend in estimated thresholds in this treatment. We further observe that over all games, the

average threshold in KDR is significantly greater than in KDNR, which is also predicted by

the model. These findings indicate that our model provides reasonable predictions about

both the level and the rank order of the innovate/imitate thresholds used by subjects.

5.2.2 Unknown Distribution

When analyzing decisions under unknown distributional information, we can no longer use

our logit estimation strategy since each p represents the probability that minimizes regret,

given a certain xmax. Thus, when a regret minimizing agent plays p = 0.5, it does not

represent indifference between innovating and imitating. Instead, it is the mixing probability

that minimizes regret given “worst-case” priors on the distribution of x. Therefore, for

the unknown distribution case, we compare the mixed strategy prediction of the regret

minimization theory which conditions on the value of xmax (see Table 3 with subjects’ own

probability of taking a draw (innovation). This analysis is shown in Figure 7. We interpret

these probabilities to draw as the average p which minimizes regret subject to each subject’s

subjective payoff distribution.

10Unless otherwise stated, each table which compares experimental data to theoretical predictions, as in
Table 4, uses Wilcoxon signed-rank tests. The results of these tests is summarized in the “p-value” row of
each table.
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Figure 7: Average maximum draws in games by treatment

This analysis also shows the predicted regret minimizing probabilities of the theory as

well as a quadratic trend line fit to the experimental data. Using t-tests, we find that there

is no significant difference in the probabilities to draw as predicted by the model and found

in the experimental data (p = 0.79) in the no recall condition (UDNR), but that there is

a significant departure between predicted and actual probabilities to draw in the treatment

with recall (UDR, p < 0.01). As in the case of the known distributions, subjects appear

to have greater difficulty incorporating the incentive structure of the recall condition into

their decision-making. Turning to the quadratic fit of the data, our theory is supported in

both treatments by the result that decision probabilities are only influenced linearly by the

current maximum draw (p = 0.06, two-tailed t-test) in UDNR and only by the quadratic

term in UDR (p = 0.08, two-tailed t-test). This finding is important because our theory of

regret minimization shows that decisions should be linear in the current maximum in UDNR

and non-linear in the current maximum in UDR.

5.2.3 Subjective Expected Utility

It is possible that instead of minimizing regret, subjects in our unknown distribution treat-

ments instead chose to maximize subjective expected utility. Though we gave the subjects
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no information at all about the nature of the unknown distribution in the UDR and UDNR

treatments, subjects might have (subjectively) applied an uniformed prior and assumed that

the distribution was uniformly distributed over [0, 100]. Under such a distributional as-

sumption, subjects would be predicted to all stop innovating at xmax = 40 in the UDNR

treatment and at xmax = 80 in the UDR treatment11. Instead, using the same estimation

strategy outlined in Section 5.2.1, we find that the empirical stopping thresholds in our

experimental data from the UDNR and UDR treatments are 48.14 and 52.31, respectively.

Using a two-tailed z-test, we find that these values are both significantly different from the

uniform prior predicted values at the p = 0.001 level. This finding suggests that subjects did

not act consistent with a belief that the distribution being drawn from was uniform and that

our instructions were successful in creating some ambiguity regarding the actual distribution

they faced in the UDNR and UDR treatments.

Summarizing our results thus far, we have:

Finding 1. There is strong support for Hypothesis 1. The probabilities of drawing from
the distribution match those predicted by the theory, especially in the KDNR, KDR, and
UDNR treatments. When considering the case of known distributions, subjects follow the
predicted threshold stopping rule (KDNR and KDR). When the distribution is unknown,
subjects employ probabilistic strategies which resemble closely the regret minimizing theoret-
ical predictions.

5.3 Expected Maxima Analysis

In the next two sections, we use numerical methods to determine theoretical predictions re-

garding expected maxima and the number of draws (innovation decisions) that would arise

if subjects were playing according to the theory. Specifically we compare our experimental

data with 100,000 independent simulations of our 10 round innovation/imitation game in

which the simulated agents play strategies in accordance with the deterministic or proba-

bilistic strategies predicted by our theory. For each simulated game we collect the value of

the maximum draw and the total number of draws made and we use the distribution of these

100,000 simulations 12 for comparisons with our experimentally generated data.

11Proofs for these thresholds are provided in the online Appendix.
12These distributions can be found in the online Appendix.
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We first investigate subject behavior via the expected maxima, taking the maximum

draw within a game in each treatment as our measure of interest.

Figure 8: Average maximum draws in games by treatment

Figure 8 shows the average maximum draw in the experimental data, along with a linear

trend line, and a horizontal line indicating the mean maximum draw from our 100,000 sim-

ulations. The figure reveals that, while the average maximum increased over the 10 games

in the treatments with unknown distributions, it remained mostly flat in the treatments

with known distributions. Table 5 reports the results of pairwise comparisons of the aver-

age maximum draws in games across treatments using t-tests, Mann-Whitney U-tests, and

Kolmogorov-Smirnov tests.13

13A corresponding session-level analysis is available in the online Appendix A.5 in Table 13.
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Table 5: Differences in maximum draws in a game between treatments
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No Recall Recall
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)

Known Dist.

Prediction
Average

(s.e.)
p-value

Obs

60.90
69.07
(1.59)
<0.01

50

60.90
69.59
(1.60)
<0.01

50

60.90
69.33
(1.58)
<0.01

50

64.71
70.35
(1.66)
<0.01

50

64.71
71.32
(1.42)
<0.01

50

64.71
70.83
(1.53)
<0.01

50

Unknown Dist.

Prediction
Average

(s.e.)
p-value

Obs

72.61
68.85
(1.56)
0.12
50

72.61
72.69
(1.17)
0.97
50

72.61
70.77
(1.40)
0.28
50

77.00
72.17
(1.26)
0.02
50

77.00
77.64
(1.23)
0.77
50

77.00
74.90
(1.29)
0.16
50

Table 6: Predicted versus actual average maximum draws by treatment

We also compare how close our subjects perform in terms of the average maximum draw

to what is predicted by our model.14 The results are reported in Table 615, which compares

average maxima in the experimental data relative to the theoretical predictions across the

four treatments, for the first five, last five and all 10 games. The results there suggest

that subjects behave remarkably similar, in terms of their average maximum draw, with

the predictions of the model in the cases where the distribution is unknown, and achieve

somewhat greater maxima on average than predicted when the distribution is known. We

further observe that, consistent with the theory, the average maximum draw is increased

somewhat by the ability to recall, relative to the no recall case, but only significantly so in

the unknown distribution case (Table 5).

5.4 Expected Number of Draws

We take advantage of the fact that the expected maxima simulation also provides estimates

of the expected number of times subjects will draw (innovate) during a 10 round game.

In Figure 9 we compare the predicted number of draws from the simulations (shown as

horizontal lines) with the average actual number of draws made in each of the 10 games,

along with a linear time trend fit to the experimental data. As can be seen, this trend is flat

14While we do not report the standard errors from the 100,000 simulations, our t-tests make use of these
simulated standard errors. Further, we compare the simulated and empirical distributions of maximum
draws in a game using Kolmogorov-Smirnov and Mann-Whitney U-tests. In the following section we use
these same tests to examine the expected number of draws.

15A corresponding session-level analysis is available in the online Appendix A.5 in Table 12.
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and, indeed, the difference between the number of draws in the first and last five games of

a treatment is never significantly different.

Figure 9: Average number of draws in games by treatment

Table 7 presents the mean number of draws from the simulations along with the average

and standard errors from the experimental data over the first 5, last 5 and all 10 games of

the four treatments.16

Figure 9 and Table 7 reveal that the model predictions for the expected number of draws

are closest to the experimental data in the two no recall treatments (KDNR and UDNR)

and furthest from the data in the two no recall treatments (KDR and UDR). This is in line

with the finding from the deviation analysis, suggesting that subjects are under-utilizing the

benefits of recall. Still, for all 4 treatments, using t-tests, U-tests, and KS-tests, we can

reject the null hypothesis that the average number of draws in a simulated game is the same

16A corresponding session-level threshold analysis is available in the online Appendix A.5 in Table 14.
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as in the experimental data at the 0.01 level. We further note that in our known distribution

treatments subjects tend to over innovate, while in our unknown distribution treatments,

subjects tend to under innovate, which may simply reflect the ambiguity that they face in

the unknown distribution treatments.

Table 8 reports on the results of all pairwise comparisons of the average number of draws

between the different treatments using a variety of statistical tests.17 The only statistically

or marginally significant differences exist between KDNR and KDR and between KDNR

and UDR. In both comparisons, KDNR has significantly fewer draws (innovation decisions),

which is in line with the predictions of the model.

No Recall Recall
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)

Known Dist.

Prediction
Average

(s.e.)
p-value

Obs

1.47
2.96

(0.25)
<0.01

50

1.47
2.52

(0.16)
<0.01

50

1.47
2.74

(0.21)
<0.01

50

1.78
3.68

(0.31)
<0.01

50

1.78
4.08

(0.29)
<0.01

50

1.78
3.88

(0.30)
<0.01

50

Unknown Dist.

Prediction
Average

(s.e.)
p-value

Obs

4.13
3.56

(0.25)
0.07
50

4.13
2.92

(0.23)
<0.01

50

4.13
3.24

(0.46)
<0.01

50

6.16
3.56

(0.23)
<0.01

50

6.16
3.24

(0.31)
<0.01

50

6.16
3.40

(0.27)
<0.01

50

Table 7: Predicted versus actual number of draws by treatment

We summarize these findings as follows:

Finding 2. We find mixed support for Hypothesis 2. Regarding expected maxima, sub-
jects match closely with the simulated distributions of maximum draws in the UDNR and
UDR treatments, but are significantly different from the predictions of the KDNR and KDR
treatments. Regarding the expected number of draws, in all treatments but KDNR, subjects
significantly underdraw from the distributions, and only in the KDNR treatment do they
overdraw.

5.5 Risk Aversion and Other Individual Characteristics

We next consider if there is any relationship between individual characteristics and the

propensity to draw (innovate) across our four experimental treatments. We were particularly

17A corresponding session-level analysis is available in the online Appendix A.5 in Table 15.
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Table 8: Differences in expected number of draws in a game between treatments
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concerned about the role that might be played by differences in individual risk preferences.

As we use the elicitation procedure of Dave et al. (2010), we followed their prescriptive

advice of using the risk elicitation choices to make a binary classification of subjects as

either risk-averse or risk-neutral.18 If there is some curvature in the regret function, then the

threshold stopping value of a subject may differ from our theory, which assumes risk-neutral

preferences. A risk-averse subject would be predicted to stop innovating earlier than a risk-

neutral agent and a risk-loving subject would be predicted to stop innovating later than a

risk-neutral agent. In addition to risk preferences, we also consider the role of age, sex, GPA,

cognitive reflection test (CRT) score, and a quantitative reasoning (QR) score for innovation

decisions.19 Finally, we test whether a subject’s individual position order in the sequence of

moves mattered for their decision to innovate, even after taking into account the value of

xmax that they faced. While the position order was not known, subjects might infer they

were the first or a later mover by the value of xmax, which is initially 0.20 Even accounting

for the value xmax,early movers (particularly those with social preferences) might be more

predisposed to innovate, as compared with late movers out of concerns for the welfare of

other group members.

The least squares estimates from our regression of the propensity to innovate on individual

characteristics are reported in Table 9.

18That is, we classify a subject as risk-averse if they chose the first, second, third, or fourth option in the
elicitation found in Figure 2 and risk-neutral if they chose option five or six.

19We impute a QR score by associating the mean GRE quantitative score associated with the major of
each subject (such scores can range from 130-170). We had data on the major of each subject participant,
and we used the mean GRE quantitative score for each major as reported by the Educational Testing Service,
which administers the GRE. For undeclared majors, we used the mean GRE quantitative score across all
test takers, which was 159.

20This concern motivates our additional session-level analyses, found in Section A.5, since individual
decisions may be contaminated by the effects of learning from others both within games and across games.
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(1) (2) (3) (4) (5)
Treatment All KDNR KDR UDNR UDR

xmax -1.142*** -1.109*** -1.133*** -1.270*** -1.106***
(0.0383) (0.0786) (0.0787) (0.0785) (0.0671)

Risk Averse -2.237 -1.730 -6.430 1.752 1.329
(2.025) (3.110) (4.819) (3.997) (3.627)

Age 0.554 -0.0824 1.681 1.622 -0.468
(0.503) (0.620) (1.049) (1.665) (0.966)

Female -3.522 3.698 -6.623 -5.367 -5.792
(2.199) (3.811) (4.929) (5.079) (4.396)

GPA -0.787 -3.596** -1.359 -1.482 0.979
(0.869) (1.626) (2.007) (2.044) (1.122)

CRTscore -0.276 -1.717 0.697 2.404 -0.982
(0.929) (1.619) (2.125) (2.216) (1.615)

QRscore 0.0358 0.0684 0.200 -0.294 0.452
(0.211) (0.465) (0.451) (0.395) (0.461)

Position Order -0.702** -1.561** 0.512 -0.985 -0.627
(0.330) (0.672) (0.701) (0.661) (0.549)

Constant 87.99** 106.9 59.66 141.4** 55.66
(35.58) (78.05) (82.86) (63.51) (74.57)

Observations 2,000 500 500 500 500
R-squared 0.456 0.501 0.412 0.503 0.443

Robust standard errors clustered at the subject level in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Individual characteristics and the propensity to draw (innovate)

Table 9 reveals that subjects draw less frequently the higher is the value of xmax that they

saw when it was their turn to draw, which is always consistent with the theory. Controlling for

the value of xmax, we find little evidence that any of subjects’ individual level characteristics

significantly affected their propensity to draw across the four treatments, with one exception:

the order in the game negatively impacts the propensity to draw (p = 0.034). This finding

suggests that, even controlling for the value of xmax, one’s position order may matter even

though the order of moves was not provided and was randomly assigned for each game.

However, disaggregating the regression results by treatment, we see that position order only

matters in the KDNR treatment, as in the other three treatments, the effect of a subjects’

position order is insignificant.

We summarize these findings as follows:
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Finding 3. Hypothesis 3 is rejected. Personal characteristics are observed to have insignif-
icant correlations with subject deviations from predicted behavior.

6 Concluding Remarks

We have provided a model of the decision by firms as to whether to innovate new prod-

ucts/services or production processes or to imitate those of other firms. We further consider

case where innovation precludes imitation (no recall) and where it does not (recall), reflecting

different costs of innovation and imitation. Our model makes several key contributions to the

regret minimization and strategic experimentation literatures. First, we merge the two into a

model of experimentation in a single shot game, where we model firms as regret minimizers.

We predict four distinct behaviors depending on knowledge of the innovation distribution

and the ability to recall in the event of failed innovations. These different conditions mirror

aspects of the real world, such as the presence or absence of intellectual property rights

affecting imitation, and the strength of beliefs on the returns to research and development

of new innovations. Our model predicts differences in the probabilities with which a regret

minimizing firm innovates conditional on the current maximum draw, which also influences

the expected maximum draw to be obtained within a game. Our model can explain why

there can be substantial initial innovation in an industry that later tapers off, as firms switch

from a strategy of innovating to imitating, resulting in a homogeneous selection of products

or services across firms, as seems to have occurred in the smart phone industry.

We develop a novel experimental design to test the implications of our model. To our

knowledge, this is the first experiment to measure how well subjects’ behavior corresponds to

the predictions of regret minimization where the states of nature form a continuum. We find

that subject behavior is largely consistent with the regret minimization model predictions.

We find that the biggest driver of differences between model predictions and behavior in most

of our subject- and game- level measures whether recall (imitation following failed innova-

tion) is possible, while knowledge of the distribution plays a less central role in explaining

differences.

Further, when we compare average propensities to innovate, we find that regret minimiza-
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tion describes patterns in subject behavior well. Again, regret minimization best describes

subject behavior when there is no recall, which is again mirrored in results pertaining to

the average maximum reached within a game. Regret minimization describes behavior just

as well in early rounds as it does in later rounds, which indicates that the beliefs of our

subjects are not updated enough to move them away from their regret minimizing behavior.

This, in turn, points to the fact that our environment is not similar enough to the classi-

cal strategic experimentation paradigm to generate results consistent with that theory. It

is likely that there are too few observations for subjects to condition on and estimate the

payoff distribution in a meaningful way.

Since recall does not substantially change the propensity to innovate and serves to in-

crease deviations between our model and the data, we conclude that recall does not help

in exploring the payoff distribution. This may be due to the fact that while recall lowers

innovation costs, it also lowers the difference in payoffs between innovating and imitating,

especially after a sufficiently high maximum has been reached within a game. This smaller

differential, compared to the case where there is no recall, may lead to subjects thinking less

critically about what their best decision is when attempting to minimize regret under the

recall condition. In essence, the reduced salience of decision making brought about by the

recall condition leads to less critical thinking about an agent’s optimal strategy. This effect

is only exacerbated in the UDR treatment, where subjects are presented with the additional

complication of decision making under ambiguity, allowing for ambiguity aversion (Borghans

et al., 2009) to add to the increased deviations brought about by recall.

In future research, it would be of interest to modify our design to explore some more

realistic scenarios that might alter our main findings. For instance, innovation may not

perfectly preclude imitation as in our no recall treatment. It may be that both innovation

and imitation are always possible as in our recall treatment, but that there is always some

cost to imitation that would more naturally limit its use in the recall setting. It may be that

innovation and imitation interact in complementary ways that our model does not yet capture

as emphasized in the industry studies of Raustiala and Sprigman (2012). Further, since one

innovation often serves as a complement to new innovations (Romer 1994), a useful change

to our model would be to make the payoff distribution endogenous by allowing successful
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innovation to shift the parameters of the distribution. Depending on the differences in the

changes to the parameters, innovation may continue indefinitely or stop earlier than it might

have if the distribution was static. One could also model changes to the distribution as

ambiguous to capture behavior when the changes in the state of nature are not known.

Another reasonable modification would be to let subjects play the game for a longer period

of time, e.g., cycling through the n-round game multiple times, allowing for a more realistic

depiction of the research and development process and transforming the game into one of

strategic interaction and repeated play, allowing for more learning to develop. Finally, we

believe that additional attention should be given to regret minimization, especially where

it can be contrasted with the predictions of expected utility maximization. We leave all of

these extensions and considerations to future research.
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Appendices to “Innovate versus Imitate: Theory and

Experimental Evidence”

by John Duffy and Jason Ralston

A Threshold Proofs

The proof below will make extensive use of the generalized form of the triangular distribution,

with lower bound a, upper bound b, and midpoint m, as defined by:

f(x) =



2(x−a)
(b−a)(m−a)

if a ≤ x < m,

2
b−a if x = m,

2(b−x)
(b−a)(b−m)

if m < x ≤ b,

0 elsewhere.

(7)

When we parameterize the distribution with a = 0, b = 100, and m = 50, the above

definition reduces to

f(x) =



2x
5000

if 0 ≤ x < 50,

2
100

if x = 50,

2(100−x)
5000

if 50 < x ≤ 100,

0 elsewhere.

(8)

A.1 Known Distribution, No Recall

We first consider the no recall case. Thus, the decision whether to draw or not draw for a

risk neutral individual is defined as

E(X)− xmax ≥ 10

Since E(X) = µ = 50, the threshold will be set as xmax = 40.
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A.2 Known Distribution, Recall

Here the agent is allowed to condition on the current xmax, which, in effect, raises the lower

support of X. This leads to a dynamic reduction in cost that decreases as xmax increases.

Recall that the decision to draw or not draw for a risk neutral agent is based upon

E[r(xmax, X, j)|X > xmax] =
E[(X − c)− xmax|X − c > xmax]× P (X − c > xmax) if imitate

E[xmax − (X − c)|xmax < X ≤ xmax + c]× P (xmax < X ≤ xmax + c)

+c× P (X ≤ xmax) if innovate.

Due to the distribution’s piece-wise nature, and the decision criterion’s dependence on xmax,

we derive the threshold stopping value using numerical methods. For simplicity, we show

the graphs of expected regret from innovation (yellow) and from imitation (blue) in Figure

10.

Figure 10: Expected regret from innovation (yellow) and imitation (blue) as a function of
xmax

The intersection of the two curves occurs at xmax ≈ 46.89.
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A.3 Subjective expected utility threshold proofs

For the following proofs, we assume that subjects believe the distribution they are drawing

from is a uniform distribution with support spanning from a = 0 to b = 100, which entails

the pdf defined below.

f(x) =


1

100
if 0 ≤ x ≤ 100

0 elsewhere

(9)

A.3.1 No recall

In the case of no recall, the payoff function is defined by

πi =

 xi − c+ e if innovate

xmax + e if imitate

Thus, when a risk-neutral agent must decide whether to innovate or imitate, they only

consider the expected payoff of innovation versus imitation. They will be indifferent between

the two alternatives when their expectations are equal. Specifically this happens when

E[X]− c+ e = xmax + e.

Keeping in mind that X is distributed according to the uniform distribution and that

c = 10 in our experiment, we arrive at the conclusion that our agent will be indifferent

between innovation and imitation when xmax = 40.

A.3.2 Recall

Under recall, the payoff function is given by

πi =

 max{xi, xmax} − c+ e if innovate

xmax + e if imitate

Thus, when a risk-neutral agent must decide whether to innovate or imitate, they will

again only consider the expected payoff of innovation versus imitation. They will be indif-
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ferent between the two alternatives when their expectations are equal. This happens when

E[X|X > xmax]− c+ e = xmax + e,

which is equivalent to

∫ 100

xmax
x 1

100
dx∫ 100

xmax

1
100
dx
− c+ e = xmax + e.

This can be simplified to

100 + xmax − 2(c− e) = 2(xmax + e)

Again, since c = e = 10, we can solve for xmax. Specifically, xmax = 80.

A.4 Use of Randomization Device

Our experimental design features a randomization device that subjects may use if they are

uncertain about their innovation/imitation choice. We included this feature because our

regret minimization framework predicts that agents will randomize when the distribution of

outcomes is unknown, but not when it is known. Thus, if a subject were to prefer resolving

randomization using a computer instead of internally, the randomization device feature could

be useful.

Known Dist Unknown Dist
No Recall 15 21

Recall 22 17

Table 10: Randomization device usage

We report usage of the randomization device in Table 10. Table 10 indicates that the

number of subjects using the randomization device does not vary by distributional knowledge

(Mann-Whitney, p = 0.884). While this process measure does not support the hypothesis

that regret minimizers are more likely to randomize under conditions of distributional un-

certainty, we argue that our subjects may randomize in a wide variety of ways that do not

involve the use of our computer-aided randomization device before selecting whether to in-

46



novate or imitate. We think the analysis of section 5.2.2 more clearly addresses the relevance

of the mixed strategy in the environment without distributional information (ambiguity).

A.5 Session-Level Analyses

Since the same group of subjects repeatedly interact with one another over the 10 games of

each session, there may be learning within a session, even though feedback about the behavior

of other was limited; subjects only observed the value of xmax when making their decision.

Still, it is of interest to ask whether our results continue to hold using more conservative tests

on average session-level data only.21 Since each treatment consisted of just five sessions, our

statistical power is limited. Nevertheless, we continue to find significant differences between

our treatments using these session-level observations.

We begin by examining threshold stopping behavior in our treatments with known distri-

butions. The theoretical stopping rule, estimated sample averages, and the standard error of

the estimates are provided in Table 11. This table 11 shows that, in general, the session-level

data is statistically indistinguishable from model predictions. The only exception is for KDR

in games 6 - 10 (p < 0.01), which is also what we found using the individual-level data in

Section 5.1. Although thresholds across all games and in games 1 - 5 were not significantly

different between the two known distribution treatments, we do note that in games 6 - 10

we observe higher thresholds in KDR than in KDNR (t-test, p = 0.022), which is consistent

with our previous individual-level data analysis (compare with Table 4).

KDNR KDR
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)
Prediction
Average

(s.e.)
p-value

Obs

40.00
44.52
(4.44)
0.35

5

40.00
46.27
(3.85)
0.14

5

40.00
45.02
(3.82)
0.35

5

46.86
44.04
(7.38)
0.89

5

46.86
58.16
(1.68)
0.04

5

46.86
51.02
(5.03)
0.35

5

Table 11: Session level thresholds by treatment

21In section 5 of our paper, we use either individual-level data (10 individual decisions/game
×10 games/session ×5 sessions/treatment = 500 observations per treatment) or game-level data (10
games/session ×5 sessions/treatment = 50 observations per treatment) to analyze the predictions of our
model.
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We next consider the average maximum draw in a game using session-level data. Table

12 shows that our regret minimization model makes accurate predictions for the average

maximum draw in the cases where the distribution is unknown, but that participant behavior

deviates significantly in the known distribution setting. These findings are again in line with

our results using the game-level analysis (compare with Table 6). Table 13 gives some

evidence that, even using session-level averages, the maximum draw reached within a game

is significantly higher in UDR than in KDNR and KDR. This finding is also in line with our

prior analyses (compare with Table 5).

No Recall Recall
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)

Known Dist.

Prediction
Average

(s.e.)
p-value

Obs

60.90
69.07
(1.91)
0.04

5

60.90
69.59
(3.81)
0.14

5

60.90
69.33
(2.83)
0.08

5

64.71
70.35
(2.65)
0.08

5

64.71
71.32
(1.22)
0.04

5

64.71
70.83
(1.16)
0.04

5

Unknown Dist.

Prediction
Average

(s.e.)
p-value

Obs

72.61
68.85
(2.88)
0.35

5

72.61
72.69
(2.07)
0.89

5

72.61
70.77
(1.40)
0.35

5

77.00
72.17
(1.90)
0.04

5

77.00
77.64
(2.45)
0.89

5

77.00
74.90
(1.75)
0.22

5

Table 12: Session-level average maximum draws by treatment

We also compare the average number of draws taken within a game at the session level.

These comparisons are displayed in Table 14. As in the game-level analysis (see Table 7), we

see that subjects systematically draw too much in the known distribution settings and too

little in unknown distribution settings. Table 15 shows that treatment differences found in

Table 8 are weakened by the diminished statistical power. Nevertheless, we still find evidence

that the number of draws taken during a game is substantially lower in KDNR than in KDR

and UDR, suggesting that recall may have a slight positive effect on a subject’s willingness

to draw, as per the predictions of the theory.

We also use session-level data to examine differences in deviations from the theory, as

in Section 5.1. We find that session-level data provide similar results to individual-level

data: the RMSE between behavior and theory is higher when subjects are not afforded the

ability to recall (Mann-Whitney, p = 0.049). The RMSE in the KDR treatment is also

significantly lower than in the UDR treatment (Mann-Whitney, p = 0.009). These findings
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Table 13: Differences in session-average maximum draws between treatments
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confirm our initial assertion that recall increases deviations from theory, and that deviations

are especially high in UDR.

The findings of this section suggest that, even using session level-data to avoid possible

correlations between games within a session and learning between subjects within a game,

that the treatment effects and differences we found using game-level or individual level data

continue to obtain. Differences from the theory are especially pronounced for the UDR

treatment, a result that is mirrored in our main analyses.

No Recall Recall
Games 1-5

(1)
Games 6-10

(2)
All Games

(3)
Games 1-5

(4)
Games 6-10

(5)
All Games

(6)

Known Dist.

Prediction
Average

(s.e.)
p-value

Obs

1.47
2.96

(0.80)
0.04

5

1.47
2.52

(0.49)
0.04

5

1.47
2.74

(0.68)
0.04

5

1.78
3.68

(0.98)
0.04

5

1.78
4.08

(0.93)
0.04

5

1.78
3.88

(0.96)
0.04

5

Unknown Dist.

Prediction
Average

(s.e.)
p-value

Obs

4.13
3.56

(0.79)
0.04

5

4.13
2.92

(0.73)
0.04

5

4.13
3.24

(1.45)
0.04

5

6.16
3.56

(0.73)
0.04

5

6.16
3.24

(0.49)
0.04

5

6.16
3.40

(0.85)
0.04

5

Table 14: Session level number of draws by treatment
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Table 15: Differences in session’s average number of draws in a game between treatments
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B Laboratory Instructions

We provide our laboratory instructions for the KDNR and UDR treatments, in that order.

The KDR instructions are identical to the KDNR instructions, except that they included a

full description of recall and how it worked, as is detailed in the UDR instructions. Similarly,

the UDNR instructions are changed from the UDR instructions to remove all mention of how

recall would work.
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Instructions

Overview

Welcome to this experiment in the economics of decision-making. Funding for this experi-
ment has been provided by the UC Irvine School of Social Sciences. We ask that you not
talk with one another and that you silence your mobile devices for the duration of today’s
session.

For your participation in today’s session you will be paid in cash at the end of the
experiment. The amount you earn depends on the choices you make and on the choices
made by others. Thus, it is important that you listen carefully and fully understand these
instructions before we begin. There will be a short comprehension quiz following the reading
of these instructions which you will all need to complete before we can begin the experimental
session.

The experiment will make use of the computer workstations and all interactions by you
and others will take place through these networked computers. You will interact anony-
mously with one another and your data records will be stored only by your ID number; your
name or the names of other participants will not be revealed at any time during today’s
session or in any write-up of the findings from this experiment.

Today’s session consists of two parts. You will receive instructions for part two at the
end of part one.

In the first part of the session, you will participate in number of “games.” Each game
consists of a number of “rounds.” In each round you will view some information and make
a choice. Your choice, and possibly the choices of others determines the amount of points
that you earn each round. At the end of the session, we will randomly select one game from
all of the games played in today’s session. Your point earnings from the chosen game will
be converted into dollars at a conversion rate of $0.15 per point earned. Your earnings from
the chosen game and your $7 show-up payment will be paid to you in cash and in private.
You will also have the opportunity to earn additional earnings in the second part of the
experiment.

Specific Details

There are N individuals in today’s session. At the start of each new game, each individual
will be randomly assigned a position number for the game. This position number indicates
the round in the game, 1,2,...,N , at which you will be called upon to make a choice.

When it is your turn to make a choice you will see the Choice screen (you will see a
waiting screen until that time). On the Choice screen you will be asked to make a choice.
Specifically, you can decide whether or not to draw a number from a distribution having
a a mean of 50.00 and a standard deviation of 26.36. The distribution is shown in the
computer screen and depicted below in Figure 1. The horizontal axis shows the numbers (in
points) that you could draw, from (0.00 to 100.00) non-inclusive. The vertical axis reveals
the probability or likelihood of drawing each possible number. As the distribution reveals,
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Figure 1: The triangular distribution used in this experiment

the most likely outcome is 50.00, with the likelihood of numbers away from 50 declining
equally in both directions.

Drawing a number from the distribution is costly. Specifically, a draw costs you 10 points.
However, every individual is given an endowment of 10 points at the start of each new game,
so the choice you face is whether to spend your endowment of 10 points drawing a number
from the distribution.

Prior to making this choice, you are informed of the highest number that has been drawn
by another participant in the current game. The choice you face is whether or not you want
to try to draw a new number, at a cost to you of your 10 point endowment for the game.

If you choose not to draw a number, then your points for the game will equal the highest
number chosen in the game so far plus your 10 point endowment.

If you choose to draw a number, then your points for the game we equal the number you
drew for the game minus your 10 point endowment (the cost of drawing a number).

Please note the following:

• First, draws from the distribution are with replacement which means that the same
number can be drawn more than once. The likelihood of drawing any number, as
illustrated in Figure 1 and shown on your computer screen, does NOT change across
all games played in today’s session.

• Second, if the highest number drawn in the current game is 0.0, then EITHER you
are the first person to make a choice in the current game OR no prior participant has
chosen to draw a number in the current game.

• Third, if you choose to draw a number, it is possible that the number you draw is
higher or lower than the current highest number drawn by another participant in the
current game. The distribution shown in Figure 1 reveals the likelihood of each of the
possible numbers you could possibly draw.
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• Fourth, your earnings from drawing a number can be higher or lower than your earnings
from NOT drawing a number. If you choose to draw a number and the number you
draw is higher then the current highest number drawn, then your earnings from drawing
that number will be higher than your earnings from not drawing a number only if the
number you drew is at least 10 more than the current high number, since by drawing
a number you lose your endowment of 10 points. On the other hand, if you choose
to draw a number, your earnings will be lower than if you had not drawn a number
whenever the number you drew is less than the current high number plus 10.

In making a choice of whether or not to draw a number for the current game, you face
three options:

1. Do NOT draw

2. Enter a probability to draw

3. Draw

If you choose Do NOT draw, then you definitely DO NOT draw a number for the current
game. If you choose Draw, then you definitely DO draw a number for the current game.
If you choose Enter a probability to draw a number, then you must also enter a number
(an integer) between 1 and 99 representing the probability, in percentage terms, that you
will draw a number for the current game. After entering your percent chance of drawing
a number, the computer program randomly draws a number (an integer) between 1 and
99 inclusive. If this randomly drawn number is less than or equal to your entered percent
chance of drawing a number, then you will draw a number from the distribution for the
current game: it will be automatically drawn for you; otherwise, you will not draw a number
for the current game. Thus, the higher (lower) is the percent chance you enter for the
probability of drawing a number, the more (less) likely it is that you draw a number in the
current game.

Payment

The first part of today’ sessions consists of 10 games. At the end of each game you will
learn your points earned for the game, which, as explained above, depend on whether or
not you draw a number. After all 10 games have been completed, one of the 10 games will
be randomly chosen for payment. Each game has an equal chance of being chosen and so
you will want to do your best in each game. Your points from the chosen game will be
converted into dollars at the rate of 1 point = $0.15 (15 cents). Thus, the more points
you earn, the greater are your monetary earnings. In addition, you are guaranteed $7 for
showing up to today’s experiment. You will be paid your show-up payment, together with
your earnings from the first part of the experiment and your earnings from the second part
of the experiment at the end of today’s session. All payments will be made in cash and in
private. At then end of this first part of the experiment, you will receive further instructions
for how to complete part 2 of the experiment.
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Questions?

Now is the time for questions. If you have a question about any aspect of these instructions,
please raise your hand and an experimenter will answer your question.

Quiz

Before we start today’s experiment we ask you to answer the following quiz questions that
are intended to check your comprehension of the instructions. The numbers in these quiz
questions are illustrative; the actual numbers in the experiment may be quite different.
Before starting the experiment we will review each participant’s answers. If there are any
incorrect answers we will go over the relevant part of the instructions again.

1. Each game consists of rounds. Your position in the game circle one: changes
remains the same in each game.

2. Before deciding whether to draw a number you can see the highest number drawn so
far in the current game. Circle one: True False

3. If you choose NOT to draw a number, then your point earnings will be equal to: Circle
one:

a. the highest number drawn earlier in the current game, (or 0.00 if no number has
been drawn yet)

b. the highest number drawn earlier in the current game (or 0.00 if no number has
been drawn yet) plus your 10 point endowment.

c. your 10 point endowment.

4. If you choose to draw a number, you lose your 10 point endowment for the current
game. Circle one: True False Do you get a new endowment of 10 points for each
new game? Circle one: Yes No.

5. Consider the following scenario. The current highest number is 65.56. You choose to
draw a number which turns out to be 73.21 What is your payoff in points for the game
in this case? What would have been your payoff in points if you did not choose
to draw a number?

6. Consider the following scenario. The current highest number is 31.03. You choose to
draw a number, which turns out to be 56.71. What is your payoff in points this case?

What would have been your payoff in points if you did not choose to draw a
number?

7. At the end of the experiment, one game will be randomly chosen. Your point earnings
from that game will be converted into dollars at the conversion rate of 1 point = $ .
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Instructions

Overview

Welcome to this experiment in the economics of decision-making. Funding for this experi-
ment has been provided by the UC Irvine School of Social Sciences. We ask that you not
talk with one another and that you silence your mobile devices for the duration of today’s
session.

For your participation in today’s session you will be paid in cash at the end of the
experiment. The amount you earn depends on the choices you make and on the choices
made by others. Thus, it is important that you listen carefully and fully understand these
instructions before we begin. There will be a short comprehension quiz following the reading
of these instructions which you will all need to complete before we can begin the experimental
session.

The experiment will make use of the computer workstations and all interactions by you
and others will take place through these networked computers. You will interact anony-
mously with one another and your data records will be stored only by your ID number; your
name or the names of other participants will not be revealed at any time during today’s
session or in any write-up of the findings from this experiment.

Today’s session consists of two parts. You will receive instructions for part two at the
end of part one.

In the first part of the session, you will participate in number of “games.” Each game
consists of a number of “rounds.” In each round you will view some information and make
a choice. Your choice, and possibly the choices of others determines the amount of points
that you earn each round. At the end of the session, we will randomly select one game from
all of the games played in today’s session. Your point earnings from the chosen game will
be converted into dollars at a conversion rate of $0.15 per point earned. Your earnings from
the chosen game and your $7 show-up payment will be paid to you in cash and in private.
You will also have the opportunity to earn additional earnings in the second part of the
experiment.

Specific Details

There are N individuals in today’s session. At the start of each new game, each individual
will be randomly assigned a position number for the game. This position number indicates
the round in the game, 1,2,...,N , at which you will be called upon to make a choice.

When it is your turn to make a choice you will see the Choice screen (you will see a
waiting screen until that time). On the Choice screen you will be asked to make a choice.
Specifically, you can decide whether or not to draw a number from from 0 to 100, non-
inclusive. The likelihood that you draw any particular number is fixed, but unknown to you.
That is, the distribution of numbers you are drawing from could take the shape of ANY
valid probability distribution, defined over the interval between 0 and 100, non-exclusive.
All numbers drawn within this interval are limited to two decimal places. Thus, the smallest
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possible number you could draw is 0.01 and the largest possible number you could draw is:
99.99.

Drawing a number from the distribution is costly. Specifically, a draw costs you 10 points.
However, every individual is given an endowment of 10 points at the start of each new game,
so the choice you face is whether to spend your endowment of 10 points drawing a number
from the distribution.

Prior to making this choice, you are informed of the highest number that has been drawn
by another participant in the current game. The choice you face is whether or not you want
to try to draw a new number, at a cost to you of your 10 point endowment for the game.

If you choose not to draw a number, then your points for the game will be equal the
highest number chosen in the game so far plus your 10 point endowment.

If you choose to draw a number, then your points for the game will depend on the number
you draw. Specifically:

• If the number you draw is greater than the highest number drawn in the game so far,
then your points for the game will equal the number that you draw minus your 10
point endowment (the cost of drawing a number).

• If the number you draw is less than or equal to the highest number drawn in the game
so far, then your points for the game will equal that highest number drawn in the game
so far minus your 10 point endowment (the cost of drawing a number).

Please note the following:

• First, draws from the unknown distribution are with replacement which means that the
same number can be drawn more than once. The likelihood of drawing any number
does NOT change across all games played in today’s session.

• Second, if the highest number drawn in the current game is 0.00, then EITHER you
are the first person to make a choice in the current game OR no prior participant has
chosen to draw a number in the current game.

• Third, if you choose to draw a number, it is possible that the number you draw is higher
or lower than the current highest number drawn by another participant in the current
game. Remember, you don’t know the likelihood of each of the possible numbers
you could possibly draw; you only know that the unknown distribution of numbers is
constant over time.

• Fourth, your earnings from drawing a number can be higher or lower than your earnings
from NOT drawing a number. If you choose to draw a number and the number you
draw is higher then the current highest number drawn, then your earnings from drawing
that number will be higher than your earnings from not drawing a number only if the
number you drew is at least 10 more than the current high number, since by drawing
a number you lose your endowment of 10 points. On the other hand, if you choose
to draw a number, your earnings will be lower than if you had not drawn a number
whenever the number you drew is less than the current high number plus 10.
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In making a choice of whether or not to draw a number for the current game, you face
three options:

1. Do NOT draw

2. Enter a probability to draw

3. Draw

If you choose Do NOT draw, then you definitely DO NOT draw a number for the current
game. If you choose Draw, then you definitely DO draw a number for the current game.
If you choose Enter a probability to draw a number, then you must also enter a number
(an integer) between 1 and 99 representing the probability, in percentage terms, that you
will draw a number for the current game. After entering your percent chance of drawing
a number, the computer program randomly draws a number (an integer) between 1 and
99 inclusive. If this randomly drawn number is less than or equal to your entered percent
chance of drawing a number, then you will draw a number from the distribution for the
current game: it will be automatically drawn for you; otherwise, you will not draw a number
for the current game. Thus, the higher (lower) is the percent chance you enter for the
probability of drawing a number, the more (less) likely it is that you draw a number in the
current game.

Payment

The first part of today’ sessions consists of 10 games. At the end of each game you will
learn your points earned for the game, which, as explained above, depend on whether or
not you draw a number. After all 10 games have been completed, one of the 10 games will
be randomly chosen for payment. Each game has an equal chance of being chosen and so
you will want to do your best in each game. Your points from the chosen game will be
converted into dollars at the rate of 1 point = $0.15 (15 cents). Thus, the more points
you earn, the greater are your monetary earnings. In addition, you are guaranteed $7 for
showing up to today’s experiment. You will be paid your show-up payment, together with
your earnings from the first part of the experiment and your earnings from the second part
of the experiment at the end of today’s session. All payments will be made in cash and in
private. At then end of this first part of the experiment, you will receive further instructions
for how to complete part 2 of the experiment.

Questions?

Now is the time for questions. If you have a question about any aspect of these instructions,
please raise your hand and an experimenter will answer your question.
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Quiz

Before we start today’s experiment we ask you to answer the following quiz questions that
are intended to check your comprehension of the instructions. The numbers in these quiz
questions are illustrative; the actual numbers in the experiment may be quite different.
Before starting the experiment we will review each participant’s answers. If there are any
incorrect answers we will go over the relevant part of the instructions again.

1. Each game consists of rounds. Your position in the game circle one: changes
remains the same in each game.

2. The distribution of numbers you are drawing from: Circle one:

a. Changes over time.

b. Is unknown.

c. Is unknown, but all possible numbers lie between 0 and 100, non-inclusive, and
the distribution does not change over time.

3. Before deciding whether to draw a number you can see the highest number drawn so
far in the current game. Circle one: True False

4. If you choose NOT to draw a number, then your point earnings will be equal to: Circle
one:

a. the highest number drawn earlier in the current game, (or 0.00 if no number has
been drawn yet)

b. the highest number drawn earlier in the current game (or 0.00 if no number has
been drawn yet) plus your 10 point endowment.

c. your 10 point endowment.

5. If you choose to draw a number, you lose your 10 point endowment for the current
game. Circle one: True False Do you get a new endowment of 10 points for each
new game? Circle one: Yes No.

6. Consider the following scenario. The current highest number is 65.56. You choose to
draw a number which turns out to be 73.21 What is your payoff in points for the game
in this case? What would have been your payoff in points if you did not choose
to draw a number?

7. Consider the following scenario. The current highest number is 56.71. You choose to
draw a number, which turns out to be 31.03. What is your payoff in points this case?

What would have been your payoff in points if you did not choose to draw a
number?

8. At the end of the experiment, one game will be randomly chosen. Your point earnings
from that game will be converted into dollars at the conversion rate of 1 point = $ .
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C Simulations of Behavior

(a) KDNR # of draws (b) KDNR Max Draw Dist.

(c) KDR # of draws (d) KDR Max Draw Dist.

(e) UDNR # of draws (f) UDNR Max Draw Dist.

(g) UDR # of draws (h) UDR Max Draw Dist.

Figure 11: Simulations of behavior of # of draws and maximum draws in a 10 person game.
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