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a  b  s  t  r  a  c  t

We study  how  group  size  affects  cooperation  in  an  infinitely  repeated  n-player  Prisoner’s
Dilemma  (PD)  game.  In  each  repetition  of  the  game,  groups  of size  n  ≤  M  are  randomly  and
anonymously  matched  from  a fixed  population  of  size M to play  the  n-player  PD  stage  game.
We provide  conditions  for which  the  contagious  strategy  (Kandori,  1992) sustains  a  social
norm  of cooperation  among  all M players.  Our  main  finding  is that  if agents  are  sufficiently
patient,  a social  norm  of society-wide  cooperation  becomes  easier  to  sustain  under  the
contagious  strategy  as  n  increases  toward  M.  In an  experiment  where  the population  size
M is fixed  and conditions  identified  by our  theoretical  analysis  hold,  we  find  strong  evidence
that cooperation  rates  are  higher  with  larger  group  sizes  than  with  smaller  group  sizes  in
treatments  where  each  subject  interacts  with  M −  1 robot  players  who  follow  the  contagious
strategy.  When  the  number  of  human  subjects  increases  in the population,  the  cooperation
rates  decrease  significantly,  indicating  that  it is the  strategic  uncertainty  among  the  human
subjects  that hinders  cooperation.

©  2016  Elsevier  B.V.  All  rights  reserved.

. Introduction

What choice of group size maximizes (or minimizes) the possibility of achieving a social norm of cooperation in a finite
opulation of self-interested strangers? This question would seem to be of some importance for the design of ad hoc com-

ittees, juries and teams. It is also of interest to experimentalists interested in understanding how the extent of pro-social

ehavior might depend on the matching group size of subject participants. In this paper we offer an answer to this question.
pecifically, we consider a population of players of fixed size M.  In every period, t = 1, 2, . . .,  ∞,  players in this population are
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randomly and anonymously matched to form groups of size n and then play an n-person Prisoner’s Dilemma game with all
the members of their group. The total number of groups, M/n, is assumed to be an integer (i.e., M is a multiple of n).

The n = 2 person version of this environment has been previously studied by Kandori (1992), who shows that a social
norm of cooperation among anonymous, randomly matched players is sustainable under certain conditions on the game.
Kandori further shows that a social norm of cooperation among strangers in the n = 2 case becomes more difficult to sustain
as M gets large and the possibility vanishes in the limit as M→ ∞.  By contrast, in this paper we  fix M and ask: for what
value(s) of n > 2 is a social norm of cooperation among strangers easiest to achieve? In other words, is there an optimal group
size for maximizing the likelihood of cooperative outcomes?

Our answer is that under certain conditions – specifically if agents are sufficiently patient – a social norm of cooperation
among strangers, which is sustained by universal play of a “contagious” trigger strategy, becomes steadily easier to achieve
as n gets larger, and becomes easiest to achieve when n = M. That is, we find that cooperation can be easiest to sustain when
the group size is as large as possible. This seemingly counterintuitive finding readily follows from the rational-choice logic
of the contagious trigger strategy that is used to support cooperation among randomly matched, non-communicative and
anonymous “strangers.” Intuitively, if agents are sufficiently patient, then the costs of igniting a contagion toward mutual
defection are greatest when the matching group size, n, equals the population size, M. On the other hand, once a defection
has started in the community, the benefits to slowing down the contagious process are also minimized in this same case
where n = M.  Therefore, the players’ incentives to follow the contagious strategy are easiest to satisfy when the group size is
as large as possible.

Our main finding is consistent with Kandori’s (1992) result. While we fix M and show that a social norm of cooperation is
easier to achieve as n increases toward M,  Kandori’s result can be viewed as showing that for the case where n is fixed at 2,
cooperation is easier to sustain for a smaller M.  Still, our findings serve to generalize Kandori’s (1992) extension of the folk
theorem for repeated games with random, anonymous matchings to the multiple-player (n > 2) Prisoner’s Dilemma game.
The n-player version of the Prisoner’s Dilemma game is widely used to model a variety of social dilemmas including, e.g.,
the tragedy of the commons (Hardin, 1968). In addition, we show that our monotonicity result holds in an n-player binary
public good game.

We also provide an empirical test of our main theoretical results by designing and implementing an experiment. In this
experiment, we fix the population size, M,  and the discount factor, ı, and study play of an indefinitely repeated game in which
players from the population are randomly and anonymously matched in each repetition to play an n-player version of the
Prisoner’s Dilemma stage game. Within the population of size M,  some fraction of players are robot players programmed to
play according to the contagious strategy while the remaining fraction of players are human subjects and this ratio is public
knowledge. In this setting we find strong evidence that, consistent with our theoretical predictions, cooperation rates are
higher with larger matching groups, e.g., of size n = 6 as compared with smaller matching groups, e.g., of size n = 2 as subjects
learn, with experience, the more immediate consequences of triggering an infectious wave of defection when the group size
is larger. We  show further how differences in cooperation rates between different group sizes vary in ways that reflect the
predictions of our theory as we vary the payoff incentives of the game as well. Finally we show how our theoretical results
find the strongest support when we eliminate strategic uncertainty by having subjects interact only with robot players.

Our paper contributes to the theoretical and experimental literature on sustaining cooperation among anonymous, ran-
domly matched players. While this is an admittedly stark environment, it is an important benchmark case in both the
theoretical and experimental literature and one that naturally characterizes many types of socio-economic interactions.1 In
addition to the original seminal paper by Kandori (1992), Ellison (1994) and Dal Bó (2007) provide further generalizations
of how a social norm of cooperation may  be sustained among anonymous, randomly matched players in 2-player Prisoner’s
Dilemma games. Xie and Lee (2012) extend Kandori’s result to 2-player “trust” games under anonymous random match-
ings. Camera and Gioffre (2014) offers a tractable analysis of the contagious equilibria by characterizing a key statistic of
contagious punishment processes and deriving closed-form expressions for continuation payoffs off the equilibrium path.
Experimentally, Duffy and Ochs (2009) report on an experiment that examines play in an indefinitely repeated, two-player
Prisoner’s Dilemma game and find that a cooperative norm does not emerge in the treatments with anonymous random
matching but does emerge under fixed pairings as players gain more experience. Camera and Casari (2009) examine cooper-
ation under random matching by focusing on the role of private or public monitoring of the anonymous (or non-anonymous)
players’ choices. They find that such monitoring can lead to a significant increase in the frequency of cooperation relative
to the case of no monitoring. Duffy et al. (2013) test the contagious equilibrium in the lab using trust games and find that
information on past play significantly increases the level of trust and reciprocity under random matchings. Camera et al.
(2012) report wide heterogeneity in strategies employed at the individual level in an experiment in which anonymous ran-
domly matched subjects play the Prisoner’s Dilemma game in sequences of indefinite duration. Compared with this previous

literature, our paper is the first to theoretically and experimentally extend the analysis of the contagious equilibrium from
a 2-player stage game to an n-player stage game. Our main theoretical finding, that a cooperative social norm is easier to
sustain with a larger rather than a smaller group size, is new to the literature but finds support both in our own  experiment

1 There is also an experimental literature that studies cooperation in repeated Prisoner’s Dilemma games of indefinite duration among fixed pairs of
players (partners) e.g., Dal Bó (2005, 2007), Aoyagi and Fréchette (2009), Dal Bó and Fréchette (2011), Fudenberg et al. (2012). Engle-Warnick and Slonim
(2006) examines a trust game of indefinite duration with fixed pairs.
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nd qualitatively in the previous literature as well, if one considers a large group size to be a partial substitute for public
onitoring or fixed matching.2

There are several experimental papers that study the consequences of group size for contributions to a public good using
he liner voluntary contribution mechanism (VCM). Isaac and Walker (1988) and Isaac et al. (1994) examine how groups
f size 4, 10, 40 and 100 play a repeated public good game. One of their main findings is that, holding the marginal per
apita return (MPCR) to the public good constant, an increase in the number of players, n, leads to no change or an increase
depending on the MPCR) in the mean percentage of each player’s fixed and common endowment that is contributed
oward the public good, and this effect is strongest with group sizes of 40 and 100 in comparison with group sizes of 4
nd 10. Carpenter (2007) studies contributions under the VCM when players are randomly matched into groups of size

 or 10, and he allows participants to monitor and punish each other following each repetition. In this setting, he also
nds that contributions are higher with a larger group size. Xu et al. (2013) examine the effectiveness of an individual-
unishment mechanism in larger groups of 40 participants compared with smaller groups of size four. They find that the

ndividual punishment mechanism is effective when the MPCR is constant but not when the marginal group return (MGR) is
eld constant (in which case the MPCR is decreasing). Similarly, Nosenzo et al. (2015) find that it is more difficult to sustain
ooperation in larger groups with high MPCR, however, with a low MPCR, considerations of the social benefits may  dominate
he negative effect of group size. Weimann et al. (2014) report that first-round contributions to a public good increases with
he MPCR distance, which is defined as the difference between the actual MPCR and the minimal MPCR necessary to create

 social dilemma for a given group size. They further demonstrate that small groups behave similar to large groups when
he MPCR distance is controlled.

There are several important differences between our experimental results and linear VCM games (public good games).
irst, in our model and experimental design, we  impose a payoff normalization under which players’ payoffs are always
qual to 1 when full cooperation is achieved, regardless of the group size. Equivalently, this corresponds to a public goods
xperiment where the MPCR decreases as the group size increases. Therefore, our monotonicity result and the evidence from
ur experiment show that cooperation increases with group size, even as the MPCR is decreasing, a result that we  believe is
ew to this literature. Second, in our treatments where human subjects only interact with robot players, cooperation does
ot rely on any other-regarding preferences, which is an important explanatory variable in the experimental public goods

iterature. Third, the game we have implemented has several differences from the public good game: (1) the strategy space
s continuous under the VCM and not binary as in the n-player Prisoner’s Dilemma game that we study; (2) subjects in many
f these public goods experiments (Carpenter (2007) being an exception) are in fixed matches of size n for all repetitions
f the public good game whereas in our setup players are randomly and anonymously matched into groups of size n in
ach repetition of the game; and (3) perhaps most importantly, in all of these public good game experiments, the game is
nitely-repeated so that in theory, positive public good provision (“cooperation”) or efficiency is not possible according to
tandard backward induction arguments if players have the usual self-regarding preferences. By contrast, we study infinitely
epeated, binary choice n-player prisoner’s dilemma games where cooperation and efficiency are theoretically possible even
f players are randomly and anonymously matched and have purely self-regarding preferences. We  are not aware of any
rior experimental study of indefinitely repeated n-player Prisoner’s Dilemma games under anonymous random matching
nd our use of programmed robot players in this setting is also new to the literature.

The rest of the paper is organized as follows. Section 2 presents our model and Section 3 presents our main theoretical
esults on the consequences of group size for the sustainability of social norms of cooperation among anonymous and
andomly matched strangers. Section 4 shows how our framework maps into the classic public good game of Isaac and

alker (1988). Section 5 describes the experimental design and Section 6 reports on the findings of an experiment testing
ur main theoretical results. Finally, Section 7 concludes with a brief summary and some suggestions for future research.

. The model

Consider a finite population of M players. Time is discrete, the horizon is infinite and all players have a common period
iscount factor, ı ∈ [0, 1]. In each period, the M players are randomly and anonymously matched into m groups of size n ≤ M,
ith all matchings being equally likely. We  assume that M is a multiple, m, of n. The randomly matched group members

hen simultaneously and without communication play an n-player Prisoner’s Dilemma game where each player chooses
 strategy from the set {C, D}, with C representing cooperation and D representing defection. Let i denote the number of
embers of the group choosing to cooperate (i.e., the number of “cooperators”) other than the representative player himself

o that 0 ≤ i ≤ n − 1. Let Ci and Di denote the payoffs to cooperation and defection, respectively, when there are i cooperators.
n n-player Prisoner’s Dilemma game is defined by the following three assumptions regarding these payoffs:
1: Di > Ci for 0 ≤ i ≤ n − 1.
2: Ci+1 > Ci and Di+1 > Di for 0 ≤ i < n − 1.

2 We note that when the group size, n, is set equal to the largest possible value, the population size M,  then our model converges to one of perfect
ublic monitoring and fixed matching. Thus for group sizes less than M,  one can view larger group sizes as being closer approximations to perfect public
onitoring and fixed matchings.
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Table  1
The payoff matrix of the n-player Prisoner’s Dilemma game.

Number of cooperators in the group 0 1 2 . . . n − 1
C C0 C1 C2 . . . Cn−1

D D0 D1 D2 . . . Dn−1

A3: Cn−1 > D0.

Assumption A1 says that defection is always a dominant strategy. Assumption A2 says that payoffs are increasing with
the number of cooperators. Finally, assumption A3 says that if all participants adopt the dominant strategy, the outcome
is sub-optimal relative to the mutual cooperation outcome. These conditions are standard in the literature on n-person
Prisoner’s Dilemma games (see, e.g., Okada, 1993, Assumption 2.1). We  further suppose that the payoff matrix is symmetric
for each player in the group and is as given in Table 1.

We next define the “contagious strategy” following Kandori (1992) and show that a social norm of cooperation can be
sustained as a sequential equilibrium if all players adopt this strategy. Define a player as a “c-type” if in all previous repetitions
of the game this player and all of the other n − 1 group members with whom he has interacted in all prior periods have never
chosen D, i.e., the outcome of the stage game played in every prior period has been cooperation, C, by every group member
the player has encountered. Otherwise, the player is a “d-type” player. (Note that the presence of c-type players in any period
does not preclude the presence of d-type players in the same period among the population (or “community”) of players of
size M ≥ n). The “contagious strategy” can now be defined as follows: A player chooses C if he is c-type and chooses D if he
is d-type.

We next provide a set of sufficient conditions that sustains the contagious strategy as a sequential equilibrium when
the group size is n. We  first introduce some notation. Let Xt denote the number of d-type players at time t. Define An = (an

ij
)

to be an M × M transition probability matrix where an
ij

= Pr(Xt+1 = j|Xt = i and all players follow the contagious strategy)
given group size n. Define Bn = (bn

ij
) as an M × M transition probability matrix where bn

ij
= Pr(Xt+1 = j|Xt = i and one d-type

player deviates to playing C while all other players follow the contagious strategy) given group size n. Let Hn = Bn − An,
which indicates how the diffusion of defection is delayed by the unilateral deviation of one of the d-type players. Define
Zn = (�n

0, �n
1, . . .,  �n

n−1), where �n
0, �n

1, . . .,  �n
n−1 are M × 1 vectors such that the ith element of �n

j
is the conditional probability

that a d-type player meets j c-type players in the group when there are i d-type players in the community given that the
group size is n (i.e., Zn = (zn

ij
) is an M × n matrix where zn

ij
= Pr(a d-type player meets j − 1 c-type players in his group in period

t|Xt = i) given a group size of n). Define ei as a 1 × M vector whose ith element is 1 and with zeros everywhere else. Finally,
define column vectors vn = (D0, D1, . . .,  Dn−1)T and un = (C0, C1, . . .,  Cn−1)T, whose ith element is the payoff for a player from
choosing D and C respectively, given that there are i − 1 other players in the group who choose C.

Next we show that a one-shot deviation from the contagious strategy is unprofitable after any history. On the equilibrium
path, a one-shot deviation is unprofitable if

Cn−1

1 − ı
≥

∞∑
t=0

ıte1At
nZnvn. (1)

The left hand side of (1) is the payoff from cooperating forever and the right-hand side of (1) is the payoff that the player
earns if the player initiates a defection and defects forever afterward. Off the equilibrium path, following Kandori (1992),
we identify a sufficient condition for a one-shot deviation to be unprofitable under any consistent beliefs. Suppose there are
k d-type players, where k = n, n + 1, . . .,  M.3 Then a one-shot deviation off the equilibrium path is unprofitable if

∞∑
t=0

ıtekAt
nZnvn ≥ ekZnun + ı

∞∑
t=0

ıtekBnAt
nZnvn. (2)

The left hand side of (2) is the payoff that a d-type player earns from playing D forever when there are k d-type players
including the player himself, while the right hand side of (2) is what a d-type player receives when he deviates from the
contagious strategy, playing C today and then reverting back to playing D forever after. Inequalities (1) and (2) can be
manipulated into equilibrium conditions 1 and 2 in the following lemma.

Lemma  1. The contagious strategy constitutes a sequential equilibrium if the following two conditions are satisfied:

−1
Equilibrium Condition 1 : Cn−1 ≥ (1 − ı)e1(I − ıAn) Znvn,

Equilibrium Condition 2 : ekZn(vn − un) ≥ ıekHn(I − ıAn)−1Znvn.

3 Since the player under consideration is a d-type, there must be at least n d-type players in the community.
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Table  2
The simpler payoff matrix for the n-player prisoner’s dilemma game.

Number of cooperators in the group 0 1 2 . . . n − 1

C 0 ˇ 2ˇ . . . (n − 1)ˇ
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D  ̨  ̨ + ˇn  ̨ + 2ˇn . . .  ̨ + (n − 1)ˇn

The intuition behind equilibrium conditions 1 and 2 is similar to that for the n = 2 case studied by Kandori (1992). When
 player is on the equilibrium path, he has no incentive to deviate from cooperation when ı is sufficiently large. When a
layer is off the equilibrium path, he has no incentive to deviate from continued play of the contagious strategy if the extra
ayoff from defection in the current period, vn − un, is large enough. Using Lemma  1 we  can prove the following theorem.

heorem 1. Under uniformly random matching, the contagious strategy described above constitutes a sequential equilibrium
trategy for any finite population size, M,  if ı, Cn−1 − Do, and all components of vn − un are sufficiently large.

roof. See Appendix A.

. A monotonicity result

In this section we ask the following question: fixing the population size at M, which group size n ≤ M maximizes the
ossibility of achieving a social norm of cooperation among strangers?4 Although we  can characterize the equilibrium
onditions for the contagious strategy, we cannot derive closed-form solutions since the formulas for the elements of the
ransition matrices A and B become too complicated to derive for group sizes n > 2.5 Therefore, in this section we  switch to
he use of numerical methods.6

Furthermore, for greater tractability, we focus on a simple symmetric specification for the payoff parameters that satisfy
ssumptions A1–A3. Specifically, we impose the following additional assumptions7:

4: C0 = 0.
5: Di − Ci =  ̨ for 0 ≤ i ≤ n − 1.
6: Ci+1 − Ci = Di+1 − Di = ˇn for 0 ≤ i < n − 1.

Under these assumptions, the payoff matrix (Table 1) now takes on the specific form shown in Table 2. Finally, we note
hat under our parameterization it may  be easier to achieve full cooperation with a larger group size since the payoff from
ull cooperation, (n − 1)ˇn, may  grow with the group size, n. To properly correct for this dependency, we  also normalize the
ayoff matrix in such a way that the payoff from full cooperation is fixed and constant by the following assumption:

7: (n − 1)ˇn = 1 for any n.

ote that under this normalization, to satisfy assumption A3, we  must have  ̨ < Cn−1 = 1 for all n ≥ 2.
In order to examine the question raised above, we  fix M = 12 and examine changes in the two equilibrium conditions

s the group size takes on the values n = 2, 3, 4, 6, 12. We  find that as n increases toward M both the on-equilibrium and
ff-equilibrium conditions become easier to satisfy, which we  refer as the Monotonicity Result.

.1. Equilibrium condition 1

We  first examine the effect of increases in the group size, n, on equilibrium condition 1. Although we are mainly interested
n the case where payoffs are normalized to eliminate the dependency on n, for the moment we keep payoffs for equilibrium

ondition 1 in their original unnormalized form (i.e., Cn−1 = (n − 1)ˇn), so that we can derive some intuition on the discounted
ummation of the probability of earning each payoff outcome.

4 In Appendix B, we  also ask how the answer to this question changes if instead of fixing M,  we  vary both M and n but in such a way  that the number
f  groups, m = M/n, is held constant. We show there that we obtain similar results with respect to satisfaction of the equilibrium conditions needed for
ooperation to be sustained as a social norm, if we vary n but hold the number of groups constant.

5 Kandori (1989) provides transition matrix formulas for the n = 2 case only.
6 The Mathematica program used for our numerical results is available upon request.
7 A slightly different normalization, for instance, D0 = 0, Di = iˇ, Ci = Di − ˛, Cn−1 = 1, gives similar results.
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Given a group of size n, we can write equilibrium condition 1 as:

(n − 1)ˇn ≥ pn
0  ̨ + pn

1(  ̨ + ˇn) + · · · + pn
n−1(  ̨ + (n − 1)ˇn)

=

⎛
⎝ n−1∑

j=0

pn
j

⎞
⎠

 ̨ +
n−1∑
j=1

jpn
j ˇn,

where pn
j

≡ (1 − ı)e1(I − ıAn)−1�n
j

denotes the discounted summation of the probability of meeting j cooperators (c-types)

in a group of size n once a player has initiated a defection. Then given that
∑n−1

j=0 pn
j

= 1 as shown in Lemma  2 in Appendix
A and the normalization assumption A7, (n − 1)ˇn = 1, equilibrium condition 1 becomes

 ̨ ≤ pn, (3)

where

pn ≡ 1 −
∑n−1

j=1 jpn
j

n − 1
.

Eq. (3) says that the net payoff from defection (which is ˛) must be less than or equal to the net loss from initiating a defection
(which is pn).

Proposition 1. If pn is increasing in n, then Condition (3) (equilibrium condition 1) is monotonically less restrictive as the group
size n increases.

3.2. Equilibrium condition 2

We  next examine the effects of increases in the group size, n, on equilibrium condition 2. Given our payoff specification
that Di − Ci =  ̨ for i = 0, 1, . . .,  n − 1, the left hand side of equilibrium condition 2, representing the extra payoff from defection,
is equal to ˛. The right hand side of equilibrium condition 2, the payoff to a d-type player from slowing down the contagious
process, achieves its highest value when the number of d-type players are at a minimum, i.e., when k = n. Thus it is sufficient
to compare equilibrium condition 2 at k = n for different group sizes, n = 2, 3, 4, 6, 12. Similar to equilibrium condition 1, we
first present equilibrium condition 2 with the original payoff parameters and then we impose our normalization later.

Given a group of size n, we can write equilibrium condition 2 as:

 ̨ ≥ qn
0  ̨ + qn

1(  ̨ + ˇn) + · · · + qn
n−1(  ̨ + (n − 1)ˇn)

=

⎛
⎝ n−1∑

j=0

qn
j

⎞
⎠

 ̨ +
n−1∑
j=1

jqn
j ˇn,

where qn
j

≡ ıenHn(I − ıAn)−1�n
j

denotes the change in the discounted summation of the probability of meeting j c-type players
in the group when the d-type player reverts back to playing cooperation instead of defection given that the group size is n
and there are k = n d-type players in the population. Given that

∑n−1
j=0 qn

j
= 0 as shown in Lemma  2 and the normalization

assumption A7, (n − 1)ˇn = 1, equilibrium condition 2 becomes

 ̨ ≥ qn, (4)

where

qn ≡
∑n−1

j=1 jqn
j

n − 1
.

Eq. (4) says that the net payoff from continuing a defection (which is ˛) must be greater than or equal to the net benefit from
slowing down a contagious defection (which is qn).

Proposition 2. If qn is decreasing in n, then Condition (4) (equilibrium condition 2) is monotonically less restrictive as the group
size n increases.
3.3. Numerical findings for different values of ı

Propositions 1 and 2 require that pn is increasing and qn is decreasing in n so that the sufficient equilibrium conditions
for the contagious strategy to sustain a social norm of cooperation among strangers becomes monotonically less restrictive
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Table  3
Numerical results on pn and qn for different n and ı (M = 12).

ı 0.01 0.1 0.3 0.5 0.7 0.9 0.99

pn for given n and ı
n  = 2 0.000925 0.011028 0.051716 0.141773 0.331384 0.704922 0.966359
n  = 3 0.001859 0.022562 0.100818 0.239648 0.460745 0.788192 0.977226
n  = 4 0.002785 0.033155 0.137519 0.298782 0.524404 0.821914 0.981270
n  = 6 0.004600 0.050899 0.185380 0.363489 0.585281 0.850813 0.984588
n = 12 0.010000 0.100000 0.300000 0.500000 0.700000 0.900000 0.990000

qn for given n and ı
n  = 2 0.000839 0.009584 0.039064 0.088720 0.168391 0.290770 0.363919
n  = 3 0.001195 0.012416 0.040398 0.072725 0.109571 0.151112 0.171385
n  = 4 0.000926 0.009293 0.028096 0.047192 0.066581 0.086265 0.095219
n  = 6 0.000059 0.000590 0.001771 0.002952 0.004132 0.005313 0.005844
n  = 12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Fig. 1. pn and qn as functions of ı (M = 12).

s the group size, n, increases. We  next ask whether these conditions hold by computing pn and qn for different group sizes,
, and for different discount factors, ı, all under a fixed M = 12.8

Our numerical exercises on pn and qn illustrate some interesting results. Given any group size n, Table 3 reveals that pn

nd qn increase with ı. Therefore, if a player cares more about the future, then the extra loss from initiating a contagious
ave of defection and the extra benefit from slowing down a contagion both become larger.

Next we ask: given a fixed ı, how do pn and qn change with increases in the group size n? First, in all cases, the contagious
quilibrium always exists, i.e., the numerical value in each cell for pn is always larger than the value in the corresponding
ell for qn. Thus by choosing any  ̨ between qn and pn both equilibrium conditions 1 and 2 hold. Furthermore, we  find that pn

s monotonically increasing in n given any ı, and qn is monotonically decreasing in n if ı is sufficiently large enough (greater
han 0.5). Given the numerical results in Table 3, we conjecture that there exists a threshold value for the discount factor,

¯ such that, for any ı > ı̄,  pn is monotonically increasing in n and qn is monotonically decreasing in n. This observation is
erified in Fig. 1.

Intuitively, with a larger group size, an initial defection spreads to more “innocent” (c-type) players. Furthermore, via the
andom re-matching each period, defection spreads to the entire population of M players much faster since there are fewer
roups given the fixed population size, M,  and a larger group size, n. These two effects together imply that the contagious
rocess is faster with a larger group size n and thus the payoff from starting a defection is reduced (i.e., the net loss pn
rom starting a defection is increased), making the condition on the equilibrium path easier to satisfy. Off the equilibrium
ath, condition 2 becoming less restrictive with a larger group size is also due to the faster contagious process associated
ith a larger group size. When the speed of contagion is faster, the effectiveness of a single d-type player slowing down

8 Notice that pn and qn are both functions of ı, n and M.
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Table  4
The payoff matrix for the n-player public goods game.

Number of contributors in the group 0 1 2 . . . n − 1
C (invest in the public account) �n 2�n 3�n . . . n�n

D (invest in the private account) � + �n � + 2�n � + 3�n . . . � + n�n

the contagious process becomes smaller. Thus, the d-type player has less of an incentive to deviate from the contagious
strategy off the equilibrium path by reverting back to playing cooperation again (i.e., the net benefit from slowing down the
contagion qn monotonically decreases).

Summarizing, our main finding is that, for a fixed population, M,  and a sufficiently high ı, the conditions under which the
contagious strategy sustains play of the cooperative strategy in a n-player Prisoner’s Dilemma game by all anonymously and
randomly matched players in each period are monotonically more easily satisfied as the group size, n increases toward M.

4. An application to a public goods game

In this section we show that with a slightly different normalization of the payoff matrix, the n-person Prisoner’s Dilemma
game can be re-interpreted as a public goods game so that our previous monotonicity result continues to hold in this public
goods game version of the stage game.

As before, we assume a population of M players, who  are anonymously and randomly assigned to groups of size n in
each period to play an n-player public goods game. Here we study a binary choice version of the classic public good game
(Isaac and Walker, 1988) where each player is endowed with a single token and must decide whether or not to invest that
token in his own privately held account or in a public account. Each token invested in the public account yields a payoff of
�n for each group member. A token invested in the private account yields an additional payoff of � , but only to the player
associated with that private account. Table 4 represents the payoff matrix for the player from choosing to invest in the public
account (C) or in the private account (D) given the number of other contributors to the public account in the group of size n.
The standard public good game setup has �n > 0 and � > 0, so that non-contribution to the public good is always a dominant
strategy in the one-shot, n-player game, and further that � + �n < n�n, which implies that the social optimum is achieved
when all n players contribute to the public good. Notice that these restrictions also satisfy assumptions A1–A3, as defined
in Section 2 for an n-player Prisoner’s Dilemma game.

When this public goods game serves as the stage game played by a population of M players, who are randomly divided
up into groups of size n in every period, the sufficient conditions to sustain the contagious equilibrium are very similar to
those shown before. On the equilibrium path we  must have:

n� ≥ pn
0(� + �n) + pn

1(� + 2�n) + · · · + pn
n−1(� + n�n),

while off the equilibrium path we require that:

� ≥ qn
0(� + �n) + qn

1(� + 2�n) + · · · + qn
n−1(� + n�n).

Define

p̃n ≡ n − 1
n

pn = n − 1
n

−
∑n−1

j=1 jpn
j

n

and

q̃n ≡ n − 1
n

qn =
∑n−1

j=1 jqn
j

n
.

Then with the normalization that �n = 1/n, equilibrium condition 1 becomes

� ≤ p̃n

and equilibrium condition 2 becomes

� ≥ q̃n.

Based on the previous numerical results (Table 3), it is easy to show that the monotonicity pattern still holds for the public
goods game when ı is sufficiently large, with the threshold value for ı̄ slightly increased.
5. Experimental design

In the next two sections we report on an experiment that tests the monotonicity results of Propositions 1 and 2. For this
purpose we return to the simplified parameterization of the model used in Section 3. In our experimental design, we always



J. Duffy, H. Xie / Journal of Economic Behavior & Organization 126 (2016) 55–74 63

Table  5
The payoff matrices for the 2-player and 6-player Prisoner’s Dilemma game.

Table 6
Summary of treatments.

Treatment Session Group size  ̨ Players On-equm Off-equm Cooperation?

1H11R A 1 n = 6  ̨ = 0.5 1 HS 11 robots  ̨ ≤ 0.65  ̨ ≥ 0.004 Yes
1H11R B 2 n = 2  ̨ = 0.5 1 HS 11 robots  ̨ ≤ 0.40  ̨ ≥ 0.19 No
1H11R C 3 n = 2  ̨ = 0.3 1 HS 11 robots  ̨ ≤ 0.40  ̨ ≥ 0.19 Yes
1H11R D 4 n = 3  ̨ = 0.6 1 HS 11 robots  ̨ ≤ 0.53  ̨ ≥ 0.12 No
1H11R E 5 n = 6  ̨ = 0.6 1 HS 11 robots  ̨ ≤ 0.65  ̨ ≥ 0.004 Yes
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6H6R  A 6, 7 n = 6  ̨ = 0.5 6 HS 6 robots  ̨ ≤ 0.65  ̨ ≥ 0.004 Yes
2H10R A 8 n = 6  ̨ = 0.5 2 HS 10 robots  ̨ ≤ 0.65  ̨ ≥ 0.004 Yes

onsider communities of size M = 12 and a discount factor ı = 0.75. Our main two treatment variables are the group size, n
nd the value of ˛. With the normalized payoff in Table 2, ˇn = 1

n−1 for different groups of size n. For instance, the stage
ame payoff for the 2-person PD and the 6-person PD are shown in Table 5.

A third treatment variable in our experimental design is the number of human subjects in each 12-player community. We
tart with the treatments in which each 12-player community consists of just one human subject who  interacts with 11 other
robot” players as opposed to allowing 12 human subjects to interact with one another. We  employ this design in order to
void the coordination problem of strategy selection among 12 human players and thereby remove strategic uncertainty. As
ith other folk-theorem type results, the contagious equilibrium is not the unique equilibrium of the infinitely repeated n-
layer PD game that we implement in our experiment. There exist many other non-cooperative equilibria including the one
here all players choose to defect in every round of the supergame. Empirically, when players face both the selection of their

wn strategy and the uncertainty of strategy selection by other players, the outcome of play can be far from that predicted
y the contagious equilibrium.9 Furthermore, we  would expect that this problem of strategic uncertainty is naturally more
evere as the group size n gets larger. For these reasons, we chose to first eliminate the strategic uncertainty dimension from
ur experimental design by having our players interact with robot players programmed to play according to the contagious
trategy so as to provide a cleaner test of our monotonicity results.10 While our baseline design has just 1 human subject and
1 robots per community of size M = 12, in other treatments, we increase the number of human subjects in each community
o 2 and 6 while decreasing the number of robots to 10 and 6, respectively, i.e., holding M fixed at 12.

Using the three treatment variables discussed above, i.e., the group size n, the value of  ̨ and the number of human subjects
n each community, we summarize all of our experimental treatments in Table 6. The treatments are denoted using labels of
he form “aHbR X,” where a is the number of human subjects and b is the number of robots in each community of 12 players.

 ∈ {A, B, C, D, E} represents different pairs of values for the group size, n, and payoff parameter, ˛, as indicated in Table 6.
his same table also provides the on-equilibrium and off-equilibrium conditions on ˛, given the group size chosen for each
reatment. Using these conditions, and the treatment value for ˛, Table 6 also indicates (under the heading “Cooperation?”)
hether or not cooperation by all players can be sustained as a sequential equilibrium of the indefinitely repeated game
here players are randomly and anonymously matched in groups of size n in each round. We  conducted one session each

or the treatments involving 1H11R or 2H10R and two  sessions for the treatment involving 6H6R. Note that each session
ives multiple independent observations – Table 7 below provides further details.

The value of  ̨ in each treatment is varied based on several considerations. First, we  wanted a parameterization that could
ustain the contagious strategy as an equilibrium in a community of a fixed population size under a larger group size but not
nder a smaller group size so as to test our main monotonicity result. Second, we  chose to focus on the on-equilibrium-path
ondition rather than the off-equilibrium-path condition; if  ̨ was  instead chosen in such a way that the on-equilibrium-path

ondition (but not the off-equilibrium-path condition) was always satisfied for both group size treatments, e.g., a choice of

 = 0.1, then we  might observe that subjects seldom chose to defect (with the consequence that they were seldom actually
ff the equilibrium path) under either group size, making it difficult to detect any treatment effect. Therefore, we chose to

9 See for example, Duffy et al. (2013) and Duffy and Ochs (2009).
10 We note that this type of experimental design involving robot players has not previously been implemented to test the contagious equilibrium
rediction.
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Table  7
Description of experimental sessions.

Treatment Session No. of subjects No. of obs. No. of supergames No. of rounds Average earnings

1H11R A 1 10 10 18 75 USD 22.59
1H11R  B 2 12 12 20 76 USD 15.33
1H11R  C 3 12 12 19 75 USD 13.11
1H11R  D 4 10 10 22 77 USD 20.21
1H11R E 5 7 7 18 77 USD 15.31
6H6R A 6 12 2 19 81 USD 11.49

6H6R  A 7 12 2 15 83 USD 14.63
2H10R A 8 18 9 15 65 USD 18.09
Average N/A 12 N/A 18 76 USD 16.35

set  ̨ = 0.5 to test the group size effect between n = 6 and n = 2 (Sessions 1 and 2). By the same principle, we  chose  ̨ = 0.6 to
test the group size effect between n = 3 and n = 6 (Sessions 4 and 5). In addition, in Session 3 we set  ̨ = 0.3 for a group size
n = 2 so that cooperation via the contagious equilibrium is supported in this case, as opposed to  ̨ = 0.5 for group size n = 2
as in Session 2. In sessions 1–5, there is just one human subject per community of size 12. By contrast, in sessions 6, 7, and
8, the number of human subjects in the 12-player community is varied but we always set  ̨ = 0.5 and n = 6 as in Session 1 so
that the contagious equilibrium can be sustained.

Given our choice of  ̨ in each treatment and a fixed ı = 0.75 and M = 12, we  are able to test the following hypotheses using
our experimental data.

Hypotheses 1–3 concern aggregate treatment effects on cooperation.

Hypothesis 1. The overall cooperation rate is higher with a larger group size than with a smaller group size given the same
value of  ̨ in the 1H11R treatments (Session 1 vs. 2, Session 5 vs. 4).

Hypothesis 2. The overall cooperation rate is higher when the equilibrium condition is satisfied with a smaller  ̨ than
when the equilibrium condition is not satisfied with a larger  ̨ given the same group size in the 1H11R treatments (Session
3 vs. 2).

Hypothesis 3. The overall cooperation rate is lower with an increase in the ratio of human subjects to robots (playing the
contagious strategy) in a community given the same group size, n and value of  ̨ (Sessions 1 vs. 6 and 7 vs. 8).

Hypotheses 4–7 concern the individual behavior of the human subjects:

Hypothesis 4. The frequency with which subjects are on the equilibrium path is larger when the on-equilibrium-path
condition is satisfied than when the condition is not satisfied.

Hypothesis 5. The cooperation rate when subjects are c-types (on-the-equilibrium-path) is higher with a larger group size
than with a smaller group size given the same value of ˛.

Hypothesis 6. The cooperation rate when subjects are d-types (off-the-equilibrium-path) is not different between a larger
group size and a smaller group size.

Hypothesis 7. The cooperation rate when subjects are c-types is higher when the number of human subjects in the
community decreases, given the same group size n and value of ˛.

In our 1H11R treatments, we explicitly told our subjects that in each round of a supergame (or “sequence” as it was
referred to in the experiment) they would be randomly matched with n − 1 other robot players (out of a total population of
11 robot players) and not with any other human subjects. Since n < M,  subjects were told that there would also be robot–robot
group interactions that they would not be a part of given the uniform random matching that we used. Subjects were further
instructed that the robots in each community played according to the rules of the contagious strategy. Specifically subjects
were told:

“The robots are programmed to make their choices according to the following rules:

• choose X in the first round of each new sequence;
• if, during the current sequence, any of a robot’s group members, including you or any other robot players have

chosen Y in any prior round of that sequence, then the robot will switch to choosing Y in all remaining rounds of
the sequence;

• otherwise, the robot will continue to choose X.”
Here X refers to the cooperative action C, while Y refers to the defect action D.11 Thus subjects had complete knowledge
of the strategies to be played by their opponents. We  did not provide subjects with any further information, such as the

11 We used the neutral labels X and Y rather than (Cooperate and Defect) in our experimental implementation of the n-player game.
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umber of periods it might take for them to meet a defecting player once they (the human subject) had initiated a defection,
s this calculation was one that we wanted subjects to make on their own.

In our 2H10R and 6H6R treatments, everything remained the same except that subjects knew that there would be 2(6)
uman subjects and 10(6) robot players in their 12-player community for the duration of the session. Subjects remained in
he same community with the same 1 other or the same 5 other human subjects in all supergames (sequences) of a session.
urther, subjects were told that there would be no spillovers from human subjects interacting in different communities of
ize M = 12. Therefore, as in the 1H11R treatments, each community of size 12 in the 2H10R and 6H6R treatments constitutes
n independent observation.

One may  be concerned that explicitly telling subjects the contagious strategy used by robots will induce a kind of exper-
menter demand effect by which the human subjects will also follow this same contagious strategy. However, if that were
he case, then our hypotheses that the group size n matters would not find any support since subjects in all of our treatments
ere told the same information about the contagious strategy played by the robot players. On the other hand, if we  observe

 higher cooperation rate under a group size of n = 6 than under a group size of n = 2 or n = 3, then it implies that subjects
ationally choose to follow the contagious strategy more frequently when the equilibrium conditions were satisfied.

To implement an infinite-horizon n-player PD game in the laboratory, we use the standard random termination method-
logy (Roth and Murnighan, 1978) in which subjects participate in supergames that consist of an indefinite number of
ounds, where the probability of continuation from one round to the next is a known constant equal to the discount factor,

 ∈ (0, 1). With our choice of ı = 0.75, the expected duration of a supergame is 4 rounds.
To enable subjects to gain some experience with the play of an indefinitely repeated game, we  had them participate in

ultiple supergames in a session. As noted above, subjects were informed that at the start of each and every new supergame
sequence) all of the robot players in their community of size 12 would start out each new supergame as c-types playing the
ooperative strategy (X) and that robot players would only change to playing the defect strategy (Y) if they became d-types
uring that supergame. This feature allows subjects to treat each new supergame as a fresh start rather than viewing the
ntire session as one long indefinitely repeated game, with the possibility of switching to a different strategy at the start
f each new supergame. We  did not fix the number of supergames played in advance. Instead, during the experiment, we
llowed subjects to play for at least one hour, and the supergame in progress beyond one hour was determined to be the last
upergame (we did not inform subjects of our stopping rule); when that final supergame was completed, the session was
eclared to be over. Following the completion of the experiment, three sequences were randomly selected from all played
nd subjects were paid their total earnings from those three sequences in addition to a $7 show-up fee.12 All sessions were
ompleted within the two hour time-horizon for which we recruited subjects; a typical session required about 30 min for
he reading of instructions followed by 1 h of play of multiple supergames.

The experiment was conducted at the Experimental Social Science Laboratory (ESSL) of the University of California, Irvine
sing undergraduate students with no prior experience with our experimental design. Instructions were read aloud and then
ubjects completed a brief comprehension quiz. The instructions used in the n = 6 treatment are provided in Appendix C;
nstructions for other treatments are similar.

. Experimental findings

Table 7 reports some details about all of our experimental sessions. As this table reveals, on average, each session involved
8 supergames and 76 rounds. In total, 93 subjects participated in our experiment, with average earnings of USD $16.35.

n the 1H11R treatments, since each subject interacted with an independent group of 11 other robots all playing according
o the contagious strategy, each subject’s behavior amounts to a single, independent observation. Thus, the number of
ubjects we have for each of sessions 1–5 corresponds to the number of independent observations. For treatment 6H6R A,
here are 6 human subjects in each community and 12 subjects in each session, so each session produces two independent
bservations, and as we have two sessions of 6H6R A, we  have a total of 4 independent observations of this treatment. For
reatment 2H10R A, there are 2 human subjects in each community; since we recruited 18 human subject for this treatment,
e thus have 9 independent observations of this treatment.

In the remainder of this section, we will begin with an aggregate data analysis, followed by analysis of data at the individual
evel. For the aggregate results, we will first provide a summary of findings on the group size effect, the effect of ˛, and the
ffect of the number of human subjects within a community. After that we will present results from Mann-Whitney tests
hat compare the cooperation rates in the different treatments all together in Table 9.

We first examine results from the treatments with one human subject in each community (1H11R). Fig. 2 shows the
verage cooperation rate per round over time for treatments 1H11R A (B, D, E). The blue line (with diamonds) in each panel

s the average cooperation rate of the human subjects only, while the red line (with squares) in each panel is the average
ooperation rate by the entire 12-member community as a whole, consisting of 1 human subject and 11 robots. The start of
ach new supergame is indicated by a vertical line.

12 We chose to pay for three randomly sequences, as opposed to just one, so as to avoid the possibility that a “short” (e.g., 1-round) supergame was chosen
or  payment under the pay-one-sequence-only protocol.
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Fig. 2. Cooperation rates by human subjects and communities over time (treatment 1H11R A,B,D,E).

The two top panels of Fig. 2 show the average cooperation rates for the group size of n = 6 and n = 2 respectively with
 ̨ = 0.5. For Session 2 (the n = 2 group size), we observe a decline in the cooperation rate over time by the human subjects

in almost all supergames lasting more than 2 rounds, which indicates that more human subjects began to switch from
cooperation to defection from round 2 if they did not choose to defect from the beginning of the supergame. Consistently,
the cooperation rate at the community level shows a similar pattern but remains above the cooperation rate by the human
subjects alone as it takes some time for the contagious strategy, as played by the robot players, to spread throughout the
population of size 12. Across all supergames of the session with n = 2, there is no obvious learning effect or convergence.

By contrast, the cooperation rates in Session 1 under a group size of n = 6 exhibit a very different pattern over time. Indeed,
consistent with our theory, the overall cooperation rate is higher in Session 1 (n = 6) than in Session 2 (n = 2). Although there is
also a decline in cooperation over the course of each sugergames at the beginning of Session 1, the cooperation rate eventually
becomes high, at around 90%, following the fourth supergame of this session (approximately after the first one-third of the
session has been completed) and remains high for the remaining supergames of that session. This finding indicates that,
given the payoff parameters we have chosen and the strategy followed by the robots, most subjects learn over time that it

is in their best interest to follow the contagious strategy when n is large (n = 6), relative to the case where n is small (n = 2).
A comparison of the cooperation rates between groups of size n = 2 and n = 6 indicates that the human subjects responded
to the payoff incentives of the game. They choose to start defecting more frequently when the contagious effect of a single
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Fig. 3. Cooperation rates by human subjects and communities over time (treatments 1H11R B,C).

efection is much slower in Session 2 (n = 2) and this tendency to defect was not diminished by experience. By contrast,
hen the contagious effect of a defection is more immediate, as in Session 1 (n = 6), subjects learned to avoid triggering a
ave of defection.

The two bottom panels of Fig. 2 show the average cooperation rates for the group of size n = 6 and n = 3 respectively with
he choice of  ̨ = 0.6. This treatment comparison provides a robustness check as to whether the group size effect continues to
old with a different parameterization for n and ˛. Indeed, comparing the different group sizes n = 6 and n = 3, we  continue to
nd that, consistent with our theory, cooperation rates are higher with the larger group of size n = 6 than under the smaller
roup of size n = 3. We  summarize the group size effect in Finding 1, which supports Hypothesis 1. Detailed statistical support
an be found in Table 9.

inding 1. Cooperation rates are higher under larger groups than under smaller groups given the same ˛.

Not only did our subjects respond to the incentives induced by having different group sizes, but also they responded
o the incentives associated with changes in  ̨ when holding the group size constant. Fig. 3 shows a comparison between
ession 3 (  ̨ = 0.3, n = 2) and Session 2 (  ̨ = 0.5, n = 2). With a larger ˛, players have a larger temptation to initiate a defection,
hus making it more difficult to sustain cooperation within the community. Fig. 3 and Finding 2 confirm Hypothesis 2. In the
op panel of Fig. 3 where  ̨ = 0.3, the cooperation rate is sustained at a level above 50%. By contrast, as seen in the bottom
anel of the same figure where  ̨ = 0.5, the cooperation rate drops below 20% if the supergame lasts for 4 or more rounds.
esults from Mann–Whitney tests regarding Finding 2 are presented in Table 9.

inding 2. Cooperation rates are higher under a smaller  ̨ than under a larger  ̨ given the same group size, n.

We next compare the 1H11R treatment with the 2H10R and 6H6R treatments, restricting attention to the case where
 = 6 and  ̨ = 0.5, so that the contagious equilibrium is supported by the same set of parameters in the three treatments and
e can examine whether or not the ratio of humans to robots in each community of size 12 will affect the possibility that the

ontagious equilibrium is selected.13 The comparison is made using Fig. 4 and statistical support is included in Table 9. The
rst panel of this figure shows cooperation rates for the 1H11R A treatment, the second panel for the 2H10R A treatment and
he last two panels show cooperation rates for the 6H6R A treatment (2 sessions). As the ratio of human subjects to robots
n a community increases, we find that the average cooperation rate monotonically decreases. Recall that for the 1H11R A
reatment, the cooperation rate converges to about 90% after subjects gained some experience in the first four supergames.
y contrast, in the 2H10R A treatment, the cooperation rate is closer to 50% throughout the session.14 Finally, in the 6H6R A

reatment, the cooperation rate almost always drops to zero after a supergame lasts for 2 or 3 rounds. Based on the results of
he 6H6R treatment, we did not think it necessary to run treatments where the community consisted entirely of 12 human
ubjects and 0 robots, as we expect that cooperation rates would likely have been close to 0 in these treatments as well.

13 We did not study the case of a group size of n = 2 across these three treatments involving different ratios of humans to robots, since when n = 2 and
 = 0.5, our theory predicts that a social norm of mutual cooperation is not sustainable using the contagious strategy.

14 Note that for the 2H10R treatment, the aggregate cooperation rate masks some heterogeneity at the community level. Focusing on behavior in the
ast  three sequences of the 2H10R A treatment, we found that 3 out of 9 human groups (each consisting of 2 human subjects) always chose to cooperate,
nother 3 out of 9 human groups always chose to defect, and the remaining 3 groups cooperated at average levels of 10%, 20%, and 70%, respectively.
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Fig. 4. Cooperation rates by human subjects and communities over time (treatments 1H11R A, 2H10R A, 6H6R A).

Finding 3. Cooperation rates monotonically decrease as the number of human subjects in a community increases, given
the same group size n and value of ˛.

Tables 8 and 9 provide further detailed evidence that support Findings 1–3. Table 8 reports cooperation rates calculated
based on human subjects’ choices as well as on community-wide action choices (humans plus robot players) over all rounds
of all supergames. We  further calculated the cooperation rates over the first and second halves of each session. Table 9
reports p-values from two-tailed Mann–Whitney tests on the cooperation rates between treatments. The first two  rows test
Hypothesis 1 (the group size effect) for n = 6 vs. n = 2 given  ̨ = 0.5 (treatment 1H11R A vs. 1H11R B), and n = 6 vs. n = 3 given

 ̨ = 0.6 (treatment 1H11R D vs. 1H11R E). The third and fourth rows test Hypothesis 2 (the effect of ˛) for  ̨ = 0.5 vs.  ̨ = 0.3
given n = 2 (treatment 1H11R B vs. 1H11R C) and  ̨ = 0.5 vs.  ̨ = 0.6 given n = 6 (treatment 1H11R A vs. 1H11R E), where we
only expect a significant difference in the case of n = 2. The last three rows test Hypothesis 3 (the number of human subjects

in a community) given n = 6 and  ̨ = 0.5.

The p-values shown in Table 9 are all consistent with a careful examination of the cooperation rates shown in Figs. 2–4.
We find the most significant group size effect between the n = 2 and n = 6 treatments. On the other hand, strategic uncertainty
(about the play of other human subjects) also plays an important role in de-stabilizing cooperation in the environment we
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Table  8
Cooperation rates for each session.

Treatment Session Human subjects Communities

Whole session 1st half 2nd half Whole session 1st half 2nd half

1H11R A 1 0.800 0.732 0.870 0.846 0.776 0.918
1H11R B 2 0.364 0.373 0.355 0.743 0.754 0.733
1H11R C 3 0.692 0.732 0.651 0.883 0.898 0.869
1H11R D 4 0.444 0.379 0.508 0.667 0.534 0.797
1H11R E 5 0.800 0.812 0.788 0.865 0.875 0.855
6H6R A 6 0.062 0.079 0.047 0.148 0.159 0.142
6H6R A 7 0.104 0.152 0.058 0.147 0.204 0.090
2H10R A 8 0.418 0.368 0.466 0.519 0.441 0.594

Table 9
p-values from Mann–Whitney tests on cooperation rates.

Treatment No. of obs. Human subjects Communities

Whole session 1st half 2nd half Whole session 1st half 2nd half

1H11R A vs. 1H11R B 10 vs. 12 0.006 0.008 0.003 0.015 0.391 0.005
1H11R D vs. 1H11R E 10 vs. 7 0.039 0.009 0.128 0.044 0.005 0.403
1H11R B vs. 1H11R C 12 vs. 12 0.067 0.018 0.097 0.045 0.017 0.067
1H11R A vs. 1H11R E 10 vs. 7 0.767 0.488 0.290 1.000 0.348 0.291
1H11R A vs. 6H6R A 10 vs. 24 (10 vs. 4) 0.000 0.000 0.000 0.005 0.005 0.003
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1H11R A vs. 2H10R A 10 vs. 18 (10 vs. 9) 0.034 0.034 0.029 0.049 0.059 0.034
2H10R A vs. 6H6R A 18 vs. 24 (9 vs. 4) 0.001 0.001 0.003 0.005 0.020 0.005

tudy here where players are randomly and anonymously matched in each repetition of the stage game. Although nearly
ull cooperation can be sustained in the second half of our sessions where n = 6 and each human subject interacts only with
1 robot players programmed to play according to the contagious strategy, the cooperation rate drops to close zero when n
emains equal to 6, but the community consists of 6 human and 6 robot players, even though the equilibrium conditions for
ustenance of a social norm of cooperation continue to be satisfied. In order to further ensure that these treatment effects
re not driven by subjects’ reactions to the instructions used in different treatments, we compared the subjects’ choice in
he very first period of the sessions and did not found any significant difference across treatments.

Importantly, our results indicate that subjects understand how to evaluate payoffs in the indefinitely repeated games
e induce despite the relatively complicated environment, and they correctly respond to the incentives provided. Our
ndings from varying the ratio of humans to robots suggest that it is strategic uncertainty about the play of others and not
ounded rationality with regard to payoff calculations that may  explain the failure of human subjects to achieve the efficient
quilibrium in indefinitely repeated games where Kandori’s contagious equilibrium construction can be used to support a
ocial norm of cooperative play by all players.

We next ask whether there is a significant learning effect when the contagious equilibrium condition is or is not satisfied.
n our experiment, we find such a learning effect for some but not for all of our treatments/sessions. Table 10 reports
-values for the two-tailed Wilcoxon matched-pair signed ranks tests between the first and the second halves of each
ession. Learning is most significant in treatment 1H11R A (n = 6, session 1), in which subjects learn to cooperate with the 11
obot players who are playing according to the contagious strategy, and in treatment 6H6R A (n = 6, sessions 6 and 7), where
ooperation rates converge to zero as half of the community members are human subjects. In sessions 3 and 5, the cooperation
ates decrease significantly from the 1st half of sessions to the 2nd half of sessions, but the magnitude of this decrease

s small.

We  next analyze individual strategic behavior. Specifically, we  ask to what extent the subjects in each treatment behaved
ccording to the contagious strategy that is needed to support a social norm of cooperation among strangers. Table 11 shows

able 10
-value of Wilcoxon matched-pair signed ranks tests on cooperation rates (1st vs. 2nd half of the session).

Treatment Session Cooperation? Human subjects Communities Pattern over time

1H11R A 1 Yes 0.081 0.018 Increasing
1H11R B 2 No 0.692 0.346 Flat
1H11R C 3 Yes 0.010 0.054 Decreasing
1H11R D 4 No 0.185 0.006 Increasing
1H11R E 5 Yes 0.050 0.050 Decreasing
6H6R  A 6, 7 Yes 0.001 0.144 Decreasing
2H10R A 8 Yes 0.614 0.056 Increasing
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Table  11
Strategy analysis of human subjects.

Treatment Session Frequency on
equm path

Cooperate rate on
equm path

Defect rate off
equm path

Frequency using
contagious strategy

1H11R A 1 82.27% 86.49% 74.48% 91.60%
1H11R  B 2 50.99% 56.50% 94.46% 79.50%
1H11R C 3 76.11% 74.35% 93.96% 89.00%
1H11R D 4 57.40% 60.35% 97.48% 84.42%
1H11R  E 5 84.42% 90.43% 85.76% 91.47%
6H6R  A 6 23.66% 11.31% 95.41% 75.51%
6H6R  A 7 19.08% 37.58% 96.40% 85.54%
2H10R  A 8 50.68% 61.67% 96.53% 87.69%

Table 12
p-value of Mann–Whitney tests on individual strategy.

Treatment Frequency on
equm path

Cooperate rate on
equm path

Defect rate off
equm path

Frequency using
contagious strategy

1H11R A vs. 1H11R B 0.008 0.008 0.118 0.015
(10  vs. 12) (10 vs. 12) (8 vs. 11) (10 vs. 12)

1H11R D vs. 1H11R E 0.043 0.127 0.017 0.301
(10  vs. 7) (10 vs. 7) (9 vs. 4) (10 vs. 7)

1H11R B vs. 1H11R C 0.090 0.086 0.479 0.061
(12  vs. 12) (12 vs. 12) (11 vs. 6) (12 vs. 12)

1H11R A vs. 1H11R E 0.843 0.693 1.000 1.000
(10  vs. 7) (10 vs. 7) (8 vs. 4) (10 vs. 7)

1H11R A vs. 6H6R A 0.005 0.024 0.494 0.047
(10  vs. 4) (10 vs. 4) (8 vs. 4) (10 vs. 4)

1H11R A vs. 2H10R A 0.085 0.163 0.381 0.251
(10  vs. 9) (10 vs. 9) (8 vs. 7) (10 vs. 9)
2H10R A vs. 6H6R A 0.009 0.031 0.706 0.216
(9  vs. 4) (9 vs. 4) (7 vs. 4) (9 vs. 4)

the average of individual frequencies with which subjects in each treatment are on the equilibrium path, the average of
individual frequencies with which subjects chose to cooperate when on the equilibrium path and the average of individual
frequencies of choosing to defect when off the equilibrium path.15 Finally, for each human subject, we  also calculated the
frequency with which that subject played the contagious strategy, which is given by:

freq.offollowingthecontagiousstrategy

= freq.ontheequilibriumpath × cooperationrateontheequilibriumpath + freq.offtheequilibriumpath

× defectionrateofftheequilibriumpath.

In Table 12 we report the p-values from two-tailed Mann Whitney tests comparing all of these frequencies across various
treatments. The tests are conducted by using the average of the individual frequencies of human subjects within each
community, which constitutes an independent observation since human subjects in different communities did not have any
interactions with one another by our experimental design.

Most of the results shown in Tables 11 and 12 are consistent with Hypotheses 4–7 regarding individual strategic behavior.
For the treatments with 1H11R, the average frequency with which subjects are found to be on the equilibrium path is always
significantly larger in sessions where the on-equilibrium-path condition is satisfied than in those treatments where this same
condition is not satisfied. On the other hand, an increase in the number of human subjects in a community, as in treatments
2H10R A and 6H6R A, significantly lowers the frequency of on-equilibrium-path play of the contagious strategy. The average
frequency of on-equilibrium-path play moves from about 80% to 50% and further declines to 20% when comparing across
the 1H11R A, 2H10R A and 6H6R A treatments, respectively (p < 0.1 or p < 0.01).

Conditional on being on the equilibrium path (column 3 in Table 12), the difference in cooperation rates between the n = 6
and n = 2 treatments is significant (session 1 vs. 2, p < 0.01) but there is no significant difference between the n = 6 and n = 3

treatments (session 4 vs. 5, p = 0.127). The cooperation rates on the equilibrium path are not significantly different between
1H11R A and 2H10R A treatments (p = 0.163), but are significantly different between 1H11R A and 6H6R A treatments and
between 2H10R A and 6H6R A treatments (p < 0.05). Conditional on being off the equilibrium path (column 4 in Table 12), as

15 Recall that a player is defined to be on the equilibrium path in the first round of a supergame or when the player has never experienced a defection by
his  group members or himself in the past rounds of a supergame. Otherwise, a player is off the equilibrium path.



H
a
t
t
s
i
(

F
c
c

p
w
i
s
w

t
a
t
r

7

c
p
fi
p
t
e
b
s
s

c
I
t
s
s
i
t
(
s
i

c
h
t
s
t
i
o
g
i
w

s
s
1

J. Duffy, H. Xie / Journal of Economic Behavior & Organization 126 (2016) 55–74 71

ypothesis 6 states, the cooperation rates are not significantly different between treatments except for treatments 1H11R D
nd 1H11R E, which may  be due to the small number of subjects off the equilibrium path in treatment 1H11R E. Finally,
he frequency with which subjects followed the contagious strategy (column 5 in Table 12) is significantly larger when
he on-equilibrium-path condition is satisfied and for a 1H11R community. For the 2H10R A treatment, the frequency that
ubjects followed the contagious strategy is in between those in found for the 1H11R A and 6H6R A treatments, although
t is not significantly different. However, this frequency is significantly different between 1H11R A and 6H6R A treatments
p < 0.05).

inding 4. With a larger group size n = 6 and with a 1H11R community, subjects are more often on the equilibrium path,
hoose cooperation more frequently when on the equilibrium path, and more often follow the contagious strategy, as
ompared with the corresponding 1H11R treatment with a smaller group size n = 2 and the treatment with n = 6 and 6H6R.

Summarizing our experimental results, we find that the behavior of the human subjects is consistent with our theoretical
redictions on the impact of group size for cooperative play. Given the same payoff parameter ˛, cooperation rates increase
hen the group size increases. Under a small group size, the cooperation rate declines over time and this pattern repeats

tself across supergames even as subjects gain repeated experience with the environment. By contrast, under a larger group
ize, subjects learn to stick with cooperation after experiencing the much quicker consequences of triggering a contagious
ave of defection in their community.

When there is more than one human subject in each community, cooperation rates decrease as the ratio of human subjects
o robots increases. Comparing the 1H11R treatment with the 6H6R treatment with the same group size n = 6 and  ̨ that
lways supports the contagious equilibrium, the cooperation rate by the human subjects drops from 80% in 1H11R to less
han 10% in 6H6R, suggesting that it is greater strategic uncertainty that works to destroy cooperation in communities with
andomly and anonymously matched players.

. Conclusions

We  have examined the effect of group size, n, on the equilibrium conditions needed to sustain cooperation via the
ontagious strategy as a sequential equilibrium in repeated play of an n-player Prisoner’s Dilemma game, given a finite
opulation of players of size M ≥ n and random and anonymous matching of players in each repetition of the game. We
nd that, if agents are sufficiently patient, the equilibrium conditions, both on the equilibrium path and off the equilibrium
ath, become less restrictive, and thus more easily satisfied as the group size n increases toward M.  This result arises from
he faster speed with which a contagious wave of defections can occur as the group size becomes larger. Our findings
xpand upon Kandori’s (1992) idea that a social norm of cooperative behavior among randomly matched strangers can
e policed by community-wide enforcement. Specifically, we show that community–wide enforcement becomes easier to
ustain as the speed with which information travels becomes faster, which is here proxied by increases in the matching group
ize, n.

Other interpretations of n are possible. Consider, for example, two towns with similar populations. The traffic rules are
ommonly known to all but there is no official police force that regulates drivers to follow these traffic rules in either town.
t’s always more efficient if everyone follows the traffic rules than if no one does. Suppose the only difference between the
wo towns is in the structure of the roads. One town has several main streets with a few crosses. The other town has many
mall streets with a lot of crosses. The first town’s road structure corresponds to our large group structure whereas the
econd town’s road structure corresponds to our small group structure. Disobedience of traffic laws has a more immediate
mpact in the first town than in the second town, and so, by the logic of our theory, one might expect greater adherence to
raffic laws in the first town than in the second. As another example, centralized communication or monitoring mechanisms
credit bureaus) might also perform the same role played by larger group sizes in easing the conditions under which a
ocial norm of cooperation is sustained in a large population of players. After all, as n increases to M,  we effectively achieve
ncreasingly perfect monitoring of the actions chosen by all players.

We have also empirically evaluated our theory by designing and reporting on an experiment exploring some of the
omparative statics implications of the theory. Consistent with the theory, we found that subjects were able to achieve
igher rates of cooperation when randomly and anonymously matched into larger rather than smaller groups of size n
o play a indefinitely repeated n-player Prisoner’s Dilemma game. In many of our experimental treatments, we  removed
trategic uncertainty by having human participants play only against robot players who were known to always play according
o the contagious strategy. By contrast, Camera et al. (2012) found large heterogeneity in strategies adopted by participants
n a 2-player Prisoner’s Dilemma game with random and anonymous matching. When there is heterogeneity in strategies
r a belief that strategies are heterogeneous, the incentives for agents to play according to the contagious strategy may  be
reatly weakened or become non-existent. We  have found evidence for this phenomenon as well, as we observed declines
n cooperation rates as we increased the ratio of human subjects to robots in the population of players from which groups

ere randomly formed.

A next step in this literature might be to examine whether the fraction of robot players playing according to the contagious

trategy could be very gradually reduced, e.g., from n − 1 robots on down to 0, and gradually replaced with human subjects,
o as to keep the total population size, M,  fixed. Alternatively, one could first have 12 human subjects play for a time in our
H11R treatment condition and subsequently have those same 12 subjects interact with one another (no robots -12H0R)
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playing the same indefinitely repeated n-player PD game. It would be of interest to know whether the human subjects, who
would be free to choose any strategy, could learn to coordinate on the cooperative outcome in such settings. We leave these
projects to future research.

Appendix A.

We  first show that the equilibrium conditions in Lemma  1 are equivalent to the equilibrium conditions provided by
Kandori (1992) when the group size n = 2. Translating our notation to that used by Kandori (1992), Cn−1 = 1, un = (−l, 1)T,
vn = (0,  1 + g)T , Zn = (iM − ��)  (� = 1

M−1 (M − 1, M − 2, . . ., 1, 0)T , in which the ith element of � is the conditional probability
that a d-type player meets a c-type when there are i d-types, and iM is a 1 × M vector with all elements equal to 1), An = A,
Bn = B, Hn = H. Thus condition 1, Eq. (1) can be written as:

1 ≥ (1 − ı)e1(I − ıA)−1(iM − � �)

(
0

1 + g

)

= (1 − ı)e1(I − ıA)−1�(1 + g),

which is the same as equilibrium condition 1 in Kandori (1992). Condition 2, Eq. (2) can be written as

ek(iM − � �)

(
l
g

)
≥ ıekH(I − ıA)−1(iM − � �)

(
0

1 + g

)
,

i.e.,

(
M − k

M − 1
)g + (

k − 1
M − 1

)l ≥ ıekH(I − ıA)−1�(1 + g),

which is the same as equilibrium condition 2 in Kandori (1992).

Lemma  2. Define pn
j

≡ (1 − ı)e1(I − ıAn)−1�n
j

and qn
j

≡ ıenHn(I − ıAn)−1�n
j

(j = 0, . . .,  n − 1), then
∑n−1

j=0 pn
j

= 1 and∑n−1
j=0 qn

j
= 0.

Proof. By definition, pn
j

denotes the discounted summation of the probability of meeting j c-type players in the group once
a defection has started when the group size is n, and qn

j
denotes the change in the discounted summation of the probability

of meeting j c-type players in the group when the d-type player reverts back to playing cooperation instead of defection
given that the group size is n and there are k = n d-type players. Notice that by definition the summation of the elements in
each row of matrix Zn, An, and Bn is always equal to 1. Denote ik as a 1 × k vector with all elements equal to 1. Thus Znin = iM,
At

niM = iM and Bt
niM = iM for any group size n and t = 0, 1, . . .,  ∞.  Therefore we  have

n−1∑
j=0

pn
j = (1 − ı)e1(I − ıAn)−1Znin = (1 − ı)e1(I − ıAn)−1iM = (1 − ı)

∞∑
t=0

ıte1At
niM = 1,

n−1∑
j=0

qn
j = enHn(I − ıAn)−1Znin = enHn(I − ıAn)−1iM =

∞∑
t=0

ıten(Bn − An)At
niM = 0.

�

Proof. [Theorem 1]
We  first show that lim

ı→1
(I − ıAn)−1�n

j
< ∞ for j = 1, . . .,  n − 1. (Therefore, lim

ı→1
pn

j
= 0 for j = 1, . . .,  n − 1 and lim

ı→1
pn

0 = 1.) The

proof is similar as in Kandori’s (1992) proof for Theorem 1. Since Xt = M is the absorbing state and the Mth element of �n
j

is
zero for j = 1, . . .,  n − 1,

(I − ıAn)−1�n
j =

∞∑
ıtAt

n�n
j =

∞∑
ıtÃt

n�n
j = (I − ıÃn)

−1
�n

j , for j = 1, . . .,  n − 1

t=0 t=0

where Ãn is a matrix obtained by replacing the last column of An by zeros. Given this, we have only to show the existence

of (I − Ãn)
−1

. Since the number of d-types never declines, Ãn is upper-triangular and so is (I − Ãn). The determinant of
an upper-triangular matrix is the products of its diagonal elements, which are all strictly positive for (I − Ãn). Therefore,
lim
ı→1

pn
j

= lim
ı→1

(1 − ı)e1(I − ıAn)−1�n
j

→ 0 and qn
j

= ıenHn(I − ıAn)−1�n
j

is finite for j = 1, . . .,  n − 1.
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Now the r.h.s. of equilibrium condition 1, (1 − ı)e1(I − ıAn)−1Znvn = pn
oDo +

∑n−1
j=1 pn

j
Dj ≤ Do +

∑n−1
j=1 pn

j
Dj , where the

nequality comes from
∑n−1

j=0 pn
j

= 1 and pn
o ≤ 1. Therefore, equilibrium condition 1 is satisfied if Cn−1 − Do ≥

∑n−1
j=1 pn

j
Dj ,

hich is satisfied when Cn−1 − Do and ı are sufficiently large.
Similarly, the r.h.s. of equilibrium condition 2, ıenHn(I − ıAn)−1Znvn = qn

oDo +
∑n−1

j=1 qn
j
Dj , is finite because

∑n−1
j=0 qn

j
= 0

nd so qn
o = −∑n−1

j=1 qn
j
. Therefore, equilibrium condition 2 is satisfied when vn − un is sufficiently large.�

ppendix B. Fixing the number of groups, m = M/n

In this appendix we examine the case where M and n are varied in such a way that the number of groups m = M/n is held
onstant. In particular, we compare the equilibrium conditions in three cases where m = 3: (1) M = 12 and n = 4; (2) M = 9
nd n = 3; and (3) M = 6 and n = 2. Our aim here is to understand whether variations in the group size n continue to matter
or satisfaction of the equilibrium conditions needed for cooperation to be sustained as a social norm, when the number of
roups is held constant. The following numerical results are obtained holding fixed ı = 0.9.

quilibrium condition 1

First we consider equilibrium condition 1 for each of the three cases where M/n = 3:
M = 6 and n = 2: ˇn ≥ 0.773647˛  + 0.226353(˛ + ˇn); M = 9 and n = 3: 2ˇn ≥ 0.774597˛  + 0.0696314(  ̨ + ˇn) + 0.155771(˛

 2ˇn); M = 12 and n = 4: 3ˇn ≥ 0.783465  ̨ + 0.030344(  ̨ + ˇn) + 0.0546601(  ̨ + 2ˇn) + 0.131531(˛ + 3ˇn).
Imposing the normalization condition ˇn = (n − 1)−1, these conditions can be simplified as follows:
M = 6 and n = 2:  ̨ ≤ 0.773647 for ˇn = 1; M = 9 and n = 3:  ̨ ≤ 0.809415 for ˇn = 1/2; M = 12 and n = 4:  ̨ ≤ 0.821913 for

n = 1/3.
We observe that when the number of groups m = M/n is fixed (at 3) the results are very similar to those in the case where

he population size M is fixed: equilibrium condition 1 is observed to become less restrictive as the group size n becomes
arger. Intuitively, again, this is driven by the faster contagious process with a larger group size. The extent of the tendency
or cooperation to become more easily sustainable as n increases is smaller than in the case where M is fixed, since in the
atter case the contagious process becomes faster not only due to a larger group size but also due to there being a smaller
umber of groups as n increases.

quilibrium condition 2

Finally, we  consider equilibrium condition 2 for each of the three cases where M/n = 3:
M = 6 and k = n = 2:  ̨ ≥ −0.270439  ̨ + 0.270439(  ̨ + ˇn); M = 9 and k = n = 3:  ̨ ≥ −0.219582˛ + 0.15486(  ̨ + ˇn) + 0.064722(˛

 2ˇn); M = 12 and k = n = 4:  ̨ ≥ −0.187568  ̨ + 0.126324(  ̨ + ˇn) + 0.0512613(  ̨ + 2ˇn) + 0.00998238(  ̨ + 3ˇn).
If we further impose our payoff normalization, then we have:
M = 6 and k = n = 2:  ̨ ≥ 0.270439 for ˇn = 1; M = 9 and k = n = 3:  ̨ ≥ 0.142152 for ˇn = 1/2; M = 12 and k = n = 4:  ̨ ≥ 0.086265

or ˇn = 1/3.
As with equilibrium condition 1, the results for equilibrium condition 2 under a fixed ratio for M/n are similar to those

ound under a fixed M.  Equilibrium condition 2 becomes less restrictive with increases in the group size, n.

ppendix C. Supplementary Data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
.jebo.2016.02.007.

eferences

oyagi, M., Fréchette, G., 2009. Collusion as public monitoring becomes noisy: experimental evidence. J. Econ. Theory 144 (3), 1135–1165.
amera, G., Gioffre, A., 2014. A tractable analysis of contagious equilibria. J. Math. Econ. 50, 290–300.
amera, G., Casari, M.,  Bigoni, M.,  2012. Cooperative strategies in anonymous economies: an experiment. Games Econ. Behav. 75, 570–586.
amera, G., Marco, C., 2009. Cooperation among strangers under the shadow of the future. Am.  Econ. Rev. 99 (3), 979–1005.
arpenter, J.P., 2007. Punishing free-riders: how group size affects mutual monitoring and the provision of public goods. Games Econ. Behav. 60, 31–51.
al Bó, P., 2005. Cooperation under the shadow of the future: experimental evidence from infinitely repeated games. Am.  Econ. Rev. 95 (5), 1591–1604.
al Bó, P., 2007. Social norms, cooperation and inequality. Econ. Theory 30, 89–105.
al Bó, P., Fréchette, G.R., 2011. The evolution of cooperation in infinitely repeated games: experimental evidence. Am.  Econ. Rev. 101 (1), 411–429.
uffy, J., Ochs, J., 2009. Cooperative behavior and the frequency of social interaction. Games Econ. Behav. 66, 785–812.
uffy, J., Xie, H., Lee, Y.-J., 2013. Social norms, information, and trust among strangers: theory and evidence. Econ. Theory 52 (2), 669–708.
llison, G., 1994. Cooperation in the prisoner’s dilemma with anonymous random matching. Rev. Econ. Stud. 61, 567–588.

ngle-Warnick, J., Slonim, R.L., 2006. Inferring repeated-game strategies from actions: evidence from trust game experiments. Econ. Theory 28, 603–632.
udenberg, D., Dreber, A., Rand, D.G., 2012. Slow to anger and fast to forgive: cooperation in an uncertain world. Am. Econ. Rev. 102, 720–749.
ardin, G., 1968. The tragedy of the commons. Science 162, 1243–1248.

saac, M., Walker, J., 1988. Group size effects in public goods provision: the voluntary contribution mechanism. Q. J. Econ. 103, 179–199.
saac, M., Walker, J., Williams, A., 1994. Group size and the voluntary provision of public goods. J. Public Econ. 54, 1–36.

http://dx.doi.org/10.1016/j.jebo.2016.02.007
http://dx.doi.org/10.1016/j.jebo.2016.02.007
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0004
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0005
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0010
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0014
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0015
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0020
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0025
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0030
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0035
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0040
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0045
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0050
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0055
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0060
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0065
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0070


74 J. Duffy, H. Xie / Journal of Economic Behavior & Organization 126 (2016) 55–74

Kandori, M.,  1992. Social norms and community enforcement. Rev. Econ. Stud. 59, 63–80.
Nosenzo, D., Quercia, S., Sefton, M.,  2015. Cooperation in small groups: the effect of group size. Exp. Econ. 18, 4–14.
Okada, A., 1993. The possibility of cooperation in an n-person prisoners’ dilemma with institutional arrangements. Public Choice 77, 629–656.
Roth, A.E., Murnighan, J.K., 1978. Equilibrium behavior and repeated play of the prisoners’ dilemma. J. Math. Psychol. 17, 189–198.

Weimann, J., Brosig-Koch, J., Heinrich, T., Hennig-Schmidt, H., Keser, C., Stahr, C., 2014, October. An Explanation of (First Round) Contributions in

Public-Good Experiments, CESifo working paper no. 5039.
Xie, H., Lee, Y.-J., 2012. Social norms and trust among strangers. Games Econ. Behav. 76 (2), 548–555.
Xu, B., Cadsby, B., Fan, L., Song, F., 2013. Group size, coordination, and the effectiveness of punishment in the voluntary contributions mechanism: an

experimental investigation. Games 4 (1), 89–105.

http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0075
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0080
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0085
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0090
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0095
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0100
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105
http://refhub.elsevier.com/S0167-2681(16)00037-8/sbref0105

	Group size and cooperation among strangers
	1 Introduction
	2 The model
	3 A monotonicity result
	3.1 Equilibrium condition 1
	3.2 Equilibrium condition 2
	3.3 Numerical findings for different values of δ

	4 An application to a public goods game
	5 Experimental design
	6 Experimental findings
	7 Conclusions
	Appendix B Fixing the number of groups, m=M/n
	Equilibrium condition 1
	Equilibrium condition 2
	Appendix C Supplementary Data

	References
	References


