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We compare two fixed-prize mechanisms for funding public goods, an all-pay auction and 

a lottery, where public good provision can only occur if the participants’ contributions 

equal or exceed the fixed-prize value. We show that the provisional nature of the fixed- 

prize means that efficiency and endowment conditions must both be satisfied to assure 

positive public good provision. Our main finding is that provisional fixed-prize lotteries 

can outperform provisional fixed-prize all-pay auctions in terms of public good provision 

when endowments are large relative to prize values. We test these predictions in a labora- 

tory experiment where we vary the number of participants, the marginal per capita return 

(mpcr) on the public good, and the mechanism for awarding the prize, either a lottery or 

an all-pay auction. Consistent with the theory, we find that the mpcr matters for contri- 

bution amounts under the lottery mechanism. However, inconsistent with the theory, bids 

are significantly higher than predicted and there is no significant difference in the level of 

public good provision under either provisional, fixed-prize mechanism. We consider sev- 

eral different modifications to our framework that might help to explain these departures 

from theoretical predictions. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

How should a public good be financed? Since Morgan (20 0 0) first demonstrated that fixed-prize charitable lotteries could 

yield greater contributions to a public good than the voluntary contribution mechanism (VCM), several papers have sought 

to confirm this result in the laboratory and the field, see, e.g., Morgan and Sefton (20 0 0) , Lange et al. (2007) , Orzen (2008) ,

Schram and Onderstal (2009) , Corazzini et al. (2010) , and Onderstal et al. (2013) among others. Moreover, several studies,

see Orzen (2008) , Schram and Onderstal (2009) , Corazzini et al. (2010) , and Onderstal et al. (2013) compare public good

provision under fixed-prize lotteries and various types of fixed-prize auctions. A common, (though not universal) finding in 

this literature is that fixed-prize fundraising mechanisms generally outperform the VCM in terms of raising funds, though 

the various studies do not all agree on which mechanism for awarding the fixed-prize works best. 
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In this paper, we compare the performance of two provisional fixed-prize fundraising mechanisms – a lottery and an 

all-pay auction – where the value of the fixed prize must be financed by the fundraising mechanism itself. Under the 

provisional, self-financing fixed prize mechanisms we study, if endowments are not sufficiently large or if the mechanism 

does not raise funds sufficient to cover the amount of the fixed prize, then there is no public good provision and any

contributions are refunded. Such provisional, self-financing fixed-prize mechanisms are attractive, as the fund-raiser does not 

bear any risk as to whether the cost of the prize awarded (e.g., a car) can be covered by the contributions of participants. 1 

Indeed, we do not observe non-provisional fixed-prize charitable fundraising mechanisms in the field unless the prize itself 

is a charitable donation. For instance, many charitable fundraising mechanisms have the structure of parimutuel-betting 

systems in that the prize amount is endogenously determined and equal to some fixed percentage of the total amount 

raised by the mechanism (typically a lottery). For example, in the U.S. many small charitable organizations sell tickets to 

“50-50” lotteries where the endogenously determined monetary prize is 50 percent of the total value of all tickets sold; the 

remaining 50 percent goes to the charity. 

However, as Morgan (20 0 0) has clearly shown, pure parimutuel prized-based lottery mechanisms have the disadvantage 

that they generate contribution incentives equivalent to those of the VCM, that is, the equilibrium public good provision 

under a parimutuel-prize lottery mechanism is the same as under the VCM. Morgan shows that an alternative mechanism 

that avoids this problem is a provisional but fixed -prize fundraising mechanism and this type of mechanism is the focus

of our paper. Provisional fixed-prize fundraising mechanisms are also found in the field. A typical setting is a fundraising 

drive by a local charitable organization that asks for donations from a small, finite population of n potential contributors 

and offers a fixed cash prize or a prize of fixed value (e.g., a car) provided that funds are raised that are sufficient to cover

the value of the prize. For example, the Rotary Club of Pawtucket, Rhode Island holds an annual fundraiser in the form of a

raffle. In the May 2011 raffle 2 the grand prize was fixed at $10,0 0 0 cash. Three hundred tickets were offered at $100 each

and all ticketholders were also invited to a luncheon. The contest rules clearly state that “If less than 150 tickets are sold,

all ticket money will be refunded and the drawing will not take place.” In this contest, 276 tickets were sold so the raffle

was held. After subtracting the $10,0 0 0 prize, the charity netted $17,600 less the cost of the luncheon. This is an example

of the kind of provisional fixed-prize lottery mechanism that we study in this paper. 

Our main focus is on whether lottery or all-pay auction provisional fixed-prize mechanisms are better for public good 

provision in settings where all players are ex-ante identical and have equal budget constraints. In this setting we provide an

overview of theoretical results showing that a necessary condition for positive public good provision under both provisional 

fixed-prize mechanisms is that the endowments of the n contributors must be sufficiently high to finance the prize and that

public good provision must be efficient. If public good provision is not efficient or if the endowment conditions are not sat-

isfied, then equilibrium contributions to the public good will be zero under both provisional fixed-prize mechanisms (lottery 

or all-pay auction). 3 We further calculate the prize value that maximizes public good contributions under both provisional 

fixed prize mechanism. Finally, we demonstrate that if public good provision is efficient and if individual endowments are 

very large relative to the provisional fixed-prize amount, then any pure or mixed strategy equilibrium under the all-pay 

auction mechanism will involve zero public good provision while the unique symmetric pure strategy equilibrium under 

the lottery mechanism under these same endowment and efficiency conditions will always yield positive public good pro- 

vision. That is, our main theoretical finding is that under certain empirically plausible endowment conditions, the use of a 

provisional-fixed prize lottery mechanism can outperform the use of a provisional fixed prize all-pay auction mechanism in 

terms of public good provision. This finding is new to the literature. It stands in contrast to results (discussed in section

2) showing that all-pay auctions for awarding exogenously given fixed prizes generate greater public good provision than 

do lotteries. The key reason for our different finding is the assumption that the fixed-prize is not exogenously given, but is

only provisionally provided if contributions equal or exceed the value of the fixed-prize. Based on our theoretical findings, 

we argue that when endowments are large relative to prize values, which in many instances may be a reasonable assump-

tion (e.g., if endowments are viewed as liquid assets), then lotteries might be preferred to all-pay auctions as fundraising 

mechanisms in the provisional, fixed-prize environment that we study. 

In addition to pointing out some theoretical differences between self-financed (provisional) and exogenous (non- 

provisional) fixed-prize fundraising mechanisms, we have also conducted an experiment to test some of the comparative 

statics implications of the theory that we developed for provisional, fixed-prize fundraising mechanisms. We use a 2 × 2 × 2 

experimental design where the treatment variables are: (1) all-pay auction or lottery rules to determine the prize winner; 

(2) group size n = 2 or n = 10 and (3) marginal per capita return ( mpcr) on the public good, β = . 25 or β = . 75 . A novelty

of our study over existing experimental studies is that we vary both the group size, n , and the mpcr, β , in addition to

comparing the two different provisional, fixed prize fundraising mechanisms and we also consider the role of efficiency. 

Our theoretical findings indicate that, under certain conditions, public good provision can be greater under the provi- 

sional, fixed-prize lottery mechanism than under the corresponding all-pay auction mechanism for the same number of 
1 Indeed, these provisional fixed-prize mechanisms are similar to non-prize-based provision-point public good mechanisms (e.g. Bagnoli and Lip- 

man (1989) ) in which the public good is not provided unless contributions exceed a certain threshold. 
2 Details available at http://pawtucketrotaryfundraiser.eventbrite.com/ Rotary clubs are charitable organizations of business and professional leaders that 

are devoted to providing health and education services and to alleviating poverty. 
3 Under an alternative assumption of exogenously given (non-provisional) fixed prizes, the use of lotteries or all-pay auctions to award the exogenously 

given fixed prize does not require that public good provision be efficient for there to exist an equilibrium with positive public good provision. 
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participants, n , and marginal per capita return ( mpcr) on the public good. Under other conditions, the reverse is true – see

the discussion in Section 3 . We focus on the environment where the lottery is predicted to outperform the all-pay auction. 

Our experiment has yielded the following findings. First, consistent with the theory, contributions to the public good in- 

crease with the mpcr under the provisional fixed-prize lottery mechanism. However, opposite to the theory, contributions to 

the public good increase with the mpcr in the all-pay auction mechanism and, for a given mpcr, the average amount bid by

each participant increases with the total number of participants, n , under both fixed-prize mechanisms. Consequently, public 

good provision also increases with n , a finding that is consistent with theoretical predictions for the lottery mechanism but

is in consistent with theoretical predictions for the all-pay auction mechanism; in the latter, for a given mpcr, expected public

good provision should remain at zero as n increases. Further, for most values of n and the mpcr considered in this experi-

ment, the amounts bid are significantly greater than theoretical predictions, though there is some decline in bids as subjects 

gain experience. Finally, and most significantly, for any given mpcr and n , we find no significant difference in the amount of

public good provision under either provisional, fixed-prize mechanism. Thus, despite a theoretical prediction of zero contri- 

butions under the parameterization of the all-pay auction mechanism that we study, we find that contributions under that 

mechanism are significantly positive and no different from those under the lottery mechanism where positive contributions 

are predicted. We consider several explanations for the excessive contributions that we observe and for the absence of any 

difference in bidding behavior across the two mechanisms. These include learning, risk aversion, joy-of-winning preferences, 

social preferences, departures from expected utility maximization and biased judgments about the game being played. 

The rest of this paper is organized as follows. Section 2 situates our paper in the theoretical and experimental literature.

Section 3 presents the theory. Section 4 describes our experimental design and Section 5 reports our main experimental 

findings. Section 6 discusses the relationship between our experimental findings and the theoretical predictions, and how 

differences might be resolved, and Section 7 provides a summary and conclusions. 

2. Related literature 

There are several prior theoretical and experimental studies of lotteries and/or auctions as fundraising mechanisms that 

we build upon or that are related to this paper. Morgan (20 0 0) initiated the literature by exploring the performance of both

provisional and non-provisional fixed-prize and parimutuel lottery mechanisms and he provides conditions under which 

fixed-prize lotteries outperform the VCM in public good provision. Morgan and Sefton (20 0 0) provide experimental evidence 

in support of Morgan’s (20 0 0) theoretical predictions. Importantly, Morgan and Sefton (20 0 0) adopt an experimental design

where the fixed prize offered is not provisional on contributions being sufficient to cover that prize amount. They note (in

footnote 6, p. 787) that “while this assumption [of a non-provisional prize] is patently unrealistic, the results are unchanged 

by more realistically allowing the raffle [lottery] to be called off and the bets returned in the event that insufficient wagers

are made.” While it is possible that results are unchanged by making the fixed-prize provisional, this is not a general result.

Morgan (20 0 0) results clearly require that public good provision be efficient for the fixed-prize mechanism to generate 

positive public good provision. Here we emphasize the importance of this efficiency condition, showing that it plays a 

critical role in public good provision under provisional fixed-prize mechanisms, and in our experiment, we also consider 

treatments where public good provision is or is not efficient. 

Goeree et al. (2005) compare lotteries with auctions in the case where bidders have independent private values for a prize

object and where all proceeds from the fundraising mechanism accrue to a public good (charity) for which all bidders derive

some benefit. In their setting, the prize object is exogenously given (e.g., a donated good) and thus not provisional on the

amounts bid. 4 They observe that while lotteries may be preferred to winner-pay auctions, lotteries are always inefficient and 

may generate less revenue when compared with k -price all–pay auctions, where the winner is the individual submitting 

the highest bid, the k highest bidders pay the k th highest bid and all other (lower) bidders pay their bids. Goeree et al.

provide conditions under which the lowest-price all pay auction is the optimal fundraising mechanism in that it generates 

the most revenue and assures that the prize is awarded to the individual with the highest valuation. Schram and Onder-

stal (2009) experimentally compare lotteries, winner-pay and all-pay auctions where, as in Goeree et al. (2005) ), participants 

have independent private values for a non-provisional prize good. Schram and Onderstal report that all-pay auctions outper- 

form the other two mechanisms in charitable fundraising. By contrast, our paper compares lotteries and first-price all–pay 

auctions under complete information, where all participants are certain of the value that others assign to winning the provi- 

sional fixed prize. This setting, while simple, allows us to derive equilibrium predictions for bidding strategies and expected 

public good provision levels as functions of the number of bidders, n , and the marginal per capita return on the public

good, β. 

Orzen (2008) theoretically and experimentally compares the VCM with non-provisional lotteries and all-pay auctions. 

His theoretical findings for the all-pay auction are different from ours as he allows negative public good provision, i.e., 

if the prize is not covered by contributions, the public good provided can be negative. Moreover, the setting of Orzen’s

experiment is also different. He considers a single parameterization of the model, β = 0 . 5 and n = 4 and compares how

different fundraising mechanisms perform for those parameters. Like us, he finds no significant difference between lotteries 
4 The assumption of an exogenously given prize (auction object) that is already in the possession of the charity (seller) follows the tradition in the 

auction literature. However, in a charity auction this assumption is not necessarily appropriate, for instance, if the charity does not initially have a prize to 

offer or must buy a prize. 
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and all-pay auctions for the parameterization that he studies. Corazzini et al. (2010) also compare the VCM with non-

provisional lotteries and all-pay auctions when β = 0 . 5 and n = 4 , but they are more interested in the effect of heterogeneity

in individual endowments. They report that in their setting contributions are significantly higher under the non-provisional 

fixed-prize lottery than under the non-provisional fixed-prize all-pay auction. Faravelli and Stanca (2014) compare non- 

provisional lotteries and all–pay auctions with or without a public good component. They find (as we do) that the difference

in bidding behavior between the two mechanisms is greatly reduced when bidding is for a public good that enters into

players’ payoff functions relative to the other case they study of pure rent-seeking contests (no public good). Damianov and 

Peeters (2018) report on an experiment similar to Orzen’s, but in a setting where there are some bystander bidders who

have no budget to contribute to the public good but who benefit from it nonetheless. In this setting they show theoretically

that the lowest bid, all pay auction maximizes expected revenue relative to a lottery or an own-bid all pay auction and they

provide experimental evidence in support of these predictions. 

In all of these prior experimental studies the prizes are exogenously given (non-provisional). The importance of making 

the fixed prize provisional is demonstrated by the findings of Landry et al. (2006) and Lange et al. (2007) . In a field exper-

iment, Landry et al. (2006) report that total individual donations were less than the non-provisional fixed-prize value; for 

instance, their $1,0 0 0 fixed-prize lottery treatment raised just $688 in total contributions! A similar finding is reported in

Lange et al. (2007) who use β = 0 . 3 and n = 4 in their experiments. They find that under a non-provisional fixed-prize lot-

tery mechanism, total contributions were insufficient to finance the non-provisional fixed prize (total contributions averaged 

about one-half of the prize value). These findings point to the importance of considering provisional fixed-prize mechanisms. 

Indeed, the main difference in our experimental design from all prior experimental studies in the literature on prize-based 

mechanisms is that we award the fixed prize only if contributions to the public good equal or exceed the amount of the

fixed prize. 

Among other related papers, Giebe and Schweinzer (2014) devise lottery schemes that use taxes on private goods 

to finance efficient allocations to a public good in a manner that does not distort consumption of the private good.

Davis et al. (2006) compare lotteries to English (winner-pay) auctions. They find that lotteries generally outperform English 

auctions in public good provision despite the fact that revenues are predicted to be the same under these two mechanisms.

Carpenter et al. (2008) compare first price all-pay charity auctions with first- and second-price charity auctions in a field 

experiment and report that the first-price charity auction revenue dominates the all-pay charity auction counter to theo- 

retical predictions. They attribute their finding to greater participation in the first-price as opposed to the all-pay auction 

formats by the bidders in their study who (unlike this study) could decide whether or not to participate in charity auctions.

Carpenter and Matthews (2017) generalize the Morgan (20 0 0) model replacing the linear raffle contest success function with

a generalized Tullock et al. (1980) contest success function and, in a field experiment, vary whether the chances of winning

accrue faster (convex case) or slower (concave case) as bidders bid more. They find that revenues are highest in the convex

case and this design, as convexity increases is, in the limit an all-pay auction. Onderstal et al. (2013) compare the VCM,

fixed-prize private value lottery and fixed-prize private value all-pay auction mechanisms in a field experiment. They report 

that the VCM raises the most money, the fixed prize lottery raises the next greatest amount and the all-pay fixed prize auc-

tion raises the least. They suggest that the prize they offered (a Nintendo DS game console and software valued at € 169)

in their lottery and all-pay auction treatments may have crowded out intrinsic, pro-social motivations for giving among the 

300 participants in each contest. 

Finally, we note that Dechenaux et al. (2015) provide a survey of this experimental literature in the context of the

broader contest literature. Relevant to this paper, there is already substantial evidence for bidding in excess of Nash 

equilibrium predictions in lottery and all-pay auction experiments without a public good component. For instance. Davis 

and Reilly (1998) find pervasive overbidding in all-pay auctions which diminishes but does not disappear with experi- 

ence. They rule out risk aversion as an explanation; indeed, over-bidding would generally require risk-loving preferences. 

Gneezy and Smorodinsky (2006) , test the notion that overbidding in all-pay auctions is due to mistakes which aggregate 

with the size of the group, but in their experiment they find that seller revenue is largely independent of group size.

Lugovskyy et al. (2010) show that over-bidding in all-pay auctions can only be eliminated with a combination of substantial 

experience, a partners matching protocol and a change in the strategy space that permits negative bids. In the lottery contest 

literature, ( Sheremeta, 2010 ) show that groups are less prone to overbidding than are individuals. ( Sheremeta, 2011 ) explores

how bounded rationality and the size of the endowment can explain over-bidding. Overbidding has also been attributed to 

non-monetary utility from winning ( Schmitt et al., 2004 ), ( Sheremeta, & Zhang ). Finally, overbidding may be due to social

preferences, in particular inequality aversion and spiteful preferences ( Herrmann and Orzen, 2008; Bartling et al., 2009 ), 

3. Theory 

We consider how two different n -player fixed-prize mechanisms affect public good provision. We first explore the case 

where the fixed prize, V , is awarded to the mechanism-determined winner regardless of whether total contributions less or 

more than V . Formally, in this “exogenous” or “ non-provisional” fixed-prize case, player i maximizes her expected payoff, 

which is given by: 

u i ( x i , x −i ; n, β, M ) = ( e − x i ) + β

( 

n ∑ 

j=1 

x j 

) 

+ M ( x i , x −i ; n ) V, (1) 
437 
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by choosing her contribution level x i ≤ e , where e > 0 is player i’s endowment ( e is assumed to be the same for all n

participants), 0 < β < 1 is the marginal per capita return on the public good (also the same for all participants), and V > 0

is the fixed-prize amount awarded to the winner under the mechanism, M, which is either a lottery or an all-pay auction.

We will call problem ( 1 the exogenously given (or non-provisional) fixed-prize mechanism. 

We next consider the self-financing, provisional fixed-prize mechanism that is the focus of this paper. We assume that 

player i maximizes her expected payoff which is given by: 

πi ( x i , x −i ; n, β, M ) = {
( e − x i ) + β

(∑ n 
j=1 x j − V 

)
+ M ( x i , x −i ; n ) V, if 

∑ n 
j=1 x j ≥ V, 

e, if 
∑ n 

j=1 x j < V, 
(2) 

by choosing her contribution level x i ≤ e , and V is the fixed-prize amount provisionally awarded to the winner under the

self-financing mechanism M. Note that the threshold level for public good provision is V . If this threshold level is not

reached, then the fixed prize amount V is not awarded and all contributions are refunded so that each player’s payoff is

equal to her endowment, e . 5 If the threshold level is reached, 
∑ n 

j=1 x j ≥ V , then the prize, V , is financed first and awarded

to the winner and the remaining amount, 
(∑ n 

j=1 x j − V 
)
, goes toward public good provision. We will call problem (2) the

self-financed, provisional fixed-prize mechanism. 

3.1. Lottery 

If the mechanism, M, for awarding the non-provisional fixed prize is a lottery, then (1) becomes 

u i ( x i , x −i ; n, β, Lottery ) = ( e − x i ) + β

( 

n ∑ 

j=1 

x j 

) 

+ 

(
x i ∑ n 

j=1 x j 

)
V. 

It is well-known, see Morgan and Sefton (20 0 0) and Orzen (2008) , that there exists a unique symmetric pure-strategy

equilibrium where each player spends 

x ∗ = min 

{
(n − 1) 

n 

2 

V 

(1 − β) 
, e 

}
, (3) 

and public good provision is equal to 

G = nx ∗ = min 

{
(n − 1) 

n 

V 

(1 − β) 
, ne 

}
. 

Now consider the self-financing, provisional fixed-prize lottery mechanism. In that case, (2) becomes 

πi ( x i , x −i ; n, β, Lottery ) = { 

( e − x i ) + β
(∑ n 

j=1 x j − V 

)
+ 

(
x i ∑ n 

j=1 x j 

)
V, if 

∑ n 
j=1 x j ≥ V, 

e, if 
∑ n 

j=1 x j < V. 

3.1.1. No public good provision 

First note that under the provisional, fixed-prize mechanism, the endowment size and the fixed-prize value become 

important considerations in whether the public good is provided or not. If the symmetric endowment amount e, is too 

small, or alternatively, if the fixed prize value, V, is too large then players cannot collect enough funds to finance the fixed-

prize (even if they spend their entire endowment). In such situations, when V > ne , the public good is never provided. This

problem does not arise under the non-provisional fixed prize mechanism because in that case the prize is exogenously given 

and any positive contribution leads to public good provision. 

Consider next the case where V < ne so that the fixed-prize value can be covered and public good provision becomes a

possibility. In this case there remains what can be termed a “public-good-game” effect. The typical public good game has 

an equilibrium where each player contributes nothing. It turns out that the provisional fixed-prize lottery mechanism has 

this property as well. To summarize, 

Proposition 1. Consider the self-financing provisional fixed-prize lottery mechanism. 

1. Suppose that the symmetric endowment is too small, or 

0 < e ≤ V 

n 

. (4) 

Then, any strategy profile ( x 1 , . . . , x n ) is a Nash equilibrium. 
5 We assume there are no credibility issues with respect to whether the prize amount is raised or not, which is analogous to the standard assumption 

that there is no credibility issue with whether the public good is provided. 
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2. Suppose that the symmetric endowment is 

e > 

V 

n 

. (5) 

Then, there exists a set of pure-strategy Nash equilibria. 6 This set can be characterized in the following way { 
( x 1 , . . . , x n ) : max 

i 
X −i ≤ ( 1 − β) V and x i + X −i ≤ V 

} 
, 

where X −i = 

∑ 

j � = i x j . 

The public good is not provided in all of these equilibria. 

The proof is straightforward and is thus omitted. 

The second part of the proposition is intuitive: given the contributions of the other players −i , player i is indifferent

between contributing nothing or contributing the amount ( V − X −i ) which is exactly enough to finance the prize in any 

equilibrium in the set of equilibria. This indifference property holds for all players in all equilibria in Proposition 1 . Con-

tributing more than ( V − X −i ) is dominated by contributing ( V − X −i ) . 

Proposition 1 contrasts with the equilibrium of the non-provisional fixed-prize lottery mechanism. Recall that under the 

latter mechanism there is a unique equilibrium where the public good is always provided and there is no public-good-game 

effect. The intuition for this result is easy to comprehend: since the prize is given, if all other players contribute nothing, a

player prefers to contribute a small amount and therefore to win the prize and to benefit from public good provision instead

of making a zero contribution. 7 

3.1.2. Public good provision 

It turns out that the provisional fixed-prize lottery mechanism does have a unique, symmetric pure-strategy equilibrium 

where the public good is provided. A necessary condition for such an equilibrium is the efficiency condition: 

βn > 1 . (6) 

Note that the efficiency condition (6) does not play any role under the exogenously given fixed-prize lottery mechanism –

see expression (3) . The following result is a version of Morgan (20 0 0) . 8 

Proposition 2. Consider the self-financing provisional fixed-prize lottery mechanism. The endowment condition (5) and the ef- 

ficiency condition (6) both hold if and only if there exists a unique pure-strategy Nash Equilibrium (NE) ( x 1 , . . . , x n ) , where the

public good is provided and 

x i = min 

{
(n − 1) 

n 

2 

V 

( 1 − β) 
, e 

}
. 

Public good provision (less the fixed-prize value V ) is given by: 

˜ G = nx ∗ − V = min 

{
( βn − 1 ) 

n ( 1 − β) 
V, ne − V 

}
> 0 . (7) 

From (7) we see that in the efficient case, public good provision is increasing in both n and β . However, in the inefficient

case, where condition (6) does not hold, the public good is not provided under the provisional fixed-prize lottery mechanism 

though it would be provided if the prize were exogenously given. This difference is intuitive. If the prize is exogenously

given, then players can not only win the prize, (as they do in a standard non-public good lottery), but they can also receive

benefits from the public good. As a result, players find it optimal to bid positive amounts and the public good is provided.

However, if the fixed prize is provisional and self-financed, then total spending has to be high enough to finance the fixed

prize which can only happen if it is efficient to provide the public good in the first place. Note that the endowment also

plays an important role in the success of the self-financing mechanism: the endowment must be large enough to allow 

players to finance the prize. The endowment size does not matter in the case of an exogenously given prize. 

Proposition 2 shows that there is a unique symmetric pure-strategy equilibrium under the provisional fixed-prize lottery 

mechanism involving public good provision for any fixed-prize value V < ne in the efficient case. Morgan (20 0 0) discusses

the optimal prize value in the case of quasi-linear preferences. He shows that the higher is the prize, the closer is the out-

come to the first-best. An obvious question in our setting with budget constraint is: given the endowment e , and assuming

that efficiency holds, what prize value, V , maximizes public good provision? By contrast with Morgan’s case without budget 
6 Of course, there is a continuum of mixed-strategy equilibria, where each player randomizes among her strategies in this equilibrium set. 
7 Morgan (20 0 0) assumes that ”wealth constraints are ... to be non-binding for all consumers” and analyzes when public good is provided in an equilib- 

rium. See his footnote 9. 
8 Morgan (20 0 0) as well as Orzen (2008) only focus on the efficient case when condition (6) holds. Note that if the efficiency condition (6) does not hold, 

then all contributions are refunded and public good provision is equal to zero under a provisional, self-financed lottery. Public good provision is negative 

in Morgan and Sefton (20 0 0) if the efficiency condition (6) does not hold. 
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constraints, there are two competing effects in determination of the optimal prize value. First, a higher prize encourages 

higher individual contributions; this is captured by the term 

( βn −1 ) 
n ( 1 −β) 

V in (7) . Second, a higher prize value means that less

will be spent for public good provision as individuals’ contributions have to finance that higher prize value first; this is

captured by the term ne − V in (7) . Since public good provision is the smaller of these two terms, the optimal prize makes

these two competing effects equal. The following corollary of Proposition 2 answers the question. 

Corollary 2.1. Consider the self-financing, provisional fixed-prize lottery mechanism. Suppose that the endowment condition 

(5) and the efficiency condition (6) both hold. Then, for a given number of participants, n , and endowment e , 

V 

L = 

n 

2 

( n − 1 ) 
( 1 − β) e 

is the prize value that maximizes public good provision. The highest possible public good provision (less the fixed-prize V ) is: ˜ G 

L = 

n 

( n − 1 ) 
( βn − 1 ) e. 

Proof. See Appendix A . �

3.2. All-Pay auction 

If the mechanism M is an all-pay auction 

9 , then (1) becomes 

πi ( b i , b −i ; n, β, All-pay auction ) = ⎧ ⎨ ⎩ 

V + ( e − b i ) + β
(∑ n 

j=1 b j 
)
, if b i > b j for any j � = i, 

V 
K 

+ ( e − b i ) + β
(∑ n 

j=1 b j 
)
, if i ties ( K − 1 ) others for the high bid , 

( e − b i ) + β
(∑ n 

j=1 b j 
)
, if b i < b j for some j � = i. 

(8) 

Note that we use b rather than x to denote “bids” under the all-pay auction mechanism. In this case, 

Orzen (2008) proves 10 that if 

0 < e ≤ V 

( 1 − β) n 

, 

then there exists a symmetric pure-strategy equilibrium where each player bids his entire endowment, e . He also demon- 

strates that if 

e ≥ V 

( 1 − β) 
, (9) 

then there exists a symmetric mixed-strategy equilibrium where each player bids in the interval 

[ 
0 , V 

1 −β

] 
according to the 

following distribution function: 

F ( b ) = 

(
( 1 − β) 

b 

V 

) 1 
n −1 

. (10) 

Note that expected public good provision in the latter case is positive and is given by: 

EG = n 

∫ V 
1 −β

0 

bdF ( b ) = 

V 

1 − β
. 

Finally, if 

V 

( 1 − β) n 

< e < 

V 

( 1 − β) 
, 

then there exists a symmetric mixed-strategy equilibrium where each player bids his entire endowment, e , with probability 

p and bids in the interval 

[ 
0 , ( 

1 −p ) n −1 V 
1 −β

] 
according to the distribution function F in (10) with probability ( 1 − p ) , where 

probability 0 < p < 1 is a unique positive solution of the following equation: 

1 − ( 1 − p ) 
n 

p 
= 

( 1 − β) n 

V 

e. 
9 See Baye et al. (1996) for a complete characterization of equilibria in the complete information version of the first price all-pay auction without a 

public good component. 
10 Orzen considers self-financing mechanisms, see his Eq. (1) . However, his results are correct only in the case where the fixed prize is exogenously given. 

Therefore, we view ( Orzen, 2008 ) as studying the case of non-provisional fixed prizes, i.e., the setting with the payoff function (8) . 
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We now turn to the self-financing provisional fixed-prize all-pay auction mechanism that is the focus of this paper. In 

that case, (2) becomes 

πi ( b i , b −i ; n, β, All-pay auction ) = (11) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

V + ( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if b i > b j for any j � = i and 

∑ n 
j=1 b j ≥ V, 

V 
K 

+ ( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if i ties ( K − 1 ) others for the high bid and 

∑ n 
j=1 b j ≥ V, 

( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if b i < b j for some j � = i and 

∑ n 
j=1 b j ≥ V, 

e, if 
∑ n 

j=1 b j < V. 

3.2.1. No public good provision 

As in our analysis of the provisional fixed-prize lottery, we first consider the role of the endowment, e , relative to the

fixed prize value, V . If condition (4) holds, then the prize value is so high that players do not have enough resources to

finance the prize and, as a result, the public good is never provided in any equilibrium in this case. 

Second, we consider the public-good-game effect. It turns out that the self-financed provisional fixed-prize all-pay auc- 

tion also has this property. The intuition is clear: if all other players contribute nothing or very little, then a player has to

finance the prize (almost) alone in order to get it. Formally, 

Proposition 3. Consider the self-financing provisional fixed-prize all-pay auction mechanism. 

1. ( b 1 , . . . , b n ) = ( 0 , . . . , 0 ) is a pure-strategy NE. 

2. Suppose that condition (4) holds. Then, any strategy profile ( b 1 , . . . , b n ) is a Nash equilibrium. 

3. Suppose that the endowment condition 

V 

n 

< e < V 

holds. Then, there exists a set of pure-strategy Nash equilibria. 11 This set can be characterized in the following way { 
( b 1 , . . . , b n ) : max 

i 
B −i < V − e 

} 
, 

where B −i = 

∑ 

j � = i b j . 

The public good is not provided in all of these equilibria. 

The proof is straightforward and is thus omitted. 

The intuition for the second part of the proposition is straightforward: given the contributions of the other players, −i ,

player i does not have enough resources (her endowment is too small) to finance the prize and, therefore, she is indifferent

among all her choices in any equilibrium in the set of equilibria. This indifference property holds for all players in all

equilibria in Proposition 3 . Note that the endowment has to satisfy the condition e < V in Proposition 3 . 

By contrast, the non-provisional fixed-prize all-pay auction does not have a public-good-game effect. Again, the intuition 

is clear: since the prize is given, if all other players contribute nothing, a player prefers to contribute a small amount and

therefore to win the prize and to benefit from public good provision instead of making a zero contribution. 

3.2.2. Public good provision 

The provisional fixed-prize all-pay auction can also have equilibria where the public good is provided. As in the provi- 

sional fixed-prize lottery case, a necessary condition for such an equilibrium under the all-pay auction mechanism is that 

the efficiency condition (6) holds. Note that the efficiency condition (6) does not play any role in the exogenously given

fixed-prize all-pay auction. 

Proposition 4. Consider the self-financing provisional fixed-prize all-pay auction. Suppose that the efficiency condition (6) and 

the following endowment condition 

V 

n 

< e < 

V 

( 1 − β) n 

(12) 

both hold. Then, there exists a pure-strategy NE, ( b 1 , . . . , b n ) = ( e, . . . , e ) , where the public good is provided. Public good provision 

(less the fixed-prize value V ) is given by: ˜ G = ne − V > 0 . 

Suppose that the efficiency condition (6) does not hold. Then, the public good is not provided in any pure-strategy equilibrium. 

Proof. See Appendix A . �
11 Of course, there is a continuum of mixed-strategy equilibria, where each player randomizes among her strategies in this equilibrium set. 
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Fig. 1. Illustration of Equilibrium Possibilities involving Positive Public Good Provision under the Provisional Fixed Prize All-Pay Auction Mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It turns out that if e = 

V 
( 1 −β) n 

, then ( b 1 , . . . , b n ) = ( e, . . . , e ) is a pure-strategy NE, where the public good is provided.

However, ( b 1 , . . . , b n ) = ( 0 , e, . . . , e ) might also be a pure-strategy NE, where the public good is provided, depending on 

parameters β and n . We consider the case of such asymmetric pure-strategy NE in the following proposition. 

Proposition 5. Consider the self-financing provisional fixed-prize all-pay auction. Suppose that there exists k ∈ { 1 , . . . , n − 2 } such 

that the following endowment condition 

V 

( 1 − β) ( n − k + 1 ) 
< e ≤ V 

( 1 − β) ( n − k ) 
(13) 

holds. If the following efficiency condition 

β( n − k ) > 1 (14) 

holds, then there exist C k n = 

n ! 
k ! ( n −k ) ! 

asymmetric pure-strategy NE, where ( n − k ) players bid their entire endowment, e , while the 

other k players bid zero. Public good provision (less the fixed-prize value V ) is given by: ˜ G = ( n − k ) e − V > 0 . 

If 

V 

2 ( 1 − β) 
< e, (15) 

then there exists a unique equilibrium, ( 0 , . . . , 0 ) , where the public good is not provided. 

Proof. See Appendix A . �

Fig. 1 illustrates the endowment and efficiency conditions for the set of equilibria characterized in Propositions 4 and 5 .

Note that in all equilibria where the public good is provided, each player either contributes nothing or their whole endow-

ment. Players cannot contribute “small” amounts in equilibrium because a small bid means that the player loses the auction 

(i.e., does not win the prize). Therefore, the highest payoff such a player can get is −b + βb = (1 + β) b < 0 for any 0 < b < e .

Hence, bidding zero is strictly better than bidding a small amount. 

Here is some intuition for this result. A player’s bid, b > 0 , is her cost for the all-pay auction with public good provision.

The benefits are the public good provided (if any) and the prize amount if she wins. The public good benefit from a player’s

own bid is at most βb, because the prize has to be financed first. If the player’s bid is ǣsmall” the player never wins the

auction and so there are no prize benefits. Therefore, the cost of any “small” bid is always greater than the benefit. 

Propositions 3 –5 characterize the range of parameters under which the provisional, fixed-prize all-pay auction mecha- 

nism yields public good provision. First, if the endowment is too small, i.e., if 0 < e ≤ V 
n , then the public good is never pro-

vided, from Proposition 3 . Second, if the endowment is too large, e > 

V 
2 ( 1 −β) 

, then the public good is again never provided,

from Proposition 5 . This means that the public good can be provided only if the endowment is in the intermediate range,
V 
n < e ≤ V 

2 ( 1 −β) 
. We shall refer to endowments in this range as a being “medium” endowments. Moreover, Propositions 4 and

5 demonstrate that public good provision depends on efficiency as well. If it is efficient to provide the public good even 

for just two players, i.e., if 2 β > 1 , then for any endowment in the range 

(
V 
n , 

V 
2 ( 1 −β) 

] 
the public good is provided in a

pure-strategy equilibrium, from Propositions 4 and 5 . If it is efficient to provide the public good for three or more players,

3 β > 1 > 2 β , then for any endowment in the smaller range 

(
V 
n , 

V 
3 ( 1 −β) 

] 
the public good is provided in a pure-strategy equi-

librium, and so on. Finally, if it is efficient to provide the public good only for all n players, nβ > 1 > ( n − 1 ) β , then for any

endowment in the smallest range 

(
V 
n , 

V 
n ( 1 −β) 

] 
the public good is provided in a pure-strategy equilibrium, from Proposition 4 . 

Note that if it is inefficient to provide the public good even for all n players, i.e., if nβ < 1 , then for any endowment, the

public good is not provided in any equilibrium. 
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Proposition 5 describes asymmetric pure-strategy equilibria with public good provision for endowments that are larger 

than those allowed in Proposition 4 for the case of symmetric pure-strategy equilibria. The following two corollaries help to 

further clarify Proposition 5 . Corollary 5.1 describes asymmetric, pure-strategy equilibria with public good provision that in- 

volve ( n − 1 ) activ e players and the corr esponding r estriction that must be imposed on endowments. Corollary 5.2 describes 

the largest endowment for which asymmetric pure-strategy NE with positive public good provision exist. 

Corollary 5.1. Consider the self-financing provisional fixed-prize all-pay auction. Suppose that the following efficiency condition 

β( n − 1 ) > 1 

and the following endowment condition 

V 

( 1 − β) n 

< e ≤ V 

( 1 − β) ( n − 1 ) 

both hold. Then, there exist n asymmetric pure-strategy NE, ( b i , b −i ) , where b i = 0 and b j = e if j � = i , and the public good is

provided. Public good provision (less the fixed-prize value V ) is given by: ˜ G = ( n − 1 ) e − V > 0 . 

Corollary 5.2. Consider the self-financing provisional fixed-prize all-pay auction. Suppose that the following efficiency condition 

2 β > 1 

holds. If there exists k ∈ { 1 , . . . , n − 2 } such that the following endowment condition 

V 

( 1 − β) ( n − k + 1 ) 
< e ≤ V 

( 1 − β) ( n − k ) 

holds, then there exist C k n = 

n ! 
( k ) ! ( n −k ) ! 

asymmetric pure-strategy NE, where ( n − k ) players bid their entire endowment, e , while 

the other k players bid zero. Public good provision (less the fixed-prize value V ) is given by: ˜ G = ( n − k ) e − V > 0 . 

Given our findings of asymmetric pure-strategy equilibria where players bid either zero or their entire endowment, it is 

natural to expect multiple mixed-strategy equilibria where the public good is provided. Since the endowment condition 

V 

n ( 1 − β) 
< e < 

V 

2 ( 1 − β) 

has to hold in all such mixed-strategy equilibria, we do not describe these equilibria here because we already know that

the public good can be provided for this endowment condition under a pure strategy NE. 

We find that if the endowment is very large relative to the value of the prize – the case we study in our experiment

– then the unique (symmetric) equilibrium prediction is for all players to contribute zero, resulting in zero public good 

provision. By sharp contrast, under the exogenously given fixed-prize all-pay auction mechanism where the endowment 

is again very large relative to value of the prize, specifically for any e satisfying condition (9) , there continues to exist a

symmetric mixed strategy equilibrium where expected public good provision is positive. In this mixed-strategy equilibrium, 

players submit bids from a bounded, continuous interval from 0 on up to some upper bound. This upper bound is fixed at
V 

1 −β
for any e > 

V 
1 −β

and players are indifferent among all bids in the interval [0 , V 
1 −β

] . 

The latter type of equilibrium does not exist when the fixed-prize is provisional on contributions equaling or exceeding 

 . For some intuition, consider a “small” bid – a bid between 0 and 

V 
n . A bid of zero will dominate any small bid: If a

player wins with a small bid, the prize is not provided since, from our definition of a small bid, the provisional threshold

will not have been reached. If a player loses with a small bid, he has to pay that small bid and is worse off relative to a

bid of zero. Suppose next that participants consider bidding on a bounded continuous interval strictly greater than 0. In 

that case, bids at the left boundary always lose under an all-pay auction and such bids are costly to the bidder as they

are strictly greater than zero. Essentially there is no left boundary such that individuals are indifferent among bids over 

some bounded continuous interval. The only exception arises if players randomize between a zero bid and a bid of their

entire endowment. However, if the endowment is sufficiently large relative to the prize, then even this mixed equilibrium 

ceases to exist and the unique equilibrium prediction calls for zero contributions by all participants in the all-pay auction 

with a provisional fixed-prize. In that case, the use of the all-pay auction mechanism to award a provisional but fixed prize

transforms the game so that its incentives are equivalent to those of the VCM where the dominant equilibrium strategy is

for all to contribute nothing. 

The intuition for the uniqueness of the zero-bid equilibrium is as follows. There are two main effects in our provisional

prize all-pay auction mechanism: the prize effect, and the public good game effect. If endowments are large relative to the

prize, then the public good game effect dominates, in which case players strictly prefer to free ride and contribute nothing. 

Proposition 4 shows that there exists a symmetric pure-strategy equilibrium involving positive public good provision for 

any prize value, V , that satisfies condition (12) . As in the case of the lottery mechanism, we can again ask: given endow-

ments e , what prize value, V , maximizes public good provision under the provisional, fixed-prize all-pay auction mechanism? 

We answer this question in the following proposition. 
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Proposition 6. Consider the self-financing provisional fixed-prize all-pay auction mechanism. Suppose that efficiency condition 

(6) and the endowment condition (12) both hold. Then, for a given number of participants, n , and endowment e , 

V 

A = ( 1 − β) ne 

is the prize value that maximizes public good provision. The highest possible public good provision (less the prize V ) is: ˜ G 

A = ne − V 

A = βne. 

Proof. See Appendix A . �

It is straightforward to see from Corollary 2.1 and Proposition 6 that even though the optimal prizes are different, the

optimal all-pay auction always generates more public goods than the optimal lottery. 

Corollary 6.1. Consider the self-financing provisional fixed-prize all-pay auction and lottery mechanisms. Suppose that efficiency 

condition (6) and the endowment condition (12) both hold. Then, for a given number of participants, n , and endowment e , the

highest possible public good provision (less the prize V ) is: ˜ G 

A = βne > 

n 

( n − 1 ) 
( βn − 1 ) e = 

˜ G 

L . 

4. Experimental design and predictions 

We have designed an experiment to test some of the comparative statics implications of the theory developed in the 

previous sections. In our experiment the commonly known fixed prize, V , is always provisional and must be financed by

subject contributions. Thus, the payoff function for each subject i is given by an equation of the form (2) . We use a 2 × 2 × 2

experimental design where our treatment variables are (1) the mechanism, M – either the all-pay auction or lottery rules 

determine the prize winner; (2) the group size, n = 2 or n = 10 ; and (3) the marginal per capita return (mpcr) on the public

good, β = . 25 or β = . 75 . We chose to vary n and β so as to also test some comparative statics predictions of the theory

under the two different provisional prize mechanisms, particularly under the lottery mechanism. We chose values for n 

and β that are found in the existing literature. 12 All other model parameters, i.e., the fixed prize value of V = 100 and the

individual endowment of e = 400 were kept fixed across all rounds of all experimental sessions of our experiment so as to

focus attention on the role played by the three treatment variables. 13 

We chose to set e = 4 V as we think it is realistic to assume that for the small charitable fund-drives we have in mind,

the value of the prize offered is considerably less than any single participant’s endowment. 14 Further, with these choices 

for e and V , and for all four { n, β} treatment pairs that we consider, it is always the case that the unique equilibrium

prediction under the provisional fixed-prize all-pay auction mechanism is for all players to bid zero and thus there should 

be zero public good provision. The reason is that e is too large relative to V to satisfy any of the conditions for positive

public good provision given in the propositions of Section 3.2.2 . In particular, according to Proposition 5 , if V 
2 ( 1 −β) 

< e, as

is the case in for all four treatment pairs under our fixed-prize all-pay auction mechanism, then there does not exist an

equilibrium with positive public good provision. By contrast, for three of the four { n, β} treatment pairs in our experimental

design, the provisional fixed-prize lottery mechanism has a symmetric pure strategy equilibrium involving positive bids 

and positive public good provision (in addition to the symmetric zero-bid/zero-provision equilibrium as well). Thus, our 

experimental design provides a stark predicted difference between the two provisional fixed-prize mechanisms in terms 

of bidding behavior and public good provision. We also explore whether the efficiency condition (6) plays the important 

role that is predicted by the theory. For three of our four treatment pairs for { n, β} , our experimental parameterization

corresponds to the efficient case, where condition (6) holds; these are the same three cases where the provisional fixed-

prize lottery mechanism has a symmetric pure strategy equilibrium involving positive bids and public good provision. In the 

one treatment where n = 2 and β = . 25 , the efficiency condition (6) does not hold and so it is inefficient to provide the

public good under either the provisional fixed-prize lottery or all-pay auction mechanisms. Thus, the latter treatment allows 

us to examine whether the efficiency condition matters for public good provision under the fixed-prize lottery mechanism, 

as the theory predicts. 

Given our parameter choices, equilibrium bid and public good predictions for our experimental design are given in 

Table 1 . For the provisional fixed-prize lottery mechanism we focus on the symmetric pure-strategy Nash equilibrium 

where the public good is provided if such equilibria exist under the conditions detailed in Proposition 2 . Recall from

Proposition 1 that there will always exist a set of Nash equilibria where the public good is not provided under the pro-

visional fixed-prize lottery mechanism for all treatment conditions of our experiment. Note that in one of our four provi- 

sional fixed-prize lottery mechanism treatments, the one where n = 2 and β = . 25 , the efficiency condition that βn > 1 is
12 For instance, Isaac et al. (1984) study a VCM using a 2 × 2 design with n = 4 or 10 and β = . 3 or.75. 
13 In future research it would be of interest to set V equal to the values that maximize public good provision (for given e , n and β) as stated in 

Corollary 2.1 and Proposition 6 . However as these two values for V differ from one another (varying also with e , n and β) and the main focus of this 

paper is on the effect of the two different provisional prize mechanisms (as well as variations in n and β) on contributions to a public good, we chose to 

keep V (and e ) fixed across all treatment conditions. 
14 This is a reasonable assumption if the endowment is viewed as the participant’s liquid assets. 
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Table 1 

Equilibrium predictions under the provisional fixed-prize model (2) for the parameterization where e = 400 and V = 100 . 

Lottery All-Pay Auction 

β = . 25 x i = min 
{

n −1 
n 2 

V 
1 −β

, e 
}† 

˜ G = min 
{

(βn −1) 
n (1 −β) 

V, ne − V 
}† 

x i = 0 G = 0 

n = 2 x i ∈ [0 , 75] ‡ 0 0 0 

n = 10 12 20 0 0 

β = . 75 x i = min 
{

n −1 
n 2 

V 
1 −β

, e 
}† 

˜ G = min 
{

(βn −1) 
n (1 −β) 

V, ne − V 
}† 

x i = 0 G = 0 

n = 2 100 100 0 0 

n = 10 36 260 0 0 

† If βn > 1 . There will also exist a set of equilibrium where the public good is not provided. ‡ Since βn < 1 , according to Proposition 1 , there exists a set of 

pure-strategy equilibria where x i ∈ [0 , (1 − β) V ] and x 1 + x 2 ≤ V = 100 so that public good provision is 0. 

Table 2 

Equilibrium predictions under the non-provisional exogenous fixed-prize model (1) for the parameterization where e = 400 and V = 100 . 

Lottery All-Pay Auction 

β = . 25 x i = min 
{

n −1 
n 2 

V 
1 −β

, e 
}

G = min 
{

n −1 
n 

V 
1 −β

, ne 
}

F ( b ) = 

(
( 1 − β) b V 

) 1 
n −1 EG = 

V 
1 −β

n = 2 100 
3 

200 
3 

(
3 b 

400 

)
400 

3 

n = 10 12 120 
(

3 b 
400 

) 1 
9 400 

3 

β = . 75 x i = min 
{

n −1 
n 2 

V 
1 −β

, e 
}

G = min 
{

n −1 
n 

V 
1 −β

, ne 
}

F ( b ) = 

(
( 1 − β) b V 

) 1 
n −1 EG = 

V 
1 −β

n = 2 100 200 
(

b 
400 

)
400 

n = 10 36 360 
(

b 
400 

) 1 
9 400 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not satisfied so that Proposition 2 does not apply. Thus, for this one treatment, consistent with Proposition 1 , there exist

many pure strategy equilibria where all n players bid an amount x i ∈ [0 , 75] and where x 1 + x 2 ≤ V = 100 . However, in all

of these equilibria, the NE prediction for public good provision net of the prize amount, ˜ G , is unambiguously 0, as total bids

can never exceed V = 100 . Notice finally that for the provisional fixed-prize all-pay auction mechanism, the equilibrium bid

and public good provision levels are always zero regardless of the different treatment values for n and β . As noted above,

this prediction arises because condition 

V 
2 ( 1 −β) 

< e always holds in our experimental design, i.e., the endowment e , is too

large relative to the prize value V and we know from Proposition 5 that in this case there are no equilibria with public good

provision. 

It is instructive to compare the equilibrium predictions for the self-financing, provisional fixed-prize model we study 

as reported in Table 1 with the non-provisional model where the fixed prize is exogenously given (model Eq. 1 ). Table 2

provides these predictions. In the non-provisional exogenous fixed prize case, the all-pay auction is predicted to result in 

positive bids and public good provision under all treatment conditions and at levels that in expectation exceed the bids 

and public good provision generated by the non-provisional fixed prize lottery mechanism. Further, with a non-provisional 

exogenous fixed prize, the lottery mechanism is predicted to yield positive public good provision in all cases, even the 

inefficient case where n = 2 and β = . 25 . 

We report data from 16 experimental sessions, each involving 20 subjects, for a total of 320 subjects. Each session in-

volves a within-subject design where either the all-pay auction or the lottery mechanism was used to determine the prize 

winner in each group of size n = 2 or 10 over the first 15 rounds. 15 Over the remaining 15 rounds, the other mechanism

was used to determine the prize winner in each group of size n . The change in the mechanism was not announced in ad-

vance. For each session, we used a single fixed parameter set for { n, β} , either { 2 , . 25 } , { 2 , . 75 } , { 10 , . 25 } , or { 10 , . 75 } for

all 30 rounds (i.e., under both mechanisms). Thus the single, one-time treatment change within a session was only in the

mechanism used to determine the prize winner. To minimize the consequences of possible order effects, we reversed the 

order of the mechanisms used in the first and last 15 rounds across sessions involving the same { n, β} treatment conditions.

Specifically, two sessions of each { n, β} treatment used the lottery mechanism in the first 15 rounds followed by 15 rounds

of the all-pay auction mechanism. The other two sessions use the all-pay auction mechanism in the first 15 rounds followed

by 15 rounds of the lottery mechanism. 

A summary of the session characteristics is provided in Table 3 . 

In the n = 2 treatment, the 20 subjects were randomly paired at the start of each of the 30 rounds to form 10 groups of

size 2. In the n = 10 treatment, the 20 subjects were randomly matched into two groups of size 10 at the start of each of

the 30 rounds so that there were 2 groups of size 10. We used random matching each round so as to avoid any repeated

game effects. 

Subjects were University of Pittsburgh undergraduates with no prior experience with our experiment. No subject partic- 

ipated in more than one experimental session. Subject interactions and decision-making were anonymous and were con- 
15 We chose a within-subject design because such designs are statistically more powerful than between-subject designs; in a within-subject design, each 

subject serves as their own control, thereby minimizing the effects of individual differences (see, e.g., Camerer (2003) pp. 41–42). 
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Table 3 

Experimental Design. 

Lottery First 15 Rounds Auction First 15 Rounds Total 

Auction Last 15 Rounds Lottery Last 15 Rounds Sessions 

n = 2 , β = . 25 2 Sessions 2 Sessions 4 

n = 2 , β = . 75 2 Sessions 2 Sessions 4 

n = 10 , β = . 25 2 Sessions 2 Sessions 4 

n = 10 , β = . 75 2 Sessions 2 Sessions 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ducted using networked PCs in the Pittsburgh Experimental Economics Laboratory. Prior to the first round of play, subjects 

were given written instructions that were also read aloud in an effort to induce common knowledge of endowments, the 

prize, the mechanism for winning the prize and the value of tokens in terms of dollars. Following 15 rounds of play, contin-

uation instructions were provided and read aloud; these continuation instructions explained that the only change relative 

to the first 15 rounds of play would be in the mechanism used to determine the prize winner and that this new mech-

anism would be in effect for the final 15 rounds of play. The instructions used in n = 10 , β = . 75 treatment, where the

lottery mechanism was used in the first 15 rounds and the all-pay auction mechanism was used in the final 15 rounds, are

provided in Appendix C; other instructions are similar, differing only in the values for n and β or in the order of the two

mechanisms. 

The sequence of play of each round of a session was as follows. Each subject was endowed with 400 tokens. They were

instructed that they could bid any number of these tokens for a provisional, fixed prize of 100 tokens. The winner in their

group of size n (2 or 10) was determined according to the mechanism that was in place for that round. Specifically, subjects

were instructed that when the all-pay auction was the mechanism, the winner was the player who bid the most tokens and

that in the event of a tie, the winning bidder would be randomly chosen from among all those who bid the most tokens.

When the lottery was the mechanism, subjects were instructed that the winner was chosen randomly from all members 

of their n member group who bid at least 1 token and that each bidder’s chance of winning was set equal to the ratio

of their bid to the total tokens bid by all n members of their group in that round. 16 Importantly, subjects were instructed

that if the total amount bid for the prize by all n members of their group did not equal or exceed the fixed prize value of

100 tokens, then the prize would not be offered. In that case, all bids were returned and subjects ended the round with

their endowment, e , of 400 tokens. If the total amount bid for the prize by all n group members equaled 100 or more,

then the prize was awarded according to the mechanism that was in place for that round. Finally, subjects were instructed

that amounts bid in excess of the V = 100 token prize would be placed in a “group account”. Subjects were informed

that all members of their group of size n , even those who did not bid any tokens toward the 100 token prize, could earn

additional tokens based on the total number of tokens in their group’s account. Specifically, subjects were informed that the 

amount of additional tokens each group member could receive from the group account was determined by the amount of 

tokens remaining in the group account after the prize was paid out, 
(∑ n 

j=1 b j − 100 
)
, and by the mpcr, β , and was given

by β
(∑ n 

j=1 b j − 100 
)

if 
∑ n 

j=1 b j ≥ 100 and was 0 otherwise. (Here b j denotes the amount bid by individual j in a group of

size n in either the lottery or all-pay auction treatments). Subjects were also given a table showing how many additional

tokens each group member could earn if their group account reached various token levels of 100 or more. Subjects were

instructed that their earnings in each round were the sum of three numbers: 1) the amount of tokens remaining in their

“private account,” i.e., their endowment of 400 tokens for the round less any tokens they bid in that round (provided that∑ n 
j=1 b j ≥ 100 ); 2) their prize winnings of V = 100 tokens if (and only if) they were the prize winner in their n member

group for that round and 3) their payoff in tokens from their n -member group account for that round. 

At the end of each session, two rounds were randomly chosen, one from the first 15 rounds of the session and one

from the last 15 rounds of the session, as these sets of rounds involved two different mechanisms. Subjects’ total token

amounts from the 2 randomly chosen rounds were converted into dollars at the known and fixed rate of 1 token = $0.01 (1

cent). In addition, subjects were guaranteed $5.00 for showing up on time. Each subject’s total earnings for this 90 minute

experiment depended on the treatment. For each of the { n, β} pairs average total earnings per subject (across all sessions of

that treatment pair) were as follows: { 2 , . 25 } : $12.82; { 2 , . 75 } : $14.47; { 10 , . 25 } : $15.45; and { 10 , . 75 } : $39.20. Notice that by

not bidding in any round of any treatment, a subject could guarantee him/herself a payment of at least $13.00 and possibly

more depending on whether others placed bids and the prize threshold was met. 17 

5. Experimental findings 

We begin by considering whether and how behavior varies across the treatments of our 2 × 2 × 2 experimental design. 

For each session of each treatment, we calculated the average amount bid, denoted by ‘Avg. Bid’, and the average amount
16 We avoided use of the terms “lottery” and “auction” and simply explained to subjects how the two different mechanisms determined a prize winner 

in each round. 
17 By not bidding in the first and last 15 rounds, subjects earn their endowment of 400 tokens twice, or $8.00 at the 0.01 conversion rate plus a $5.00 

show-up payment for a total of $13.00. In addition, subjects could get additional earnings from the public good if it was provided. 
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Table 4 

Average Bids and Public Good Provision Across Treatments Relative to Theoretical Predictions, Averages From All Periods of All Sessions of Each Treatment. 

Lottery 

n β Avg. Bid (% End.) NE Bid Avg. G NE G Prov. NE Prov. % 

2 0.25 59.3 (.148) x i ∈ [0 , 75] 36.4 0.0 0.63 0.00 

2 0.75 148.6 (.371) 100.0 207.9 100.0 0.80 1.00 

10 0.25 86.6 (.216) 12.0 767.6 20.0 0.98 1.00 

10 0.75 201.8 (.504) 36.0 1918.0 260.0 1.00 1.00 

All-Pay Auction 

n β Avg. Bid (% End.) NE Bid Avg. G NE G Prov. NE Prov. % 

2 0.25 67.9 (.170) 0.0 56.2 0.0 0.69 0.00 

2 0.75 159.3 (.398) 0.0 230.3 0.0 0.82 0.00 

10 0.25 87.0 (.218) 0.0 772.5 0.0 0.98 0.00 

10 0.75 210.8 (.527) 0.0 2008.0 0.0 1.00 0.00 

Table 5 

Average Bids, Public Good Less Prize (G) and Provision Frequencies (Prov.) in One Long (30 Round) Session of the n = 10 , β = . 25 Lottery and All-Pay 

Auction Treatments as Compared with the Shorter (15 Round) Sessions of the Same Treatments. 

Treatment Cond. One Long Session All Short Sessions Nash Eq. 

n = 10 , β = . 25 Avg. Bid Avg. G Prov. Avg. Bid Avg. G Prov. Bid G Prov. 

Lottery 134.8 1248.1 1.0 86.6 767.6 0.98 12.0 20.0 0.0 

All-Pay Auction 137.7 1276.7 1.0 87.0 772.5 0.98 0.0 0.0 0.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of public good provision less the prize (if awarded) which we refer to as ‘Avg. G’ separately for each provisional fixed-prize

mechanism (lottery, all-pay auction). The variable Avg. Bid is calculated by first taking the average amount bid in each 

group of size n and then calculating the average of all such group averages. This ‘Avg. Bid’ number can be compared with

the theoretical predictions for x i as given in Table 1 . 18 The session-level average contribution to the public good, Avg. G ,

excludes the prize amount of V = 100 if the prize was awarded and is equal to 0 if the prize was not awarded or if the sum

of a group’s bids was exactly equal to 100. This ‘Avg. G’ number can be compared with the theoretical predictions for ˜ G or

G as given in Table 1 . 

Table 4 provides an overview of our main findings using pooled data from all four sessions of each treatment, { M, n, β}
over all 15 rounds of each mechanism, Lottery or Auction. This table reports for each treatment, the average amount bid, Avg.

Bid (and this average bid as percentage of the endowment of 400, % End.), the average amount of public good provided less

the prize, Avg. G, and the frequency of time the public good was provided, Prov. For convenience, Table 4 also reports the

Nash equilibrium (NE) bid, the NE public good amount less the prize predictions under the headings and the NE prediction

regarding public good provision under the headings ‘NE Bid’, ‘NE G ’, and ‘NE Prov.’ which were reported earlier in Table 1 for

the model parameterization of our experiment. 

Tables B1 –B4 in Appendix B report on disaggregated session-level observations for Avg. Bid and Avg. G less the 100

token prize for each treatment, { M, n, β} , over various intervals of time, T , specifically over all rounds, 1 − 15 (as in Table 4 )

but also for round 1 only, for rounds 1 − 5 , 6 − 10 , 11 − 15 and for the final round 15 only. 

Based on the numbers shown in these tables we can report a number of different findings. 

Finding 1. Average bids and public good provision (less the prize amount) are greater than theoretical predictions. 

Support for this finding can be found in Table 4 which suggests that both Avg. Bid and Avg. G are always greater than

Nash equilibrium predicted values (NE Bid and NE G, respectively) under both self-financed provisional fixed-prize mecha- 

nisms. 19 

Consider first the n = 2 , β = . 25 treatment of the provisional fixed prize lottery mechanism. In that treatment, the ef-

ficiency condition ( βn > 1 ) is not satisfied so the theoretical prediction (from Proposition 2 ) is that bids should be strictly

less than 75, the sum of the two players’ bids should not exceed 100 and as a consequence there should be 0 public good

provision as the prize value, V = 100 , cannot be covered by two such bids. Table 4 indicates that bids over all rounds in this

treatment averages 59.3. Further, the public good provision threshold of 100 is met and the public good is provided 63% of

the time so that Avg. G for this treatment is 36.4. Using the four session-level observations for Avg. Bid over rounds 1–15

for the { 2 , . 25 } (second column of Table B1 ) a one-sample upper-tailed Wilcoxon signed rank test indicates that we cannot

reject the null hypothesis that the median of the mean bids is less than or equal to 75 ( p = . 98 ) in favor of the alternative
18 The average bid actually paid may be less than Avg. Bid, depending on whether contributions exceeded the prize level, V = 100 , or not. However, the 

theoretical predictions in Table 1 for b i are for this ‘ex-ante’ bid amount, the same amount that is reported in Table 4 , and in B1 and B2 in Appendix B . 

By contrast, the Avg. G measure, described below takes account of whether each group of n players met the prize threshold or not, again consistent with 

theoretical predictions for ̃  G or G as given in Table 1 . 
19 Further support for this finding at the session-level is provided in Tables B1 –B4 . 
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that it is strictly greater than 75. Still, we observe that Avg. G over all 15 rounds (or even the last 5 rounds) is strictly greater

than 0 in all four sessions of the { 2 , . 25 } treatment as indicated in the second (or sixth) column of Table B3 . We do note

that there is evidence of a steep decline in Avg. G from 59.7 in the first round to 18 in the final 15th round, which suggests

that subjects may be learning (albeit slowly) the equilibrium prediction of zero public good provision for this treatment. 

Consider next the provisional prize lottery mechanism in the three treatment conditions where it is efficient to provide 

the public good ( βn > 1 ). In that case there exists a symmetric Nash equilibrium with positive bids and positive public good

provision as reported in the second column of Table B1 (as well as a symmetric equilibrium with zero bids and zero public

good provision), i.e., the treatments where { n, β} = { 2 , . 75 } , { 10 , . 25 } , or { 10 , . 75 } . Using the four session-level observations

on Avg. Bid over rounds 1–15 for each of these treatments (second column of Table B1 ) a one-sample two-tailed Wilcoxon

signed rank test allows us to reject the null hypothesis that the median of the Avg. Bids is equal to the positive NE Bid as

reported in Table 4 ( p < . 10 ) for two of the three treatment conditions (3 tests); the sole exception is for the n = 2 , β = . 75

treatment where the NE Bid prediction is 100; in that case, for three of the four session-level observations, bid averages are

greater than the NE prediction of 100 while one session-level observations is less than 100 (session 3, Avg. Bid = 81 . 3 ) so

that we cannot reject the null hypothesis of no difference from the NE Bid prediction of 100 ( p = . 14 ). Not surprisingly, a

similar finding holds if we use the four session level observations on Avg. G over rounds 1–15 as reported in the second

column of Table B3 and test the null hypothesis that the median of the Avg. G observations equals the NE G prediction for

these same three treatments. These same conclusions would remain unchanged if we used as our session level observations 

the values of Avg. Bid or Avg. G over just the final 5 rounds, 11–15, of the lottery mechanism (as reported in the sixth

column of Tables B1 and B3 ). We further observe that public good provision is high in these three lottery treatments at 82%

for { 2 , . 75 } treatment and close to or at 100% for the { 10 , . 25 } and { 10 , . 75 } treatments. 

Consider next the provisional fixed prize all-pay auction mechanism. We cannot similarly test the NE prediction that Avg. 

Bid = Avg. G = 0 under the all-pay auction mechanism as such predictions lie at the boundary of feasible bids and public

good provision levels. Nevertheless, it seems clear from Tables B2 and B4 that the experimental evidence runs counter 

to the prediction of 0 bids and public good provision as both Avg. Bid and Avg. G are, for all { n, β} treatments and all

sessions of the all-pay auction mechanism, substantially greater than zero. We note further, as revealed in Table 4 , that the

frequency with which the public good is actually provided (i.e., the frequency with which contributions exceed the prize 

level) averages 69 percent or higher in the all-pay auction treatments and, as was found under the lottery mechanism, is

generally increasing in n or β; in the case where n = 10 , the frequency of public good provision is very close or equal

to 100 percent, even though it is predicted to be zero. Summarizing, we find that in most cases bids and public good

provision differ from NE predictions under the provisional fixed prize lottery mechanism and are strictly greater than the 

NE prediction of zero under the provisional fixed prize all-pay auction mechanism. 

The over-provision of public goods is also observed in the experimental literature using the VCM, which differs from 

our setup by the absence of a provisional fixed prize and any mechanism for awarding that prize, i.e., the VCM omits the

last term on the right hand size of equation (1) . In VCM experiments, see e.g., Isaac and Walker (1988) , the marginal per

capita return, β ∈ (1 /n, 1) so the Nash equilibrium prediction is that b i = 0 for all i and so G = 0 . Nevertheless, as we found

under our provisional fixed prize mechanisms, subjects in VCM experiments typically bid in excess of this lower bound Nash 

equilibrium prediction. For instance, in a meta-study of linear VCM experiments, Zelmer (2003) reports that contributions 

as a percentage of total endowment average 37.7%, across 27 studies where the mean parameter values are n = 6 . 6 , β = . 40

and T = 10 . 4 periods. Closer to our design, Isaac and Walker (1988) report on 10-round VCM experiments with different

values for n and β . In the four treatments of their design most comparable to our own, they find average contributions to

the public good as a percentage of endowment to be 26.4% when β = . 3 and n = 4 ; 32.88% when β = . 3 and n = 10 ; 65.1%

when β = . 75 and n = 4 and 65.1% when β = . 75 and n = 10 . From Table 4 we see that for the All-Pay auction, where the

NE predicted bid is always 0 (as in the VCM), that contributions as a percentage of endowment range from 17% to 53%.

Further, consistent with Isaac and Walker, bids as a percentage of endowment are lower (greater) in the treatments with 

the lower (greater) value for β . The latter finding also applies to the Lottery treatment. The excess bidding observed in

the Lottery treatment can also be compared to nonlinear VCM experiments that admit interior (i.e. non-0) NE contribution 

amounts. For example, Keser (1996) reports on a study where the interior NE under the VCM was to contribute 35% of

one’s endowment. Nevertheless, average contributions over all rounds were in excess of this prediction averaging 51.5% of 

endowment which is similar to what we observe, e.g., in our Lottery n = 2 , β = . 75 treatment. Thus, the over-contribution

phenomena we observe is comparable in magnitude to what is observed in VCM experiments and varies similarly with 

changes in treatment parameters such as n and β . 

We note that there is some evidence of treatment order effects in bids and public good provision net of the prize. In

particular, as Tables B1 - B4 reveal, mean bids are often (but not always) higher for the lottery (all-pay auction) treatment if

the lottery (all-pay auction) treatment was played in the first 20 rounds rather than in the last 20 rounds. This finding is a

natural consequence of our within-subject design and the common pattern of decay over time in public good contributions 

by a fixed cohort of increasingly experienced subjects. In an effort to mitigate the role of possible order effects on our aggre-

gate analysis of bids and public good provision, we did vary the order of the two treatments so that the lottery mechanism

was played in the first 20 rounds of half of all sessions of our four treatments and the all pay auction was played in the

first 20 rounds of the other half of all sessions of our four treatments. 

Our next finding concerns a test of one of the comparative statics predictions of our provisional fixed prize theory. 

Specifically, if we hold the group size, n , fixed and focus on the symmetric NE with positive public good provision, then a
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Fig. 2. Average G less prize across treatments, all data from all treatments and 95% confidence intervals. Note the change in the vertical scale as n increases 

from 2 to 10. 

Fig. 3. Average Bids across treatments, all data from all treatments and 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

larger β should result in higher individual bids and greater public good provision under the provisional lottery mechanism 

and indeed this is the case. By contrast, under the provisional all-pay auction mechanism if we hold n fixed then a larger β
should not result in higher individual bids or greater public good provision. Note that the latter comparative static prediction 

for the all-pay auction would also hold if the fixed prize was exogenously given (see Table 2 ) and public good provision was

predicted to be non-zero. Inconsistent with this theoretical prediction, we find that for fixed n , an increase in β leads to

higher individual bids and greater public good provision under the all-pay auction mechanism just as we found for the case

of the lottery mechanism. We summarize this as follows: 

Finding 2. For a fixed group size n , a larger β leads to higher individual bids and to higher public good provision under

both mechanisms. 

Support for Finding 2 is found in Figs. 2 and 3 and Table 4 . See also Tables B1 –B4 in Appendix B . When n = 2 , a switch

from β = . 25 to β = . 75 causes G to increase, on average, by a factor of 5.7 in the lottery treatment and by a factor of 4.1

in the all-pay auction treatment. Similarly, when n = 10 , a switch from β = . 25 to β = . 75 leads G to increase, on average,

by a factor of 2.5 in the lottery treatment and by a factor of 2.6 in the auction treatment. For each mechanism, if we fix n

at 2 or 10, the amount of G is always significantly higher when β = . 75 as compared with when β = . 25 according to non-

parametric Mann-Whitney tests of the null hypothesis of no difference using the session-level averages ( p = . 02 – lowest

possible p-value – for all four tests n = 2 and n = 10 ; lottery, all-pay auction). 

Our third finding considers the other comparative statics prediction, namely the impact of group size, n , holding β fixed. 

According to the theory (see again Table 1 ), for fixed β , a larger group size n should lead to: 1) lower individual bids

but higher public good provision under the lottery mechanism (focusing on the symmetric NE with positive public good 

provision) and 2) zero individual bids and zero public good provision under the all-pay auction mechanism. With regard to 

these predictions we have: 

Finding 3. For a fixed β , a larger n does not reduce the individual amounts bid but does result in higher public good

provision under both mechanisms. 
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Support for Finding 3 is again found in Figs. 2 and 3 and Table 4 . See also Tables B1 –B4 in Appendix B . 

Consider first the session-level observations for Avg. Bid over rounds 1–15 (as reported in the second columns of 

Tables B1 and B2 . Suppose we hold β fixed at either.25 or.75 and we consider whether average bids are different when

n = 2 as compared with when n = 10 . For three of the four treatment conditions, lottery with β = . 25 , lottery with β = . 75 ,

and all-pay auction with β = . 75 , non-parametric Mann-Whitney tests indicate that we cannot reject the null hypothesis of

no difference in average bids across the two different values for n ( p > . 10 for all three tests). For the all-pay auction with

β = . 25 , we can reject the null hypothesis of no difference in favor of the alternative that bids are significantly higher when

n = 10 than when n = 2 ( p = . 08 ). 

While average bids should decrease as n increases holding β fixed, under the lottery mechanism, the NE prediction calls 

for G to nevertheless increase in this same scenario. This aspect of the lottery theory does find support in the experimental

data. Intuitively, as we found no decrease in the individual amounts bid as n increases from 2 to 10, it should come as no

surprise that G is higher under both mechanisms as n is increased from 2 to 10. 

Confirmation again comes from non-parametric Mann-Whitney tests using session level data from tables B3 and B4 ). Fix- 

ing β = . 25 or.75, an increase in n from 2 to 10 leads to significantly higher public good provision G under both mechanisms

(the null hypothesis of no difference in G is rejected, p = . 02 – lowest possible p-value – for all four tests, β = . 25 , β = . 75 ;

lottery, all-pay auction). 

We note further that non-provision of the public good is predicted under the lottery mechanism when n = 2 and β = . 25 ,

however as Table 4 indicates, public good provision actually occurred an average of 63 percent of the time in this treatment.

Indeed, holding β fixed, provision of the public good increased as n is increased under both mechanisms. Recall from Finding 

3 that individual bid amounts did not generally change for fixed β as n was increased. Nevertheless, having more individual 

bidders (larger n ) bidding similar amounts ensures that the provision point where contributions exceeded the prize level of 

 = 100 is more likely to be achieved as n is increased. 

We now turn to the important question of whether bidding behavior was different between the two mechanisms for 

the same { n, β} treatment conditions. We explore this issue at both the individual and aggregate level. We start by looking

at the distribution of individual bids as a percentage of individual endowments over all 15 rounds of the lottery and all-

pay auction mechanisms under each of our four treatment conditions. Fig. 4 shows the cumulative distribution functions of 

bids as a percentage of each individual’s endowment for each { n, β} pair using pooled data from all sessions of the four

treatments. This figure reveals that the distribution of bids between the lottery and all-pay auction mechanisms are quite 

similar to one another under all four treatment conditions. We summarize this result as: 

Finding 4. Holding n and β constant, there is little difference in the distribution of individual bids between the two provi-

sional fixed-prize mechanisms. 

We next address whether there is an aggregate difference in the level of public good provision (net of the prize if

awarded) between the two mechanisms for the same { n, β} pair. According to the theory, for fixed n and β , the lottery

design may result in higher public good provision because the all-pay auction mechanism should result in zero public good 

provision under all parameterization of our experimental environment. However, as we have already seen in the individual 

analysis of bidding behavior, there is no difference in bid distributions between the two mechanisms for fixed n and β .

Perhaps not surprisingly, we can report that: 

Finding 5. For fixed n and β , public good provision (net of the prize, if awarded) is insignificantly different between the

two provisional fixed-prize mechanisms. 

Support for finding 5 is again found in Fig. 2 . Statistical support for finding 5 is found by conducting four Mann-Whitney

tests using the four session-level observations for Avg. G for each treatment (auction or lottery) for the same pairs of values

for { n, β} . Using the session-level observations for Avg. G over all 15 rounds as reported in Tables B3 and B4 a Mann-

Whitney test indicates that we cannot reject the null hypothesis of no difference in public good provision in any pairwise

test between the lottery and all-pay auction mechanisms for the same { n, β} values ( p > . 10 for all four tests). This same

conclusion of no difference in Avg. G between mechanisms would continue to hold if we used as our session-level observa-

tions the values of Avg. G over the final five rounds, 11–15, of each session as reported in the sixth column of Tables B3 and

B4 . 

A typical pattern of behavior in public good games is a decline in contributions over time as individuals learn to give

less. We also find evidence for such learning behavior in our experimental data. Fig. 5 illustrates the average value of G (net

of the prize, if awarded) over rounds 1,2,... 15 as a percentage of total endowment using all data from all sessions of each

treatment, { M, n, β} . Further evidence for a decline in bids and public good provision over time can be found in Tables B1 –

B2 which report average bids over all rounds 1–15, in round 1 alone, over rounds 1–5, 6–10, 11–15, and in the final round

15 alone. Tables B3 –B4 do the same for public good provision levels (Avg. G ). 

Since overall average bids (over all rounds 1–15) as reported in Table 4 were found to have generally exceeded Nash

equilibrium predictions, this decay in bids and public good provision over time serves to bring behavior closer to equilibrium 

predictions by the final rounds of each session of each treatment. We summarize this finding as follows: 

Finding 6. We observe a decline in both the average individual amount bid and in public good provision in the last 5 rounds

as compared with the first five rounds under both mechanisms. 
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Fig. 4. Cumulative distribution of individual bids as a percentage of endowment, lottery versus all-pay auction under each treatment condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical support for Finding 6 comes from Wilcoxon signed-rank test for matched pairs on the four session-level obser- 

vations per treatment for the first and last five rounds of data. We can reject the null hypothesis of no difference in average

bids over rounds 1–5 as compared with average bids over rounds 11–15 in the same session in favor of the alternative that

average bids are lower in the final 5 rounds as compared with the first five rounds in seven of our eight treatments ( p < . 10

in seven tests): 1) lottery, n = 2 , β = . 25 ; 2) lottery n = 2 , β = . 75 ; 3) lottery n = 10 , β = . 25 ; 4) auction n = 2 , β = . 25 ;

5) auction n = 2 , β = . 75 ; 6) auction n = 10 , β = . 25 ; 7) auction n = 10 , β = . 75 . The sole exception is the lottery n = 10 ,

β = . 75 treatment where we cannot reject the null hypothesis of no difference ( p = . 14) . However, the exception arises be-

cause in just one session of that treatment (session 4), average bids in the last 5 rounds were higher than in the first 5

rounds while in the other sessions of that treatment they were lower. 

Consider next the session-level average amounts of public good provision in rounds 1–5 versus rounds 11–15 under the 

various treatments of the lottery or auction mechanisms, columns 4 and 6 of Tables B3 and B4 . Here the results mirror those

found for average individual bids. There is a statistically significant decrease in public good provision G less the 100 token

prize from the first 5 to the last 5 rounds of all sessions of all treatments ( p < . 10 ) except in the lottery n = 10 , β = . 75

treatment where we cannot reject the null hypothesis of no difference ( p = . 14) . 

While the decline over time in average individual bids and public good provision brings behavior more in line with NE

predictions, there remains, in the last 5 rounds, substantial over-bidding and over-provision of the public good relative to 

equilibrium predictions. Indeed recall that Finding 1 remains unchanged if attention is restricted to average individual bids 

and public good provision G less the prize in the last five rounds 11–15 instead of over all rounds 1–15. The two exceptions

are for the provisional lottery mechanism where n = 2 and β = . 25 or.75. In these two treatments we cannot reject the null

hypothesis of no difference between average behavior and the NE bid predictions in the final 5 rounds using the Wilcoxon

signed-ranks test ( p > . 10 for all tests). Recall that for the all-pay auction mechanism, we cannot perform a statistical test

as the NE bid and public good provision are at the zero lower bound. However it is apparent from Fig. 5 and Tables B2 and

B4 that bids and public good provision generally remain greater than 0 even in the final 5 rounds of all of the all-pay

auction sessions. 
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Fig. 5. Average Public Good Provision G Less Prize as a Percent of Total Endowment Over Rounds 1–15. Averages are from all 4 Sessions of Each Treatment 

( M, n, β). 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion 

Our experimental findings are inconsistent with theoretical predictions on two related dimensions. First, contributions 

to the public good are excessive relative to theoretical predictions. Second, there is no difference in contributions between 

the two self-financing fixed prize mechanisms despite the theoretical prediction of zero contributions under the parameter- 

ization we adopt for the all-pay auction mechanism implemented in the laboratory. In this section we offer some possible 

explanations for these anomalous findings. 

6.1. Excessive contributions 

The pattern of excessive contributions to the public good under both mechanisms and the decline in such contribu- 

tions as participants gain experience (see Fig. 5 ), is a pattern commonly found in the literature on VCM games (see, e.g.,

Isaac et al., 1984 ), lottery contests (e.g., Sheremeta, 2018 ) and in the literature on non-provisional fixed-prize fundraising

mechanisms as well (see, e.g., Corazzini et al., 2010 ). Excess contributions might be explained by a variety of factors includ-

ing bounded rationality and learning, non-risk neutral preferences, or non-expected utility maximization. 

We have already seen evidence favoring bounded rationality and learning as an explanation in our observation that mean 

bids do decline over time in the direction of NE bids and public good provision levels as subjects gain experience. However,

with the exception of the two n = 2 lottery treatments (where β = . 25 or.75) this decline does not begin to approximate

Nash equilibrium predictions by the end of our treatments. We speculate that in larger lottery groups of size 10 or in the

less familiar all-pay auction setting this equilibration process might take a longer period of time than was allowed in our

laboratory setting. 

To address this possibility, we conducted two additional “long” sessions of the n = 10 , β = . 25 version of the lottery and

all-pay auction treatments. Specifically, we eliminated the within-subject design, where we switched from one prize mecha- 

nism to the other after 15 rounds of play and instead conducted a full, 30 round of play under a single mechanism/treatment

condition, i.e., either lottery or all-pay auction. There were no other changes in the design: in each session, 20 subjects were

randomly matched at the start of each of the 30 rounds to form 2 groups of size 10, the model was parameterized as before

( e = 400 and V = 100 ) and subjects were paid for two randomly chosen rounds from the first and from the last 15 rounds,

so that payoff incentives were similar to the prior, shorter sessions. The results from these two long sessions are reported 

in Table 5 and illustrated in Fig. 6 . 
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Fig. 6. Mean Bids Over Time in One Long (30 Round) Session and Four Short (15 Round) Sessions of the n = 10 , β = . 25 Lottery and All-Pay Auction 

Treatments. 

 

 

 

 

 

The results indicate that doubling subjects’ experience with a particular mechanism does not move behavior closer to 

NE predictions; as Table 5 reveals, subjects’ bids and public good provision levels in the Long, 30 Round sessions are, on

average, further away from NE predictions. Nevertheless, as Figure 6 makes clear, there is a pronounced decline in those 

average bids over time so that behavior in the final, 30th round of the Long sessions is similar to behavior in the final, 15th

round of the Short sessions. 

A second possible explanation is that players are not risk neutral with respect to uncertain money amounts as the theory

supposes. To explore this possibility let u (m ) denote a players’ utility from monetary earnings m , so that the maximization

problem under the Lottery mechanism now becomes: 

max 
x i 

πi ( x i , x −i ; n, β, Lottery ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

(
x i ∑ n 

j=1 x j 

)
u 

[
( e − x i ) + β

(∑ n 
j=1 x j − V 

)
+ V 

]
+ (

1 −
(

x i ∑ n 
j=1 x j 

))
u 

[
( e − x i ) + β

(∑ n 
j=1 x j − V 

)]
, 

if 
∑ n 

j=1 x j ≥ V, 

u ( e ) , if 
∑ n 

j=1 x j < V. 

(16) 

Consider the case of a symmetric pure strategy equilibrium where the fixed prize amount is raised and the public good

is provided 

(∑ n 
j=1 x j > V 

)
. Combining the first order condition from the above maximization problem with the symmetry 

condition x 1 = . . . = x n = x, we have: 

n − 1 

n 

2 x 
u [ ( e − x ) + β( nx − V ) + V ] + ( β − 1 ) 

(
1 

n 

)
u 

′ [ ( e − x ) + β( nx − V ) + V ] 

= 

n − 1 

n 

2 x 
u [ ( e − x ) + β( nx − V ) ] − ( β − 1 ) 

(
n − 1 

n 

)
u 

′ [ ( e − x ) + β( nx − V ) ] . (17) 
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Table 6 

Average Bids in the Four Treatments of the Lottery Mecha- 

nism. 

Lottery β = . 25 β = . 75 

n = 2 59.3 148.6 

n = 10 86.6 201.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now suppose that we choose the standard, constant relative risk aversion specification for u , i.e., u (m ) = 

m 

1 −r 

1 −r so that

u ′ ( m ) = m 

−r . The risk neutral agents of the theory have r = 0 , but we now allow for risk-loving ( r < 0 ) or risk-averse ( r > 0 )

subjects. 

Recall that for the four treatments of our fixed-prize lottery mechanism average bids (as reported earlier in Table 4 ) were

given by: 

Using this data we ask is: can any of the four average bid amounts as reported in Table 6 be consistent with a symmetric

equilibrium of the model for some choice of r, the coefficient of relative risk aversion? That is, we substitute each of four

average bid amounts as given in Table 6 into Eq. (17) in place of x and attempt to numerically solve for the value of r

that would satisfy Eq. (17) . We find that for each of the four { β, n } Lottery mechanism treatment conditions, there is no

value for r satisfying Eq. (17) . Intuitively, one might think that some value for r < 0 , implying risk-loving behavior, might

work to rationalize the observed over-bidding but the average bids in the experiment are so large and the expected payoffs

are so negative that it is not possible to vary r in a way that can rationalize the bids we observe as corresponding to any

symmetric equilibrium. 

A third possibility is that subjects have a utility for winning above and beyond the monetary prize value. 20 In this

case, we return again to the case of linear utility (risk neutrality). Consider the self-financing provisional fixed-prize all-pay 

auction mechanism in particular (a similar argument can be applied to the lottery mechanism). Let us assume that players 

who win the prize receive the monetary utility value V , as well as some “emotional” or “joy-of-winning”, utility value W . 21 

In this case, (2) becomes 

πi ( b i , b −i ; n, β, All-pay auction ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( V + W ) + ( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if b i > b j for any j � = i and 

∑ n 
j=1 b j ≥ V, 

( V + W ) 
K 

+ ( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if i ties ( K − 1 ) others for the high bid and 

∑ n 
j=1 b j ≥ V, 

( e − b i ) + β
(∑ n 

j=1 b j − V 

)
, if b i < b j for some j � = i and 

∑ n 
j=1 b j ≥ V, 

e, if 
∑ n 

j=1 b j < V. 

As we have already seen in Section 3.2.2, Propositions 4 and 5 that there are a variety of different pure-strategy (sym-

metric or asymmetric) equilibria involving positive bids and public good provision under the all-pay auction mechanism 

provided that an efficiency condition holds and that the endowment is not too large, i.e. V 
n ≤ e ≤ V 

2(1 −β) 
. With the addition

of joy of winning motivations, the latter endowment condition changes to V + W 

n ≤ e ≤ V + W 

2(1 −β) 
. Given our parameterization of 

the experiment, where V = 100 and e = 400 , we can estimate the minimum value of W necessary for the existence of pure-

strategy equilibria involving positive bids and public good provision. For example, in our treatment where n = 2 and β = . 75 ,

in order to obtain positive bids in the interval [ 0 , 400 ] , we must have that e = 400 ≤ 100+ W 

2(1 −. 75) 
or that W ≥ 100 . Similarly, for

n = 10 and β = . 75 , there exist pure-strategy asymmetric equilibria with two active players if W ≥ 100 , while for n = 10 and

β = . 25 , the same type of asymmetric equilibria would require that e = 400 ≤ 100+ W 

2(1 −. 25) 
, or that W ≥ 500 . Thus, in principle

one can rationalize the positive bidding behavior that we observe in our all-pay auction treatment with a sufficiently high 

value for W . 

A difficulty with this rationalization is that the bidding behavior in the symmetric equilibria involves all players bidding 

their endowment amount e = 400 . In the asymmetric equilibria, the active players bid e = 400 while the inactive players

bid 0. The evidence for such equilibrium behavior (symmetric or asymmetric) is mixed. For instance in the n = 2 , β = . 75

all-pay auction treatment, the symmetric equilibrium strategy where both players bid e = 400 is played just 5.67% of the

time, while the asymmetric equilibrium strategy where one player bids 400 while the other bids 0 is played 9.33 percent of

the time. Thus, for the n = 2 , β = . 75 treatment, we could potentially explain an additional 15% of the observed outcomes

by adding a joy-of-winning motivation. By contrast, for this same treatment, we observe that the symmetric equilibrium 

where both players bid 0 occurs just 5.67% of the time; of course the latter equilibrium exists regardless of whether or not

there is a joy-of-winning motivation. Thus, in total, it is possible to account for 20.67% of the observed outcomes in the

n = 2 , β = . 75 all-pay auction treatment by adding the joy-of-winning motivation. 
20 Indeed, a number of studies have linked over-bidding in auctions ( Goeree et al. (2002) Cooper and Fang (2008) ) and contests ( Parco et al. (2005) 

Sheremeta (2010) to such “joy–of–winning” motivations. 
21 Note that another interpretation of W can be that players have to raise V in order to get a prize of value ( V + W ) , where the extra W is a matching 

donation. 
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For the two n = 10 treatments, the symmetric equilibrium wherein all players bid e = 400 is never observed. In these

treatments there are many more pure-strategy asymmetric equilibria to consider, but we don’t typically observe (perfect) 

play of such equilibria either. 22 A more typical outcome involves many players bidding their endowment, many bidding 0 

and some bidding intermediate amounts. We conclude that for the two n = 10 treatments, we cannot explain the positive

bids and public good provision using a joy-of-winning motivation. 

A fourth possibility is that over-bidding is due to social or other regarding preferences. To consider this possibility, we 

consider the n = 2 case where the two players i , j have inequity averse preferences of the commonly studied ( Fehr and

Schmidt, 1999 ) variety: 

u i 

(
x i , x j 

)
= πi − εi max 

(
π j − πi , 0 

)
− γi max 

(
πi − π j , 0 

)
. 

Fehr and Schmidt assume that the disutility from envy, εi ≥ γi , the disutility from guilt and that 1 > γi ≥ 0 . Using such social

preferences and assuming for simplicity that εi = ε j = ε and γi = γ j = γ , the maximization problem for the 2-player Lottery 

treatment becomes: 

max 
x i 

πi 

(
x i , x j ; 2 , β, Lottery 

)
= ⎧ ⎨ ⎩ 

e − x i + β(x i + x j − V ) 

− x j 
x i + x j ε(V + x i − x j ) + 

x i 
x i + x j 
(
V − γ (V − x i + x j ) 

)
if x i + x j ≥ V, 

e, if x i + x j < V. 

If x i + x j ≥ V , the FOC is: 

0 = −1 + β − εx j (2 x j − V ) (
x i + x j 

)2 
+ 

γ x 2 
i 

+ 2 γ x i x j − γ
(
x 2 

j 
+ V x j 

)
+ V x j (

x i + x j 
)2 

Using symmetry, x i = x j = x we have: 

[4(1 − β) + 2 ε − 2 γ ] x 2 = εV x + (V − V γ ) x 

or 

x = 

V (1 + ε − γ ) 

2(2 − 2 β + ε − γ ) 

Notice that when ε = γ = 0 , the NE bid function is that predicted by the Lottery, n = 2 model without social preferences. 

Let � = ε − γ ≥ 0 . Then 

d 

d�

[
V (1 + �) 

2(2 − 2 β + �) 

]
= − V (2 β − 1) 

2 ( 2 − 2 β + �) 
2 
. 

Thus, in the 2-player lottery treatment, if subjects are inequity averse and β < . 5 , the inefficient case, then equilibrium bids

should be greater than the NE. However, in the efficient case where β > . 5 , equilibrium bids should be less than the NE. As

we always observe bids in excess of the NE, regardless of the value for β , the social preference explanation does not provide

a consistent explanation for the overbidding phenomenon. 

The fifth, final and most promising explanation for overbidding is that agents acted as non-expected utility maximizers. 

In particular, subjects may use a distorted probability weighting function, ω(p) , of the true probabilities, p, in making their

choices under uncertainty, which is a standard feature of many non-expected utility models including Prospect Theory and 

Rank-Dependent Utility. This distorted probability weighting function has an “inverted S-shape” : (see, e.g., Prelec, 1998 for 

an axiomatization of this type of probability weighting function) for low probability events such as winning a lottery, in- 

dividuals overweight the probability of winning, i.e., ω(p l ) > p l , while for higher probability events, they under-weight the

probability of winning, i.e. ω(p h ) < p h . 

Let us consider application of the probability weighting approach to our provisional, fixed-prize lottery fundraising mech- 

anism with the aim of understanding how it can explain observed overbidding. Specifically, suppose that subjects used some 

continuous, increasing, and differentiable function, ω(p) , to weight the probabilities of winning the fixed prize under the 

lottery mechanism; we will not impose any further restrictions on ω(p) . In that case, the individual maximization problem 

is altered as follows: 

max 
x i 

πi ( x i , x −i ; n, β, Lottery, ω ) = { 

( e − x i ) + β
(∑ n 

j=1 x j − V 

)
+ ω 

(
x i ∑ n 

j=1 x j 

)
V, if 

∑ n 
j=1 x j ≥ V, 

e, if 
∑ n 

j=1 x j < V. 
22 Asymmetric equilibria where k active players bid e = 400 while n − k inactive players bid 0 are observed just 1.67 percent of the time in the n = 10 , 

β = . 75 treatment and just 0.83 percent of the time in the n = 10 , β = . 25 treatment. 
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Focusing again on the case of symmetric pure strategy equilibrium where the fixed prize amount is raised and the public

good is provided 

(∑ n 
j=1 x j > V 

)
, the first order condition combined with the symmetry constraint, x 1 = . . . = x n = x ∗ yields: 

β − 1 + ω 

′ 
(

1 

n 

)
( n − 1 ) 

n 

2 x ∗
V = 0 , 

or 

x ∗ = min 

{
ω 

′ 
(

1 

n 

)
( n − 1 ) 

n 

2 

V 

( 1 − β) 
, e 

}
. 

We can regard the case where n = 10 as representing the relatively lower probability of winning the prize (in the symmetric

equilibrium) relative to the n = 2 case where there is the highest possible probability of winning the prize. 

We again use each of the four average bids from the Lottery treatments as reported above in Table 6 and the fact that

 = 100 to make some inferences about ω 

′ ( 1 
n 

)
. Consider first the case where n = 2 . If β = . 25 then 

ω 

′ 
(

1 

2 

)
× 100 

3 

= 59 . 3 , or ω 

′ 
(

1 

2 

)
= 1 . 779 , 

while if β = . 75 then 

ω 

′ 
(

1 

2 

)
× 100 = 148 . 6 , or ω 

′ 
(

1 

2 

)
= 1 . 486 . 

Notice that both values for ω 

′ ( 1 
2 

)
are relatively close to one another. 

Consider next the case where n = 10 . If β = . 25 then 

ω 

′ 
(

1 

10 

)
× 12 = 86 . 6 , or ω 

′ 
(

1 

10 

)
= 7 . 217 , 

while if β = . 75 then 

ω 

′ 
(

1 

10 

)
× 36 = 201 . 8 , or ω 

′ 
(

1 

10 

)
= 5 . 606 . 

Notice that these last two values for ω 

′ ( 1 
10 

)
are not so close to one another. However, in all four cases the implied slope

of the probability weighting function is greater than 1, which indicates that there is always over -weighting of the objective

probability of winning the prize in all of our lottery treatments. This over-weighting of the probability of winning can 

explain why bids are in excess of equilibrium predicted levels. Furthermore, the comparative statics implication of a change 

in n is also consistent with the inverted S-shape form of the probability weighting function in that for either value of β we

have 

ω 

′ 
(

1 

10 

)
> ω 

′ 
(

1 

2 

)
, 

which means that individuals overestimate smaller probabilities of winning the prize much more than they overestimate 

higher probabilities of wining the prize under the lottery mechanism. This last insight can explain why bids do not decline

as n increases from 2 to 10, despite the objective decrease in the probability of winning the fixed prize in any symmetric

equilibrium as n increases. 

We note that our approach to probability weighting is quite general and does not require that we specify a particular

form of the weighting function ω ( p ) ; our data are consistent with any inverted S-shape probability weighting function. 23 

As our mechanisms also have a public good element, it is possible that the probability weighting function also de- 

pends on the marginal per capita return β , i.e., ω ( p, β) . Indeed, our experimental findings as discussed above suggest that

ω β ( p, β) < 0 ; as β increases, the public good component of players’ payoffs increases and so there may be less concern for

winning the fixed prize and consequently less over-weighting of the probability of winning that prize. 

6.2. No difference in bidding behavior across mechanisms 

The absence of any difference in bids or public good provision levels across the two mechanisms (lottery, auction) for 

the same ( β , n ) parameterization suggests that subjects are not considering how the provisional nature of the prize should

alter their strategic best response in the all-pay auction relative to the case where the prize is exogenously given. Recall
23 We note that ( Baharad and Nitzan, 2008 ) also analyze equilibrium in contests under distorted probabilities, but they consider a specific probability 

weighting function of the form 

� ( p ) = 

p α[
p α + ( 1 − p ) 

α
]( 1 /α) 

and use that function to describe rent dissipation in their standard contest environment (without public goods). 
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from Table 2 that in the case where there is an exogenously given fixed prize, the expected bid amounts under the all-pay

auction are always strictly positive and not very different (though strictly greater) than the predicted bid amounts under the 

lottery mechanism. Recall also that for the lottery mechanism, whether the fixed prize is exogenously given or is provisional 

on contributions equaling or exceeding the prize value is of no consequence for theoretical predictions regarding bids. 

The apparent disregard of subjects for the strategic consequences of making the fixed-prize provisional under the all- 

pay auction mechanism is consistent with the notion, advanced by Leininger (20 0 0) , that players view first price all-pay

auctions as a kind of binary lottery. Since in the complete information all-pay auction that we study all bids are paid and

the prize (if offered) has a known value V , each bidder’s expected payoff does not depend on information held by other

bidders. From the individual bidder’s perspective, this version of an all–pay auction is effectively an opportunity to buy, at 

a fixed price equivalent to the bidder’s bid b i , a lottery with a known payoff of V with some probability ˜ p and a payoff of 0

with probability 1 − ˜ p . Viewed this way, there is not much difference, from the player’s perspective, between our first price

all-pay auction and the lottery mechanism and it seems plausible that subjects in our experiment may have adopted this 

view. In that case, it is less surprising that there is little difference in bidding behavior across the two mechanisms. 

7. Conclusions 

We have studied two provisional fixed-prize mechanisms for raising charitable contributions, a lottery and an all-pay 

auction. 24 Both mechanisms are self–financing ; the total endowment of the n players must be sufficient to finance the prize

and total contributions must equal or exceed the prize level, V , for the fixed prize to be awarded. Public good provision is

thus the net value ( G − V ) if positive and 0 otherwise. We emphasize that the existence of equilibria with positive public 

good provision under both self-financing fixed-prize mechanisms requires that certain endowment conditions are satisfied 

and that public good provision is efficient, i.e., that βn > 1 . Our main finding is that, under certain plausible conditions

for the value of the fixed-prize relative to endowments, the provisional fixed-prize lottery mechanism can generate greater 

public good provision than the provisional fixed-prize all-pay auction mechanism. The latter result is new to the literature 

on public good fixed-prize fundraising mechanisms. 

We have also conducted an experimental test of some of our theoretical predictions, implementing for the first time in 

the laboratory, these provisional fixed-prize mechanisms for raising contributions to a public good. The main innovation of 

our experimental design is that we have varied both the group size, n , and the marginal per capita return on the public good,

β , which enables us to consider some of the important comparative statics implications of the Nash equilibrium predictions, 

e.g., the role of efficiency, which have not previously been addressed in the literature. Relative to theoretical predictions, 

we find over-bidding and over-provision of the public good under both provisional fixed-prize mechanisms. However, there 

is also evidence that individuals learn over time to bid less under all treatment conditions so that over-bidding and over-

provision decline with experience. Still, final amounts bid and levels of public good provision remain substantially greater 

than theoretical predictions in most of our treatments. 

In contrast to our theoretical prediction of zero bids and zero public good provision we find that bids are always large

and positive under the provisional fixed-prize all-pay auction mechanism. Under the lottery mechanism we find more con- 

sistency with our theory: for fixed n , bids and public good provision increase as β increases and for fixed β public good

provision increases as n increases. However we also observe that for fixed β , bids do not decrease as n increases–a find-

ing that is inconsistent with the theory. Perhaps most importantly, despite the prediction that the lottery will yield greater 

public good provision given our choices for e , V , and for all { n, β} treatment conditions, we find absolutely no difference in

public good provision between the lottery and the all-pay auction provisional fixed-prize mechanisms. 

Toward an explanation of why our findings depart from theoretical predictions, we have considered the possibility that 

subjects have non risk neutral risk preferences or joy-of-winning motivations or inequity averse social preferences or that 

they are non-expected utility maximizers. Of all of these explanations, the most promising seems to be the latter one where

subjects use a distorted probability weighting function that overweights low probability events and underweights high prob- 

ability events. Regarding the lack of any difference in public good provision between the two mechanisms which is also at

odds with the theory, we hypothesize that subjects do not properly account for the provisional nature of the prize in their

bidding behavior and view the all-pay auction mechanism as just another type of binary lottery. 

Finally, we note that our findings yield important practical insights for designers of prize-based fundraising mechanisms. 

First, our theoretical findings suggest that both the efficiency of public good provision and the size of the fixed prize rel-

ative to participants’ endowments are important considerations if a provisional fixed-prize mechanism is to be adopted. If 

public good provision is efficient and if the prize value is small relative to endowments, then there is a theoretical ar-

gument in favor of adopting a lottery mechanism for awarding the provisional, fixed-prize. Second, we also characterize 

the optimal prize value given the environment, and in future research it would be good to explore this prediction further.

Third, our provisional mechanisms do fix the negative public good provision problem described in Landry et al. (2006) and

Lange et al. (2007) . Under the provisional fixed-prize mechanisms we study, the prize is never paid out in those instances

(particularly in the n = 2 and β = . 25 treatment) where contributions are insufficient to fund the prize. Finally, our exper-

imental finding of no difference in behavior under the two fundraising mechanisms should be treated with great caution 
24 These are the most popular mechanisms. We leave the study of other public good provision mechanisms to the future research. 
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as we are considering the case where participation in the two mechanisms is required . As Carpenter et al. (2008) report

in their field study that allowed for endogenous participation, participants are significantly less likely to participate in an 

all-pay charity auction than in a first-price charity auction. If participation were endogenous and if the provisional lottery 

mechanism led to greater participation than the provisional all-pay auction mechanism, then our result showing that public 

good provision is increasing in the group size, n , would imply that a provisional fixed-prize lottery mechanism would be

the preferred choice. We leave to future research the important questions of endogenous participation and the performance 

of provisional fixed-prize mechanisms in the field. 

Declaration of Competing Interest 

None. 

Appendix A. Proofs 

Proof of Proposition 2 . 

Consider player i ’s best reply correspondence when her opponents spend 

∑ 

j � = i x j = X −i : 

BR i ( X −i ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

[ 0 , min { V − X −i , e } ] , if 0 ≤ X −i ≤ ( 1 − β) V, 

min 

{ √ 

V 
( 1 −β) 

X −i − X −i , e 

} 
, if ( 1 − β) V < X −i ≤ V 

( 1 −β) 
, 

0 , if X −i > 

V 
( 1 −β) 

. 

Suppose that X −i ≤ ( 1 − β) V . Then, player i ’s best reply is the whole interval [ 0 , min { V − X −i , e } ] . Therefore, any pure strat-

egy profile ( x 1 , . . . , x n ) , such that 0 ≤ x i ≤ min { ( 1 − β) V, e } , max i X −i ≤ ( 1 − β) V , and 

∑ n 
i =1 x i ≤ V , is a Nash equilibrium. �

Proof of Corollary 2.1. 

From Proposition 2 , in particular expression (7) , we have to consider the following maximization problem in order to

find the prize value that maximizes public good provision: 

max 
V ∈ [ 0 ,ne ] 

(
min 

{
( βn − 1 ) 

n ( 1 − β) 
V, ne − V 

})
. 

Hence, we must have 

( βn − 1 ) 

n ( 1 − β) 
V = ne − V, 

or 

V = 

n 

2 

( n − 1 ) 
( 1 − β) e. 

The highest public good provision (less the prize, V ) is thus: 

˜ G 

∗ = min 

{
( βn − 1 ) 

n ( 1 − β) 
V, ne − V 

}
= 

n 

( n − 1 ) 
( βn − 1 ) e. �

Proof of Proposition 4. 

Suppose that there exists a pure-strategy equilibrium where the public good is provided and that ( b 1 , . . . , b n ) is such an 

equilibrium. Let 

max 
j 

b j = b < e. (A1) 

Then, there exist players l and k such that b l = b ≥ b k . First, suppose that b k = b . Then, consider player k ’s payoff, if she

bids b + ε < e : 

πk 

(
b + ε, B −k 

)
= 

(
e −
[
b + ε

])
+ V + β( 

[
b + ε + B −k 

]
− V ) , 

where ε is ”a very small amount” and B −k = b 1 + . . . + b k −1 + b k +1 + . . . + b n . Note that πk 

(
b + ε, B −k 

)
> πk 

(
b , B −k 

)
. 

Second, suppose that 0 < b k < b , then πk 

(
0 , B −k 

)
> πk 

(
b k , B −k 

)
. 

Third, suppose that b k = 0 . Then, πk 

(
0 , B −k 

)
= e + β(B −k − V ) . However, 

πk 

(
b + ε, B −k 

)
− πk ( 0 , B −k ) = 

V − ( 1 − β) 
[
b + ε

]
> V − ( 1 − β) e ≥ n − 1 

n 

V > 0 . 

Therefore, condition (A1) cannot hold in a pure-strategy equilibrium where the public good is provided. 
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Suppose that ( b 1 , . . . , b n ) is a pure-strategy equilibrium where the public good is provided and 

max 
j 

b j = e. 

Then, there exist players l and k such that b l = e ≥ b k . 

First, suppose that 0 < b k < e , then πk 

(
0 , B −k 

)
> πk 

(
b k , B −k 

)
. 

Second, suppose that b k = 0 . Then, πk 

(
0 , B −k 

)
= e + β(B −k − V ) . However, 

πk ( e, B −k ) − πk ( 0 , B −k ) ≥
V 

n 

− ( 1 − β) e > 0 . 

Hence, ( e, . . . , e ) is the only candidate for the pure-strategy NE. If ( e, . . . , e ) is indeed a NE, then a zero” deviation does not 

increase a player’s payoff, or {
e + β((n − 1) e − V ) ≤ (V/n ) + β(ne − V ) , if (n − 1) e ≥ V, 

e ≤ (V/n ) + β(ne − V ) , if (n − 1) e < V. 

Therefore, {
e ≤ V 

n ( 1 −β) 
, if e ≥ V 

(n −1) 
, 

( βn − 1 ) e ≥ ( βn −1 ) 
n 

V, if e < 

V 
(n −1) 

. 
(A2) 

Note that the first condition in (A2) implies that: 

V 

(n − 1) 
≤ e ≤ V 

n (1 − β) 
, (A3) 

or 

βn > 1 , 

which means that it is efficient to provide the public good. 

Similarly, consider the second inequality in (A2) . Then, 

V 

n 

≤ e < 

V 

(n − 1) 
, if βn > 1 , (A4) 

and 

e < min 

{ 
V 

(n − 1) 
, 

V 

n 

} 
= 

V 

n 

, if βn < 1 . (A5) 

The endowment in (A5) is too small for there to be public good provision. Therefore, we have to consider only cases (A3) and

(A4) . Note that in both cases the efficiency condition (6) holds. Hence, there exists a symmetric pure strategy equilibrium

where each player bids his entire endowment, b ∗ = e , if inequalities (A3) and (A4) hold, which together imply that: 

V 

n 

≤ e ≤ V 

( 1 − β) n 

. �

Proof of Proposition 5 . 

Suppose that the following efficiency condition 

( n − 1 ) β > 1 (A6) 

and the following endowment condition 

V 

n ( 1 − β) 
≤ e ≤ V 

( n − 1 ) (1 − β) 
(A7) 

both hold. This is the case of k = 1 in the statement of the proposition. Then, ( 0 , e, . . . , e ) is a pure-strategy NE if no player

has a profitable deviation. In particular, a zero” deviation for any player except player 1 does not increase her payoff25 , or {
e + β((n − 2) e − V ) ≤ (V/ ( n − 1 ) ) + β( ( n − 1 ) e − V ) , if (n − 2) e ≥ V, 

e ≤ (V/ ( n − 1 ) ) + β( ( n − 1 ) e − V ) , if (n − 2) e < V. 

Therefore, {
e ≤ V 

( n −1 ) ( 1 −β) 
, if e ≥ V 

(n −2) 
, 

e ≥ V 
( n −1 ) 

, if e < 

V 
(n −2) 

. 
(A8) 
25 ”Zero” deviation is the most profitable deviation. See the proof of Proposition 4 for the similar argument. 
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Note that the first condition in ( Appendix A ) implies that: 

V 

(n − 2) 
≤ e ≤ V 

( n − 1 ) (1 − β) 
. (A9) 

Similarly, consider the second inequality in ( Appendix A ). Then, 

V 

n − 1 

≤ e < 

V 

(n − 2) 
. (A10) 

Note that in both cases (A.9) and (A.10) efficiency condition (A6) has to hold. From (A.9) and (A.10) we get 

V 

(n − 1) 
≤ e ≤ V 

( n − 1 ) (1 − β) 
. (A11) 

If ( 0 , e, . . . , e ) is a pure-strategy NE, then a e ” deviation for player 1 does not increase her payoff, or {
e + β((n − 1) e − V ) ≥ (V/n ) + β(ne − V ) , if (n − 1) e ≥ V, 

e ≥ (V/n ) + β(ne − V ) , if (n − 1) e < V. 

Therefore, {
e ≥ V 

n ( 1 −β) 
, if e ≥ V 

(n −1) 
, 

e ≤ V 
n 
, if e < 

V 
(n −1) 

. 
(A12) 

Note that the first condition in (A.12) implies that: 

e ≥ max 

{
V 

(n − 1) 
, 

V 

n ( 1 − β) 

}
= 

V 

n ( 1 − β) 
. (A13) 

Similarly, consider the second inequality in (A.12) . Then, 

e < min 

{ 
V 

(n − 1) 
, 

V 

n 

} 
= 

V 

n 

. 

This means that the endowment is too small and the public good is not provided. 

Hence, from (A.11) and (A.13) we get 

V 

n ( 1 − β) 
≤ e ≤ V 

( n − 1 ) (1 − β) 
. 

Hence, if efficiency condition (A6) and endowment condition (A7) both hold, then there exists n pure-strategy equilibria 

where ( n − 1 ) players bid their entire endowment, and one player bids zero. 

Suppose that conditions (13) and (14) hold, then, analogously to the case of k = 1 , it is straightforward to check that if

( n − k ) players bid their entire endowment, e , while the other k players bid zero, then we get an asymmetric pure-strategy

NE where the public good is provided. 

Suppose that e > 

V 
2 ( 1 −β) 

, then ( e, . . . , e ) is the only candidate for a pure-strategy NE where public good is provided. The

logic here is the same as it is in the proof of Proposition 4 . However, it is easy to check that given that all other players bid

their entire endowment, e , the best choice is to bid zero instead of e . Hence, there is no pure-strategy NE where the public

good is provided. 

Suppose that there exists a mixed-strategy equilibrium where the public good is provided and e > 

V 
2 ( 1 −β) 

. 

First, note that there cannot be any positive bid mass points below the endowment amount e : each player has an incen-

tive to increase his bid by ε > 0 at the mass point. 

Second, note that the winning bid must be at least V 
n because we assume that the public good will be provided. It follows

that no player bids in the interval 
(
0 , V n 

)
in the equilibrium. 

Third, suppose that players randomize on an interval 
[
b , b 
]

in a mixed-strategy equilibrium where the lower bound 

satisfies V 
n ≤ b < e . 

Consider bid b > 0 . We assume here that if there are several intervals where players randomize, then b is the lowest

bound of all such intervals. Such a bid can only be a winning bid if all others bid zero as there are no positive bid mass

points from the first observation. Therefore any player would prefer to bid zero instead of b > 0 . 

Next consider the case where players randomize on the non-closed interval 
(
b , b 
]

in a mixed-strategy equilibrium, where 

the lower bound again satisfies V 
n ≤ b < e , and if there are several intervals where players randomize, then b is the lowest

bound of all such intervals. Consider a bid of b + δ < b . Using (11) we have: 
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πi ( b + δ, b −i ; n, β, All-pay auction ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

V + ( e − ( b + δ) ) + β
(∑ n 

j=1 b j − V 

)
, if b + δ > b j for any j � = i and 

∑ n 
j=1 b j ≥ V, 

V 
K 

+ ( e − ( b + δ) ) + β
(∑ n 

j=1 b j − V 

)
, if i ties ( K − 1 ) others for the high bid and 

∑ n 
j=1 b j ≥ V, 

( e − ( b + δ) ) + β
(∑ n 

j=1 b j − V 

)
, if b i < b j for some j � = i and 

∑ n 
j=1 b j ≥ V, 

e, if 
n ∑ 

j=1 

b j < V. 

(A14) 

Note that the probability of winning the prize or the probability of the event [ 

b + δ > b j for any j � = i and 

n ∑ 

j=1 

b j ≥ V 

] 

is proportional to δn −1 . This is the probability to attach to the first two elements of the payoff function (A.14) . At the same

time, a probability of losing (not winning the prize) or the probability of the event [ 

b + δ < b j for some j � = i and 

n ∑ 

j=1 

b j ≥ V 

] 

is proportional to 
(
1 − δn −1 

)
. This is the pr obability t o attach t o the third element of the payoff function (A.14) . Thus, via

continuity, there exists a δ0 > 0 such that for any bid b + δ, where 0 < δ < δ0 , we will have: 

πi ( 0 , b −i ; n, β, All-pay auction ) > πi ( b + δ, b −i ; n, β, All-pay auction ) , 

since 

πi ( 0 , b −i ; n, β, All-pay auction ) = 

{
e + β

(∑ n 
j=1 b j − V 

)
, if 

∑ n 
j=1 b j ≥ V, 

e, if 
∑ n 

j=1 b j < V. 

That is, taking into account expected payoffs, a bid of zero outperforms a bid of b + δ. Hence, players cannot randomize

on continuous intervals in any mixed-strategy equilibrium. 

It follows that each player can only randomize between two bids: b = 0 and b = e . Since e > 

V 
2 ( 1 −β) 

, each player bids her

dominant choice: zero and we obtain the equilibrium described in Proposition 3 . 

Proof of Proposition 6 . 

From Proposition 4 , it follows that we have to consider the following maximization problem in order to find the prize

value that maximizes public good provision: 

max 
V is such that (12) holds 

( ne − V ) . 

In particular we are looking for the minimal value of V which satisfies inequalities (12) . Then, from (12) , we get 

( 1 − β) ne ≤ V < ne. 

Hence, the optimal prize value is 

V 

A = ( 1 − β) ne, 

and the highest possible public good provision (less the prize V ) is given by: 

˜ G 

A = ne − V 

A = βne. �
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Appendix B. Additional Tables 

Table B1 

Session-Level Average Bids Under the Lottery Mechanism Over Various Intervals of Time. 

Lottery Mechanism Average Amount Bid in Round Number(s): 

Session No., { n, β} , Order 1–15 1 1–5 6–10 11–15 15 

1 { 2 , 0 . 25 } Lottery, Auction 68.7 93.7 83.3 72.2 50.4 45.7 

2 { 2 , 0 . 25 } Auction, Lottery 53.9 63.4 59.8 49.9 52.1 48.8 

3 { 2 , 0 . 25 } Lottery, Auction 66.3 77.7 76.5 69.6 52.9 51.4 

4 { 2 , 0 . 25 } Auction, Lottery 48.3 51.0 54.6 46.4 43.8 46.2 

Average of Sessions 1–4 59.3 71.4 68.6 59.5 49.8 48.0 

1 { 2 , 0 . 75 } Lottery, Auction 165.0 126.0 183.8 180.0 131.3 98.5 

2 { 2 , 0 . 75 } Auction, Lottery 135.6 143.7 133.9 129.1 124.0 248.0 

3 { 2 , 0 . 75 } Lottery, Auction 212.4 212.4 250.6 236.2 177.6 154.3 

4 { 2 , 0 . 75 } Auction, Lottery 81.3 91.7 95.4 80.4 68.0 81.2 

Average of Sessions 1–4 148.6 143.4 165.9 156.4 125.2 145.5 

1 { 10 , 0 . 25 } Lottery, Auction 119.6 124.8 154.3 124.0 80.6 96.2 

2 { 10 , 0 . 25 } Auction, Lottery 50.2 78.9 70.9 46.4 33.1 17.4 

3 { 10 , 0 . 25 } Lottery, Auction 135.3 140.5 167.1 133.3 105.6 96.5 

4 { 10 , 0 . 25 } Auction, Lottery 41.3 114.9 69.3 29.5 25.1 45.8 

Average of Sessions 1–4 86.6 114.8 115.4 83.3 61.1 64.0 

1 { 10 , 0 . 75 } Auction, Lottery 252.5 287.1 258.6 268.2 230.7 222.1 

2 { 10 , 0 . 75 } Lottery, Auction 235.2 170.6 233.5 251.4 220.6 240.5 

3 { 10 , 0 . 75 } Auction, Lottery 165.8 199.0 197.4 177.8 122.3 137.0 

4 { 10 , 0 . 75 } Lottery, Auction 153.6 102.7 146.5 158.4 156.0 171.6 

Average of Sessions 1–4 201.8 189.8 209.0 213.9 182.4 192.8 

Table B2 

Session-Level Average Bids Under the All-Pay Auction Mechanism Over Various Intervals of Time. 

AP Auction Mechanism Average Amount Bid in Round Number(s): 

Session No., { n, β} , Order 1–15 1 1–5 6–10 11–15 15 

1 { 2 , 0 . 25 } Lottery, Auction 51.1 62.9 56.7 55.7 40.8 29.0 

2 { 2 , 0 . 25 } Auction, Lottery 82.2 112.4 112.1 82.7 52.0 43.5 

3 { 2 , 0 . 25 } Lottery, Auction 58.3 76.5 67.7 60.0 47.1 42.0 

4 { 2 , 0 . 25 } Auction, Lottery 80.2 112.0 102.3 79.1 59.2 79.5 

Average of Sessions 1–4 67.9 90.9 84.7 69.4 49.8 41.8 

1 { 2 , 0 . 75 } Lottery, Auction 171.7 172.2 170.2 184.5 160.3 129.5 

2 { 2 , 0 . 75 } Auction, Lottery 221.4 212.4 250.6 236.2 177.6 154.3 

3 { 2 , 0 . 75 } Lottery, Auction 135.7 209.3 145.2 144.5 117.3 96.4 

4 { 2 , 0 . 75 } Auction, Lottery 108.5 133.9 119.6 103.1 102.9 104.4 

Average of Sessions 1–4 159.3 181.9 171.4 167.1 139.5 121.1 

1 { 10 , 0 . 25 } Lottery, Auction 72.3 160.7 107.8 73.1 36.0 31.5 

2 { 10 , 0 . 25 } Auction, Lottery 99.8 107.8 124.8 107.5 67.2 87.1 

3 { 10 , 0 . 25 } Lottery, Auction 88.7 117.7 106.9 92.5 66.8 52.9 

4 { 10 , 0 . 25 } Auction, Lottery 87.3 114.9 140.2 82.4 39.3 30.0 

Average of Sessions 1–4 87.0 125.3 119.9 88.9 52.3 50.3 

1 { 10 , 0 . 75 } Auction, Lottery 254.7 274.0 265.8 260.1 238.0 263.6 

2 { 10 , 0 . 75 } Lottery, Auction 229.5 223.1 228.8 240.5 219.1 221.9 

3 { 10 , 0 . 75 } Auction, Lottery 209.7 131.9 210.4 227.6 191.2 216.0 

4 { 10 , 0 . 75 } Lottery, Auction 149.4 170.3 161.5 149.0 137.8 125.3 

Average of Sessions 1–4 210.8 199.8 216.6 219.3 196.5 206.7 
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Table B3 

Session-Level Average Group Contribution Less Prize Under the Lottery Mechanism Over Various Intervals of Time. 

Lottery Mechanism Average G Less Prize in Round Number(s): 

Session No., { n, β} , Order 1–15 1 1–5 6–10 11–15 15 

1 { 2 , 0 . 25 } Lottery, Auction 49.4 95.2 72.2 51.8 24.2 10.2 

2 { 2 , 0 . 25 } Auction, Lottery 31.7 55.5 41.9 27.3 26.0 22.6 

3 { 2 , 0 . 25 } Lottery, Auction 42.4 63.2 57.0 47.5 22.8 16.2 

4 { 2 , 0 . 25 } Auction, Lottery 22.0 24.8 28.5 23.0 14.7 22.9 

Average of Sessions 1–4 36.4 59.7 49.9 37.4 21.9 18.0 

1 { 2 , 0 . 75 } Lottery, Auction 233.1 151.9 267.5 262.2 169.6 102.4 

2 { 2 , 0 . 75 } Auction, Lottery 182.9 215.4 199.6 178.3 170.9 171.3 

3 { 2 , 0 . 75 } Lottery, Auction 326.7 341.9 398.5 306.0 275.7 353.9 

4 { 2 , 0 . 75 } Auction, Lottery 89.0 116.2 113.3 80.8 72.9 105.1 

Average of Sessions 1–4 207.9 205.6 236.6 204.9 180.3 179.2 

1 { 10 , 0 . 25 } Lottery, Auction 1096.3 1147.5 1443.4 1139.5 706.0 862.0 

2 { 10 , 0 . 25 } Auction, Lottery 401.6 689.0 609.4 364.3 231.0 74.0 

3 { 10 , 0 . 25 } Lottery, Auction 1253.3 1305.0 1569.0 1232.6 956.0 865.0 

4 { 10 , 0 . 25 } Auction, Lottery 319.2 1048.5 592.9 204.6 160.2 357.8 

Average of Sessions 1–4 767.6 1047.5 1053.7 735.3 513.3 539.7 

1 { 10 , 0 . 75 } Auction, Lottery 2425.0 2770.5 2486.1 2582.2 2073.4 2121.0 

2 { 10 , 0 . 75 } Lottery, Auction 2251.8 1606.0 2235.1 2414.3 2106.1 2305.0 

3 { 10 , 0 . 75 } Auction, Lottery 1558.2 1889.5 1874.0 1677.5 1123.1 1270.0 

4 { 10 , 0 . 75 } Lottery, Auction 1436.0 926.7 1364.7 1483.8 1420.5 1615.5 

Average of Sessions 1–4 1918.0 1798.2 1990.0 2039.5 1680.8 1827.9 

Table B4 

Session-Level Average Group Contribution Less Prize Under the All-Pay Auction Mechanism Over Various Intervals of Time. 

AP Auction Mechanism Average G Less Prize in Round Number(s): 

Session No., { n, β} , Order 1–15 1 1–5 6–10 11–15 15 

1 { 2 , 0 . 25 } Lottery, Auction 27.5 45.7 33.0 36.1 13.5 1.2 

2 { 2 , 0 . 25 } Auction, Lottery 82.6 124.8 131.1 80.2 36.6 26.0 

3 { 2 , 0 . 25 } Lottery, Auction 35.1 57.0 48.0 35.4 21.8 20.1 

4 { 2 , 0 . 25 } Auction, Lottery 79.5 144.0 114.1 74.0 50.5 88.1 

Average of Sessions 1–4 56.2 92.9 81.6 56.4 30.6 33.9 

1 { 2 , 0 . 75 } Lottery, Auction 246.6 249.2 247.3 270.6 222.0 163.9 

2 { 2 , 0 . 75 } Auction, Lottery 348.4 324.8 403.2 378.3 262.9 221.1 

3 { 2 , 0 . 75 } Lottery, Auction 187.6 335.1 208.0 203.3 151.5 112.2 

4 { 2 , 0 . 75 } Auction, Lottery 138.6 183.1 157.4 131.8 126.6 128.7 

Average of Sessions 1–4 230.3 273.1 254.0 246.0 190.8 156.5 

1 { 10 , 0 . 25 } Lottery, Auction 626.0 1507.0 977.7 631.0 269.5 264.5 

2 { 10 , 0 . 25 } Auction, Lottery 900.4 977.6 1148.2 975.3 577.7 800.5 

3 { 10 , 0 . 25 } Lottery, Auction 787.3 1077.0 969.0 824.7 568.4 429.0 

4 { 10 , 0 . 25 } Auction, Lottery 776.1 1049.0 1302.0 723.5 302.7 199.5 

Average of Sessions 1–4 772.5 1152.7 1099.2 788.6 429.6 423.4 

1 { 10 , 0 . 75 } Auction, Lottery 2446.5 2639.5 2558.4 2501.1 2280.1 2536.0 

2 { 10 , 0 . 75 } Lottery, Auction 2194.8 2130.5 2188.4 2304.7 2091.4 2118.5 

3 { 10 , 0 . 75 } Auction, Lottery 1997.4 1218.5 2003.5 2176.2 1812.4 2060.0 

4 { 10 , 0 . 75 } Lottery, Auction 1394.0 1603.0 1514.5 1389.7 1277.7 1152.5 

Average of Sessions 1–4 2008.0 1897.9 2066.2 2092.9 1865.4 1966.8 
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