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1 Introduction

Correlated equilibrium, as first proposed by Aumann (1974, 1987), represents an important

generalization of the Nash equilibrium concept. In a correlated equilibrium, players’ beliefs

are correlated with external signals that follow known probability distributions. Thus, in a

correlated equilibrium, beliefs are not probabilistically independent as they must be in the

mixed strategy interpretation of Nash equilibrium, but are instead correlated. A mutual

best response to such correlated beliefs comprises a correlated equilibrium. Since extraneous

signal realizations can matter in equilibrium, correlated equilibrium is considered a more

general version of equilibrium behavior in non-cooperative games than is Nash equilibrium

where such extraneous signals can play no role. Indeed, as Myerson has reportedly observed:

“If there is intelligent life on other planets, in a majority of them, they would

have discovered correlated equilibrium before Nash equilibrium.”

The presence of external signals, however, presents a further puzzle: how is it that

agents know the distribution of such external signals and use that knowledge to correlate

their beliefs with signal realizations in such a way as to play a correlated equilibrium of

the game? In this paper we take a first step toward addressing this question. We develop

an agent-based, evolutionary learning model with the aim of demonstrating (and in the

process understanding) how boundedly rational adaptive agents with no prior knowledge of

the distribution of external signals could learn to use those signals as a correlation device for

their beliefs and how signal realizations map into action choices in a non-cooperative game.

To provide some external validity for our simulation exercises, we compare our results with

those of experimental studies involving paid human subjects playing the same coordination

games used in our agent-based simulations.

An understanding of how agents might learn to play a correlated equilibrium also has

important policy implications if one takes the view that institutions or policy responses

depend upon the use of correlation devices (Gintis, 2009). According to this view, the

efficiency advantages of all types of institutions or policy responses arise from the decisions

of agents to rationally follow correlated signals. For example, a traffic signal allows for a

much more efficient flow of traffic than if drivers were to navigate road intersections without

such correlating devices. Alternatively, one may think of the correlating device as shocks to
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the macroeconomy, to which fiscal and monetary authorities have to coordinate their policy

responses.

2 Related literature

The literature on correlated equilibrium begins with Aumann (1974, 1987) who showed that

correlated equilibrium is the natural equilibrium concept under Bayesian rationality, and

is less demanding than Nash equilibrium in that it does not require common knowledge of

rationality. Correlated equilibrium has also been shown to be the outcome of non-cooperative

games with pre-play communication (e.g., Forges, 1990; Ben-Porath,1998; and Moreno and

Wooders, 1998). There are also some theory papers providing conditions (or learning rules)

under which correlated equilibria can be learned in the limit of an infinitely repeated game

provided that players adhere to certain regret-minimizing strategies as first demonstrated

by Foster and Vohra (1997) and elaborated upon by Fudenberg and Levine (1999), Hart

and Mas-Colell (2000) and Lehrer (2003) among others. These approaches all presume

that agents can perfectly recall the entire past history of play of the game by all potential

opponents. By contrast, our evolutionary learning approach does not require such extreme

informational requirements. Further, we are interested in validating our learning results by

matching them with experimental findings exploring play of correlated equilibrium strategies

in finitely repeated games. Indeed, we find that our individual evolutionary learning model

yields a good fit to the outcomes of two experimental studies on correlated equilibrium.

There are many studies using agent-based evolutionary models that seek to understand

how agents learn over time to coordinate on a Nash equilibrium or to select from among

several Nash equilibria. However, we are not aware of any agent-based models exploring the

learning of correlated equilibria, even though as noted earlier, it is a more general solution

concept.

Experimental studies of the correlated equilibrium concept have been conducted by Ca-

son and Sharma (2007), Duffy and Feltovich (2010), Bone et al. (2013) and Duffy et al.

(2016). Here we compare the results of simulations using our individual evolutionary learn-

ing algorithm to experimental findings for play of the Battle of the Sexes game by Duffy et

al. (2016) and play of a Chicken game by Duffy and Feltovich (2010).
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3 Correlated Equilibria in Two Games

Our analysis makes use of two, two-player non-cooperative games that are often studied in

the literature on correlated equilibrium, the Battle of the Sexes game shown in Table 1 and

the Chicken game shown in Table 2.

Player 2
C D

Player C 9,3 0,0
1 D 0,0 3,9

Table 1: Battle of the Sexes

Player 2
C D

Player C 7,7 3,9
1 D 9,3 0,0

Table 2: Chicken

In both games there are two pure strategy equilibria and one symmetric mixed strategy

equilibrium. In particular, let {p1, p2} denote the probabilities with which players 1 and 2

play strategy C, so 1− pi is the probability that i plays strategy D. Let the payoff from each

strategy be given by the pair {π1, π2}. Then, the Nash equilibria (NE) can be summarized

as follows:

Game Pure NE1 / Payoffs Pure NE2 / Payoffs Mixed NE /Expected Payoffs
BoS {1, 1} / {9, 3} {0, 0} / {3, 9} {.75, .25} / {2.25, 2.25}
Chicken {1, 0} / {9, 3} {0, 1} / {3, 9} {.60, .60} / {5.40, 5.40}

In the absence of external signals, experimental subjects who are randomly and anony-

mously paired to play these games generally coordinate on the mixed strategy Nash equilib-

rium (Cason and Sharma (2007), Duffy and Feltovich (2010)).

However, suppose there is an external randomization device or, as in Myerson (1991),

there is a third party mediator who makes recommendations to both players as to how

they should play the game in each period. One simple device is a coin flip: If heads,

the recommendation is that Player 1 plays C, and Player 2 plays C, with the opposite

recommendation if the coin flip is tails, as summarized in this table:
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Recommended Player 2
Play C D

Player C 1/2 0
1 D 0 1/2

Players always know what the mediator recommends for them to play and may also know

what the mediator recommends for their opponent to play but the latter information is not

required; it suffices that the recommendations are correlated with one another according

to the stochastic external recommendation process. Suppose that players follow the action

recommended for them by the mediator. In this “turn-taking” equilibrium players do better

than in the symmetric mixed-strategy equilibrium, earning an expected payoff of 6 (rather

than 2.25). The reason is straightforward; following recommended actions (like following

traffic signals) allows players to avoid “miss-coordination” on 0-payoff outcomes, which is

unavoidable when subjects play according to the symmetric mixed strategy Nash equilibrium.

In the game of Chicken, a turn-taking equilibrium of the same sort also exists. But in

Chicken, by contrast with Battle of the Sexes, players can do even better using third party

recommendations. For example, suppose the distribution of recommended strategy profiles

is

Recommended Player 2
Play C D

Player C 1/3 1/3
1 D 1/3 0

and players only see their part of the recommended strategy profile and not the other players’

part. In that case, it is an equilibrium best response to play according to the recommended

actions: a player’s expected payoff from doing so is 61
3
> 6, the payoff earned in the turn-

taking correlated equilibrium, which continues to dominate the payoff in the symmetric

mixed strategy equilibrium (5.40). This example illustrates the possibility of generating

correlated equilibria with payoffs that lie outside the convex hull of payoffs possible from

randomizations over the set of pure strategy Nash equilibria.

More generally, let the set of possible joint actions for players i = 1, 2, · · ·N in game Γ

be denoted by A, and let p = ∆(A) denote some probability distribution over A. Further,

let pa denote the probability of joint action profile a = (ai, a−i) where
∑

a∈A p
a = 1. The

probability distribution p is a correlated equilibrium of the game Γ having payoffs π(a) if for
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all players i ∈ N and all actions ai, âi ∈ A we have that:∑
a−i∈A

π(ai, a−i)p(a
i,a−i) ≥

∑
a−i∈A

π(âi, a−i)p(a
i,a−i).

In words, given some known probability distribution, p, over action profiles, a deviation

from the recommended component of player action profile is unprofitable for any player i.

Notice two features of this equilibrium concept. First, there is no requirement that the

probability distributions are independent across players as in the standard Nash equilibrium

definition. Second, there can be many different correlated equilibria of the game Γ, namely

any probability distribution over recommended strategy profiles that satisfies the condition

given above. It is this sense that correlated equilibrium can be regarded as a generalization

of the Nash equilibrium concept.

The recommendations used in this study will follow those used in Duffy et al. (2016)

and Duffy and Feltovich (2010) to achieve a correlated equilibrium in the Battle of the

Sexes and the Chicken games, respectively. These correlated equilibria can be identified by

a randomization device, D=(Ω, {Hi}, π) where Ω is a finite state space corresponding to the

outcomes of the randomization device, Hi is Player i’s information partition on Ω, and π is

a probability measure on Ω. As in the human subject experiments, we consider a class of

devices D with the following profile of state space and partitions:

1. A state space with four elements, Ω = {ω1, ω2, ω3, ω4}

2. Player 1’s information partition is H1 = {{ω1, ω2}, {ω3, ω4}} and player 2’s is H2 =

{{ω1, ω3}, {ω2, ω4}}.

For example, in the BoS game, {ω1} = (C,C), {ω2} = (C,D), {ω3} = (D,C), and

{ω4} = (D,D). Using the turn taking example discussed above for Table 2 would have the

randomization device be r = Pr(ω1) = Pr(ω4) = 1
2
, i.e., the randomization device is equally

likely to recommend for player 1 to play C and player 2 to play C as it is to recommend for

player 1 to play D and for player 2 to play D. The particular randomization devices used

in BoS and Chicken will be described below.
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4 Individual Evolutionary Learning Model and Results

In this section we describe an evolutionary approach to learning correlated equilibria in the

Battle of Sexes and Chicken games described in the previous section. We also report on

simulations using our model in each game. Our objective is to model a process that might

allow artificial agents with bounded memory and no prior knowledge of the distribution of

external recommendations or of the mapping from recommendations to action choices to

eventually learn to play a correlated equilibrium in a finitely repeated game.

Specifically, we adopt and modify the Individual Evolutionary Learning (IEL) model of

Arifovic and Ledyard (2004) which views the evolutionary learning process as operating at

the individual player level. The IEL model has been used in many different environments to

successfully explain behavior observed in experiments with human subjects.1 In this section

we show how IEL can be extended to incorporate external correlation devices.

In the basic IEL model, each player i has a finite set of remembered strategies, Si. The

payoff function for player i, πi(si, s−i)→ < is used to determine the results of the stage game

when strategy profile s ∈ S was chosen by all players. The set of remembered strategies,

S, evolves over time in such a way that the strategies yielding the highest forgone payoffs

continue to survive in the set of remembered strategies while other strategies are discarded.

The foregone payoff is the payoff that a given strategy j, j ∈ 1, ..., J , would have received

given what an opposing player actually played.

To apply IEL to the extended games studied in the experiments on correlated equilibria,

the IEL players are provided with third party recommendations in the same manner as

was done in the experiments with human subjects. Specifically, IEL agents are given a

recommendation to play either action C or D. However, unlike the experimental subjects,

IEL players are not given information on the probability distribution of recommendations

nor are IEL players informed that other IEL players also receive recommendations, as IEL

agents do not condition their behavior on this type of information. The first part of player

i’s strategy j, sij,t at t is f i
j,t ∈ [0, 1]. This part represents the probability that player i follows

the recommendation made by the third party in period t and is thus referred to as the follow

part of the strategy. The second part of the strategy, nf i
j,t (for not follow), prescribes the

1For example, see Arifovic and Ledyard (2007) for application to call markets; Arifovic and Ledyard
(2010) for application in the Groves-Ledyard mechanisms for the allocation and financing of public goods;
Arifovic and Ledyard (2012) for application to voluntary contribution games.
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action that player i takes whenever she does not follow the recommendation in period t.

Each element of nf can take a value of 0 or 1 and will be referred to as the action part of

the strategy. The remembered strategies of agent i thus take on the following form:

Si
t = si1,t, s

i
2,t · · · siJ,t

with sij,t = (f i
j,t, nf

i
j,t)∀j = 1, . . . , J . The follow part of the strategy consists of a single

element and the not follow part consists of two elements (thus, we use lengths `(f) = 1

and `(nf) = 2 in the simulations). The single element of f encodes the probability of

following recommendations. The first element of nf determines the action the player takes

in odd-numbered periods while the second element of nf determines the action the player

takes in even-numbered periods.2 The choice of two elements for nf is based on experiments

showing that players using turn taking or alternating strategies, such as Duffy et al. (2016),

Arifovic and Ledyard (2015), and Kuzmics et al. (2014), that would be impossible to achieve

whenever `(nf) = 1.

The initial set of remembered strategies, Si
1,∀i, are drawn randomly.3 At t = 1, each

strategy has an equal (1/J) chance of being selected to be played. The set of strategies, Si
t ,

co-evolves over time based on the recommendation received and the actions of other players.

The updating of each player’s strategy set takes place via experimentation, computation of

foregone payoffs, replication, and selection.

The sequence of steps in our evolutionary algorithm is as follows:

Experimentation introduces new elements to the strategies in a player’s strategy set. Let

ρ denote the probability that any element of a strategy will undergo experimentation with

the probability being independent across each element in a given strategy.

If the element of the follow part of the strategy (which consists of a single element) is

selected, then a new element is drawn from a normal distribution with a mean equal to the

value of the existing element, f ∼ N(f i
j,t, θ), f ∈ [0, 1] otherwise f is redrawn.

If an element from the nf part of the strategy is selected for experimentation, the existing

value may be flipped, i.e., 0→ 1 or 1→ 0. The probability of both experimentation and of

being flipped for the nf part of the strategy is thus equal to ρ/2.

2This even-odd period structure is without loss of generality as the actions actually played in even or odd
numbered periods are endogenously determined by the algorithm.

3Initialization: At the beginning of each run, all follow parts of each player’s set of strategies are drawn
from a uniform distribution, in the interval [0, 1]. All not follow parts of each player’s set of strategies are
assigned a value of 0 or 1 with equal probability.
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Computation of Foregone Payoffs determines the expected foregone payoff that the player

could have achieved from a strategy sij,t ∈ Si
t taking player i’s history, hit, as given. The

history, hit, consists of the observed actions of other players and the recommendations of

play from the two most recently played periods. Allowing the IEL to account for correlated

strategies (recommendations) requires us to take into account both the probability to follow

or not follow the recommendation as well as the choice of pure actions in the computation

of the foregone payoff. Thus, the expected foregone payoff is given by:

W (sij,t|hit) = f i
j

1∑
k=0

u(rit−k, σ
−i
t−k) + (1− f i

j)
1∑

k=0

u((nf)ij,t−k, σ
−i
t−k) (1)

where W (sij,t|hit) is the expected foregone payoff, rit−k is the recommendation at t − k, and

σ−it−k is the action of player −i at t− k.

Equation 1 consists of two parts: The first part is the payoff that strategy sij,t would have

received from following the recommendation, weighted by the probability of following the

recommendation, f i
j,t, in periods t and t− 1. The second part is the payoff that the strategy

sij,t would have received from the nf elements of the strategy in periods t and t−1, weighted

by the probability of not following, (1− f i
j,t).

Replication reinforces strategies that would have worked well in previous periods. The

choice as to which strategies remain in the set of remembered strategies depends on the value

of the expected forgone payoff. For a given set of values W (sij,t|hit) = W i
j,t, two strategies sil,t

and sik,t ∈ Si
t are chosen randomly (with uniform probability and replacement) to compete

for a chance to remain in the remembered set of strategies. The expected foregone payoffs

of the two strategies are compared, and the one with the higher foregone payoff is selected.4

sij,t+1 =

{
sil,t
sik,t

}
if

{
W i

l.t ≥ W i
k,t

W i
k,t < W i

l,t

}
.

The above steps are repeated J times. This completes the updating of the sets of strategies

in period t+ 1.5

4In case the two payoffs are equal, a coin flip is used to select a strategy.
5While it is customary in the literature on evolutionary learning to implement replication before exper-

imentation, we use the reverse sequence in order to increase the speed at which the learning takes place.
However, the qualitative features of the IEL’s behavior do not depend on a sequence in which replication
and experimentation take place.
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Selection probabilistically chooses a strategy that the player actually uses for the next two

periods. A strategy sij,t+1 ∈ Si
t+1 is chosen with probability qij,t+1 = W i

j,t/(
∑J

k=1W
i
k,t).

6

In terms of parameters, we have already discussed how strategies are represented as two

component structures with `(f) = 1 and `(nf) = 2. Given the strategy representation, the

IEL model has three free parameters (J, ρ, θ). We chose (J, ρ, θ) = (180, 0.033, 0.10) as these

values have proven to work well in capturing behavior in a number of different experiments

with human subjects (for example, Arifovic and Ledyard (2007, 2010, 2012) and Boitnott

(2015)). Thus, the strategy set of player i, at period t, is given by:

Si
t =


s1,t
s2,t
...

s180,t

 =


f1 nf1,1 nf1,2
f2 nf2,1 nf2,2
...

...
...

f180 nf180,1 nf180,2


Later, in section 5, we will consider a grid search to determine whether the parameterization

of the IEL model could be changed to better fit the data.

The design of our IEL environment and simulations closely follow the experimental design

and treatments of Duffy et al. (2016) for the Battle of the Sexes game and Duffy and Feltovich

(2010) for the game of Chicken. We conducted 500 simulation runs of IEL for each treatment

of these two experimental studies. We next describe these treatments.

4.1 Battle of the Sexes

Duffy et al. (2016) (henceforth DLL) study the stage game (Table 1) played repeatedly for

60 periods. Their experiment utilizes two matching protocols and three treatments regarding

recommendations. The matching protocols have players paired using either a Partners (fixed

matching) or a Strangers (random matching) design. For the Partners matching design, two

subjects are matched at the beginning of a game and remain in the same fixed pairing for

all 60 periods of the game. Under the Strangers matching protocol, six subjects are divided

up equally between row and column players and in each period, three pairs are formed by

randomly matching together one row and one column player.

Both matching protocols are implemented in their three main treatments. In their

baseline, “direct” recommendations treatment, prior to choosing an action in each pe-

6If some values of W i < 0, then the probability is computed as qij,t+1 = (W i
j,t − εit)/

∑J
k=1(W i

k,t − εit)
where εit = min{0,W i

1,t, . . . ,W
i
J,t} for use in period t+ 1.
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riod, subjects are given a recommendation to play either action C or D with the knowl-

edge that both players in a pair would receive the same recommendation, r, and that

Pr(r = C) = Pr(r = D) = .5. In their second, “None” treatment, subjects are not given

any recommendation as to how to play the game. In their third, “indirect” recommen-

dations treatment, subjects are given recommendations that do not directly map into the

action space; in that treatment, the recommendations are either @ or # to both players

with Pr(r = @) = Pr(r = #) = .5. The latter treatment allows for the development of

an endogenous mapping between recommendations and the action space of the stage game.

In order to examine how well the behavior of IEL matches the behavior observed in the

experiment with human subjects, we use the following protocol in our IEL simulations.

We match our simulation design to the design of DLL’s experiment with six different

treatments: {direct recommendations, no recommendations (none) and indirect recommen-

dations} × {Partners, Strangers}. Thus, the IEL players are given either a direct recom-

mendation to play either C or D, no recommendation or an indirect recommendation either

@ or #. We conducted 500 simulation runs of the IEL algorithm for each of the six treat-

ments with a length of each run equal to 60 periods, the same number of periods in DLL’s

experiment.

Following DLL, we split the IEL players into two groups: row players and column players

with a row player being matched with a column player using one of the two matching

protocols. Under Partners (Fixed) matching, we have two IEL players interact with one

another for 60 periods. In the Strangers (random) matching, we have six IEL players interact

together for the 60 periods with 3 pairs being randomly formed in each period.

For each pair of players, a period proceeds as follows. First, in treatments with recom-

mendation, a recommendation for each pair of players is determined by drawing a random

number from a uniform distribution over [0, 1]. If the number is less or equal to 0.5, the

recommendation given to the pair is to play C(@) in that period. Otherwise, the recommen-

dation given to the pair is to play D(#) in that period. We next determine whether players

follow this recommendation. For each player, a random number, φ, is drawn from a uniform

distribution over [0, 1]. If φ is less than or equal to the probability that the recommenda-

tion is followed as given in f i
j,t, then the player follows that recommendation.7 Otherwise,

7In the indirect recommendation treatment, each player must also assign a meaning to the signal, as
discussed in further detail below.
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if recommendations are not followed, or if no recommendations are given (as in the ‘None’

treatment), the player uses the two-element nf i
j,t part of her strategy to determine what

strategy to play depending on whether it is an odd- or even- numbered period. If the value

of the nf element corresponding to the period (odd or even) is 0, then the player plays C,

while if the value is 1 she plays D.

As mentioned earlier, a player uses a selected strategy for two consecutive periods. After

every two periods, expected forgone payoffs are computed for all the strategies in each

player’s remembered strategy set, Si
t , taking the observed history as given (i.e., the actions

of the other player and the recommendations over the previous two periods). The forgone

payoffs are then used to create a new set of remembered strategies, Si
t+1, and to determine

via selection the strategy to be played during the next two periods.8

Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.911 (0.092) 5.47 (0.548) 0.993 (0.015) 5.96 (0.088)
Strangers [0.841,0.982] [5.04,5.89] [0.982,1.00] [5.89,6.02]
Sim. 0.872 (0.049) 5.23 (0.295) 0.976 (0.049) 5.85 (0.293)
Strangers [0.868,0.876] [5.20,5.26] [0.971,0.980] [5.83,5.88]

DLL 0.857 (0.169) 5.14 (1.016) 0.878 (0.331) 5.27 (1.886)
Partners [0.727,0.988] [4.36,5.93] [0.624,1.132] [3.74,6.79]
Sim. 0.863 (0.083) 5.18 (0.496) 0.963 (0.088) 5.78 (0.528)
Partners [0.856,0.870] [5.13,5.22] [0.956,0.971] [5.73,5.83]

Table 3: BoS Direct Recommendations Comparison

Table 3 shows simulation results for the Battle of the Sexes (BoS) Direct Recommenda-

tions (DR) treatment under both the Strangers and Partners matching protocols in compar-

ison with the human subject outcomes reported in DLL. Comparisons are made with respect

to the mean frequencies of coordination on pure strategy equilibria and standard deviations

(in parentheses) over two time intervals and with the mean and standard deviation of payoffs

actually earned over the same two time intervals.9 In addition, we provide 95 percent con-

8Later, in section 5, we explore the sensitivity of our findings to expanding the number of periods used
to evaluate foregone payoffs beyond just 2.

9The payoff means and standard deviations from the 500 simulation runs (Sim.) reported on in Table 3
(and later for Tables 5 and 7) are actual payoffs earned by the simulated strategies and not foregone payoffs.
While the IEL uses foregone payoffs to evaluate the fitness of strategies according to equation (1), these
foregone payoffs are not the same as the payoffs actually earned from play of the chosen strategies and it is
the latter that we are reporting on here for comparison with the payoffs actually earned by DLL’s human
subject participants.
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fidence intervals [in square brackets] for coordination rates and payoffs for both the human

subject and simulated data based on the standard deviations from those data. Recall that

the IEL simulation means and standard deviations are calculated from 500 runs.

The results in Table 3 suggest that there is a reasonably good fit between the means of

the simulation runs and the human subject coordination and payoff outcomes; overall 60-

period simulation means lie within the 95 percent confidence bounds of the data, though the

standard deviations in the humans subject data are generally greater than in the simulated

data. Perhaps the most important finding from Table 3 is that in both the DLL experi-

mental data and the IEL simulations, coordination frequencies and payoffs are higher under

the Strangers matching protocol as compared with the Partners matching protocol. This

finding is notable because the IEL algorithm does not explicitly condition on the matching

protocol while human subjects were aware of whether they were operating under a Partners

or Strangers matching scheme. The reason for this difference, as explained in DLL, is that

under the partners matching protocol, subjects have an alternative means of coordination,

namely using their history of fixed interactions, and this reduces the importance of the direct

recommendations. However, in the Strangers matching protocol, the recommendations are

more useful for solving the coordination problems, and generate higher payoffs as well.

Type Time [D D] [C C] [D C] [C D] Avg. f

DR T = 1-60 0.0% 0.0% 0.0% 0.0% 0.85
Strangers 31-60 0.5% 0.3% 0.4% 0.3% 0.96

46-60 1.2% 0.8% 0.8% 0.8% 0.97
DR T = 1-60 1.3% 1.0% 0.7% 0.3% 0.76
Partners 31-60 4.1% 3.7% 4.0% 3.6% 0.83

46-60 4.3% 4.2% 4.3% 4.3% 0.84

Table 4: IEL nf and f Strategies in BoS-DR

Table 4, reports on the strategies being played by the IEL simulated agents in the BoS-

DR simulations under the Strangers or Partners matching protocols and over three sample

periods, T=1-60, 31-60 or 46-60. Recall that the nf part of the strategy has two components,

nf i
j,1, nf

i
j,2, each of which can either be C (0) or D (1), so there are just four possible outcomes

for the nf part of a strategy. We classify a simulated player as having the not follow strategy

of [nf i
j,1, nf

i
j,2], if at least 90% of his strategy set of J = 180 strategies (at least 162 strategies)

have the same bit encodings for [nf i
j,1, nf

i
j,2], over the sample period, e.g., a nf strategy of [C
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D] means that at least 90 percent of the agent’s strategies have a nf part that specifies the

play of C in odd periods and D in even periods over the sample period. The threshold of 90

percent was chosen to reduce noise in the determination of the nf part of agents’ strategies.

We also report on the average value of the follow part, f , of agents’ strategies over the

same three sample periods. Recall that f is simply a real number in [0, 1], representing

the probability that the simulated agent chooses to follow recommendations; here we simply

report the average value of f over the given sample period. As Table 4 reveals, by the end of

both the Strangers and Partners BoS-DR treatments, the average value for f is .97 and .84,

respectively, indicating a high likelihood of recommendation following in both treatments.

Consequently, there is not much consistency in the not follow (nf) parts of simulated agents’

strategies, as these strategies are not being played very much, and this observation accounts

for the low percentage of nf strategies meeting our 90 percent threshold for classification.

Figure 1: Outcome Frequencies Based on Recommendations in BoS-DR

Figure 1 provides a more disaggregated comparison of the mean frequencies of actual
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(a) BoS-DR Partners (b) BoS-DR Strangers

Figure 2: Pairwise Recommendation Following over Time in the BoS-DR treatments: Sim-
ulations versus DLL Data

outcomes observed in DLL’s DR treatment and in the IEL simulations based on the rec-

ommendations that were given, with ‘Rec: C’ and ‘Rec: D’ indicating which action was

recommended under the Strangers or Partners matching protocols. Thus for instance, we

observe that when both players were recommended to play C (D) they did so with a high

frequency in the Partners, DR treatment and with an even higher frequency in the Strangers,

DR treatment, consistent with the DLL experimental data.

Figure 2 shows the frequency with which pairs of players followed recommendations over

time in both the IEL simulations and DLL data. The time series shown are the frequencies

with which both members of each pair of players followed the recommendations given to

them and thus this frequency differs from the average value of the follow part of all players’

strategies, as reported on in Table 4. We compare our simulated data with the experimental

data using this pairwise recommendation following frequency as we have such data for both

of the experimental studies (BoS and Chicken) with which we compare our simulation results.

Notice that, consistent with the experimental data, recommendation following increases over

time in both the Partners and Strangers versions of the BoS-DR treatment, though the IEL

simulations provide a better fit to the DLL-Strangers data than to the DLL-Partners data.

Simulation results for the treatment where no recommendations are given – the “None”

treatment of DLL – as compared with the corresponding experimental data of DLL are re-

ported in Table 5. The simulation results for this case are obtained by setting f i
j = 0 ∀j, i

and also setting the probability of experimentation with this part of each strategy equal to
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zero. These changes ensure that all players are classified as not following recommendations

as reflected in Table 6. Reported results are again from 500 simulations, and, as in Table

3, Table 5 reports means, (standard deviations) and [95 percent confidence intervals] for

coordination rates and payoffs over two sample periods. In addition, for the two versions

of None, the aggregate outcome frequencies are reported in Figure 3 along with the corre-

sponding experimental outcome frequencies from DLL. The simulated and human subject

data are reasonably consistent with the notable exception of the frequencies of (C,D) and

(D,D) which are too low and too high (respectively) in the simulated Strangers treatment

relative to comparable DLL Strangers data.10

Table 6 again reports on the percentage of the nf parts of the simulated strategies that

meet the 90 percent threshold for strategy classification as discussed earlier in connection

with Table 4. Here we see that, since the f part is constrained to be zero, the nf parts of

the simulated agent strategies settle on play of the two pure strategies, [D D] or [C C], or

on alternation strategies, [D C] or [C D], and by the last 15 periods, 94.7 or 100 percent

of simulated agents (Partners, Strangers, respectively) meet our nf strategy clarification

criterion.

Finally, we report results for the BoS Indirect Recommendations or IR treatment. This

environment is more complicated to implement algorithmically as the mapping from the

randomization device to the action space is no longer clearly specified since the signal, or

10As shown in Table 6 of DLL, in the None-Strangers treatment, several of the human subject groups
coordinated on the unique mixed strategy Nash equilibrium (MSNE) of the game which would result in the
(C,D) outcome being played 56.25% of the time. The IEL algorithm, with its 2 period history, remains more
likely to learn a pure strategy or alternation strategy equilibrium than play of the MSNE.

Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.548 (0.141) 3.29 (0.843) 0.596 (0.203) 3.58 (1.218)
Strangers [0.439,0.656] [2.64,3.93] [0.440,0.753] [2.64,4.51]
Sim. 0.836 (0.075) 5.01 (0.449) 0.980 (0.064) 5.88 (0.387)
Strangers [0.829,0.842] [4.97,5.05] [0.974,0.985] [5.84,5.91]

DLL 0.869 (0.185) 5.21 (1.111) 0.800 (0.316) 4.80 (1.897)
Partners [0.726,1.011] [4.36,6.06] [0.557,1.043] [3.34,6.26]
Sim. 0.899 (0.071) 5.40 (0.425) 0.987 (0.037) 5.92 (0.219)
Partners [0.893,0.906] [5.36,5.43] [0.984,0.990] [5.90,5.94]

Table 5: BoS No Recommendations (None) Comparison
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Type Time [D D] [C C] [D C] [C D] Avg. f

None T = 1-60 2.5% 2.1% 2.0% 2.5% 0.00
Strangers 31-60 19.9% 21.5% 21.8% 23.8% 0.00

46-60 21.8% 23.0% 23.8% 26.1% 0.00
None T = 1-60 6.6% 8.7% 7.1% 5.9% 0.00
Partners 31-60 25.1% 23.0% 25.2% 26.0% 0.00

46-60 25.2% 23.4% 25.2% 26.2% 0.00

Table 6: IEL nf and f Strategies in BoS-None

Figure 3: Observed Outcome Frequencies in BoS-None

#, does not directly map into the two actions, C or D. Thus, additional assumptions are

needed. Our approach is to assume that there are 4 possible interpretations of the signal:

1. @ signals the player should play C and # signals the player should play D

2. # signals the player should play C and @ signals the player should play D

3. @ and # signal the player should play C

4. @ and # signal the player should play D

For simplicity, we ignore outcomes 3 and 4 from the list above and focus on strategies

that interpret different signals as having a unique meaning since the strategy representation

is already capable of ignoring recommendation/signals and playing a pure strategy. Thus

for the IR environment, each player has an extra element added to their strategy, λ, which
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is initially a uniform random draw over [0, 1]. This new part, λ, (like the follow part, f)

represents the probability that @ signals play of action C while # signals play of action D

and 1 − λ represents the opposite mapping. The strategies including λ are evaluated using

the same method previously discussed with the exception that the player may not know

the precise information given by the signal when choosing whether to follow the signal or

not. This means the player knows what strategy they played (i.e., C or D), the payoff they

received, and the strategy played by the other player, but not whether # = C or @ = C.

The expected forgone payoff then becomes:

W (sij,t;h
i
t) =f i

j(λ
i
j((

2∑
k=1

u(κit−3+k, σ
−i
t−3+k))/2) + (1− λij)(

2∑
k=1

u(%it−3+k, σ
−i
t−3+k))/2)

+ (1− f i
j)(

2∑
k=1

u((nf)ij,k, σ
−i
t−3+k))/2

(2)

where κit = (C|@, D|#) and %it = (D|@, C|#).

Table 7 reports means, (standard deviations) and [95 percent confidence intervals] for co-

ordination rates and payoffs over two subsamples of the BoS-IR treatment for both the human

subject DLL data and the IEL simulations. Consistent with DLL’s experimental data, we

observe that the IEL algorithm learns to coordinate more effectively and with higher payoffs

under the fixed Partners matching protocol as compared with the random Strangers match-

ing protocol in the IR treatment. The IEL’s strategies for the IR treatment are reported on

in Table 8 which uses the strategy classification discussed earlier in connection with Table

4. This table reveals that the average probability of recommendation following, f , is .30

for the last quarter of the Strangers treatment but is decreasing more rapidly toward zero

in the Partners treatment. Indeed, the simulated agents in this IR treatment are learning

to ignore recommendations, and more rapidly so under the partners matching protocol, as

they instead choose to play pure [C C],[D D] or alternation [C,D] [D,C] strategies that do

not follow recommendations. Additionally, while many of the agents are shown to eventually

coordinate on a single strategy, the agents perform worse than the case where no recommen-

dations are given. Figure 4 provides a break down of the frequency of outcomes given the

signal. The simulations reveal a fairly consistent frequency of coordination, regardless of the

recommendations given, whereas the experimental subjects appear to have been influenced

by the recommendations to coordinate on a particular outcome especially under the Partners

matching protocol.
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Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.580 (0.119) 3.48 (0.715) 0.674 (0.174) 4.04 (1.108)
Strangers [0.488,0.671] [2.93,4.03] [0.532,0.816] [3.19,4.90]
Sim. 0.608 (0.086) 3.65 (0.516) 0.735 (0.162) 4.41 (0.972)
Strangers [0.600,0.615] [3.60,3.69] [0.721,0.749] [4.32,4.49]

DLL 0.915 (0.128) 5.49 (0.768) 1.000 (0.000) 6.00 (0.000)
Partners [0.808,1.022] [4.84,6.13] [1.000,1.000] [6.00,6.00]
Sim. 0.761 (0.133) 4.57 (0.800) 0.934 (0.140) 5.60 (0.842)
Partners [0.749,0.773] [4.50,4.64] [0.922,0.946] [5.53,5.68]

Table 7: BoS Indirect Recommendations Comparison

Type Time [D D] [C C] [D C] [C D] Avg. f

IR. T = 1-60 0.0% 0.1% 0.0% 0.0% 0.39
Strangers 31-60 9.9% 8.5% 8.9% 7.1% 0.33

46-60 14.0% 11.9% 13.5% 11.4% 0.30
IR. T = 1-60 1.1% 2.4% 0.7% 0.4% 0.26
Partners 31-60 22.5% 26.5% 19.9% 15.6% 0.13

46-60 25.1% 28.5% 20.9% 17.0% 0.09

Table 8: IEL nf and f Strategies in BoS-IR

Finally, Figure 5 shows the frequency of pairwise recommendation following over time

in the BoS-IR treatments. The IEL simulations clearly underpredict the extent of recom-

mendation following in the Partners version of the BoS-IR treatment, most likely because

the algorithm does not exploit the fact that players are repeatedly rematched with the same

other player. However, for the strangers BoS-IR treatment, the fit to the frequency of rec-

ommendation following over time is very good, with the simulated data tracking the DLL

data very closely albeit with less noise. Note further that the IEL also gets right the initial

frequency of recommendation following in both BoS-IR treatments, which is only around 25

percent and not the 50 percent level observed in BoS-DR treatment. The reason for this

difference is that in the IR treatment, the mapping from the recommendations to the action

space, (λ) also has to be learned, and so initially, only about 50 percent of the strategies

have the right mapping. Combining this fact with the 50 percent initial chance of following

recommendations yields an approximately 25 percent chance of initial recommendation fol-

lowing, which also shows up in DLL’s experimental data. Overall, we conclude that there is

a good qualitative fit between the IEL simulated data and DLL’s experimental data for the
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Figure 4: Outcome Frequencies based on Recommendations in BoS-IR

BoS game.

4.2 Chicken

We next address the learning of correlated equilibria in the Chicken game, which is a more

complicated coordination game than BoS, and which allows for some more interesting cor-

related equilibria that lie outside the convex hull of Nash equilibrium payoffs. We again

implement our IEL simulations for the Chicken game in a manner that closely emulates the

design of the experiments with human subjects as reported in Duffy and Feltovich, 2010,

(DF hereafter), so as to facilitate comparisons. The stage game is shown in Table 2.

The DF experiments involved five treatments using four different sets of recommenda-

tions, r. The different recommendations consist of three correlated equilibria called the Nash,

the Good, and Bad recommendations equilibria. The Nash recommendations treatment has

Pr(ri = D|r−i = C) = Pr(ri = C|r−i = D) = .5, where r−i is the recommendation given

to the other player. This treatment most closely aligns with the recommendation used in
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(a) BoS-IR Partners (b) BoS-IR Strangers

Figure 5: Pairwise Recommendation Following over Time in the BoS-IR treatments: Simu-
lations versus DLL Data

the Battle of the Sexes game, but here, if the row player is recommended to play C, the

column player is recommended to play D and vice versa. As in BoS, this correlated equi-

librium is an equal mixture between the two pure strategy Nash equilibria, hence the name

‘Nash’ correlated equilibrium. The next correlated equilibrium is induced using probabilities

Pr(ri = D|r−i = C) = Pr(ri = C|r−i = C) = Pr(ri = C|r−i = D) = 1/3 and is referred

to as the Good recommendations equilibrium; this corresponds to the correlated equilibrium

discussed earlier where payoffs lie outside the convex hull of payoffs that are possible from ran-

domization over the set of pure strategy Nash equilibria and are greater than payoffs earned

in the unique mixed strategy Nash equilibrium. The final correlated equilibrium is referred

to as the Bad recommendations equilibrium with each player receiving a recommendation r

with Pr(ri = C|r−i = D) = Pr(ri = D|r−i = C) = 0.4 and Pr(ri = D|r−i = D) = 0.2; this

equilibrium yields a payoff that is worse than the mixed strategy Nash equilibrium, hence

the name ‘Bad’. The last recommendation treatment is called the Very Good recommenda-

tions treatment since following the recommendations in that treatment yields a payoff that is

better than any payoff from the set of possible correlated equilibria; however, since following

the Very Good recommendations is not part of a correlated equilibrium – there are profitable

deviations from following recommended play – the recommendations in the Very Good treat-

ment should not be followed. Hence, this treatment serves as a check on whether players are

blindly following recommendations or not. The Very Good treatment has recommendations

of Pr(ri = D|r−i = C) = Pr(ri = C|r−i = D) = 0.1, and Pr(ri = C|r−i = C) = 0.8. The
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experiment also includes results for the case where no recommendations are given referred

to as the None treatment. DF only use the Strangers or random matching protocol in all of

their treatments; unlike in the BoS game, there are no treatments using a Partners matching

protocol in Chicken.

Thus, there are a total of 5 experimental treatments in the Chicken game to study using

IEL. Our simulation uses the same Strangers matching protocol as in DF but with the

number of computational subjects in a matching group increased from 6 to 12 to match the

human subject experimental design. The simulations have the IEL agents play the game

for 20 periods which is the same number of periods for which the experimental subjects in

DF received recommendations. For each of the five treatments, we again report on 500 runs

of the IEL simulation. The parameterization of the IEL model, (J, ρ, θ) = (180, 0.033, 0.10)

remains the same in these Chicken game simulations as was used in the BoS simulations.11

There is an important difference between what is done in the experimental setting and the

simulations that requires some further discussion. The experiment consists of two separate

parts. Each part consists of the human subjects playing for 20 periods. No recommenda-

tions are provided during the first (or second) part of the experiment and one of the four

recommendations treatment conditions is in place during the second (or first) part. Because

we are interested in determining if and how the IEL agents are able to learn correlated equi-

librium, our simulations are run without this feature. Although including both parts of the

experiment may have improved how closely the algorithm matches the experimental data, it

would have muddled our understanding of the outcomes generated by the algorithm.

Table 9 and Figure 6 provide a comparison between the experimental data in the various

DF Chicken game treatments and the IEL simulations. We note that each recommendation

structure provides different expected payoffs. In order to keep a consistent comparison of the

payoffs, we choose to make comparisons against the expected payoff from using the mixed

strategy Nash equilibrium, which is 5.4. In other words, our “efficiency measure” as reported

on in Table 9, is 100∗
∑I

i=1

∑T
t=1 π

i
t/(I∗T ∗5.4) or the average payoff over T = 20 periods and

across I agents divided by the mixed strategy Nash Equilibrium payoff. As Table 9 reveals,

consistent with the experimental data, payoffs earned (efficiency scores) by the simulated

agents are higher in the Good and Nash treatments as compared with the Bad or None

11Later in section 5, we report on a grid search exercise to find the parameterization of IEL that is a best
fit to the experimental data which we conduct separately for Chicken and BoS.
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treatments. However, for the Very Good treatment, the IEL follows recommendations too

closely, which leads to higher payoffs, but the human subjects learn more quickly to ignore

recommendations in this treatment so their payoffs (efficiency scores) are lower. Nevertheless

the outcome frequencies in the simulated data are not far off from the experimental outcome

frequencies as Figure 6 reveals.

Source: Good Nash Bad Very Good None
DF Data 100.81 104.59 95.87 99.70 99.76
Sim. Data 101.76 101.40 91.77 104.53 95.82

Table 9: Comparison of Efficiency Measures in all Chicken Treatments

Figure 6: Observed Outcome Frequencies in all Chicken Treatments

Table 10 reports on various frequencies of recommendation following in the DF data

and IEL simulations. The individual frequency of recommendation following regardless of

the recommendation received appears as “Total” but this frequency is further broken down

22



Good Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 73.5% 79.6% 0.011 73.0% 78.4% 0.012 75.0% 83.3% 0.009
Rec = C 73.2% 77.5% 0.011 71.9% 77.0% 0.012 77.0% 79.2% 0.007
Total 73.3% 78.2% 0.009 72.3% 77.4% 0.010 76.2% 80.6% 0.004
Pairwise 53.1% 61.3% 0.021 51.4% 60.0% 0.025 58.3% 65.0% 0.009

Nash Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 56.7% 82.7% 0.076 55.3% 80.0% 0.070 60.8% 90.7% 0.092
Rec = C 77.7% 85.9% 0.016 77.2% 83.7% 0.012 79.2% 92.9% 0.027
Total 67.2% 84.3% 0.033 66.3% 81.9% 0.027 70.0% 91.8% 0.049
Pairwise 45.4% 71.6% 0.074 43.3% 67.3% 0.062 51.7% 84.4% 0.108

Bad Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 47.7% 74.8% 0.081 46.0% 74.1% 0.087 52.9% 77.0% 0.062
Rec = C 63.1% 84.0% 0.070 66.5% 82.6% 0.043 53.0% 88.0% 0.150
Total 54.1% 78.5% 0.064 54.5% 77.5% 0.056 52.9% 81.4% 0.084
Pairwise 26.9% 61.7% 0.127 25.9% 60.1% 0.124 30.0% 66.4% 0.136

Very Good Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 51.1% 77.3% 0.134 60.6% 76.9% 0.059 22.7% 78.6% 0.342
Rec = C 60.8% 67.8% 0.009 63.2% 68.8% 0.008 53.7% 64.8% 0.014
Total 59.9% 68.8% 0.014 62.9% 69.6% 0.009 50.8% 66.2% 0.027
Pairwise 36.5% 46.8% 0.019 40.0% 48.3% 0.015 25.8% 42.2% 0.032

Table 10: Observed Frequencies of Recommendation Following in all Chicken Treatments

according to whether the recommendation was C or D. The frequency of pairwise recom-

mendation following (as studied in the BoS game) is labeled “Pairwise”. We report on all

of these different measures of recommendation following as we have data on these measures

from DF’s data set. In Table 10 the mean squared error (MSE) is based on the difference be-

tween the frequency of recommendation following in the DF and IEL data. We observe that,

while these MSEs are generally small, they do not change much over time; there is often a

persistent level difference in that the frequency of recommendation following is higher in the

simulated data than in the corresponding experimental data. However, consistent with the

experimental data, pairwise recommendation following in the simulated data increases over
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Type Time [D D] [C C] [D C] [C D] Avg. f

Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.58
Good 11-20 1.9% 0.3% 1.0% 1.2% 0.61

16-20 3.9% 0.9% 2.0% 2.2% 0.63
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.69
Nash 11-20 0.5% 0.8% 0.5% 0.6% 0.79

16-20 1.1% 1.9% 1.1% 1.3% 0.83
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.59
Bad 11-20 0.4% 1.8% 0.8% 0.8% 0.64

16-20 0.8% 4.2% 1.4% 1.5% 0.66
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.45
Very Good 11-20 3.9% 0.5% 1.6% 1.6% 0.43

16-20 7.1% 1.1% 3.4% 3.3% 0.42
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.00
None 11-20 3.8% 3.4% 2.9% 3.3% 0.00

16-20 7.1% 6.5% 5.6% 6.5% 0.00

Table 11: IEL nf and f Strategies in all Chicken Treatments

time in the Good, Nash and Bad treatments, while it decreases over time (as it should) in

the Very Good recommendations treatment. Notice further that in three of the four recom-

mendation treatments, the human subjects appear to be conditioning their recommendation

following on the recommendation received, e.g., following a C recommendation much more

frequently than a D recommendation. By contrast, the IEL algorithm does not condition

on recommendations, nor is the IEL algorithm even aware of the distribution of recom-

mendations which was known to the human subjects. The IEL algorithm simply decides

first whether to follow recommendations or not, and if so, it plays the recommended action.

These different informational/strategic assumptions likely account for some of the observed

differences between the human subject and simulated data. Still, it seems remarkable (at

least to us) that the simple IEL algorithm is able to capture important qualitative features

of the experimental data from DF’s Chicken game.

Table 11 reports on the types of strategies the IEL algorithm coordinated on over time,

using the strategy classification methodology discussed earlier in connection with Table 4.

We see again that the average frequency of recommendation following (the average value

of f) is increasing over time in all of the treatments where recommendation following com-

prises a correlated equilibrium (Good, Nash and Bad) while it is decreasing over time in the

Very Good recommendation treatment, where following recommendations is not part of a
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(a) Chicken-Nash (b) Chicken-Good

(c) Chicken-Bad (d) Chicken-Very Good

Figure 7: Pairwise Recommendation Following over Time in the Chicken Treatments: Sim-
ulations versus DF Data

correlated equilibrium. This is reassuring, as it indicates that the algorithm is not blindly

learning to follow recommendations, regardless of whether it is a best response to do so.

When our simulations are allowed to run for a longer period of time than in the experiment–

100 periods– this pattern becomes even more pronounced with recommendation following

increasing to very high levels in the Good, Nash or Bad recommendation treatments and

falling further in the Very Good recommendations treatment.

Finally, Figure 7 shows time series on the frequency of pairwise recommendation following

over all 20 periods in the four Chicken treatments with recommendations: Nash, Good, Bad,

and Very Good. As noted in the discussion of Tables 10-11, while there are important

level differences between the frequency of pairwise recommendation following in the IEL

25



simulations and the DF data, especially in the Chicken-Nash and Chicken-Bad treatments,

the IEL algorithm generally gets the trend in pairwise recommendation following correct.

5 Sensitivity Analysis

The IEL simulation results reported in the previous section provide a good, though not

perfect characterization of the behavior of the experimental subjects in the Battle of the

Sexes and Chicken games. In this section we report on a sensitivity analysis we conducted

for our application of the IEL model to the learning of correlated equilibria in these two

games. One aim was to check the robustness of our simulation results, but another goal

was to see if we could improve the fit of our model to the experimental data. To address

the robustness question, we consider the impact of modifications to both the model and its

initialization. We further conduct a grid search to evaluate whether changes in the three free

parameters of the IEL model would improve the fit of the model to the experimental data,

and we examine how sensitive our results are to small changes in a single IEL parameter from

the “baseline” values chosen for the simulations reported in the previous section. Regarding

fit, we mainly rely on the mean squared error (MSE) between the period-by-period mean

payoffs earned by the experimental subjects and by the simulated players.12

5.1 Foregone Payoff Evaluation

We first report on the sensitivity of our findings to changes in the foregone payoff calculation

given by equation (1) which is used by the evolutionary operators of the IEL. Recall that for

the IEL simulations reported in section 4, the history consisted of the observed actions of

others and recommendations for play from the two most recently played periods, i.e., T = 2.

Here we consider increasing the history length used for the evaluation of foregone payoffs

from T = 2 to T = 4, 6, 8 or 10, which is implemented by changing the upper bound to

the summations in equation (1). The idea is that a longer history length, T , may help to

promote learning. However, the way in which the longer history length is evaluated may

be temporarily destabilizing with regard to evaluation of foregone payoffs, as the number of

12We have considered alternatives measures for assessing fitness such as the period-by-period frequency of
play of actions C or D, which gives similar results to period-by-period payoffs. Fitting to the frequency of
recommendation following does not perform as well as fitting based on payoff information, in part because
initial conditions for recommendation following in the experimental data can differ from IEL’s random
initialization to a large degree, but also because not all treatments have recommendations.

26



Figure 8: MSE Between Simulations and Experimental Data for Different Evaluation
Lengths, Battle of the Sexes Treatments

periods over which foregone payoffs are evaluated increases steadily until the upper bound of

T periods is reached. In addition, the random initialization remains a source of noisy initial

evaluation of foregone payoffs. However, once strategies can be repeatedly evaluated in a

stationary history of length T, then the algorithm is able to coordinate rather quickly.

The mean squared errors (MSEs) between the simulated payoffs and the human subject

payoffs for the Battle of the Sexes game for these different history lengths are shown in

Figure 8; analogous results for the Chicken game are shown in Figure 9.

For the Battle of the Sexes game (Figure 8) there is little or no improvement in MSE

from allowing for more than 2 periods of evaluation in most treatments. For the Strangers

Indirect Recommendation treatment alone, a longer history length works to increase the

MSE, because this longer history allows agents to learn to ignore recommendations quicker

and coordinate in a manner that is similar to the None Random treatment (although slower

and less efficiently since the probability of following recommendations does not fall all the

way to zero).

As for Chicken, increasing the length of information used to evaluate strategies also has
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Figure 9: MSE Between Simulations and Experimental Data for Different Evaluation
Lengths, Chicken Treatments

little or no effect on MSE, with the exception of the Very Good recommendations treatment.

In that treatment, longer histories help agents to learn to avoid following recommendations

(as they should); they learn to follow them with too high a frequency in the baseline T = 2

specification. Notice further that the MSE for the Chicken T = 2 treatments are small in

magnitude as compared with BoS (the vertical scales are quite different).13 Thus, for the

game of Chicken, further reductions in MSE as T is increased are harder to come by. We

conclude that, with a couple of exceptions, our simulation results are not very sensitive to

our restriction that foregone payoffs are evaluated using a history length of T = 2.

5.2 Initialization

Recall that the two parts of the J strategies of the IEL algorithm were randomly initialized as

detailed in footnote 2. Random initialization is a reasonable assumption if one has no prior

information on the distribution of play of the strategies available to players. In this section

we consider how our simulation results would change if we had instead initialized strategies

13The lower MSEs in Chicken as compared with BoS are an artifact of the lower variance in payoffs in the
Chicken game, as compared with Battle of the Sexes.
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in such a way that they matched the payoffs earned by the human subjects in the initial

periods of play. Our analysis is limited to the Chicken game because in the Battle of the

Sexes game initial play in the no recommendations treatment is essentially uniformly random

already. By contrast, for the Chicken game, initial play is not uniformly random. Thus, we

are interested in whether the fit of IEL to the Chicken game treatments can be improved by

initializing the set of strategies in such a way as to match the initial behavior of the human

subjects. Specifically, since the distribution of play observed in the No recommendation

treatment’s initial periods of play had C chosen approximately 2/3 of the time and D chosen

the remaining 1/3 of the time, we considered simulations where the Not Follow element of

the J strategies is assigned a value of 1 (i.e., C) with probability 2/3 and a value of 0 (i.e.,

D) with probability 1/3.

We also considered adjusting the initial conditions for the Follow part of the Chicken

game strategies. Specifically for the Follow part we employed a narrower distribution than

the uniform random distribution over [0, 1] used in the IEL simulations reported in the pre-

vious section. The distribution was narrowed so that the probability that a recommendation

would be followed or not given the distribution of the Not Follow portion of the strategy

approximates the initial frequency of recommendation following that was observed in the

experimental setting. Specifically, the restrictions are based on the observed minimum and

maximum frequency with which the group of experimental subjects followed the recommen-

dation over the first four periods of each Chicken treatment with recommendations. Let

µ be the probability an agent follows the recommendation, let ψmin be the minimum ob-

served frequency of rule following, let ψmax be the maximum observed frequency of rule

following, let ΦC be the distribution of C in the Not Follow portion of the strategy with

ΦD = 1 − ΦC being the distribution of D in the Not Follow portion, and let rC be the

probability the recommendation is C with rD = 1 − rC being the probability the recom-

mendation is D. The observed frequency of recommendation following can be described as

rC(µ+(1−µ)ΦC)+rD(µ+(1−µ)ΦD). Taking into account ψmin and ψmax, the distribution

of the Follow portion becomes:

f ∼ U
[ψmin − {ΦC(2rC − 1) + (1− rC)}

1− {ΦC(2rC − 1) + (1− rC)}
,
ψmax − {ΦC(2rC − 1) + (1− rC)}

1− {ΦC(2rC − 1) + (1− rC)}

]
(3)

Thus the Follow Distribution is created to initialize the algorithm with a similar frequency

29



of recommendation following as found in the initial periods of human subject play, given the

distribution in the Not Follow portion.

To better understand the marginal contribution of each initialization change, for each

Chicken treatment, we conducted 500 runs of the IEL simulation with just the Not Follow

part initialized to match the data (i.e., the Follow part remained a uniform random draw

over [0,1]) or with just the Follow part initialized to match the data with rC depending on

the treatment (i.e., the Not Follow portion was initialized with each element being equally

likely to play C or D, ΦC = 0.5) or where Both adjustments were simultaneously made to

the initial Not Follow and Follow Distributions used in the simulations.

The results of these exercises are shown in Figure 10 which reports on the frequencies of

outcomes in the DF experimental data and our simulations with various different initializa-

tions, including the Baseline, random initialization for the Not Follow and Follow portions

of the strategies.

The figures reveal that for some, but not all treatments, a change in initial conditions for

the Follow and Not Follow parts of the strategy so as to better match the initial experimental

data, can yield improvements in the overall frequencies of outcomes so that these more

closely resemble the human subjects data. For instance, in the Chicken-Nash treatment

(panel (b) of Figure 10), the outcome frequencies from the IEL simulation provide a better

match to the data if the initial conditions in the Not Follow or the Follow portions of the

strategies are chosen so as to match the initial frequencies in the experimental data. Adding

Both non-random initial conditions yields an even better fit. However, such improvements

from non-random initial conditions do not alway arise; for instance, in the Chicken-Good

treatment, a departure from the baseline random initialization can result in a worse fit of the

IEL simulated frequencies to the experimental data, e.g., when the initial conditions match

the initial distribution of strategy choices in the Not Follow portion of the strategy.

5.3 Grid Search Description and Results

In this section we report on a grid search over the three main free parameters of the IEL

with the aim of improving the fit of the model to the experimental data. We again use

the mean squared errors of the period-by-period difference in payoffs between the simulated

and experimental data to determine the goodness of fit, and we compare our findings with

the “Baseline” parameterization used for the IEL simulation results reported in section 4,
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(a) Chicken None (b) Chicken Nash

(c) Chicken Good (d) Chicken Bad

(e) Chicken Very Good

Figure 10: Simulation Results Relative to Experimental DF Data and Baseline Random
Initialization: Not Follow Dist = Initial Strategy Choices in the Not Follow Portion set
to Match Initial Data; Follow Dist = Initial Recommendation Following Frequency in the
Follow Portion set to Match Initial Data; Both Dist = Both the Not Follow and Follow
Portions set to Match Initial Data
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(J, ρ, θ) = (180, 0.033, 0.10). The search is conducted for Chicken using the Nash recommen-

dation data and for Battle of the Sexes using the Strangers Direct Recommendations data,

as these two recommendations treatments are the most similar to one another. The free

parameters found in the grid search for the Chicken-Nash and BoS Strangers DR treatments

are then used to simulate the outcomes for all other treatments of, Chicken or BoS games, re-

spectively. These simulated outcomes are reported in Appendix A for the interested reader.

Here we merely report on the free parameter vectors obtained from our grid search, and

the MSEs associated with using these best-fit parameter vectors in the other treatments in

comparison with the baseline parameterization.

In our grid search, we first conduct a coarse grid search over the three parameters, J , ρ

and θ. We then narrow the search around the values that minimize the mean squared error

of the first search to determine if there is a further improvement to be made in the fit of the

model to the data.

The grid searches for the Chicken and BoS games both implement the same ‘coarse’

search where J is varied from 150 to 250, in increments of 10, and both ρ and θ are varied

from 0.05 to 0.95 in increments of 0.1. The coarse grid search results in the following best-fit

IEL parameter values for Chicken: (J, ρ, θ) = (170, 0.250, 0.050), and for BoS: (J, ρ, θ) =

(190, 0.050, 0.050). By contrast, the MSE for our Baseline parameter vector (J, ρ, θ) =

(180, 0.033, 0.10) used for both games would have ranked 38th in Chicken and 31st in BoS

out of the 1100 possible outcomes putting both within the top 5%.

We next conducted a finer grid search around the best-fit coarse grid search values. For

Chicken, we varied J from 155 to 185 in increments of 5, we varied ρ from 0.15 to 0.35 in

increments of 0.025, and we varied θ from 0.025 to 0.15 in increments of 0.025. This finer grid

search did not yield an improvement over the coarse grid search, so the best-fit parameter

values continued to be given by (J, ρ, θ) = (170, 0.250, 0.050) with an MSE of 0.2127. For

BoS, we varied J from 175 to 205 in increments of 5, and we varied ρ and θ from 0.025 to 0.15

in increments of 0.025. This finer search resulted in a slightly different best-fit parameter

vector (relative to the coarse grid search) of (J, ρ, θ) = (190, 0.050, 0.125) with an MSE of

0.1706.

Tables 12 and 13 show the MSE for each of the treatments when using the baseline pa-

rameterization versus the best fitting parameter values from the finer grid search. Under

the best-fit parameterization for Chicken (based on the Chicken-Nash treatment), both the
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Good Nash Bad Very Good None
Baseline 0.1418 0.2340 0.4269 0.2174 0.2320

Grid Search Best-Fit 0.1716 0.2127 0.4241 0.2832 0.2339

Table 12: Comparison MSE Chicken

Nash and the Bad Chicken treatments see an improvement in their MSE relative to the base-

line MSE, while for the other three Chicken treatments, the MSE increases relative to the

baseline MSE. Using the best-fit parameter vector for the BoS game (based on the Strangers

Direct Recommendations treatment), the Strangers Direct Recommendations treatment as

well as both of the None treatments have an improved MSE relative to the baseline parame-

terization whereas the Partners Direct Recommendation and both Indirect Recommendation

treatments see an increases in MSE relative to the Baseline value.

Partners Strangers
DR None IR DR None IR

Baseline 0.3341 1.0076 1.2355 0.2118 3.8669 0.3356
Grid Search Best-Fit 0.3498 0.9198 1.5789 0.1706 3.7083 0.4517

Table 13: Comparison MSE BoS

These results suggest that while it is possible to find IEL parameterizations that improve

upon the one we used for the IEL simulations reported on in Section 4, the improvement in

MSE for the targeted treatment does not necessarily carry over to other treatments of the

same game using that same optimized parameter vector. We note further that our baseline

parameterization is not so far off from the best-fit parameter vectors, with the possible

exception of the ρ parameter for the Chicken game simulations where the best-fitting value

of 0.25 is higher than our baseline choice of 0.033.14 The higher value for ρ in the Chicken

game appears due to the noise generated by the human subjects’ difficulty in coordinating

on an equilibrium in the Chicken-Nash treatment.

14The 2nd, 3rd, and 4th best outcomes of the coarse grid search all had J = 190 and ρ = 0.05 with θ
being 0.25, 0.35, and 0.15, respectively. We ran an additional grid search using the second best outcome of
(J, ρ, θ) = (190, 0.05, 0.25) where J varied from 155 to 185 in increments of 5, ρ varied from 0.025 to 0.150
in increments of 0.025, and θ varied from 0.150 to 0.350 in increments of 0.025. The outcome of this search
revealed that (J, ρ, θ) = (170, 0.025, 0.175) produced a smaller MSE = 0.2091. The latter parameterization
creates the same trade-off of improving some, but not all outcomes for the Chicken game.
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5.4 Sensitivity of Simulation Results to Single Parameter Changes

Our final sensitivity exercise examines how the fit of the IEL model to the data changes as

we perturb a single free parameter of the model away from the baseline parameter vector

(J, ρ, θ) = (180, 0.033, 0.10) used in the simulations reported on in section 4. Note this is a

different exercise than the grid search, which varied all three parameter values at once in

a search for the best fitting parameter vector. Table 14 reports on the effects of adjusting

a single IEL model parameter below or above the Baseline parameter model choices on the

period-by-period MSE between the simulated and actual payoffs. As in the grid search

exercise of the previous section, we focus on the BoS Strangers Direct Recommendations

treatment and the Chicken Nash Recommendations treatments for this exercise. For both of

these treatments, using fewer strategies, e.g., J = 100 or a smaller ρ, while holding the other

two IEL model parameters at baseline values would improve the fit of the IEL model to the

data as indicated by the lower MSEs relative to the Baseline but the differences are small.

For BoS a larger set of strategies J = 250 would provide an even greater improvement in the

fist of the IEL model to the data, so the implications for the set of strategies is inconclusive

for the BoS game. The largest consistent improvement comes from using a smaller ρ which

results in an ≈ 8.5% decrease in the MSE for BoS and an ≈ 1.6% decrease in the MSE for

Chicken. All of the other adjustments reported on in Table 14 would come with the tradeoff

of improving the fit of the model in one game while reducing the fit in the other game.

BoS Strangers Direct Recommendations
Baseline J = 100 J = 250 ρ = 0.01 ρ = 0.10 θ = 0.01 θ = 0.20

MSE 0.2118 0.2009 0.1886 0.1937 0.2135 0.2104 0.2139
Chicken Nash Recommendations

Baseline J = 100 J = 250 ρ = 0.01 ρ = 0.10 θ = 0.01 θ = 0.20
MSE 0.2340 0.2302 0.2398 0.2303 0.2328 0.2429 0.2290

Table 14: Effects of Single Parameter Changes on MSE

We conclude from this exercise that there is not much consistency in the effect of varying

a single IEL parameter to improve the fit of the model to the data across the two games,

and that the improvements in MSE relative to the baseline MSE are not so large that we

are missing much from simulations conducted using the baseline parameterization.
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6 Conclusions

The learning in games literature has mainly focused on the conditions under which Nash

equilibrium can be learned. By contrast, there has been little research exploring whether

and how correlated equilibria can be learned which is surprising since the correlated equilib-

rium concept is an important generalization of the Nash equilibrium concept and correlated

equilibria can be more efficient than Nash equilibria. From a policy perspective, the opti-

mal system design may be characterized by a correlated equilibrium as opposed to a Nash

equilibrium; the traffic light signal is the canonical example, but there are other examples

as well.15

In this paper, we have shown how an individual evolutionary learning algorithm can

be adapted to learn a correlated equilibrium in a finite amount of time. Importantly, our

algorithm does not require knowledge of the correlated distribution of recommended ac-

tions, ex-ante. We believe that this result is new to the learning in games literature. Our

behavioral algorithm, based on evolutionary concepts, often learns to quickly rely upon a

recommendation (or signal) whereas the theoretical literature demonstrates learning only in

the limit and only to a set of correlated equilibria. In comparisons between our simulations

and the experimental data, we find that the IEL algorithm is able to mimic the behavior of

human subjects in many, though not all experimental treatments, providing some external

validity for our approach. A sensitivity analysis shows that our findings are largely robust

to alternative specifications and parameterizations of the model. The IEL algorithm is not

able to effectively interpret indirect signals as the human subjects were able to in the Battle

of the Sexes game, and IEL does not condition on differences in matching protocols (Part-

ners versus Strangers) which were known to the human subjects and affected their behavior.

Another difference, as mentioned in Bone et al. (2013) is that experimental subjects might

be concerned with the payoffs earned by other subjects. Such other regarding concerns may

provide an alternative explanation as to why the human subjects in the Chicken experiment

are sometimes less willing to follow recommendations than our simulated agents. We leave

further examination of these issues to future research.

15In Chicken for example, a property rights policy wherein the first player to arrive at a location (the
incumbent) plays D and the late arriving party (challenger) plays C is one that corresponds to the Nash
recommendations correlated equilibrium, see Gintis (2009).
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Appendix: Results From Simulating the Model with the

Parameter Vector Found in the Grid Search (Not In-

tended for Publication

In this Appendix we report on outcomes from simulating the IEL Model using the parameter

vector that was found to be a best fit to the experimental data.

Recall that for BoS, the grid search applied to the BoS Strangers Direct Recommendations

treatment data yielded the best fitting parameter vector of (J, ρ, θ) = (190, 0.05, 0.125).

The tables and figures that follow are the analogues of Tables 3-4, Figures 1-2, Tables 5-6,

Figures 3, Tables 7-8, and Figures 4-5 reported on in Section 4.1 but using this best-fit

parameter vector in place of the baseline parameterization.

Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.911 (0.092) 5.47 (0.548) 0.993 (0.015) 5.96 (0.088)
Strangers [0.841,0.982] [5.04,5.89] [0.982,1.00] [5.89,6.02]
Sim. 0.877 (0.046) 5.26 (0.276) 0.979 (0.040) 5.87 (0.242)
Strangers [0.873,0.881] [5.24,5.28] [0.976,0.983] [5.85,5.90]

DLL 0.857 (0.169) 5.14 (1.016) 0.878 (0.331) 5.27 (1.886)
Partners [0.727,0.988] [4.36,5.93] [0.624,1.132] [3.74,6.79]
Sim. 0.862 (0.081) 5.17 (0.487) 0.963 (0.086) 5.78 (0.514)
Partners [0.855,0.869] [5.13,5.21] [0.956,0.971] [5.73,5.82]

Table 15: BoS Direct Recommendations Comparison, Best-Fit Parameter Vector

Type Time [D D] [C C] [D C] [C D] Avg. f

DR T = 1-60 0.0% 0.0% 0.0% 0.0% 0.85
Strangers 31-60 0.0% 0.0% 0.0% 0.0% 0.96

46-60 0.2% 0.1% 0.0% 0.1% 0.97
DR T = 1-60 0.0% 0.0% 0.0% 0.4% 0.79
Partners 31-60 2.8% 2.2% 5.0% 3.4% 0.88

46-60 2.8% 2.0% 5.6% 3.2% 0.89

Table 16: IEL nf and f Strategies in BoS-DR, Best-Fit Parameter Vector
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Figure 11: Outcome Frequencies Based on Recommendations in BoS-DR, Best Fit Parameter
Vector

(a) BoS-DR Partners (b) BoS-DR Strangers

Figure 12: Pairwise Recommendation Following over Time in the BoS-DR treatments: Sim-
ulations versus DLL Data, Best Fit Parameter Vector
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Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.548 (0.141) 3.29 (0.843) 0.596 (0.203) 3.58 (1.218)
Strangers [0.439,0.656] [2.64,3.93] [0.440,0.753] [2.64,4.51]
Sim. 0.827 (0.076) 4.96 (0.454) 0.979 (0.056) 5.87 (0.336)
Strangers [0.820,0.833] [4.92,5.00] [0.974,0.984] [5.84,5.90]

DLL 0.869 (0.185) 5.21 (1.111) 0.800 (0.316) 4.80 (1.897)
Partners [0.726,1.011] [4.36,6.06] [0.557,1.043] [3.34,6.26]
Sim. 0.895 (0.069) 5.37 (0.416) 0.974 (0.059) 5.85 (0.352)
Partners [0.889,0.901] [5.33,5.40] [0.969,0.980] [5.82,5.88]

Table 17: BoS No Recommendations (None) Comparison, Best-Fit Parameter Vector

Type Time [D D] [C C] [D C] [C D] Avg. f

None T = 1-60 0.5% 0.7% 0.3% 0.9% 0.00
Strangers 31-60 17.1% 21.7% 22.7% 21.4% 0.00

46-60 19.7% 24.8% 25.6% 24.3% 0.00
None T = 1-60 2.8% 3.0% 2.5% 3.2% 0.00
Partners 31-60 24.8% 26.5% 23.6% 24.4% 0.00

46-60 24.7% 26.5% 24.0% 24.4% 0.00

Table 18: IEL nf and f Strategies in BoS-None, Best-Fit Parameter Vector

Figure 13: Observed Outcome Frequencies in BoS-None, Best-Fit Parameter Vector
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Type of Coordination Avg. Payoff Coordination Avg. Payoff
Set-Up All Rnds. All Rnds. Last 10 Last 10

DLL 0.580 (0.119) 3.48 (0.715) 0.674 (0.174) 4.04 (1.108)
Strangers [0.488,0.671] [2.93,4.03] [0.532,0.816] [3.19,4.90]
Sim. 0.608 (0.086) 3.65 (0.516) 0.735 (0.162) 4.41 (0.972)
Strangers [0.600,0.615] [3.60,3.69] [0.721,0.749] [4.32,4.49]

DLL 0.915 (0.128) 5.49 (0.768) 1.000 (0.000) 6.00 (0.000)
Partners [0.808,1.022] [4.84,6.13] [1.000,1.000] [6.00,6.00]
Sim. 0.730 (0.143) 4.38 (0.856) 0.905 (0.167) 5.43 (1.002)
Partners [0.718,0.743] [4.31,4.46] [0.891,0.920] [5.34,5.52]

Table 19: BoS Indirect Recommendations Comparison, Best-Fit Parameter Vector

Type Time [D D] [C C] [D C] [C D] Avg. f

IR. T = 1-60 0.0% 0.0% 0.0% 0.0% 0.39
Strangers 31-60 4.9% 6.1% 3.9% 4.1% 0.33

46-60 7.8% 10.3% 6.7% 8.5% 0.30
IR. T = 1-60 0.3% 0.0% 0.1% 0.0% 0.28
Partners 31-60 22.3% 23.7% 10.4% 11.4% 0.15

46-60 26.9% 29.4% 12.3% 13.7% 0.11

Table 20: IEL nf and f Strategies in BoS-IR, Best-Fit Parameter Vector

Figure 14: Observed Outcome Frequencies in BoS-IR, Best-Fit Parameter Vector
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(a) BoS-IR Partners (b) BoS-IR Strangers

Figure 15: Pairwise Recommendation Following over Time in the BoS-IR treatments: Sim-
ulations versus DLL Data, Best Fit Parameter Vector

Recall that for Chicken, the best fitting parameter vector was (J, ρ, θ) = (170, 0.25, 0.05).
The tables and figures that follow are the analogues of Tables 9-11 and Figures 6-7 reported in
Section 4.2 but using this best-fit parameter vector in place of the baseline parameterization.

Data Source: Good Nash Bad Very Good None
DF Data 100.81 104.59 95.87 99.70 99.76
Baseline 101.76 101.40 91.77 104.53 95.82
Grid Search Fit 102.58 101.16 90.00 106.01 93.96

Table 21: Comparison of Efficiency Measures in all Chicken Treatments, Best-Fit Parameter
Vector
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Figure 16: Observed Outcome Frequencies in all Chicken Treatments, Best-Fit Parameter
Vector
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Good Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 73.5% 78.6% 0.011 73.0% 77.5% 0.012 75.0% 82.0% 0.008
Rec = C 73.2% 78.1% 0.012 71.9% 77.4% 0.013 77.0% 80.2% 0.008
Total 73.3% 78.3% 0.009 72.3% 77.4% 0.011 76.2% 80.8% 0.004
Pairwise 53.1% 61.5% 0.022 51.4% 60.2% 0.026 58.3% 65.4% 0.010

Nash Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 56.7% 82.8% 0.076 55.3% 80.2% 0.071 60.8% 90.5% 0.090
Rec = C 77.7% 85.7% 0.015 77.2% 83.6% 0.011 79.2% 92.0% 0.025
Total 67.2% 84.2% 0.032 66.3% 81.9% 0.027 70.0% 91.3% 0.047
Pairwise 45.4% 71.5% 0.073 43.3% 67.5% 0.063 51.7% 83.3% 0.102

Bad Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 47.7% 75.5% 0.084 46.0% 74.4% 0.088 52.9% 78.7% 0.071
Rec = C 63.1% 82.7% 0.063 66.5% 81.6% 0.039 53.0% 85.9% 0.136
Total 54.1% 78.4% 0.063 54.5% 77.3% 0.056 52.9% 81.6% 0.086
Pairwise 26.9% 61.3% 0.125 25.9% 59.6% 0.120 30.0% 66.6% 0.138

Very Good Recommendation

% Follow
DF Sim. MSE DF Sim. MSE DF Sim. MSE

T = 1-20 T = 1-15 T = 16-20
Rec = D 51.1% 75.4% 0.120 60.6% 75.9% 0.059 22.7% 73.8% 0.289
Rec = C 60.8% 69.7% 0.014 63.2% 70.4% 0.011 53.7% 67.5% 0.021
Total 59.9% 70.2% 0.018 62.9% 70.9% 0.012 50.8% 68.2% 0.033
Pairwise 36.5% 49.0% 0.027 40.0% 50.2% 0.021 25.8% 45.7% 0.044

Table 22: Observed Frequencies of Recommendation Following in all Chicken Treatments,
Best-Fit Parameter Vector
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Type Time [D D] [C C] [D C] [C D] Avg. f

Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.57
Good 11-20 0.0% 0.0% 0.0% 0.0% 0.61

16-20 0.0% 0.0% 0.0% 0.0% 0.63
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.68
Nash 11-20 0.0% 0.0% 0.0% 0.0% 0.79

16-20 0.0% 0.0% 0.0% 0.0% 0.83
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.59
Bad 11-20 0.0% 0.0% 0.0% 0.0% 0.64

16-20 0.0% 0.0% 0.0% 0.0% 0.66
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.45
Very Good 11-20 0.0% 0.0% 0.0% 0.0% 0.43

16-20 0.0% 0.0% 0.0% 0.0% 0.42
Simulation T = 1-20 0.0% 0.0% 0.0% 0.0% 0.00
None 11-20 0.0% 0.0% 0.0% 0.0% 0.00

16-20 0.0% 0.0% 0.0% 0.0% 0.00

Table 23: IEL nf and f Strategies in all Chicken Treatments, Best-Fit Parameter Vector
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(a) Chicken-Nash (b) Chicken-Good

(c) Chicken-Bad (d) Chicken-Very Good

Figure 17: Pairwise Recommendation Following over Time in the Chicken Treatments: Sim-
ulations versus DF Data, Best-Fit Parameter Vector
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