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Abstract
We report on an experiment testing the empirical relevance of least squares

(LS) learning, a common way of modelling how individuals learn a rational
expectations equilibrium (REE). Subjects are endowed with the correct per-
ceived law of motion (PLM) for a price level variable they are seeking to
forecast, but do not know the true parameterization of that PLM. Instead,
they must choose and can adjust the parameters of this PLM over 50 periods.
Consistent with the E-stability of the REE in the model studied, 93.1% of
subjects achieve convergence to the REE in terms of their price level predic-
tions. However, only 20.3% of subjects can be characterized as least squares
learners via the adjustments they make to the parameterization of the PLM
over time. We also find that subjects’ parameter estimates are more accurate
when there is greater variance in the independent variable of the model. We
consider several alternatives to least squares learning and find evidence that
many subjects employ a simple satisficing approach.
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This is our key bounded rational assumption: we back away from the RE as-
sumption, replacing it with the assumption that, in forecasting prices, firms act like
econometricians.

– Evans and Honkapohja, 2001: page 28

1 Introduction

The rational expectations hypothesis (REH) (Muth, 1961; Lucas Jr, 1972) has been
a dominant paradigm in macroeconomics since the 1970s. Nevertheless, many re-
searchers remain interested in finding an evolutionary microfoundation justifying the
REH (Arifovic, 1994, 1995, 1996; Anufriev et al., 2013; Arifovic and Duffy, 2018;
Arifovic et al., 2019). As pointed out by Sargent (2008), an important approach is
to assume adaptive learning in combination with the “self-confirming equilibrium”
(SCE) approach where the rational expectations equilibrium (REE) is considered as
the possible destination of active learning by agents.

Adaptive learning models, including least squares learning models (Marcet and
Sargent, 1988; Guesnerie and Woodford, 1991; Sargent, 1993; Evans and Honka-
pohja, 1999, 2001, 2003, 2009; Preston, 2006; Branch et al., 2013; Branch and
McGough, 2016, 2018) usually assume that agents do not know the actual law of
motion (ALM) of the economy. Instead, these learning agents use a perceived law of
motion (PLM) and update the parameters of this PLM as new information arises.
In the case of least squares learning, they minimize the sum of squared errors ac-
cording to the least squares updating rule, just as econometricians do with their
data.1 Researchers in this field show that convergence to an REE can arise under
certain conditions regarding the mapping between the perceived law of motion and
the actual law of motion (i.e., E-stability).

In this paper, we take the theoretical prediction of least squares learning quite
seriously and evaluate its predictions using an experiment based on the model of
Bray and Savin (1986) and Fourgeaud et al. (1986). Differently from the many
“learning-to-forecast” experiments, e.g., (Marimon et al., 1993; Hommes et al., 2005;
Hommes, 2011; Assenza et al., 2014; Petersen, 2014; Duffy, 2016; Bao et al., 2017;

1Also, as in econometrics, the specification of the perceived law of motion can be correct, including
the REE as a special case, or incorrectly specified. Here we concentrate on the simpler case where
the PLM is correctly specified.
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Arifovic and Duffy, 2018; Anufriev et al., 2019; Arifovic et al., 2019; Assenza et al.,
2019; Hommes et al., 2019; Kryvtsov and Petersen, 2020; Bao et al., 2021; Rholes
and Petersen, 2021; Evans et al., 2022; Petersen and Rholes, 2022; Arifovic et al.,
2023; Hommes et al., 2023) where subjects make only point predictions, subjects in
our experiment submit parameterizations for the PLM directly. This design enables
us to conduct the cleanest and most direct test of the structural form of the adaptive
learning model that agents are using when learning. In particular, we can directly
test whether individuals are adjusting the parameterization of their PLM as if they
were running least squares regressions in their own minds, albeit without the assist-
ance of computers and statistical software. In addition to least squares learning, we
also consider the performance of several other learning models for explaining our
results: past averaging models, constant gain learning, stochastic gradient descent
learning and a satisficing model.

Our experiment involves two main treatments that alter the variance of the in-
dependent variable of the model that agents are seeking to learn. As is well known
(see, e.g., Greene (2000)), least squares estimates tend to be more accurate (that
is, they have lower variance) the larger is the variance in the independent variables.
To address this feature of least squares learning, in Treatment A of our experiment,
the exogenous independent variable of our model, which we refer to as “weather”,
follows a simple AR(1) process. By contrast, in Treatment U, this same independent
variable follows an i.i.d. uniform distribution. The variance in realizations of the
independent variable are therefore greater in treatment U as compared with treat-
ment A. Since the variance of the independent variable is the only change made to
the model between treatments A and U, it follows from econometric theory that
learning and convergence to the REE should be faster in Treatment U as compared
with Treatment A.

We find that at the aggregate level, subjects’ forecasts in Treatment U do indeed
converge faster than subjects’ forecasts in Treatment A. By the end of the 50 periods
of the experiment, the average forecast in Treatment U has converged to the REE
while the average forecast in Treatment A fails to do so within this timeframe. At
the individual level, around 97% of the expectations satisfy our criterion for weak
convergence to the REE. The fraction of individual expectations that satisfy our
criterion of strong convergence is 54.4% in Treatment U and 18.6% in Treatment A.
Finally, just 12 out of 29 subjects (41.4%) in Treatment U, and 0 (0%) in Treatment
A, for a grand total of 20.3% of all subjects in our experiment, can be categorized
as least squares learners in terms of the adjustment of their parameterization of the
PLM over time. Still, some alternative models such as constant gain learning model
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and “learning by averaging” perform worse than least squares learning in terms of
their fit to the experimental data as measured by the mean squared error.

Our findings suggest that while the E-stability condition works very well as a
description of the stability under learning or “learnability” of rational expectations
equilibrium at the aggregate level, individual subjects may update the parameters
of their PLM in a heterogeneous way and deviate from the least-squares learning
specification. Our results suggest that instead of searching for the least-squares
minimizing combination of the two PLM parameters (a and b), many subjects seem
to apply a “satisficing” heuristic (Simon (1955, 1956)) and stick with the “wrong”
pair of parameters if that combination generates approximately the same point pre-
dictions as the true but unknown parameters. In other words, when faced with an
unfamiliar and complex parameter search and updating problem in 2 dimensional
(2-D) space, many subjects in our experiment appear to have reduced the problem
to a simpler and more familiar single point prediction problem. This behavioral
tendency to reduce a 2-D decision problem to its projection in 1-D space may also
be found in theoretical models of “misspecified equilibrium” (Grandmont (1998))
and “(stochastic) consistent expectations equilibrium” (Hommes and Sorger (1998);
Hommes and Zhu (2014)). Note that the subjects in our experiment did not have
access to statistical software or computational resources that would enable them to
run the regressions associated with least square learning. We did not provide such
access since we interpret the notion of adaptive learners-as-econometricians in the
“as if” sense of Friedman (1953).2 Still, we find that 20.3% of subjects do form
and adjust their forecasts according to the predictions of the least squares learning
model. However, the majority have to apply some simplification method to make
the problem (seemingly) more tractable for them.

Overall, this paper makes three main contributions to the literature.

First, to our knowledge, this is the first experiment where subjects submit struc-
tural expectations (model parameterizations) instead of simple point predictions of
the variable they are learning about. This design allows us to observe precisely how
individuals update the parameters of their PLM in real time. This is a particularly
useful method for comparing competing models that predict the same qualitative

2Friedman (1953), p.21 argued that while expert billiard players might not know the complicated
mathematical formulas underlying optimal play, they nevertheless behaved as if they knew those
formulas. Here we are not supposing that subjects optimally form expectations but ask instead
whether they form them in the manner prescribed by least squares learning in favorable conditions,
i.e. given a PLM and the possibility to adjust the parameters of that PLM as new information
arises. We would further add that it is unlikely that most members of the general public would
have access to statistical software or be familiar with regression analysis.
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outcome in terms of convergence, but which may differ in the way that individu-
als update the parameters of their forecasting models. Most surveys on expecta-
tion formation, like the Michigan Survey, only elicit point predictions or subject-
ive probability distributions3. Data from our laboratory experiment are therefore
particularly useful in answering questions regarding the structural path by which
individuals update their expectations in real time and their weighting of different
factors in forming those expectations. In the learning-to-forecast experiment literat-
ure, one study by Hommes et al. (2005) also asks for forecasting strategies, instead
of point predictions in each period. But the strategies they elicited were regarding
how participants made their point predictions, not how they searched for and up-
dated parameters of the perceived DGP as in our study.

Second, this paper presents the first experimental test specifically evaluating
least squares learning as a behavioral primitive process. Bao and Duffy (2016) run
an experiment to test differences in theoretical predictions between adaptive and
eductive learning (Binmore (1987); Guesnerie (1992); Evans and Guesnerie (2005);
Evans et al. (2019)) models. But the adaptive learning model in that paper is a
reduced form, point prediction version where the adaptive learning expectation de-
generates to the sample average of past realizations of the prices. Therefore, those
results do not reveal how people update the parameters in their perceived law of
motion for the economy.

Third, our experiment also serves as a test on the capacity of humans to confront
complex tasks without the help of computers. To this end, we also contribute to
the literature on how the complexity of decision-making influences the accuracy of
forecasting behavior (Mirdamadi and Petersen, 2018; Arifovic et al., 2019; He and
Kucinskas, 2019) and bounded rationality in expectation formation in macroeco-
nomics in general (Honkapohja, 1995; Branch, 2004; Woodford, 2013).

The rest of the paper is organized as follows: Section 2 presents the experimental
design, Section 3 reports on the experimental results, and finally, Section 5 provides
a summary and conclusions.

3For studies using this survey dataset, see Branch (2004), for studies that compare laboratory and
field data on expectations, see Cornand and Hubert (2020); Landier et al. (2019). For evidence on
how information rigidity leads to deviation from RE from survey data, see Coibion et al. (2018).
For studies using Randomized Controlled Trials or field experiments, see e.g., Binder and Rodrigue
(2018), Armona et al. (2019), Coibion et al. (2020b), Coibion et al. (2020a), Coibion et al. (2022).
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2 Experimental Design

2.1 The Cobweb Model

Consider the cobweb model in Bray and Savin (1986), and Fourgeaud et al. (1986).
There is a single market for a product that has a time lag in production (e.g.,
an agricultural product). The demand for this product depends negatively on the
prevailing market price, pt. The supply of the product is assumed to depend on both
the average expectation across the homogeneous firms of the prices that will prevail
in the current period, pet as well as the weather in the current period in the form of
an observable shock, wt.4 The demand dt, and supply st equations are given by:

dt = mI −mppt + v1t, mp > 0

st = rI + rpp
e
t + rwwt + v2t, rp > 0

where mI , mp and rI , rp are the intercept and slope coefficients, respectively of
the demand and supply functions, while v1t and v2t are random noise terms. Thus,
in equilibrium, when dt = st, the true law of motion for the price of the product is
given by:

pt = µ+ αpet + δwt + ηt (1)

In the above equation, µ = m−1p (mI − rI), α = −m−1p rp < 0, δ = −m−1p rw,
ηt = m−1p (v1t − v2t), and ηt ∼ iid(0, σ2

η). The distribution of the weather variable
wt is an i.i.d. process in Bray and Savin (1986). Alternatively, it may also follow a
stationary exogenous VAR (vector autoregression) process driven by a multivariate
white noise shock with bounded moments as assumed by Evans and Honkapohja
(2001). In our paper, we experimented with both cases, that is, the weather follows
an i.i.d. distribution in one of the treatments, and an autocorrelated distribution in
the other treatment.

Under adaptive learning, it is typically assumed that agents have a perceived law
of motion (PLM) for prices. This law can be misspecified or correctly specified. Here
we consider the the correctly specified PLM as it nests the REE as a special case.
That is,the PLM we give to subjects implicitly takes account of the expectation
feedback term, αpet in the true law of motion.5 For the model we consider, this
4Note that in the original Bray and Savin (1986) model, the current price level, pt is assumed to
depend on the lagged weather variable, wt−1, as the supply in the current period will depend on
the observable shock due to weather in the last period. In our experiment, we change this term
to wt in order to help subjects understand the setting more easily. This is a nominal change only
and does not alter the results from the model because in the experiment, wt is also realized and
revealed to subjects before they make their decisions.
5Misspecified PLMs are also considered as discussed in Evans and Honkapohja (2001). Here we
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perceived law of motion (PLM) is given by:

pt = a+ bwt + ηt (2)

An implication of the least squares approach is that the estimates of the linear
regression model will be more precise (i.e. have lower variance) when there is a larger
variation in the independent variables6. Therefore, theoretically the variance of the
estimated coefficients a, b should be smaller in the treatment where the exogenous
weather variable has a larger variance.

The unique REE prediction for prices in the Cobweb model is as follows:7

pt = ā+ b̄wt + ηt, ā = (1− α)−1µ, b̄ = (1− α)−1δ

Given the PLM (2), the REE of the system is learnable only if the parameters of
the model satisfy the expectational stability (or E-stability) criterion. In this case,
E-stability requires that 0 < α < 1.8

2.2 Least Squares Learning in the Cobweb Model

A common way of modeling the learning of REE is to assume that agents are least
squares learners. Under a least squares learning (LSL) assumption, agents are as-
sumed to start with some initial estimates for the parameters a and b of their PLM,
e.g. â0, b̂0, and adjust these estimates over time so as to minimize the mean of
the sum of squared errors between the linear PLM model predictions and actual
realizations for prices, p. In our setting, agents regress pi on xi where

x′i = (1 w′i).

Thus, if agents are least squares learners, in each period t they will update their

focus on the case where the PLM is correctly specified since our aim is to understand how agents
update the parameters of a PLM that actually enables learning of the REE.
6In the simple linear regression model yi = β1 +β2xi+ei, an estimated model ŷi = b1 +b2xi can be
formed following the least squares principle, where yi = ŷi + êi. V ar(b1) =

σ2N−1 ∑
x2
i∑

(xi−x̄)2 , V ar(b2) =
σ2∑

(xi−x̄)2 . Thus, the wider the spread of the independent variable x, (i.e., a larger
∑

(xi − x̄)2)
will lead to a more precise estimate (i.e., smaller variance) of both of the parameters. Note that
the spread of the independent variable does not affect the accuracy of the estimator because the
expectation of the estimates derived using the least squares principle should always be unbiased,
i.e., E(b1) = β1, E(b2) = β2.
7A detailed derivation can be found in Appendix G).
8See Evans and Honkapohja (2001) Theorem 2.1.
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parameter estimates ât and b̂t for the PLM, (2) like econometricians so that

(
ât
b̂t

)
=

(
t∑
i=1

xix
′
i

)−1( t∑
i=1

xipi

)
(3)

Using the LS estimates, θ̂t =
(
ât
b̂t

)
, the learning agent forecasts the price level for

period t:
pet = θ̂′txt (4)

This forecast (4) is substituted into equation (1) to determine the actual value for pt.
The formula for determining the least squares estimates can be written recursively
as:

θ̂t = θ̂t−1 +
1

t
R−1t xt(pt − θ̂′t−1xt)

Rt = Rt−1 +
1

t
(xtx

′
t −Rt−1)

where R is the variance-covariance matrix.
A simple alternative to least squares learning that we will also consider is constant

gain learning. In this case the gain term on the coefficient vector θ̂ and the moment
matrix R is not 1/t (decreasing) as it is under least squares learning but is instead
a constant value, λ ∈ (0, 1), that bests fits the data.

θ̂t = θ̂t−1 + λR−1t xt(pt − θ̂′t−1xt)

Rt = Rt−1 + λ(xtx
′
t −Rt−1)

Note that under constant gain learning, the parameter vector is updated accord-
ing to the prediction error in the last period. Therefore, the weight of the most
recent past error will not decrease with t, and this algorithm exhibits more volatile
dynamics. Indeed, if there is any source of noise in the model (as there is in our sys-
tem), the constant algorithm will never quite settle down to the REE. Nevertheless,
constant gain learning systems have been used by researchers to study learning dy-
namics, particularly in systems (unlike ours) that are subject to potential structural
breaks in the variables being forecast, and so we also consider this specification.

2.3 Parameterization and Treatments

For the experiment, we chose to set µ = 9, α = −0.5 and δ = 0.9, so that the market
price is given by:

pt = 9− 0.5pet + 0.9wt + ηt, ηt ∼ i.i.dN(0, 1)
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For each parameter tuple (a, b) submitted by subjects, the price expectation in
each time period t is:

pet = a+ b× wt

Assuming that agents have rational expectations, i.e., pet = pt, the REE path for
prices is given by9:

pt = 6 + 0.6wt + ηt.

Our experiment consists of two main treatments that vary the process for the
weather term, wt. Under both treatments, the long-run, expected value of the
weather variable, Et(wt) = 10. The two treatments differ only in the variance and
persistence of the independent weather variable, wt.

Treatment U (Uniform Noise): In this treatment, the time t realization of wt
is an i.i.d. uniform random draw over the interval [0, 20], i.e. wt ∼ U(10, 20). Thus,
Et(wt) = 10 and the variance of weather in this treatment is given by:

σ2
w =

(20− 0)2

12
=

100

3
≈ 33.33

In treatment U, the expected value of the market price is E(pt) = 6+0.6×10 = 12,
which is the REE value for the market price in this treatment.

Treatment A (Autoregressive Noise): In this treatment, we suppose that wt
follows the auto-regressive process:

wt = 2 + 0.8wt−1 + εt, εt ∼ N(0, 1).

For treatment A, we introduce a constant term into the DGP for wt to ensure that
the long-run equilibrium expected value E(wt) = 10 is the same as in treatment
U to facilitate comparisons.10 Therefore, the REE value of the market price in
Treatment A is the same as in Treatment U : E(pt) = 6 + 0.6× 10 = 12. According
to the definition of the AR(1) process, the variance of the weather variable in this

9In our experiment, the subjects are told that a ∈ [0, 10], b ∈ [0, 1]. Our experience with previous
forecasting experiments suggests that subjects are very likely to start with the midpoint of the
interval, i.e. (5, 0.5). To test whether least square learning will result in convergence to REE, we
should choose a pair of a, b that are not (5, 0.5) but not too far from these values. Meanwhile,
by running simulations, we learned that submitting (5, 0.5) will also generate high payoffs for (a,
b) pairs like (6, 0.4) or (4, 0.6), namely, one of a, b is larger than and the other is smaller than
the midpoint value. We therefore choose (6, 0.6) so that the REE is learnable and subjects have
sufficient incentives to learn.
10We are aware that E(wt) = 2 + 0.8wt−1 is not a constant anymore, therefore, the REE in this
system is no longer a point like in Treatment U. Detailed data on wt and εt can be found in Table
F.1.
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treatment is given by:

σ2
w =

σ2
ε

1− 0.82
=

25

9
≈ 2.78

Figure 1 (top panel) plots the time series of the realizations of wt for the two
treatments A and U. Below the plot of wt for Treatment A, we also show a plot of the
ηt noise term realizations used in all treatments. We used the same 50 realizations
for wt for all subjects who participated in either Treatment A or Treatment U of
our experiment to facilitate comparisons across subjects and not add further noise
across treatments. As shown in Figure 1, the variation in wt is much greater in
Treatment U as compared with Treatment A.
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Figure 1. The time series realizations for wt (top panel) and ηt (bottom panel) as
used in the experiment. Note that wt follows a uniform distribution in Treatment
U and an AR(1) distribution in Treatment A, while ηt follows a standard normal

distribution in both treatments.

2.4 Testable Hypothesis

Figure 2 shows the simulated time series for the estimates of a, b assuming that
individuals follow least squares learning. Since individuals choose the values from
a ∈ [0, 10], b ∈ [0, 1], a natural guess would be that most of them would start from
the midpoints of the intervals, i.e., a1 = 5, b1 = 0.5, and so we start the simulation
at these points. The model updates the estimates ât, b̂t using the realized pt, wt, in
exactly the same way that the least squares learning model does.
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The simulated dynamics suggest that while a, b have a tendency to converge
to the REE in both treatments, the convergence is quicker and more reliable in
Treatment U as compared with Treatment A. Indeed, because the variation of wt in
Treatment A is too small, the simulated least squares estimates for a, b can at times
depart from the REE, for example, near the end of the 50 periods as illustrated in
Figure 2 due to the variance of a and b being too large.11
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Figure 2. Least squares learning predictions for the paths of the parameter
estimates a (top panels) and b (bottom panels) against the REE in each treatment.
We initialize each simulation by setting a = 5, and b = 0.5, and we use the same

realizations for wt and ηt that were used in the experiment.
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Figure 3. A scatter plot of the least squares learning prediction for the path of the
parameters a and b against the REE in Treatment A (left panel) and Treatment U
(right panel). The labels near the points indicate the period number. We initialize
the simulation by setting a = 5, b = 0.5, and use the same realizations of wt and ηt

that were used in the experiment.

Figure 3 shows a scatter plot of the value of the estimated parameter pairs a,
b over time in a 2-D plane. The labels (which are admittedly hard to read after

11Some may argue that the apparent non-convergence in Treatment A is due to the short horizon
of the experiment. Subjects will be able to learn the REE if the experiment is run for more periods.
We run an AR(1) regression on the dynamic adjustment of a and b in the 50 periods ahead least
square model, and report the estimated parameters in Table B.7. It turns out that a and b do
satisfy the strong convergence defined in Section 3.1.3, namely, we cannot reject that the long run
equilibrium values of the parameters are equal to the REE levels in both treatments.
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the first few periods) indicate the period numbers. This figure shows that while
the parameters seem to make large movements along a downward-sloping line in
Treatment A they do not quite reach the REE by the end of the 50 period horizon.
By contrast, in Treatment U, the parameter estimates follow a more compact spiral
that does yield convergence to the REE within 50 periods.

We also generated the simulated dynamics for a, b using the constant gain learn-
ing model. As suggested by Branch and Evans (2006); Pfajfar and Santoro (2010),
the constant gain learning model that best fits the data is usually one with a small
gain parameter, λ, e.g., between 0.01 and 0.02. We performed a grid search over λ
values between 0.01 and 1 with a step length of 0.01, and selected the λ that min-
imizes the MSE between the model’s 1 period ahead forecast and each individual’s
forecast. The results suggest that the mean of the optimal values for λ is 0.0148 in
Treatment A and 0.0132 in Treatment U. Figure 4 shows the simulated a, b estimates
over time. As the figure reveals, the simulated paths for a, b under constant gain
learning model are not that different from those under least squares learning. This
is because when λ is small, the “learning speed” of the constant gain learning model
is not very high. The constant gain learning model also suggests that agents are
able to learn the REE within 50 periods in Treatment U, but not within 50 periods
in Treatment A.
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Figure 4. Constant gain learning predictions for the path of the parameters a and
b against the REE in each treatment. We initialize the simulation by setting a = 5,
b = 0.5, and we use the same realizations for wt and ηt as used in the experiment.

Based on these theoretical predictions, we formulate the following main testable
hypotheses:

Hypothesis 1 (E-stability): Subjects can learn the REE, ā, b̄ by the end of the
experiment.

Hypothesis 2 (Least-squares learning): Subjects update the parameterization of
the PLM (2) following the least squares principle, i.e., their estimates for ât and b̂t
follow the predictions of (3), given the complete history of {ps, ws}ts=1
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Hypothesis 3 (Learning and Variation in the Exogenous Variable): Subjects’ es-
timates of the parameters are more precise when there is greater variation in the
exogenous weather variable.

Recall that the latter hypothesis is a property of the OLS estimator. Hypothesis
3 may not be supported if subjects use other forms of learning. For example, if
subjects apply sample average learning (discussed later on) their performance may
be worse when the exogenous weather variable is more volatile and has no auto-
correlation.

2.5 Experimental Details

The experiment uses a between-subjects design in which individual subjects are
placed either in Treatment A or U, but not both. They then repeatedly choose
parameter vectors (a, b) for the PLM, equation (2) over 50 periods. Since this
is an individual decision-making experiment where subjects do not interact with
other subjects, we regard each subject as an independent observation. In total, 59
subjects were recruited from Nanyang Technological University (NTU, Singapore)
to participate in our experiment, which was conduced in five experimental sessions.
No participant took part in more than one session. We assigned 30 participants
to Treatment U, and 29 participants to Treatment A. A summary of the number
of observations in the different sessions and treatments is given in Table A.1 of
Appendix A. After completing 50 periods of parameterizing the PLM, subjects were
asked to complete a survey.12

The experiment was computerized. At the start of each session, subjects were
given written instructions explaining the decisions they would make, the computer-
ized decision screens they would use in making those decisions, and how they earned
money from their participation in the experiment. A copy of the experimental in-
structions is found in Appendix E and screenshots of the experimental interface are
found in Appendix F. Before subjects could proceed on to the experiment, they
had to correctly answer several control questions testing their understanding of the
instructions. These questions are also found in Appendix E.

Subjects earned points during the experiment based on the accuracy of their
price predictions. The payoff function (in points) is a decreasing function of the
price prediction error, and is denoted by:

Payoff =
100

1 + |pet − pt|

12The survey asked them about their age, sex, and how many times they participated in prior
economic experiments. The survey also asked them to provide the strategies they used throughout
the experiment. A copy of the survey can be found in Appendix F.
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Subjects were told that at the end of the experiment, points earned over all 50
periods would be converted into money earnings at a fixed and known rate (200
points = 1 SGD).

Note that we did not incentivize subjects to choose pairs (a, b) to be as close as
possible to the values that least squares learning would predict at any moment in
time, as our interest was in whether subjects would in fact choose their parameter
estimates in the LSL fashion. Incentivizing subjects to update the PLM parameters
in the LSL manner would only bias behavior in the direction of the LSL model since
the necessary incentivization scheme would require disclosing to subjects the LSL
updating rule by way of explaining their payoff function.13

Subjects chose a and b using two slider bars on their decision screen with a
parameter range of [0,10] for a and a parameter range of [0,1] for b. (See screenshots
in Appendix F). Note that these ranges include the REE values, a = 0.6 and b = 6.14

As subjects moved the sliders for either parameter, the computer program showed
both the value of a and b and the implied price forecast, pet that would result from
their choices for a, b, and by moving one slider at a time, they could see how
a change in a or b affected their price forecast pet . Subjects had unlimited time
to move these sliders around and see what they implied for price forecasts before
clicking on a submit button that finalized their choice for a and b in each period t.
Thus, subjects were incentivized to think about their choices for the two parameters
a and b of the PLM and what those choices implied for their price forecast, pet .15

Following each period, subjects received feedback in the form of an updated plot
of all past prices together with their predictions. They also saw a table containing
the history of all their prior period estimates for a, b, realizations of the weather
variable w, their implied price forecast pe the realized price, p their prediction error,
|pe − p|, and both their period and cumulative point totals.

Notice that the maximum payoff for a perfect forecast is 100 points per period.
Subjects’ final payoff is the sum of their 3 SGD show-up fee, and the money value
of the points earned over all 50 periods of the experiment. The experiment takes
around two hours on average to complete, and the average total payment (including
show-up fee) is 20.83 SGD for Treatment A, and 20.70 SGD for Treatment U. The
total average payoff of the experiment is 20.77 SGD.

13Similarly, we did not incentivize subjects to choose values for (a, b) to be as close as possible to
the REE values (a, b) since subjects would have been able to discover these REE values by looking
at their payoff point discrepancies alone.
14The midpoints of these parameter ranges, (0.5 and 5, respectively) are a natural first period
guess for subjects and are not too far away from REE values. This choice of interval ranges was
by design since most learning analyses (see, e.g. Evans and Honkapohja (2001)) study how agents
learn in response to very small perturbations of expectations away from REE values.
15This design is similar in spirit to the “strategy method” of Selten (1965) that is used to elicit
strategies as opposed to actions alone in game theory experiments.
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3 Experimental Results

3.1 Convergence to REE

3.1.1 Convergence of the Market Price

Figure 5 shows the average deviation and the average absolute deviation of the
market price from the REE in Treatments U and A. Note that since the realized
weather variable, wt, is different in the two treatments (recall Figure 1), the time
series paths for the REE p∗t = 6 + 0.6wt will also be different in the two treatments.
As Figure 5 reveals, on average, the deviation from the REE price is small in both
treatments. The difference between the average market price and the REE is usu-
ally less than 1. The results of a t-test suggest that the absolute difference between
the market price and the REE is significant at the 5% level in both Treatment U
(t = 11.626, p − value = 0.000) and Treatment A (t = 10.257, p − value = 0.000).
On the other hand, the average difference between the market price and the REE
is not significantly different from zero at the 5% level for either Treatment U
(t = −0.105, p− value = 0.381) or Treatment A (t = −0.884, p− value = 0.299).

We also performed a t-test on whether the difference between the actual market
price and the REE price is significantly different from 0 at the 5% significance level
for each individual subject and we report these results in Table A.2 in Appendix
A. It turns out that we cannot reject the null hypothesis of no difference for all but
one subject each in both Treatments A and U. That is, we cannot reject the null of
no difference for 29 out of 30 subjects in Treatment A, and 28 out of 29 subjects in
Treatment U.

This result shows that when the economy satisfies E-stability (α < 1), the market
price indeed converges to the REE. But it is important to remain aware that for
the same realized wt, there are infinitely many pairs of values of a and b that satisfy
the equation a+ bwt = 6 + 0.6wt. Therefore, we cannot rule out the possibility that
individuals successfully predict the REE but are using a model that differs from
the REE values for a and b or from what least squares learning would predict for
the estimates of those parameter values at any point in time. In the next section,
we will consider in more detail whether individuals indeed learn to choose the right
combination of values for a and b.
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Figure 5. The average deviation (left panel) and average absolute deviation (right
panel) of market price from the REE in Treatment A (triangles) and Treatment U

(circles).

3.1.2 Sample Means for a, b

In this section, we investigate whether the mean parameter estimates for a, b con-
verge to the REE values, a, b. We test two important characteristics, namely whether
the parameter estimates are biased and whether they exhibit excess volatility, by
comparing the mean and the variance of the coefficient estimates with the REE
values in both treatments.

Figure 6 plots the average of all subject predictions of the parameters a, b in each
of the 50 periods of the experiment against the REE values which are represented
by the horizontal lines, where ā = 6, and b̄ = 0.6. The Figure reveals the rapid
and dampened adjustment over time toward the REE in Treatment U. By contrast,
in Treatment A, we observe a persistent upward bias in the average estimate for a
and a corresponding downward bias in the average estimate for b, relative to REE
predictions.16

16We also conduct tests on the speed of convergence, where following the analysis in Figure 1,
subjects in Treatment U are able to reach the REE much faster than subjects in Treatment A.
Details of this analysis can be found in Appendix A.
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Figure 6. Average predictions for the parameters a and b for treatment A (upper
panel) and treatment U (lower panel) against the REE values.

We next make a more direct comparison between the mean values for at, bt and
the REE values. Table 1 shows the sample means and standard deviations of the
parameter estimates for a and b in the first 25 periods, the last 25 periods, and the
full sample of 50 periods for the two treatments. The means for a, b in Treatment
U are closer to the REE values, a = 6, b = 0.6 for all three intervals. The standard
deviations for Treatment U are also lower than for Treatment A in all subsamples.

Table 1. Sample means and standard deviations for a, b, over the first 25 periods,
the second 25 periods, and the full sample of 50 periods for the two treatments.

Periods 1-25 Periods 26-50 Periods 1-50
sample average s.d sample average s.d sample average s.d

Treatment A
a 6.170 1.453 6.188 1.404 6.179 1.428
b 0.574 0.152 0.580 0.148 0.577 0.152

Treatment U
a 5.988 1.220 6.018 1.390 6.003 1.120
b 0.598 0.134 0.603 0.114 0.600 0.126

Table 2 shows results from a t-test of the null hypothesis that the sample means
of subjects’ choices for a, b differ from the REE values over the first 25 periods,
and the last 25 periods, and the full sample of 50 periods of both treatments. For
Treatment U the t-tests reveal that the null hypothesis that the sample mean of the
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Table 2. Test of whether the means of the predicted parameters a, b, are different
from the REE values over the first 25, and last 25 periods, and all 50 periods for

both treatments.
Periods 1-25 Periods 26-50 Periods 1-50

a = 6 b = 0.6 a = 6 b = 0.6 a = 6 b = 0.6
Treat t-stat p t-stat p t-stat p t-stat p t-stat p t-stat p
A 3.213 0.001 -4.676 0.000 3.433 0.000 -3.882 0.000 4.702 0.000 -8.790 0.000
U -0.262 0.794 -0.437 0.662 0.660 0.509 0.626 0.531 0.229 0.819 0.152 0.880

parameters equals the REE values cannot be rejected at the 5% significance level
over each of the three time windows. However, for Treatment A, the t-tests lead
to rejection of the null that the sample means of both parameters are equal to the
REE values over all three time windows. These results imply that both parameters
in Treatment U converge to REE on average over all three samples, while the para-
meters fail to converge to the REE in Treatment A in any time sample.

Tables B.1 and B.2 show the 95% confidence intervals for a and b for each indi-
vidual subject in Treatments A and U. If the confidence interval of a (b) contains 6
(0.6), it should imply that we cannot reject the null hypothesis that a = 6 (b = 0.6)
for this individual. We count the number of subjects for whom we can reject neither
a = 6 or b = 0.6 in each treatment, and find that we cannot reject that the means of
a and b are equal to their REE level for 5 out of 30 subjects (16.67%) in Treatment
A, and 14 out of 29 subjects (48.28%) in Treatment U.

Finally, we conduct a Siegel-Tukey test to determine whether Treatment A tends
to have more widely dispersed predictions than Treatment U, using the average pre-
diction of both parameters, their deviation from the REE, as well as the squared
value of the deviation, respectively. The null hypothesis states that the variance and
median of the predictions in the two treatments are the same, while the alternative
hypothesis states that there is a higher variance in Treatment A. As reported in
Table 3, we do not find a statistically significant difference in the deviation at the
5% significance level, indicating an equal dispersion in the predictions between two
treatments.
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Table 3. Siegel-Tukey tests on the dispersion of parameter values across
treatments.

Average prediction by period Deviation from REE Squared Deviation from REE
a b a− 6 b− 0.6 (a− 6)2 (b− 0.6)2

Treatment A 51.18 53.24 51.18 53.21 53.42 47.68
Treatment U 49.82 47.76 49.82 47.79 47.58 53.32
p-value 0.817 0.347 0.817 0.352 0.316 0.333

Note: The data in the rows “Treatment A” and “Treatment U ” are the mean Siegel-Tukey
ranks;p-values from tests of the null of no difference are shown in the third row.

3.1.3 Individual-level Analysis of the Convergence of a, b

The last section focused on whether the sample mean values for a, b converged to
the REE values. In this section, we examine the development of the elicited a, b

over time, i.e., whether they converge to the REE values of a = 6, b = 0.6 at the
individual subject level.

We use a very intuitive criterion: a subjects’ estimates for a, b are said to converge
to the REE if they lie in a very small neighborhood (±.3 or .03) of the REE levels,
i.e., a ∈ [5.7, 6.3], b ∈ [0.57, 0.63] and do not leave that interval following the first
period the interval is entered (a consistency requirement). We chose these intervals
because they correspond to the REE ± 5% × REE. This measure has also been
used in previous learning-to-forecast experiments e.g., Bao et al. (2013).

Table 4 reports the distribution of individuals in terms of the number of periods
required for convergence to the REE. In treatment A, most subjects never learn the
REE; only 3 out of 20 subjects (10%) learn the REE within the 50 periods allowed
in the experiment. By contrast, in Treatment U, 6 out of 29 subjects managed to
learn the REE within 10 periods, and 10 more managed to learn it within 50 periods.
Thus, by the end of the experiment, more than half of subjects in Treatment U, 16
out of 29 (55%), have learned the REE.

Table 4. Distribution of the number of periods it takes for subjects to converge to
both REE parameter values, a ∈ [5.7, 6.3], b ∈ [0.57, 0.63].

Treatment
No. of Periods before Convergence A U

No. of subjects Percentage No. of subjects Percentage
T = 1 0 0.0% 1 3.4%
T ∈ [2, 5] 0 0.0% 4 13.8%
T ∈ [6, 10] 0 0.0% 1 3.4%
T ∈ [11, 25] 1 3.3% 4 13.8%
T ∈ [26, 49] 2 6.7% 6 20.7%
T ≥ 50 27 90.0% 13 44.8%
Total 30 100% 29 100%

In addition to this simple convergence criterion, we also examine convergence
using regression analysis. We use the convergence formula suggested by Bao et al.
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(2013) to find the number and percentage of subjects who successfully achieve con-
vergence to the REE in each treatment.

The linear equation we use for testing whether convergence obtains is as follows.
We assume the updating of the parameters follows an AR(1) process. For the para-
meter submitted by each subject i in period t, we test how that parameter depends
on last period’s (t − 1) submitted parameter, where ρ stands for the coefficient of
that relationship, µ is a constant term, and ε is the error term.

ai,t = ρaiai,t−1 + µai + εai

bi,t = ρbibi,t−1 + µbi + εbi

We say there is weak convergence if the parameter submitted by subject i has
an estimated value for ρ that is significantly smaller than 1, i.e., if

|ρ̂i| < 1

We say there is strong convergence if the estimate of the long-run expected value
of the parameters ai, bi, µ̂i

1−ρ̂i are not significantly different from the REE predicted
values, a∗, b∗, where µ̂ stands for the i’s estimated values of constant term17.

In this model, strong convergence implies weak convergence, and not the reverse.
Mathematically,

E(ai) = a∗ = 6 =
µai

1− ρai

E(bi) = b∗ = 0.6 =
µbi

1− ρbi
The result of this estimation is reported in Appendix B. We use robust standard

errors in all regressions to ensure correct t-statistics, and to avoid heteroskedasticity.
We find that the null hypothesis that |ρ̂i| = 1 is rejected for 97% of our sample (or
112 out of 116 predictions,18 at the 5% significance level in favor of the alternat-
ive that |ρ̂i| < 1, implying that our sample exhibits some overall weak convergence
when predicting the parameters. Comparing the Durbin-Watson d-statistics with
the thresholds (dL = 1.285, dU = 1.445) for our sample size (n = 50, k′ = 2), the
null hypothesis, of no positive serial correlation (if d < 1.285) is rejected for just
7% of our sample (or 8 among a total of 116 predictions)19, and the null hypothesis,

17Taking parameter a as an example, if there is convergence, then E(ai,t) = E(ai,t−1). Thus,
taking the expectation form of the function ai,t = ρaiai,t−1 +µai +εai , it becomes: E(ai,t) =

µai

1−ρai
.

Subsequently, if the prediction converges to the REE, then E(ai,t) = a∗ = 6 =
µai

1−ρai
.

18Note that there are two parameters a, b, so the total number of equations is 59× 2 = 118.
19Two of the predictions are omitted because of a collinearity problem, i.e., the two subjects

19



of no negative serial correlation (if d > 2.715) is rejected in less than 2% of our
sample (or 2 among a total of 116 predictions). We regress the predictions with
serial correlation problems using Newey-West standard errors to ensure correct t-
statistics. Using a Wald-test and a 5% significance level to assess the predictions
with statistically significant |ρ̂i| < 1, we find that 18.64% of such predictions (11
out of 60 predictions) also satisfy the strong convergence criterion in Treatment A.
This percentage increases to 54.39% (31 among out of 58 predictions) in Treatment
U.

We summarize our results to this point as follows:

Result 1 (E-stability): On average, subjects’ predictions for both parameters con-
verge to the REE in treatment U but not in treatment A. At the individual level,
96.55% of all parameter choices (112 out of 118) satisfy a weak form of convergence
to the REE values. The fraction of individuals who satisfy strong convergence to
REE parameter values is approximately 54.39% in Treatment U (31 out of 58) and
18.64% in Treatment A (11 out of 60).

3.2 Fit of the Least Squares Learning Model to the Data

3.2.1 Aggregate Level

In this section, we test whether subjects update their parameter estimates in each
of the periods precisely in the manner predicted by least squares learning (3).

The least squares learning model states that subject i will update their parameter
estimates for a, b in the current period t, based on the new realization for the weather
variable w and past realized price information i.e., prices for periods 1 to t− 1. For
each subject i, in period t, the simple mathematical expression of these least squares
learning estimates is given by:

b̂i,t =

∑t−1
s=1(wi,s − wi)(pi,s − pi)∑t−1

s=1(wi,s − wi)2
, âi,t = pi − b̂i,twi

where wi =
∑t−1

s=1 wi,s

t−1 , pi =
∑t−1

s=1 pi,s
t−1 . Thus, the parameter estimates â, b̂ are the ones

that subject i should submit in time period t if he or she follows the LS learning rule.

In each period, the LS learning model uses the same information set as subjects
had available to them in the experiment and makes a one period ahead forecast for

submitted the exact same parameter values for all 50 periods.
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subjects’ choices, âi,t, b̂i,t. Note that this is different from the simulation we did in
Figure 2 of Section 2 where the model makes 50 periods ahead forecasts for subject’s
choices for a, b in all 50 periods after we initialized the model using a1 = 5, b1 = 0.5.
That is, here we are conditioning on the history of the weather (as we did before)
but now on the past prices that each subject actually faced when deciding how to
update their estimates of a and b (and not on the past prices generated by the LS
learning algorithm).

We ran the iterated LS regression for both of the treatments, and recorded the
predicted parameter estimates; the detailed values for â, b̂ can be found in Appendix
C. Note that unless otherwise stated, the results we present in this section start from
period t = 3 (T ∈ [1, 2]). This is due to the sample size being too small in period
t = 2 (T ∈ [1, 1]). The sample also ends at period t = 50 as we do not have data on
subjects’ submitted parameters for period 51.

Figure 7 plots the average estimated â, b̂ for the LS learning model in each treat-
ment against the average a, b from the experimental data, and the REE. This figure
reveals a striking difference between subjects’ choices for a b and the least squares
learning predictions in Treatment A. The estimated â (b̂) is downward (upward)
biased while the experimental data is upward (downward) biased relative to the
REE! Meanwhile, the least squares learning model tracks subjects’ choices for a, b
considerably better in Treatment U. In both treatments, the human subject estim-
ates are more volatile than the least squares learning estimates for both parameters.
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Figure 7. Mean experimental data versus the mean prediction of the 1 period
least squares learning model for the parameters a (upper panel) and b (lower

panel) against the REE in each treatment.

Table 5 reports the average mean squared error (MSE) of the least squares model
relative to the experimental data and the average (square) root MSE (σ) for both
treatments over all 50 periods, the first 25 periods and the second 25 periods. In
general, the theoretical prediction of the least squares learning model is not far from
the experimental data. The average root MSE is usually between 0.8 to 2 for para-
meter a, and between 0.08 and 0.2 for parameter b, corresponding to approximately
13.33% − 33.33% of the value of the REE. Not surprisingly, the MSE for the LS
model higher in Treatment A than in Treatment U in all intervals except for para-
meter a in periods 26-50. Generally we find that the least squares model fits the
data better in Treatment U than in Treatment A.
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Table 5. MSE and root MSE (σ) of the least squares learning model relative to the
experimental data in the first 25 periods, the second 25 periods, and the full

sample of 50 periods for both treatments.
Period 1-50 Period 1-25 Period 26-50

MSE σ MSE σ MSE σ

Treatment A
a 4.536 1.984 6.733 2.479 2.428 1.219
b 0.050 0.207 0.073 0.257 0.055 0.132

Treatment U
a 1.837 1.121 2.470 1.343 1.228 0.774
b 0.020 0.117 0.025 0.136 0.016 0.088

We further investigate whether the null hypothesis that ai,t = âi,t, bi,t = b̂i,t,
holds on average over the aggregate level. We claim a successful adoption of the LS
learning rule if the null hypothesis that agent update parameter estimates according
to least squares learning predictions cannot be rejected at the 5% significance level.
The test results using t-tests, can be found in Table 6. It turns out that the estimates
differ significantly from the LS learning rule at the aggregate level when we use the
data over all 50 periods. The null hypothesis is also rejected even if we restrict the
sample to last 25 periods (periods 26-50) with the sole exception of parameter a
in Treatment U. In summary, we find almost no supportive evidence that subjects
update their parameter estimates following the LS learning model at the aggregate
level.

Table 6. Results of t-tests of the null hypothesis that ai,t = âi,t, bi,t = b̂i,t holds on
average over the full sample of subjects.

Treatment A Treatment U
a b a b

All 50 Periods
z-stat p-value z-stat p-value z-stat p-value z-stat p-value
7.237 0.0000 -8.891 0.0000 -3.424 0.0006 3.6058 0.0003

Second 25 Periods
z-stat p-value z-stat p-value z-stat p-value z-stat p-value
6.347 0.0000 -6.969 0.0000 -1.526 0.1274 2.423 0.0156

3.2.2 Individual Predictions

In this section, we examine how many subjects follow least squares learning at the
individual level. When we conduct the estimation for each individual, we follow
the “1 period ahead” method, namely, in each period, the individual updates the
parameters a and b following the least squares learning rule as specified on page 9,
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and we load the realized values of pi from the experimental data. We only show the
fitted values a and b after Period 4 because we need at least 3 data points (periods)
to run a meaningful OLS estimation.

We calculate the mean squared error (MSE) between the least squares learning
model prediction and each subject’s choice for a, b in Treatments A and U. We con-
sider the person a user of the least squares learning model if their MSE is sufficiently
small, i.e., if MSE < 0.36 (i.e. a Root MSE less than 0.6, or 10% of the REE) for a
and a MSE < 0.036 for b (a Root MSE less than 0.06, or 10% of REE) for b. The
results can be found in Table D.1 in Appendix D.

Our results reveal that while 12 out of 29 (41.4%) subjects in Treatment U (Sub-
jects 1, 2, 6, 12, 15, 16, 17, 18, 20, 21, 23 and 28) can be categorized as least squares
learners, there are no subjects in Treatment A who can be categorized as a least
squares learners using the same approach.

Result 2 (Least Squares Learning): We reject the hypothesis that subjects update
the parameters of the PLM following the LS learning rule on average in the aggreg-
ate. Yet at the individual level, around 20.3% of the subjects (41.4% of subjects in
Treatment U and no subject in Treatment A) appear to update their beliefs following
the LS learning rule (3).

A further implication of least square learning is Hypothesis 3 concerning the effect
of variation in the exogenous variable on learning. From Table 5 we have following
result regarding that hypotheses:

Result 3 (Variation in the Exogenous Variable): Subjects in Treatment U are able
to estimate the parameters more precisely, and present a smaller standard deviation
from the REE compared with subjects in Treatment A, though the dispersion of the
predictions between two treatments is not statistically significant according to the
result of the Siegel-Tukey test as reported in Table 3.

4 Other Learning Models

Since least squares learning does not seem to characterize very well what most
subjects were doing in terms of parameterizing the PLM (2) over time, in this section
we ask whether other models might do a better job of rationalizing the behavior of
the subjects in our experiment. Specifically, we consider four alternatives to least
squares learning: 1) a past averaging model, 2) a constant gain learning model,3) the
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least mean squares (or stochastic gradient) learning model, and finally 4) a model
of satisficing.

4.1 Past Averaging Rule

Since subjects seem to simplify the parameter updating task to a point prediction
task, we first consider whether they are applying some “learning by averaging” rule
which is also found in the learning literature, e.g., Bray (1982), Hommes et al.
(2007). Under such a rule, one considers all past actual prices –information that
was available to the subjects in our experiment as of each period t – and use the
average of those past realized prices as their period t forecast:

pet = p =
1

t

t−1∑
i=1

pi

Of course, to submit such a forecast, subjects would have to choose values for
a and b that would implement that past averaging forecast, but as with satisficing
(discussed later) the focus would be on the point prediction, and here we look at
the performance of past averaging models in terms of their fit to subjects’ implied
forecasts for p alone.

Figure 8 shows the average point prediction from the experimental data (circles)
and a simulation using the “learning by averaging” heuristic (triangles) in Treatment
A (top panel) and in Treatment U (lower panel). Both time series seem to converge
to the REE point prediction, pe = 12, but “learning by averaging” seems to converge
at a much slower speed as compared with the subjects in the experiment.

Table D.2 in Appendix D reports on the MSE between the past averaging heur-
istic and each subject’s prediction in Treatments A and U. We can see that the fit of
the learning by averaging rule is better in Treatment A than in Treatment U. The
average MSE is 0.5645 in Treatment A and is 2.2342 in Treatment U. If we consider
a subject a user of the learning by averaging heuristic if their MSE is smaller than
1.2 (10% of the REE), then the number of users of the learning by averaging rule is
28 out of 30 in Treatment A, but only 12 out of 29 in Treatment U. This is likely
due to the fact that subjects in Treatment U learn the REE faster than do subjects
in Treatment A.
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Figure 8. The average point prediction from experimental data (circles) and
simulation using “learning by averaging” heuristic (triangles) in Treatment A (left

panel) and U (right panel).

4.2 Constant Gain Learning

We also estimate the constant gain learning model (discussed earlier in section 2.2
) for each individual and report the results in Table D.3 in Appendix D. Similar
to the exercise reported on in the previous section, we consider the person a user
of the constant gain learning model if the MSE between their parameterization of
the PLM and the constant gain learning model predictions are sufficiently small,
i.e., if MSE < 0.36 (Root of MSE less than 0.6) for a and MSE < 0.036 for b
(Root of MSE less than 0.06) for b. It turns out that there are only 8 out of 29
(27.6%) subjects in Treatment U (Subjects 1, 2, 12, 15, 18, 20, 23 and 28) who
can be categorized as users of the constant gain learning model, and no subject in
Treatment A who can be categorized as a user of constant gain learning model. For
the 8 subjects in Treatment U, the mean squared error of the constant gain learning
model is larger than for the least squares learning model. In general, though the
constant gain learning model is usually assumed to converge “faster” to an REE than
least squares learning and is more suitable in the context where the price dynamics
are more volatile, we do not find stronger evidence for constant gain learning in our
individual-level analysis even though the constant gain learning model has a free
parameter γ estimated for each subject that helps to best fit the experimental data.

4.3 Least Mean Squares Learning

The time and memory complexities of RLS and constant gain learning are both
O(m)2, where m is the dimension of x. A much simpler learning algorithm is the
least mean squares (LMS) learning model which is also known as stochastic gradient
descent learning (e.g. Evans et al. (2010)). In this case, only the parameter vector
θ̂ is updated according to the gradient of the error term; the variance covariance
matrix is not used.
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This algorithm is also derived from the objective of minimizing the mean of
squared errors, but it does not rely on cross-correlations or auto-correlations, i.e.,
on the variance-covariance matrix R. Thus, the time and memory complexities of
LMS learning are O(m). On the other hand, convergence to the global minimum
is not assured under least mean squares learning unless the gain parameter λ is
gradually reduced over time as in RLS.

θ̂t = θ̂t−1 + λxt(pt − θ̂′t−1xt) (5)

We estimate the least means squares learning model for each subject and report
the MSE between those predictions and subjects’ parameter choices in Table 7 in
Section 4.6 and D.4 of Appendix D. The MSE of the least mean squares learning
model turns out to be larger than for the least squares and constant gain learning
models. If we consider a subject to be a user of the least mean square learning model
if the MSE between the data and that model’s predictions is sufficiently small, i.e.,
if MSE < 0.36 (root MSE less than 0.6) for a and MSE < 0.036 for b (root MSE
less than 0.06) for b, then it turns out that there are only 2 out of 29 (6.9%) subjects
in Treatment U (Subjects 15 and 21) and 2 out of 30 (Subjects 2 and 20) subjects in
Treatment U (6.7%) who can be categorized as users of the least mean square learn-
ing model. We think the main reason is that the stochastic nature of this learning
process has difficulty in capturing the convergence to REE that we observe among
most of our subjects.

4.4 A Satisficing Model

A final plausible explanation for the behavior of subjects in our experiment is that
they were using some type of “simple satisfying heuristic” or satisficing rule as sug-
gested by Simon (Simon, 1955, 1956). In particular, subjects might stay with a
prediction rule, or a specific combination of a, b so long as those parameter choices
kept their prediction error small, or reached a close enough neighborhood of the
REE. Thereafter, they do not engage in any further updating of the parameter vec-
tor (a, b).

In our experiment, the unique REE of the economy is pe = 6 + 0.6wt. If we
ignore the variation in wt and simply use the expected value, E[wt] = 10, the nu-
merical value of the price point prediction associated with the REE is 6+0.6E(wt) =

6 + 0.6× 10 = 12.
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If the variation in wt is small, then any combination of a, b that satisfies the
equation a + 10b = 12 should generate a point prediction that is not very far from
the REE of the economy, and hence yield only a small prediction error. If subjects
learn via experimenting with different combinations of a, b and adjust their choices
to minimize the prediction errors, this process may lead them to choose any pair of
values for a, b that are not too far away from a = 6, b = 0.6 but which also satisfy
the equation a + 10b = 12, for example, a = 7 and b = 0.5 or a = 4.8 and b = 0.72

would work.20

Figure 9 shows the dynamics of ai + 10bi for each subject i in Treatments A and
U. Indeed, though many subjects fail to learn the REE values for a and b, most
of them are able to choose a combination of the a, b parameters that satisfies the
equation a+ 10b = 12.

Table D.5 in Appendix D reports on a 95% confidence interval for a + 10b in
both treatments. It turns out that this confidence interval includes the REE value
of 12 for 30 out of 30 subjects in Treatment A, and 25 out of 29 subjects (that is,
all subjects except Subjects 3, 6, 13, 26) in Treatment U. In other words, according
to a t-test, we cannot reject the notion that subjects chose a and b so as to satisfy
the equation a+ 10b = 12 at the 95% level for most subjects in both treatments. In
other words, subjects are able to come up with a point prediction that is close to
the REE point prediction, even without learning the true REE values for a and b.

Figure 10 shows the scatter-plot of a and b for each individual in Treatment
A (top panel) and Treatment U (lower panel). There seems to be a substantial
level of heterogeneity in the way people learn over time. While the behavior of
some subjects (Subjects 1, 8, 14, 16, 24 in Treatment A and Subjects 16 and 24
in Treatment U) seem to behave in a similar manner to the simulated path of a, b
from the least squares learning model as shown in Figure 3, other subjects behave
very differently. For example, some subjects (Subjects 11 17 and 21 in Treatment
A, and Subjects 12, 18 and 20 in Treatment U) seem to experiment with different
values of b while keeping the value of a fixed. Some subjects (Subjects 11, 20, 27 and
29 in Treatment A) are also able to reach a small neighborhood of the REE fairly
quickly. Some subjects (Subjects 3, 6, 8, 10, 25 and 26 in Treatment U) explored
a large range of values of the parameters before they settled down in a region that
was usually not far from the REE values.

20Indeed, if a subject starts from either the midpoint of the domain of a or b and only updates the
other parameter, we should observe many subjects choosing a = 5, b = 0.7 or a = 7, b = 0.5. It turns
out we cannot reject this type of behavior for 6 subjects in Treatment A (Subject 10,12,13,15,21
and 30), and 2 subjects in Treatment U (Subject 6 and 9).
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Figure 9. The value of a+ 10b for each individual in Treatment A (top panel) and
U (lower panel). We report the 95% confidence intervals of a+ 10b for each subject
in Table D.5. The confidence interval includes 12 for all subjects except Subject 3,

6, 13 and 26 in Treatment U.
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Figure 10. A scatterplot of a and b for each individual subject in Treatment A (top
panel) and U (lower panel).

4.5 Comparison of Model Fits to the Experimental Data

Table 7 summarizes the average mean squared errors across the different learning
models relative to the experimental data. MSEa refers to the mean squared error
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between the experimental data and the model for parameter a, while MSEb refers
to the mean squared error between the experimental data and the model for para-
meter b and finallyMSEp refers to the mean squared error between the data and the
model price forecast p. Note that the sample averaging (SA) model only provides a
prediction for the price level, p. Similarly, the satisficing (SF) model assumes that
agents choose a combination of a, b that satisfies a+10b = 12. Thus it is not possible
to calculate MSEa,MSEb for those two models, and the MSEp of the SF model
will be the same as the RE model.

Table 7. The mean squared error for different learning models in terms of fitting
experimental data. MSEa is the squared error between the data and model

prediction for parameter a, MSEb is the mean squared error between the data and
the model for parameter b and MSEp is the mean squared error between the data

and the model for the price forecast, p. The models we consider include RE
(rational expectations), RLS (recursive least square), SA (sample averaging), CGL
(constant gain learning), LMS (least mean square learning) and SF (a satisficing

rule).
Treatment A Treatment U Both Treatments

MSEa MSEb MSEp MSEa MSEb MSEp MSEa MSEb MSEp

RE 2.069 0.023 0.969 1.254 0.016 1.168 1.662 0.019 1.069
RLS 1.837 0.020 1.345 4.536 0.050 0.979 3.187 0.035 1.162
SA NA NA 0.564 NA NA 2.234 NA NA 1.399
CGL 5.076 0.061 0.989 1.779 0.019 1.280 3.428 0.040 1.135
LMS 1.767 0.210 5.934 1.521 0.169 5.284 1.642 0.190 5.610
SF NA NA 0.969 NA NA 1.168 NA NA 1.069

In general, there is not a large difference between the average MSEs of the
different learning models (least squares, sample averaging and constant gain learn-
ing) for both treatments, and the average MSEs for most models are generally
greater than that of the rational expectations model where people constantly choose
a = 6, b = 0.6. A likely explanation for this finding is that most of the learning
models have long memory and put heavy weight on past observations. These mod-
els therefore predict slower learning speeds than the subjects’ actual learning speed
in the experiment, and therefore underperform relative to the RE model/satisficing
rule.

If we consider a subject to be a user of a model if the MSEp is sufficiently small,
i.e., if MSEp < 1.44 (root MSE less than 1.2, 10% of the REE price prediction),
then the numbers of subjects who can be categorized as users of the different can-
didate models is reported in Table 8.
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Table 8. The number of subjects who can be categorized as users of different
models based on the size of MSEp. The models we consider include RE (rational
expectations), RLS (recursive least square), SA (sample averaging), CGL (constant

gain learning), LMS (least mean square learning) and SF (a satisficing rule).
Model Treatment A Percentage Treatment U Percentage
RE 30 100.0% 29 100.0%
RLS 19 63.3% 8 27.6%
SA 29 96.7% 16 55.2%
CGL 29 96.7% 23 79.3%
LMS 5 16.7% 3 10.3%
SF 30 100.0% 29 100.0%

Among the learning models, the sample average learning model generates the
smallest MSE in terms of fitting the price data in Treatment A, and the recursive
least squares learning model generates the smallest MSE in terms of fitting the price
data in Treatment U. This finding provides some support for the notion that more
people use sample average learning/least squares learning in Treatments A/U. Still,
as we have seen, the satisficing rule provides the best description of the overall pat-
tern of subjects’ prediction behavior in both treatments, and like the RE prediction
it has the lowest overall MSE across both treatments as well as the largest number
of users according to the criteria of sufficiently small MSEp.

4.6 Robustness Check

The careful reader may note that our Treatment A and Treatment U differ in two
dimensions: the size of the variance of the weather, and the shape of the distribution
and autocorrelation. This may lead to a confounding factors issue: when the results
from the two treatments differ, is it because of the size of variance, or the shape of
the distribution?

To address this issue, we ran an additional treatment, which we will call U-Small,
where the weather follows an i.i.d. uniform distribution as in Treatment U, but the
size of the variance is set to be 25

9
, which is the same level as in Treatment A. If

the result from this additional treatment is closer to Treatment U (A), then that
suggests the differences between Treatments U and A is mainly driven by the shape
of distribution (size of variance). We do not run a treatment where the weather
variable follows an AR(1) process and the variance is 33.33, since given our high
AR(1) coefficient (0.8), having such a large variance could result in negative realiz-
ations for the weather variable.
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For these new sessions, 34 subjects were recruited from the same university as in
the original treatments. The experimental protocol was the same as for Treatments
U and A except that we used the U-small treatment realizations for the weather
variable, wt. Figure 11 plots the time series of the realizations for wt in Treatment
U-Small where w ∼ U(10−

√
3, 10 +

√
3).
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Figure 11. The time series of the weather variable used in Treatment U-Small.

We first performed a t-test on whether the difference between the actual market
price and the REE price is significantly different from 0 at the 5% significance level
for each individual subject and we report these results in Table A.3 in Appendix A.
It turns out that we cannot reject the null hypothesis of no difference for 33 out of
34 subjects in Treatment U-small.

Figure 12 plots the average of all subjects’ predictions of the parameters a and b
in the U-small treatment. We observe a persistent downward bias in the mean value
of the a coefficient and a persistent upward bias in the mean value of the b coeffi-
cient. The persistence of the deviations in U-small is similar to what we observed
in Treatment A, though the direction of the bias is the opposite of that case. Like
in Treatments A and U, the result from Treatment U-small shows that when the
economy satisfies E-stability, the market price indeed converges to the REE.

33



5
5.

5
6

6.
5

7

0 10 20 30 40 50
period

average a REE

Average Prediction on a in Treatment U Small

.5
.5

5
.6

.6
5

.7

0 10 20 30 40 50
period

average b REE

Average Prediction on b in Treatment U Small

Figure 12. Average predictions for the parameters a and b for treatment U-Small
against the REE values.

We also calculate a 95% confidence interval for a and b for each subject in this
treatment. We cannot reject the null hypothesis that a and b are equal to their REE
values for only 3 out of 34 subjects (8.82%) in Treatment U-small.21

We calculate the mean squared error relative to least squares learning predic-
tions and categorize subjects as users of the least square learning model if their
MSE < 0.36 for a and MSE < 0.036 for b (as we did before). The results are
reported in Table D.7. We find that only 1 out of 34 subjects in Treatment U-small
(Subject 7) can be categorized as a least squares learner.

Overall, the behavior of subjects in our Treatment U-small is more similar to
subject behavior in Treatment A than treatment U. Most of the subjects in treatment
U-small failed to learn a and b, and could not be categorized as users of the least
square learning model. This finding reinforces our prediction that it is more difficult
to apply the least squares learning model or learn the REE when the variance of
the x−variable is small as in Treatment A as compared with the larger variance of
treatment U.

5 Conclusion

In this paper, we have conducted the first ever structural test of the seminal least
squares learning model using a simple Cobweb model economy. The subjects in our
experiment submit predictions for two unknown parameters in a linear PLM that
nests the REE as a special case.

We observe how subjects update these parameters over time. Since the slope
coefficient on the expectations term, α, is less than 1, our experimental economy

21Subjects number 17, 19 and 22.
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satisfies the E-stability condition, and so learning agents should converge to the
REE.

In general, all of our markets converge to a neighborhood of the REE, which is
supportive of the E-stability prediction. We find that around 97% of the individual
predictions satisfy a weak convergence criterion. On average, the predictions by sub-
jects in Treatment U converge faster than the predictions of subjects in Treatment
A. At the aggregate level, we observe convergence to the REE in Treatment U but
not in Treatment A and there are almost three times as many subjects satisfying
our strong convergence criterion in Treatment U as compared with Treatment A. A
follow-up treatment U-small, which keeps the uniform nature of the i.i.d. random
draws for the weather term but lowers the variance, delivers findings that are closer
to treatment A than to treatment U, which suggests that the size of the variance
rather than the persistence of the exogenous variable is the more important factor
in explaining departures from learning the REE.

Our results suggest that the least squares learning model yields correct predic-
tions at the aggregate level in terms of convergence or near convergence to the REE.
However, at the individual level, it does not seem to be a good descriptor of how
individual agents update their expectations over time. We find that overall, just
20.3% of our subjects can be categorised as following the least squares learning rule
across our two main treatments, U and A. Least squares learners are found only
in treatment U where they comprise 41.4% of the subjects in that treatment; we
find no subject employing least squares learning in treatment A, and only one such
subject in our treatment U-small.

For those who deviate from least squares learning, many of them seem to adopt
some kind of dimension reducing strategy focusing on price point prediction accuracy
alone. This behavior is consistent with the “satisficing” approach of Simon (Simon,
1955, 1956), and a simple satisficing heuristic appears to explain our experimental
data better than does least squares learning.

The environment we have studied is a very simple individual-decision making
environment. In future research, it would be of interest to study how agents update
the parameters of their PLM in settings where there is a group of n subjects whose
forecasts matter for realizations of the variables being forecasted as in an n-player
learning–to–forecast experiments. It would further be of interest to elicit subjects’
PLMs, rather than giving them one that explicitly nests the REE solution and
asking how they would parameterize that particular PLM. Finally it would also be of
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interest to give subjects access to statistical software or to provide them with a choice
of forecasting models to parameterize their PLM or form forecasts of future prices.
We view the present study as a first, small step in the direction of developing a more
structural approach to understanding the manner in which agents form expectations
and so we leave the study of these more complex environments to future research.
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Appendices

Appendix A: Supplementary Information

Appendix A.1: Session Information

Table A.1. Characteristics of Experimental Design.
Session Number Treatment Type Number of participants (N)

1 A 13
2 A 17
3 U 14
4 U 10
5 U 5
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Appendix A.2: t-test on the Price Level

We perform a t-test on the equality between the realized market price and the REE
price level and report the results in Table A.2.

Table A.2. t-test on the price level. The null hypothesis is that the average price is
equal to the REE, i.e. p∗t = 6 + 0.6wt.

Treatment A Treatment U
Sub t-statistic p-value t-statistic p-value
1 0.050 0.971 1.150 0.256
2 1.000 0.316 1.100 0.280
3 0.650 0.521 -1.750 0.086
4 0.150 0.873 1.150 0.247
5 1.350 0.189 -0.200 0.840
6 0.150 0.886 1.800 0.078
7 0.950 0.353 0.850 0.411
8 1.500 0.135 -0.050 0.951
9 0.250 0.823 0.300 0.782
10 0.300 0.769 0.000 0.985
11 1.200 0.236 1.600 0.116
12 0.900 0.368 1.750 0.084
13 0.400 0.690 -2.800 0.007
14 0.250 0.790 0.400 0.702
15 1.250 0.213 -0.600 0.550
16 -0.900 0.385 1.350 0.185
17 2.250 0.030 0.300 0.752
18 0.150 0.881 1.300 0.198
19 1.650 0.105 0.100 0.911
20 1.200 0.238 0.950 0.358
21 1.750 0.083 0.250 0.803
22 -0.200 0.840 0.350 0.729
23 1.500 0.138 -0.450 0.656
24 0.800 0.416 0.850 0.400
25 1.200 0.235 0.450 0.666
26 1.350 0.185 1.250 0.212
27 1.600 0.114 -0.600 0.556
28 1.200 0.237 1.400 0.171
29 1.100 0.276 0.650 0.517
30 1.300 0.205
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Table A.3. t-test on the price level. The null hypothesis is that the average price is
equal to the REE, i.e. p∗t = 6 + 0.6wt.

Treatment U-small
Sub t-statistic p-value
1 0.35 0.744
2 0.45 0.641
3 1.3 0.202
4 0.1 0.91
5 0.6 0.555
6 -0.15 0.891
7 1.3 0.194
8 1.55 0.125
9 0.7 0.502
10 0.95 0.337
11 0.25 0.812
12 1 0.316
13 0.4 0.675
14 1.05 0.289
15 0.55 0.572
16 4.65 0
17 0.35 0.718
18 -0.35 0.711
19 0.4 0.676
20 -0.3 0.76
21 1.3 0.199
22 0.35 0.742
23 -0.85 0.391
24 0.45 0.638
25 -0.75 0.456
26 0.35 0.718
27 0.85 0.392
28 0.1 0.937
29 1.05 0.31
30 1.25 0.223
31 0.85 0.392
32 -0.25 0.813
33 1.1 0.271
34 0.45 0.667
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Appendix A.3: Comparison of the Demographic Characteristics of Par-
ticipants in the Two Treatments

As a balance check to rule out the possibility of selection bias, we conduct a re-
gression analysis of differences in demographic characteristics between the group
of subjects assigned to Treatment A and the group assigned to Treatment U. Two
sample t-tests are used to compare the demographic characteristics and particip-
ation experience between the two groups. The results indicate that there is no
statistically significant difference at the 5% significance level between the groups on
the recorded factors. It confirms that our randomization was successful and gives us
more freedom to conclude that the observed differences with predictions are brought
about by differences in the treatment conditions alone.
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Appendix B: Testing Convergence Using Linear Estimation

Table B.1. Mean, standard error and 95% confidence interval (CI) of a
in Treatment A and U.

Treatment A Treatment U

Sub Mean Std. Err. 95% CI Mean Std. Err. 95% CI
1 9.333 0.242 8.847 9.819 5.976 0.020 5.936 6.017
2 5.339 0.126 5.087 5.592 5.894 0.018 5.857 5.931
3 6.849 0.086 6.676 7.022 5.557 0.340 4.874 6.240
4 5.798 0.144 5.509 6.087 5.902 0.141 5.618 6.186
5 5.320 0.162 4.995 5.644 5.573 0.140 5.290 5.855
6 6.269 0.182 5.902 6.635 7.133 0.269 6.594 7.673
7 3.700 0.068 3.563 3.837 6.124 0.070 5.984 6.263
8 6.804 0.236 6.329 7.278 6.335 0.171 5.991 6.679
9 6.194 0.121 5.950 6.438 5.124 0.061 5.001 5.246
10 6.892 0.125 6.640 7.144 6.204 0.203 5.797 6.611
11 6.304 0.032 6.240 6.368 6.041 0.142 5.757 6.326
12 6.827 0.097 6.632 7.023 5.939 0.018 5.903 5.976
13 6.875 0.107 6.659 7.090 7.692 0.059 7.574 7.811
14 8.920 0.278 8.361 9.478 4.598 0.179 4.238 4.958
15 4.800 0.045 4.710 4.890 6.075 0.103 5.869 6.280
16 6.412 0.211 5.987 6.837 5.931 0.029 5.873 5.990
17 5.322 0.019 5.284 5.359 6.090 0.089 5.912 6.269
18 6.563 0.119 6.324 6.801 5.971 0.029 5.912 6.030
19 4.729 0.034 4.662 4.797 6.000 0.107 5.785 6.215
20 5.835 0.061 5.712 5.958 6.000 0.000 6.000 6.000
21 5.000 0.000 5.000 5.000 5.976 0.044 5.888 6.065
22 6.645 0.105 6.434 6.856 6.578 0.143 6.291 6.865
23 6.147 0.094 5.959 6.335 5.835 0.049 5.737 5.933
24 5.592 0.195 5.201 5.983 6.159 0.148 5.862 6.456
25 6.725 0.121 6.483 6.968 5.735 0.155 5.424 6.046
26 6.247 0.081 6.084 6.410 5.002 0.201 4.597 5.407
27 6.418 0.071 6.275 6.560 6.757 0.146 6.463 7.051
28 6.235 0.104 6.027 6.444 5.976 0.026 5.925 6.028
29 6.131 0.130 5.870 6.393 6.016 0.110 5.796 6.236
30 5.022 0.125 4.771 5.272
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Table B.2. Mean, standard error and 95% confidence interval (CI) of b
in Treatment A and U.

Treatment A Treatment U

Sub Mean Std. Err. 95% CI Mean Std. Err. 95% CI
1 0.227 0.021 0.185 0.269 0.601 0.001 0.599 0.604
2 0.679 0.019 0.641 0.717 0.610 0.001 0.609 0.611
3 0.506 0.005 0.495 0.516 0.750 0.038 0.674 0.826
4 0.622 0.017 0.589 0.656 0.593 0.011 0.570 0.615
5 0.683 0.020 0.643 0.722 0.649 0.013 0.622 0.676
6 0.564 0.017 0.530 0.598 0.537 0.027 0.483 0.592
7 0.841 0.005 0.831 0.851 0.580 0.009 0.562 0.597
8 0.504 0.023 0.459 0.550 0.595 0.021 0.552 0.638
9 0.573 0.014 0.545 0.600 0.705 0.009 0.688 0.722
10 0.519 0.011 0.497 0.540 0.593 0.022 0.550 0.636
11 0.565 0.002 0.561 0.570 0.569 0.010 0.549 0.590
12 0.527 0.012 0.503 0.551 0.602 0.001 0.599 0.605
13 0.495 0.013 0.469 0.521 0.469 0.010 0.450 0.488
14 0.264 0.027 0.209 0.319 0.735 0.011 0.713 0.756
15 0.714 0.015 0.684 0.745 0.602 0.016 0.571 0.634
16 0.571 0.021 0.528 0.613 0.599 0.004 0.591 0.608
17 0.659 0.006 0.647 0.671 0.590 0.006 0.578 0.603
18 0.542 0.008 0.525 0.559 0.597 0.005 0.588 0.606
19 0.721 0.007 0.707 0.736 0.599 0.007 0.585 0.613
20 0.611 0.007 0.597 0.624 0.600 0.001 0.599 0.602
21 0.700 0.005 0.691 0.709 0.595 0.006 0.584 0.607
22 0.537 0.011 0.515 0.559 0.512 0.015 0.481 0.543
23 0.578 0.012 0.555 0.601 0.630 0.006 0.617 0.643
24 0.642 0.022 0.597 0.687 0.568 0.015 0.537 0.598
25 0.514 0.009 0.497 0.531 0.626 0.025 0.575 0.677
26 0.567 0.007 0.553 0.581 0.592 0.036 0.520 0.664
27 0.538 0.013 0.512 0.564 0.525 0.012 0.502 0.549
28 0.561 0.011 0.539 0.582 0.598 0.002 0.594 0.602
29 0.564 0.009 0.546 0.581 0.585 0.013 0.560 0.611
30 0.694 0.012 0.669 0.719
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Table B.3. Linear Estimation on parameter a in Treatment A.
Number ρ̂a p-value (|ρ̂a| ≥ 1) µa R2 Root MSE Durbin Watson Equilibrium Wald test p-value

1 0.5466 0.0128 4.3842 0.3543 0.9517 2.3364 9.6777 0.0000
2 0.4304 0.0039 2.9828 0.1849 0.5606 2.3223 5.2333 0.0000
3 -0.1747 0.0000 8.1052 0.0366 0.5417 1.5705 6.8979 0.0000
4 -0.3225 0.0000 7.7630 0.1032 0.9402 1.8359 5.8677 0.2001
5 -0.0306 0.0000 5.2887 0.0020 0.6678 2.0131 5.1312 0.0000
6 0.1060 0.0005 5.5985 0.0117 1.2809 1.3254 6.2617 0.2007
7 0.0808 0.0000 3.4494 0.0173 0.3027 1.3677 3.7522 0.0000
8 0.7153 0.0017 2.0166 0.5706 1.0794 2.4043 7.0772 0.0488
9 -0.4139 0.0000 8.8678 0.2615 0.6072 1.7516 6.2716 0.0000
10 -0.2500 0.0000 8.5551 0.0630 0.7695 1.8870 6.8441 0.0000
11 0.2287 0.0000 4.8879 0.1569 0.1242 1.3604 6.3398 0.0000
12 0.3446 0.0000 4.4695 0.1542 0.4376 1.9248 6.8244 0.0000
13 -0.1271 0.0000 7.7926 0.0179 0.7325 2.0651 6.9148 0.0000
14 0.0083 0.0000 9.0764 0.0001 1.6261 2.0598 9.1515 0.0000
15 0.2406 0.0000 3.6101 0.0614 0.1371 1.6955 4.7563 0.0000
16 -0.0897 0.0000 6.8856 0.0072 1.4441 1.8947 6.3192 0.0947
17 0.435 0.0053 3.0136 0.2129 0.1158 2.2905 5.3345 0.0000
18 -0.0959 0.0000 7.2044 0.0098 0.8156 1.3068 6.5736 0.0000
19 -0.1225 0.0002 5.2974 0.0155 0.2384 1.6636 4.7168 0.0000
20 0.4822 0.0000 3.0389 0.2509 0.3745 2.0254 5.8668 0.2072
21 Omitted because of collinearity
22 -0.0630 0.0004 7.0351 0.0045 0.7205 2.1160 6.6181 0.0000
23 0.5436 0.0002 2.8251 0.3116 0.5551 2.0980 6.1952 0.2744
24 0.1987 0.0000 4.4617 0.0400 1.3907 1.9089 5.5705 0.0818
25 0.5415 0.0028 3.1490 0.4200 0.5665 2.4158 6.8756 0.0000
26 0.4306 0.0081 3.5829 0.2045 0.5081 1.2646 6.2970 0.0263
27 0.1050 0.0000 5.7847 0.0132 0.4664 2.0765 6.4637 0.0000
28 0.0094 0.0000 6.1970 0.0001 0.6662 1.9393 6.2556 0.0087
29 -0.1564 0.0000 7.2344 0.0264 0.5354 1.7212 6.2578 0.0001
30 0.0495 0.0000 4.8307 0.0025 0.8623 1.3318 5.0826 0.0000
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Table B.4. Linear estimation on parameter b in Treatment A. µ is the intercept of
the regression while ρ is the slope.

Number ρ̂b p-value (|ρ̂b| ≥ 1) µb R2 Root MSE Durbin Watson Equilibrium Wald test p-value
1 0.4512 0.0015 0.1188 0.2443 0.1194 2.2080 0.2168 0.0000
2 0.0503 0.0000 0.6452 0.0029 0.1204 1.9117 0.6792 0.0000
3 0.1641 0.0000 0.4227 0.0253 0.0384 1.9796 0.5060 0.0000
4 -0.2733 0.0000 0.7973 0.0869 0.1064 2.1886 0.6261 0.0267
5 0.1110 0.0000 0.6146 0.0260 0.0918 2.0267 0.6918 0.0000
6 0.2191 0.0000 0.4358 0.0629 0.0996 2.2610 0.5583 0.0156
7 0.3970 0.0004 0.5060 0.1576 0.0256 2.2699 0.8391 0.0000
8 0.7118 0.0560 0.1403 0.5312 0.1123 2.5591 0.4861 0.0572
9 -0.3416 0.0000 0.7795 0.1291 0.0835 1.4754 0.5805 0.0321
10 -0.1863 0.0000 0.6114 0.0428 0.0545 1.4801 0.5152 0.0000
11 0.2933 0.0116 0.4007 0.1307 0.0124 0.7740 0.5672 0.0000
12 0.6334 0.0949 0.1897 0.4013 0.0419 1.7072 0.5177 0.0000
13 -0.4799 0.0000 0.7472 0.2303 0.0552 1.3843 0.5047 0.0000
14 0.1943 0.0000 0.2117 0.0384 0.1909 2.0552 0.2630 0.0000
15 0.0551 0.0000 0.693 0.0133 0.0179 0.9173 0.7334 0.0000
16 -0.1969 0.0000 0.6941 0.0374 0.1296 1.9066 0.5798 0.1911
17 0.3991 0.0247 0.3992 0.2293 0.0309 2.0119 0.6639 0.0000
18 0.2261 0.0000 0.4220 0.0521 0.0586 2.1020 0.5452 0.0000
19 0.2941 0.0000 0.5170 0.2679 0.0197 1.7159 0.7323 0.0000
20 0.5458 0.0003 0.2777 0.3017 0.0395 2.0957 0.6123 0.3659
21 0.2621 0.0000 0.5207 0.3197 0.0127 1.4197 0.7060 0.0000
22 -0.1632 0.0042 0.6175 0.0462 0.0609 0.6189 0.5305 0.0000
23 0.3711 0.0004 0.3658 0.1396 0.0780 1.7425 0.5819 0.3005
24 0.1422 0.0000 0.5569 0.0216 0.1568 2.0167 0.6492 0.0598
25 0.1140 0.0014 0.4493 0.0250 0.0449 2.5970 0.5068 0.0000
26 0.6788 0.0376 0.1838 0.4738 0.0367 2.6100 0.5732 0.0513
27 -0.0552 0.0000 0.5799 0.0031 0.0532 1.7854 0.5497 0.0000
28 0.3800 0.0000 0.3551 0.2181 0.0565 2.3680 0.5726 0.0330
29 -0.2709 0.0000 0.7230 0.0962 0.0522 1.7406 0.5688 0.0000
30 0.6067 0.0022 0.2753 0.4106 0.0578 2.4363 0.6997 0.0000

Table B.5. Linear estimation on parameter a in Treatment U. µ is the intercept of
the regression while ρ is the slope.

Number ρ̂a p-value (|ρ̂a| ≥ 1) µa R2 Root MSE Durbin Watson Equilibrium Wald test p-value
1 -0.0237 0.0000 6.1375 0.0075 0.0409 2.4749 5.9959 0.4337
2 -0.0496 0.0000 6.1821 0.0026 0.1323 2.0565 5.8899 0.0000
3 0.5121 0.0004 2.6377 0.2677 2.0786 2.2056 5.4057 0.3332
4 -0.2320 0.0000 7.2833 0.0546 1.0047 2.0583 5.9115 0.4478
5 0.5536 0.0000 2.6036 0.8234 0.2628 3.1260 5.8386 0.0131
6 0.2782 0.0000 5.2089 0.0817 1.8439 2.0442 7.2147 0.0009
7 -0.0384 0.0011 6.3338 0.0018 0.4546 1.0051 6.0998 0.0863
8 0.0946 0.0000 5.8208 0.0099 1.1660 2.0604 6.4292 0.0240
9 0.0534 0.0000 4.8789 0.0034 0.4078 2.1459 5.1542 0.0000
10 0.1949 0.0000 4.9551 0.0359 1.4184 1.7531 6.1553 0.5380
11 0.0302 0.0000 5.8421 0.0009 1.0370 1.7025 6.0239 0.8743
12 0.2452 0.0000 4.4972 0.1778 0.0702 1.4111 5.9563 0.0011
13 -0.0792 0.0000 8.3560 0.0380 0.17230 1.5879 7.7428 0.0000
14 0.3589 0.0003 3.0141 0.1499 1.1252 2.1378 4.7020 0.0000
15 -0.0252 0.0001 6.2595 0.0007 0.7344 1.6560 6.1052 0.3105
16 0.4701 0.0467 3.1623 0.3711 0.1320 2.2418 5.9660 0.1869
17 -0.1087 0.0000 6.7600 0.0119 0.6486 1.5826 6.0956 0.2438
18 -0.4606 0.0000 8.7396 0.3757 0.1286 1.2381 5.9822 0.2128
19 -0.0751 0.0078 6.4503 0.0056 0.7857 1.9375 5.9994 1.0000
20 Omitted because of collinearity
21 0.0010 0.0012 5.9899 0.0000 0.2917 2.2448 5.9962 0.9209
22 0.1406 0.0000 5.6320 0.0198 1.0177 1.9632 6.5565 0.0010
23 0.0453 0.0000 5.5884 0.0023 0.3367 2.0007 5.8531 0.0040
24 0.2191 0.0001 4.8327 0.0486 1.0494 2.0843 6.1882 0.3139
25 -0.3772 0.0000 7.9336 0.1436 1.0459 1.6751 5.7618 0.0279
26 -0.0171 0.0000 5.1070 0.0003 1.4408 1.9802 5.0211 0.0000
27 -0.2352 0.0000 8.3085 0.0553 1.0321 1.8578 6.7271 0.0000
28 0.0599 0.0000 5.6423 0.0230 0.0735 2.2513 6.0014 0.8964
29 -0.0518 0.0000 6.3510 0.0028 0.7914 2.0328 6.0382 0.7230
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Table B.6. Linear estimation on parameter b in Treatment U. µ is the intercept of
the regression while ρ is the slope.

Number ρ̂b p-value (|ρ̂b| ≥ 1) µb R2 Root MSE Durbin Watson Equilibrium Wald test p-value
1 0.0190 0.0000 0.5892 0.0007 0.0056 1.9180 0.6004 0.4584
2 0.0833 0.0000 0.5586 0.0296 0.0024 1.3747 0.6098 0.0000
3 0.1628 0.0000 0.6303 0.0260 0.2725 2.0578 0.7527 0.0010
4 -0.1746 0.0000 0.6991 0.0314 0.0791 2.0426 0.5949 0.6213
5 0.6541 0.0402 0.2168 0.5824 0.0539 3.1359 0.6272 0.0349
6 0.0894 0.0000 0.4894 0.0000 0.1991 1.9727 0.5370 0.0461
7 0.8239 0.1050 0.1024 0.6732 0.0369 1.3821 0.5795 0.5115
8 -0.1858 0.0000 0.7092 0.0361 0.1507 2.0003 0.5978 0.9158
9 0.0166 0.0000 0.6946 0.0003 0.0624 1.6591 0.7067 0.0000
10 0.1822 0.0000 0.4891 0.0319 0.1531 2.0199 0.5978 0.9415
11 0.1144 0.0000 0.5050 0.0133 0.0753 1.9414 0.5700 0.0145
12 0.1509 0.0001 0.5120 0.0341 0.0086 1.2802 0.6031 0.0298
13 0.0480 0.0000 0.4452 0.0023 0.0705 2.0236 0.4674 0.0000
14 0.7078 0.1019 0.2110 0.5456 0.0515 2.4339 0.7226 0.0000
15 0.3533 0.0118 0.3914 0.1266 0.1071 1.8612 0.6043 0.8280
16 -0.0989 0.0000 0.6605 0.0127 0.0267 1.8985 0.6006 0.7735
17 0.5675 0.0243 0.2575 0.3692 0.0335 1.0479 0.5972 0.6980
18 -0.4875 0.0012 0.8895 0.2534 0.0283 1.7150 0.5974 0.4583
19 0.2392 0.0060 0.4595 0.0840 0.0409 1.4409 0.6045 0.6586
20 -0.0019 0.0000 0.6013 0.0000 0.0048 1.6340 0.5999 0.7671
21 -0.0047 0.0000 0.6002 0.0000 0.0406 2.1201 0.5972 0.6301
22 -0.1820 0.0000 0.6026 0.0350 0.1068 2.0488 0.5102 0.0000
23 -0.4326 0.0000 0.9052 0.2244 0.0378 1.7775 0.6315 0.0000
24 -0.1815 0.0000 0.6717 0.0329 0.1093 1.8828 0.5690 0.0174
25 0.1130 0.0000 0.5572 0.0128 0.1852 1.8554 0.6280 0.3460
26 -0.1335 0.0000 0.6720 0.0183 0.2570 2.0159 0.5926 0.8260
27 0.0571 0.0001 0.4920 0.0037 0.0806 1.9832 0.5218 0.0000
28 0.1020 0.0000 0.5390 0.1811 0.0032 1.4189 0.6002 0.7206
29 -0.0090 0.0000 0.5887 0.0001 0.0938 1.8079 0.5837 0.2150

Table B.7. Linear estimation on parameters a, b for the 50 periods ahead
simulation of least square learning model.

ρ̂ p-value µ p-value R2 Root MSE Equilibrium Wald Test
Treatment A

a 0.627 0.000 1.992 0.003 0.379 1.429 5.336 0.277
b 0.578 0.000 0.288 0.002 0.330 0.169 0.683 0.191

Treatment U
a 0.495 0.000 2.951 0.000 0.277 0.271 5.845 0.091
b 0.239 0.080 0.472 0.000 0.064 0.048 0.620 0.129
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Appendix C: Estimation of the Parameter using OLS

Table C1. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment A for Subjects 1-10.

Period(t) â1 b̂1 â2 b̂2 â3 b̂3 â4 b̂4 â5 b̂5 â6 b̂6 â7 b̂7 â8 b̂8 â9 b̂9 â10 b̂10
3 -30.72 4.250 234.5 -22.08 170.5 -15.75 259.5 -24.50 58.03 -4.500 -335.9 34.50 138.5 -12.50 116.9 -10.42 432.3 -41.75 180.0 -16.67
4 1.157 1.082 18.06 -0.579 10.11 0.191 -14.39 2.720 5.183 0.751 29.31 -1.793 3.027 0.965 1.222 1.083 16.09 -0.393 3.621 0.860
5 6.806 0.511 7.581 0.480 8.572 0.346 5.418 0.716 0.436 1.231 10.68 0.0913 4.499 0.816 9.120 0.284 3.465 0.884 4.161 0.805
6 6.938 0.498 5.331 0.703 7.192 0.483 3.575 0.899 1.295 1.146 10.12 0.146 3.856 0.880 10.28 0.170 5.028 0.729 4.589 0.763
7 5.85 0.624 4.793 0.765 6.535 0.559 4.237 0.822 2.601 0.995 10.70 0.0789 5.698 0.666 9.582 0.250 8.589 0.316 4.557 0.767
8 6.067 0.593 4.890 0.752 6.658 0.542 4.554 0.776 2.725 0.977 10.52 0.106 5.724 0.662 9.62 0.245 8.233 0.367 4.720 0.743
9 4.348 0.769 4.258 0.816 5.544 0.655 3.950 0.838 2.441 1.006 8.192 0.343 6.673 0.565 7.283 0.483 7.810 0.410 4.177 0.799
10 4.081 0.796 3.713 0.871 5.38 0.672 2.933 0.941 2.692 0.981 8.966 0.265 6.781 0.554 6.931 0.519 5.885 0.605 4.824 0.733
11 4.033 0.802 3.713 0.871 5.384 0.671 2.648 0.978 2.774 0.97 8.922 0.270 6.928 0.536 6.934 0.519 5.448 0.661 4.789 0.738
12 4.358 0.764 3.900 0.85 5.581 0.649 3.883 0.835 3.176 0.924 8.360 0.335 7.433 0.477 6.639 0.553 6.307 0.562 4.898 0.725
13 4.097 0.795 4.200 0.815 5.605 0.646 3.935 0.829 3.497 0.886 7.633 0.420 7.53 0.466 6.519 0.567 5.833 0.617 5.045 0.708
14 4.379 0.763 4.549 0.776 5.829 0.621 4.752 0.738 4.101 0.819 7.446 0.441 8.12 0.4 6.625 0.555 6.034 0.595 5.067 0.705
15 4.396 0.763 4.503 0.776 5.827 0.621 4.733 0.738 4.066 0.819 7.452 0.441 8.119 0.4 6.618 0.555 6.025 0.595 5.016 0.706
16 4.586 0.744 3.653 0.864 6.274 0.575 4.084 0.805 3.581 0.869 7.24 0.463 7.064 0.509 6.432 0.574 4.945 0.706 4.441 0.765
17 4.891 0.714 4.166 0.813 6.091 0.593 4.655 0.749 4.086 0.819 7.148 0.472 7.027 0.512 6.375 0.58 5.403 0.661 5.17 0.693
18 4.894 0.714 4.158 0.814 6.085 0.593 4.634 0.75 4.041 0.822 7.167 0.471 6.986 0.515 6.352 0.581 5.408 0.66 5.162 0.694
19 4.891 0.714 4.189 0.809 6.071 0.595 4.653 0.747 4.075 0.817 7.193 0.467 7.021 0.51 6.397 0.575 5.403 0.661 5.154 0.695
20 5.138 0.686 4.285 0.798 6.073 0.595 4.207 0.798 4.301 0.791 6.794 0.512 7.283 0.48 6.48 0.565 5.176 0.687 4.994 0.713
21 5.079 0.693 4.48 0.774 6.097 0.592 4.704 0.737 4.422 0.777 6.766 0.516 7.346 0.472 6.593 0.551 5.247 0.678 5.226 0.685
22 5.089 0.692 4.425 0.781 6.044 0.599 4.53 0.758 4.469 0.771 6.685 0.526 7.351 0.471 6.622 0.548 5.141 0.691 5.055 0.705
23 5.068 0.693 4.386 0.783 6.053 0.598 4.547 0.757 4.425 0.774 6.673 0.526 7.304 0.475 6.574 0.551 5.104 0.694 4.927 0.714
24 5.02 0.7 4.44 0.776 6.064 0.597 4.509 0.762 4.358 0.783 6.612 0.534 7.282 0.478 6.549 0.554 5.024 0.704 4.76 0.736
25 5.024 0.699 4.122 0.807 6.052 0.598 4.502 0.763 4.104 0.807 6.345 0.56 7.079 0.497 6.291 0.58 4.761 0.73 4.848 0.727
26 5.288 0.672 4.225 0.797 5.863 0.617 4.602 0.752 4.268 0.791 6.611 0.533 7.101 0.495 5.708 0.639 5.067 0.699 4.665 0.746
27 5.575 0.643 4.517 0.767 6.059 0.597 4.765 0.736 4.516 0.766 6.586 0.536 7.238 0.481 5.859 0.623 5.324 0.673 5.265 0.685
28 5.653 0.635 4.541 0.765 5.993 0.604 4.779 0.734 4.589 0.758 6.565 0.538 6.959 0.51 5.902 0.619 5.427 0.662 5.067 0.705
29 5.656 0.635 4.496 0.772 6.016 0.6 4.763 0.737 4.543 0.765 6.533 0.543 6.977 0.507 5.848 0.627 5.447 0.659 5.015 0.713
30 5.654 0.635 4.533 0.767 6.037 0.598 4.9 0.72 4.62 0.756 6.518 0.545 7.034 0.5 5.891 0.622 5.384 0.667 4.994 0.716
31 5.659 0.634 4.553 0.764 6.038 0.597 4.918 0.717 4.645 0.752 6.526 0.544 7.044 0.498 5.897 0.621 5.411 0.662 5.034 0.709
32 5.665 0.633 4.543 0.765 6.039 0.597 4.955 0.712 4.637 0.753 6.532 0.543 7.046 0.498 5.915 0.619 5.39 0.665 5.03 0.71
33 5.638 0.637 4.518 0.769 6.011 0.601 4.922 0.717 4.652 0.751 6.503 0.547 7.033 0.5 5.905 0.62 5.377 0.667 5.035 0.709
34 5.646 0.637 4.488 0.771 6.021 0.601 4.98 0.713 4.661 0.75 6.501 0.547 6.996 0.503 5.905 0.62 5.39 0.666 5.023 0.71
35 5.645 0.637 4.478 0.773 6.018 0.601 5.015 0.707 4.643 0.753 6.498 0.548 6.992 0.503 5.908 0.62 5.381 0.667 5.015 0.711
36 5.652 0.636 4.523 0.767 6.043 0.598 5.013 0.708 4.676 0.749 6.507 0.546 7.017 0.5 5.929 0.617 5.404 0.664 5.054 0.706
37 5.693 0.631 4.543 0.764 6.047 0.597 5.085 0.699 4.632 0.754 6.509 0.546 7.104 0.49 5.967 0.612 5.392 0.666 5.063 0.705
38 5.736 0.626 4.67 0.749 6.079 0.593 5.184 0.687 4.753 0.739 6.531 0.544 7.188 0.48 6.029 0.605 5.484 0.655 5.253 0.683
39 5.702 0.631 4.674 0.749 6.067 0.595 5.162 0.69 4.771 0.737 6.523 0.545 7.173 0.482 6.028 0.605 5.485 0.655 5.222 0.687
40 5.702 0.631 4.672 0.749 6.069 0.595 5.162 0.69 4.77 0.737 6.526 0.545 7.178 0.482 6.029 0.605 5.485 0.655 5.212 0.686
41 5.707 0.63 4.653 0.751 6.075 0.594 5.156 0.691 4.756 0.739 6.535 0.544 7.18 0.482 6.041 0.604 5.473 0.656 5.205 0.687
42 5.693 0.632 4.692 0.746 6.073 0.595 5.162 0.69 4.77 0.737 6.5 0.548 7.152 0.485 6.032 0.605 5.472 0.656 5.257 0.681
43 5.702 0.631 4.732 0.741 6.046 0.598 5.196 0.686 4.806 0.733 6.503 0.548 7.152 0.485 6.031 0.605 5.484 0.655 5.285 0.678
44 5.723 0.628 4.824 0.731 6.055 0.597 5.253 0.68 4.865 0.726 6.496 0.548 7.185 0.481 6.061 0.601 5.521 0.651 5.291 0.677
45 5.764 0.624 4.932 0.719 6.109 0.591 5.339 0.67 4.947 0.717 6.508 0.547 7.287 0.47 6.117 0.595 5.599 0.642 5.351 0.67
46 5.766 0.624 4.92 0.719 6.107 0.591 5.333 0.67 4.937 0.717 6.505 0.547 7.288 0.47 6.116 0.595 5.617 0.642 5.336 0.67
47 5.78 0.622 4.926 0.718 6.096 0.592 5.375 0.667 4.964 0.714 6.51 0.547 7.28 0.471 6.11 0.596 5.557 0.647 5.365 0.668
48 5.801 0.62 4.943 0.717 6.11 0.591 5.357 0.668 4.951 0.716 6.515 0.546 7.235 0.475 6.092 0.597 5.656 0.638 5.36 0.668
49 5.855 0.616 4.977 0.714 6.101 0.591 5.389 0.666 4.976 0.713 6.518 0.546 7.231 0.475 6.087 0.598 5.655 0.638 5.388 0.666
50 5.838 0.617 4.935 0.718 6.12 0.59 5.387 0.666 4.962 0.715 6.511 0.547 7.213 0.477 6.077 0.599 5.667 0.637 5.381 0.666
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Table C2. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment A for Subjects 11-20.

Period(t) â11 b̂11 â12 b̂12 â13 b̂13 â14 b̂14 â15 b̂15 â16 b̂16 â17 b̂17 â18 b̂18 â19 b̂19 â20 b̂20
3 108.0 -9.500 116.4 -10.33 -51.97 6.500 137.2 -12.42 104.7 -9.167 19.11 -0.833 12.20 0.0833 229.1 -21.58 138.0 -12.50 16.45 -0.417
4 2.148 1.022 -2.433 1.471 -14.73 2.8 9.154 0.307 5.428 0.698 8.644 0.207 -3.570 1.65 3.495 0.836 11.65 0.0585 3.783 0.842
5 4.268 0.807 0.984 1.126 3.460 0.960 4.908 0.736 5.182 0.723 6.837 0.39 -0.569 1.347 5.911 0.592 8.442 0.383 4.784 0.741
6 4.074 0.826 1.485 1.076 -0.362 1.338 4.873 0.740 4.251 0.815 12.02 -0.123 -0.747 1.364 6.286 0.555 7.780 0.448 3.928 0.825
7 5.081 0.709 1.573 1.066 3.209 0.924 4.050 0.835 5.567 0.662 10.52 0.0512 1.637 1.088 5.571 0.638 8.57 0.357 4.534 0.755
8 5.128 0.703 1.770 1.038 3.670 0.858 4.219 0.811 5.635 0.652 10.23 0.0927 1.735 1.074 5.851 0.598 8.628 0.348 4.507 0.759
9 5.083 0.707 3.262 0.885 3.327 0.893 3.373 0.897 5.382 0.678 8.918 0.226 2.363 1.009 7.027 0.478 7.793 0.434 4.888 0.72
10 5.02 0.714 3.506 0.861 3.696 0.855 4.228 0.811 5.282 0.688 9.657 0.151 3.078 0.937 6.129 0.569 7.032 0.511 5.154 0.693
11 5.069 0.707 3.557 0.854 3.574 0.871 4.399 0.789 5.352 0.679 9.215 0.208 3.204 0.921 5.060 0.706 7.124 0.499 5.139 0.695
12 5.218 0.69 3.743 0.833 3.998 0.822 5.284 0.687 5.583 0.653 8.161 0.330 3.639 0.871 5.416 0.665 7.076 0.504 5.152 0.693
13 5.247 0.687 3.784 0.828 4.172 0.802 5.25 0.691 5.517 0.66 7.612 0.394 3.57 0.879 5.571 0.646 6.964 0.517 5.016 0.709
14 5.631 0.644 4.159 0.786 4.689 0.744 5.71 0.639 5.972 0.61 6.554 0.512 4.216 0.807 5.854 0.615 7.369 0.472 5.199 0.689
15 5.632 0.644 4.183 0.786 4.691 0.744 5.693 0.639 5.971 0.61 6.53 0.512 4.228 0.806 5.884 0.615 7.363 0.472 5.204 0.689
16 5.209 0.687 5.55 0.645 6.483 0.56 5.967 0.611 5.636 0.644 5.422 0.626 4.6 0.768 4.656 0.741 6.456 0.566 5.037 0.706
17 5.336 0.675 5.738 0.627 6.042 0.603 5.926 0.615 5.733 0.634 6.034 0.566 4.81 0.748 5.089 0.698 6.456 0.566 5.218 0.688
18 5.343 0.674 5.798 0.623 6.096 0.6 5.905 0.617 5.741 0.634 6.03 0.566 4.819 0.747 5.042 0.702 6.449 0.566 5.201 0.689
19 5.356 0.673 5.784 0.625 6.146 0.592 5.907 0.616 5.757 0.632 5.967 0.576 4.84 0.744 4.976 0.711 6.481 0.561 5.206 0.689
20 5.383 0.67 5.972 0.604 5.908 0.619 6.055 0.6 5.803 0.626 5.496 0.63 5.119 0.712 5.282 0.676 6.577 0.55 5.332 0.674
21 5.416 0.665 5.974 0.603 6.026 0.605 6.077 0.597 5.837 0.622 5.597 0.617 5.212 0.7 5.285 0.676 6.626 0.544 5.351 0.672
22 5.415 0.666 5.955 0.606 6.033 0.604 6.049 0.6 5.836 0.622 5.267 0.657 5.277 0.693 5.239 0.681 6.637 0.543 5.358 0.671
23 5.415 0.666 5.985 0.603 6.041 0.604 6.043 0.601 5.835 0.622 5.182 0.663 5.268 0.693 5.21 0.683 6.627 0.544 5.348 0.672
24 5.405 0.667 5.957 0.607 6.033 0.605 6.032 0.602 5.823 0.624 5.096 0.674 5.282 0.691 5.177 0.688 6.626 0.544 5.346 0.672
25 5.392 0.668 6.102 0.593 5.706 0.637 5.993 0.606 5.779 0.628 4.748 0.708 5.269 0.693 4.974 0.708 6.555 0.551 5.361 0.67
26 5.541 0.653 6.364 0.566 5.669 0.64 5.982 0.607 5.839 0.622 5.213 0.661 5.343 0.685 5.23 0.682 6.522 0.554 5.443 0.662
27 5.677 0.639 6.341 0.569 5.818 0.625 6.077 0.597 5.982 0.608 5.281 0.654 5.529 0.666 5.429 0.661 6.594 0.547 5.625 0.644
28 5.729 0.634 6.31 0.572 5.872 0.62 6.023 0.603 5.967 0.609 5.438 0.638 5.541 0.665 5.539 0.65 6.5 0.557 5.636 0.642
29 5.748 0.631 6.329 0.569 5.851 0.623 6.134 0.585 5.987 0.606 5.367 0.649 5.581 0.659 5.54 0.65 6.523 0.553 5.657 0.639
30 5.749 0.631 6.345 0.567 5.852 0.623 5.874 0.617 6.01 0.603 5.35 0.651 5.671 0.648 5.525 0.652 6.537 0.551 5.692 0.635
31 5.748 0.631 6.35 0.566 5.877 0.619 5.835 0.623 6.01 0.603 5.363 0.649 5.678 0.647 5.522 0.652 6.539 0.551 5.692 0.635
32 5.759 0.629 6.363 0.564 5.919 0.613 5.903 0.614 6.024 0.601 5.331 0.653 5.699 0.644 5.537 0.65 6.549 0.55 5.701 0.634
33 5.744 0.632 6.34 0.568 5.885 0.618 5.859 0.62 6.007 0.604 5.279 0.661 5.69 0.645 5.514 0.653 6.533 0.552 5.683 0.636
34 5.752 0.631 6.339 0.568 5.865 0.619 5.756 0.628 6.018 0.603 5.272 0.661 5.694 0.645 5.491 0.655 6.534 0.552 5.678 0.637
35 5.751 0.631 6.344 0.567 5.851 0.622 5.772 0.626 6.022 0.602 5.226 0.668 5.7 0.644 5.499 0.654 6.539 0.551 5.674 0.637
36 5.767 0.629 6.38 0.562 5.916 0.613 5.803 0.621 6.043 0.6 5.263 0.663 5.735 0.639 5.511 0.652 6.56 0.548 5.682 0.636
37 5.803 0.625 6.361 0.565 5.819 0.624 5.762 0.626 6.071 0.596 5.102 0.682 5.812 0.63 5.593 0.643 6.594 0.544 5.727 0.631
38 5.861 0.618 6.37 0.564 5.923 0.612 5.822 0.619 6.121 0.59 5.025 0.691 5.885 0.622 5.623 0.639 6.638 0.539 5.79 0.623
39 5.857 0.618 6.361 0.565 5.878 0.618 5.804 0.622 6.11 0.592 5.032 0.69 5.883 0.622 5.606 0.641 6.623 0.541 5.78 0.625
40 5.858 0.619 6.362 0.565 5.877 0.618 5.802 0.621 6.112 0.592 5.039 0.691 5.884 0.622 5.606 0.641 6.624 0.541 5.782 0.625
41 5.875 0.617 6.37 0.564 5.908 0.614 5.839 0.617 6.121 0.591 5.012 0.694 5.911 0.619 5.62 0.64 6.649 0.538 5.775 0.626
42 5.864 0.618 6.363 0.565 5.913 0.614 5.798 0.622 6.104 0.593 5.007 0.695 5.916 0.618 5.608 0.641 6.645 0.539 5.767 0.627
43 5.861 0.618 6.351 0.566 5.927 0.612 5.863 0.614 6.106 0.593 4.993 0.696 5.933 0.616 5.654 0.636 6.641 0.539 5.772 0.626
44 5.892 0.615 6.354 0.566 5.963 0.608 5.905 0.609 6.146 0.588 5.015 0.694 5.991 0.609 5.606 0.641 6.66 0.537 5.815 0.621
45 5.96 0.607 6.32 0.569 5.995 0.604 5.973 0.602 6.198 0.582 5.04 0.691 6.085 0.599 5.688 0.632 6.696 0.533 5.885 0.613
46 5.96 0.607 6.317 0.569 5.997 0.604 5.99 0.602 6.198 0.582 5.03 0.691 6.087 0.599 5.693 0.632 6.696 0.533 5.886 0.613
47 5.968 0.606 6.322 0.569 5.982 0.606 5.917 0.608 6.213 0.581 5.068 0.688 6.097 0.598 5.702 0.631 6.693 0.533 5.905 0.612
48 5.976 0.605 6.317 0.569 5.986 0.605 5.971 0.603 6.218 0.58 5.125 0.682 6.114 0.596 5.707 0.631 6.677 0.535 5.929 0.609
49 5.978 0.605 6.319 0.569 5.984 0.605 5.963 0.604 6.217 0.58 5.171 0.678 6.111 0.597 5.725 0.629 6.671 0.535 5.941 0.608
50 5.983 0.605 6.327 0.569 5.988 0.605 5.973 0.603 6.215 0.581 5.202 0.676 6.112 0.597 5.73 0.629 6.659 0.536 5.949 0.608
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Table C3. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment A for Subjects 21-30.

Period(t) â21 b̂21 â22 b̂22 â23 b̂23 â24 b̂24 â25 b̂25 â26 b̂26 â27 b̂27 â28 b̂28 â29 b̂29 â30 b̂30
3 79.70 -6.667 -301.6 31.08 151.4 -13.83 11.11 0.167 -17.72 3.000 116.4 -10.33 138.0 -12.50 179.8 -16.50 247.1 -23.33 229.6 -21.58
4 0.928 1.161 6.721 0.450 6.614 0.550 -6.596 1.926 10.58 0.187 -0.834 1.313 4.596 0.759 -11.39 2.497 12.47 -0.0166 6.766 0.556
5 3.295 0.921 14.18 -0.304 6.738 0.538 5.043 0.749 12.77 -0.0333 3.345 0.890 4.813 0.737 -1.620 1.509 6.154 0.622 2.592 0.978
6 3.236 0.927 11.94 -0.0823 6.592 0.552 3.425 0.910 8.162 0.422 3.943 0.831 5.812 0.638 -2.037 1.550 5.440 0.693 4.172 0.822
7 4.590 0.77 10.89 0.0397 6.419 0.572 5.481 0.671 9.845 0.227 4.086 0.814 6.511 0.557 1.558 1.133 5.391 0.698 4.310 0.806
8 4.682 0.757 10.74 0.0605 6.381 0.578 5.541 0.662 9.872 0.223 4.302 0.783 6.559 0.551 1.772 1.102 5.559 0.674 4.243 0.815
9 4.8 0.745 10.5 0.0851 5.981 0.619 4.220 0.797 7.389 0.477 4.47 0.766 5.348 0.674 1.307 1.149 5.030 0.728 4.023 0.838
10 4.844 0.74 9.514 0.185 5.651 0.652 3.682 0.852 6.632 0.554 5.085 0.704 5.646 0.644 1.795 1.1 4.876 0.744 3.544 0.886
11 4.947 0.727 8.992 0.252 5.672 0.649 3.728 0.846 6.646 0.552 4.899 0.728 5.587 0.652 1.898 1.087 4.955 0.734 3.625 0.876
12 5.271 0.69 8.661 0.290 5.759 0.639 4.425 0.765 6.892 0.523 5.221 0.69 5.482 0.664 2.875 0.974 5.488 0.672 3.823 0.853
13 5.306 0.685 7.842 0.386 5.768 0.638 4.71 0.732 6.822 0.532 5.255 0.686 5.462 0.666 3.147 0.942 5.28 0.696 4.129 0.817
14 5.765 0.634 6.551 0.530 6.047 0.607 4.648 0.739 7.145 0.495 5.577 0.651 5.625 0.648 4.162 0.829 6.321 0.58 3.566 0.88
15 5.769 0.634 6.55 0.530 6.04 0.607 4.66 0.739 7.128 0.496 5.557 0.651 5.63 0.648 4.095 0.829 6.324 0.58 3.523 0.88
16 5.574 0.654 6.169 0.569 5.26 0.688 5.417 0.661 7.063 0.502 5.344 0.673 5.989 0.611 3.488 0.892 5.577 0.657 3.889 0.843
17 5.663 0.645 6.41 0.546 5.285 0.685 5.709 0.632 6.881 0.52 5.601 0.647 6.077 0.602 4.164 0.825 5.716 0.643 4.062 0.826
18 5.658 0.646 6.392 0.547 5.29 0.685 5.762 0.629 6.871 0.521 5.619 0.646 6.06 0.603 4.193 0.824 5.685 0.645 4.045 0.827
19 5.68 0.643 6.363 0.551 5.321 0.68 5.773 0.627 6.908 0.515 5.625 0.645 6.072 0.602 4.233 0.818 5.691 0.645 4.114 0.817
20 5.8 0.629 6.301 0.558 5.486 0.661 5.848 0.619 6.676 0.542 5.71 0.636 6.172 0.59 4.368 0.802 5.598 0.655 4.411 0.783
21 5.837 0.624 6.374 0.549 5.543 0.654 5.81 0.623 6.735 0.535 5.737 0.632 6.178 0.589 4.697 0.762 5.638 0.65 4.492 0.773
22 5.844 0.623 6.147 0.576 5.568 0.651 5.815 0.623 6.733 0.535 5.712 0.635 6.181 0.589 4.704 0.761 5.665 0.647 4.587 0.761
23 5.845 0.623 6.162 0.575 5.567 0.651 5.8 0.624 6.721 0.536 5.716 0.635 6.176 0.589 4.583 0.769 5.666 0.647 4.597 0.761
24 5.847 0.623 6.124 0.58 5.56 0.652 5.858 0.616 6.713 0.537 5.706 0.636 6.166 0.591 4.473 0.784 5.659 0.648 4.648 0.754
25 5.828 0.625 6.089 0.584 5.549 0.653 5.961 0.606 6.55 0.553 5.609 0.646 6.014 0.605 4.414 0.789 5.548 0.659 4.63 0.756
26 5.87 0.621 6.082 0.584 5.677 0.64 5.851 0.617 6.419 0.566 5.678 0.639 6.111 0.596 3.955 0.836 5.798 0.633 4.959 0.722
27 6.006 0.607 6.222 0.57 5.841 0.624 6.015 0.6 6.44 0.564 5.868 0.619 6.124 0.594 4.076 0.824 5.756 0.638 5.133 0.705
28 5.991 0.608 6.257 0.567 5.916 0.616 6.003 0.602 6.292 0.579 5.969 0.609 6.107 0.596 4.464 0.784 5.748 0.639 5.239 0.694
29 6.022 0.604 6.262 0.566 5.936 0.613 6.017 0.6 6.332 0.573 5.975 0.608 6.12 0.594 4.49 0.78 5.785 0.633 5.259 0.69
30 6.045 0.601 6.209 0.572 5.953 0.611 6.031 0.598 6.289 0.578 6.004 0.605 6.115 0.595 4.617 0.764 5.714 0.641 5.305 0.685
31 6.042 0.601 6.201 0.573 5.952 0.611 6.024 0.599 6.307 0.575 6.018 0.602 6.118 0.594 4.579 0.77 5.713 0.642 5.311 0.684
32 6.053 0.6 6.199 0.574 5.963 0.609 6.013 0.6 6.325 0.573 6.015 0.603 6.136 0.592 4.639 0.762 5.751 0.636 5.338 0.68
33 6.036 0.602 6.173 0.577 5.949 0.612 5.998 0.603 6.301 0.576 5.994 0.606 6.117 0.594 4.646 0.761 5.731 0.639 5.323 0.682
34 6.036 0.602 6.186 0.577 5.958 0.611 6.04 0.6 6.325 0.574 6.013 0.604 6.104 0.595 4.645 0.761 5.69 0.642 5.321 0.683
35 6.038 0.602 6.178 0.578 5.958 0.611 6.043 0.599 6.351 0.57 6.022 0.603 6.104 0.595 4.66 0.759 5.678 0.644 5.319 0.683
36 6.053 0.6 6.186 0.577 5.974 0.609 6.04 0.599 6.364 0.569 6.043 0.6 6.118 0.594 4.705 0.753 5.682 0.644 5.355 0.678
37 6.085 0.596 6.188 0.576 6 0.606 6.09 0.594 6.375 0.567 6.088 0.595 6.139 0.591 4.884 0.732 5.79 0.631 5.371 0.676
38 6.138 0.59 6.212 0.574 6.059 0.599 6.15 0.586 6.418 0.562 6.165 0.586 6.192 0.585 4.978 0.721 5.839 0.625 5.47 0.664
39 6.124 0.592 6.193 0.576 6.056 0.599 6.164 0.585 6.408 0.563 6.159 0.587 6.187 0.585 4.99 0.719 5.846 0.624 5.449 0.667
40 6.126 0.592 6.195 0.576 6.058 0.599 6.165 0.585 6.408 0.563 6.164 0.587 6.19 0.586 4.996 0.72 5.846 0.624 5.447 0.667
41 6.144 0.59 6.196 0.576 6.066 0.598 6.178 0.583 6.406 0.564 6.149 0.589 6.205 0.584 5.04 0.714 5.875 0.621 5.459 0.666
42 6.136 0.591 6.165 0.58 6.053 0.6 6.159 0.585 6.415 0.563 6.127 0.591 6.198 0.584 5.056 0.712 5.855 0.623 5.483 0.663
43 6.14 0.59 6.139 0.583 6.045 0.601 6.122 0.59 6.41 0.563 6.102 0.594 6.197 0.585 5.111 0.706 5.914 0.616 5.501 0.661
44 6.181 0.585 6.141 0.583 6.081 0.597 6.133 0.588 6.444 0.559 6.144 0.589 6.225 0.581 5.248 0.69 5.911 0.616 5.581 0.652
45 6.195 0.584 6.178 0.579 6.142 0.59 6.143 0.587 6.449 0.559 6.208 0.582 6.235 0.58 5.388 0.674 6.015 0.605 5.636 0.645
46 6.196 0.584 6.179 0.579 6.141 0.59 6.143 0.587 6.442 0.559 6.208 0.582 6.232 0.58 5.383 0.674 6.01 0.605 5.632 0.645
47 6.207 0.583 6.196 0.577 6.143 0.59 6.157 0.586 6.458 0.557 6.224 0.581 6.23 0.58 5.394 0.673 6.022 0.604 5.633 0.645
48 6.213 0.582 6.211 0.576 6.142 0.59 6.142 0.587 6.434 0.56 6.239 0.579 6.21 0.582 5.414 0.672 6.008 0.605 5.644 0.644
49 6.215 0.582 6.22 0.575 6.142 0.59 6.172 0.585 6.438 0.559 6.24 0.579 6.217 0.582 5.414 0.671 6.009 0.605 5.647 0.644
50 6.216 0.582 6.233 0.574 6.143 0.59 6.211 0.581 6.433 0.56 6.252 0.578 6.216 0.582 5.424 0.671 6.014 0.604 5.649 0.644
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Table C4. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment U for Subjects 1-10.

Period(t) â1 b̂1 â2 b̂2 â3 b̂3 â4 b̂4 â5 b̂5 â6 b̂6 â7 b̂7 â8 b̂8 â9 b̂9 â10 b̂10
3 5.62 0.663 6.116 0.567 6.871 0.322 4.279 0.856 6.381 0.643 7.054 0.608 9.337 0.225 4.823 0.95 7.74 0.505 10.3 0.247
4 5.736 0.651 6.387 0.538 5.117 0.508 6.285 0.644 6.862 0.592 7.385 0.573 6.463 0.529 5.027 0.929 6.543 0.631 5.9 0.712
5 6 0.6 6.137 0.586 5.67 0.402 6.705 0.564 8.176 0.341 7.627 0.527 5.693 0.676 7.694 0.42 7.372 0.473 7.019 0.499
6 6.028 0.599 6.121 0.587 5.833 0.392 6.725 0.562 7.675 0.374 6.683 0.588 5.524 0.687 7.407 0.439 7.148 0.488 6.759 0.516
7 5.97 0.602 6.054 0.591 5.995 0.383 6.041 0.601 7.347 0.393 6.572 0.594 5.559 0.685 7.162 0.453 6.882 0.503 6.448 0.534
8 5.972 0.601 6.049 0.594 5.814 0.482 6.013 0.616 7.3 0.418 6.571 0.595 5.553 0.689 7.095 0.489 6.892 0.497 6.451 0.532
9 5.976 0.6 6.05 0.594 5.779 0.492 5.949 0.636 7.229 0.439 6.613 0.582 5.6 0.674 7.078 0.495 6.872 0.503 6.379 0.553
10 5.959 0.603 6.053 0.593 5.133 0.608 5.906 0.643 7.017 0.478 6.666 0.573 5.724 0.652 6.904 0.526 6.769 0.522 6.208 0.584
11 5.971 0.602 6.072 0.592 5.054 0.613 6.058 0.635 6.967 0.48 6.52 0.58 5.676 0.655 6.765 0.533 6.629 0.529 5.993 0.596
12 5.971 0.602 6.072 0.593 5.057 0.607 6.059 0.633 6.965 0.487 6.522 0.577 5.677 0.652 6.765 0.532 6.627 0.534 5.992 0.597
13 5.97 0.604 6.071 0.594 5.058 0.604 6.064 0.625 6.961 0.493 6.522 0.576 5.678 0.65 6.76 0.54 6.625 0.537 5.992 0.597
14 5.963 0.604 6.063 0.594 5.09 0.603 6.02 0.627 6.955 0.494 6.446 0.579 5.643 0.651 6.551 0.548 6.665 0.536 5.985 0.598
15 5.976 0.603 6.073 0.594 5.203 0.597 6.021 0.627 6.92 0.496 6.308 0.587 5.65 0.651 6.563 0.547 6.625 0.538 5.791 0.608
16 5.934 0.606 6.028 0.596 5.171 0.598 5.943 0.631 6.834 0.5 6.29 0.588 5.607 0.654 6.47 0.553 6.526 0.544 5.696 0.614
17 5.952 0.605 6.047 0.595 5.231 0.595 5.869 0.635 6.829 0.501 6.268 0.589 5.628 0.653 6.526 0.55 6.524 0.544 5.779 0.61
18 5.949 0.605 6.041 0.596 5.296 0.584 5.954 0.62 6.751 0.514 6.257 0.591 5.644 0.65 6.495 0.555 6.481 0.551 5.687 0.626
19 5.955 0.605 6.029 0.597 5.499 0.569 6.332 0.593 6.653 0.521 6.441 0.577 5.676 0.648 6.03 0.589 6.478 0.552 5.981 0.604
20 5.959 0.605 6.033 0.597 5.49 0.57 6.331 0.593 6.662 0.521 6.455 0.577 5.674 0.648 6.067 0.588 6.467 0.552 5.956 0.605
21 5.96 0.605 6.038 0.597 5.476 0.57 6.272 0.596 6.64 0.522 6.421 0.579 5.681 0.647 6.068 0.588 6.45 0.553 5.968 0.604
22 5.964 0.605 6.043 0.597 5.43 0.571 6.276 0.596 6.644 0.522 6.415 0.579 5.68 0.647 6.11 0.588 6.455 0.553 5.983 0.604
23 5.971 0.604 6.041 0.597 5.555 0.561 6.191 0.602 6.586 0.527 6.284 0.589 5.718 0.644 6.105 0.588 6.39 0.558 6.036 0.6
24 5.982 0.604 6.042 0.597 5.579 0.56 6.207 0.601 6.581 0.527 6.302 0.588 5.728 0.644 6.109 0.588 6.386 0.558 6.094 0.597
25 5.983 0.603 6.044 0.596 5.598 0.554 6.207 0.602 6.574 0.529 6.306 0.586 5.741 0.639 6.114 0.586 6.383 0.559 6.104 0.594
26 5.985 0.603 6.04 0.597 5.623 0.552 6.169 0.604 6.546 0.531 6.307 0.586 5.752 0.639 6.106 0.587 6.377 0.559 6.083 0.595
27 6 0.602 6.056 0.596 5.626 0.552 6.15 0.606 6.536 0.532 6.297 0.587 5.77 0.637 6.118 0.586 6.372 0.559 6.118 0.593
28 6 0.602 6.056 0.596 5.629 0.547 6.15 0.606 6.535 0.533 6.294 0.59 5.772 0.635 6.118 0.585 6.372 0.559 6.118 0.593
29 5.982 0.603 6.032 0.598 5.687 0.543 6.144 0.606 6.481 0.537 6.146 0.602 5.775 0.635 6.088 0.588 6.296 0.565 6.053 0.598
30 5.981 0.603 6.031 0.598 5.678 0.542 6.163 0.607 6.483 0.537 6.138 0.602 5.771 0.635 6.088 0.588 6.298 0.565 6.045 0.598
31 5.981 0.603 6.031 0.598 5.695 0.543 6.127 0.606 6.487 0.537 6.138 0.602 5.769 0.635 6.089 0.588 6.295 0.565 6.048 0.598
32 5.981 0.603 6.03 0.598 5.704 0.546 6.122 0.604 6.488 0.538 6.14 0.603 5.768 0.634 6.09 0.588 6.296 0.566 6.043 0.596
33 5.98 0.604 6.029 0.598 5.673 0.565 6.119 0.606 6.484 0.54 6.144 0.6 5.768 0.634 6.088 0.589 6.294 0.567 6.043 0.596
34 5.984 0.604 6.033 0.598 5.673 0.565 6.124 0.606 6.49 0.54 6.147 0.6 5.771 0.634 6.091 0.589 6.294 0.567 6.048 0.596
35 5.983 0.604 6.032 0.599 5.489 0.598 6.149 0.601 6.466 0.545 6.14 0.601 5.788 0.631 6.089 0.59 6.272 0.571 6.058 0.594
36 5.989 0.603 6.035 0.598 5.318 0.626 6.166 0.598 6.442 0.548 6.141 0.601 5.816 0.626 6.088 0.59 6.245 0.575 6.088 0.589
37 5.986 0.603 6.032 0.598 5.307 0.627 6.15 0.599 6.442 0.548 6.131 0.601 5.812 0.627 6.086 0.59 6.24 0.575 6.088 0.589
38 5.99 0.602 6.035 0.597 5.273 0.637 6.148 0.599 6.439 0.549 6.135 0.6 5.818 0.625 6.087 0.589 6.241 0.575 6.087 0.589
39 5.992 0.602 6.037 0.597 5.231 0.636 6.162 0.599 6.445 0.549 6.136 0.6 5.819 0.625 6.089 0.589 6.244 0.575 6.081 0.589
40 6.002 0.601 6.048 0.597 5.257 0.635 6.081 0.605 6.443 0.549 6.128 0.601 5.836 0.624 6.095 0.589 6.242 0.575 6.086 0.589
41 6.001 0.601 6.047 0.597 5.229 0.635 6.104 0.605 6.442 0.549 6.125 0.601 5.833 0.624 6.094 0.589 6.239 0.575 6.092 0.589
42 6.006 0.601 6.052 0.596 5.193 0.637 6.105 0.605 6.44 0.549 6.137 0.6 5.839 0.623 6.096 0.589 6.24 0.575 6.094 0.589
43 6.007 0.601 6.053 0.596 5.206 0.636 6.096 0.605 6.439 0.549 6.131 0.6 5.84 0.623 6.095 0.589 6.241 0.575 6.087 0.589
44 6.011 0.601 6.057 0.596 5.177 0.642 6.114 0.601 6.425 0.552 6.146 0.598 5.854 0.621 6.093 0.589 6.238 0.576 6.086 0.589
45 5.996 0.602 6.038 0.597 5.222 0.638 6.105 0.602 6.379 0.556 6.114 0.6 5.851 0.621 6.072 0.591 6.198 0.579 6.099 0.588
46 5.996 0.602 6.038 0.597 5.225 0.636 6.107 0.601 6.378 0.556 6.113 0.6 5.851 0.621 6.072 0.591 6.198 0.579 6.099 0.588
47 5.994 0.602 6.036 0.598 5.197 0.642 6.102 0.602 6.37 0.558 6.114 0.6 5.854 0.62 6.07 0.592 6.193 0.58 6.099 0.588
48 5.994 0.602 6.035 0.598 5.198 0.641 6.102 0.601 6.369 0.559 6.114 0.6 5.854 0.62 6.07 0.592 6.193 0.58 6.098 0.589
49 5.994 0.602 6.036 0.598 5.203 0.643 6.103 0.601 6.37 0.559 6.117 0.601 5.854 0.62 6.07 0.592 6.194 0.581 6.099 0.589
50 5.996 0.602 6.037 0.598 5.222 0.643 6.103 0.601 6.372 0.559 6.114 0.601 5.855 0.62 6.073 0.592 6.196 0.581 6.103 0.589
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Table C5. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment U for Subjects 11-20.

Period(t) â11 b̂11 â12 b̂12 â13 b̂13 â14 b̂14 â15 b̂15 â16 b̂16 â17 b̂17 â18 b̂18 â19 b̂19 â20 b̂20
3 10.1 0.241 5.276 0.726 3.394 0.937 5.386 0.729 3.454 0.932 5.787 0.718 8.081 0.486 4.018 0.86 6.209 0.683 5.803 0.621
4 6.991 0.57 5.629 0.688 4.25 0.847 6.463 0.615 5.983 0.664 5.794 0.718 6.201 0.685 5.959 0.655 7.502 0.546 5.823 0.618
5 7.256 0.519 5.979 0.621 5.025 0.699 7.501 0.417 7.481 0.379 6.474 0.588 7.477 0.442 6.253 0.599 8.612 0.335 5.922 0.6
6 6.767 0.551 6 0.62 4.929 0.705 7.366 0.426 6.895 0.417 6.277 0.601 7.362 0.45 6.134 0.606 7.723 0.393 5.946 0.598
7 6.579 0.562 5.961 0.622 4.801 0.713 7.38 0.425 6.887 0.417 6.151 0.608 6.904 0.476 6.032 0.612 7.373 0.413 5.918 0.6
8 6.582 0.56 5.973 0.616 4.81 0.708 7.399 0.415 6.763 0.485 6.161 0.602 6.864 0.497 6.037 0.609 7.306 0.449 5.911 0.603
9 6.581 0.561 5.99 0.611 4.832 0.701 7.237 0.463 6.738 0.493 6.177 0.598 6.796 0.518 6.052 0.605 7.21 0.478 5.911 0.604
10 6.524 0.571 6.034 0.603 4.882 0.692 7.154 0.478 6.335 0.565 6.2 0.593 6.651 0.544 6.077 0.6 7.03 0.51 5.902 0.605
11 6.243 0.586 6.046 0.602 4.901 0.691 7.453 0.463 6.362 0.564 6.171 0.595 6.546 0.549 6.067 0.601 6.88 0.518 5.923 0.604
12 6.243 0.584 6.046 0.603 4.901 0.69 7.453 0.462 6.357 0.576 6.171 0.594 6.545 0.55 6.067 0.601 6.88 0.52 5.923 0.605
13 6.243 0.586 6.046 0.603 4.901 0.69 7.45 0.467 6.357 0.576 6.171 0.595 6.544 0.552 6.067 0.601 6.878 0.522 5.922 0.606
14 6.161 0.589 6.027 0.603 4.888 0.69 7.417 0.468 6.308 0.578 6.143 0.596 6.514 0.554 6.05 0.602 6.826 0.524 5.919 0.606
15 6.242 0.584 6.026 0.604 4.913 0.689 7.331 0.473 6.23 0.582 6.138 0.596 6.456 0.557 6.05 0.602 6.767 0.528 5.937 0.605
16 6.21 0.586 5.976 0.606 4.881 0.691 7.18 0.482 6.114 0.589 6.074 0.6 6.367 0.562 5.999 0.605 6.656 0.534 5.9 0.607
17 6.201 0.587 5.982 0.606 4.9 0.69 7.171 0.482 6.073 0.591 6.092 0.599 6.374 0.562 6.006 0.604 6.638 0.535 5.917 0.606
18 6.184 0.59 5.99 0.605 4.909 0.688 7.133 0.489 6.051 0.595 6.083 0.6 6.35 0.566 6.006 0.604 6.595 0.542 5.913 0.607
19 6.605 0.559 5.989 0.605 4.939 0.686 6.985 0.5 5.959 0.601 6.064 0.602 6.278 0.571 6.003 0.605 6.489 0.55 5.926 0.606
20 6.608 0.559 5.994 0.605 4.945 0.686 6.977 0.5 5.971 0.601 6.06 0.602 6.279 0.571 6.004 0.604 6.491 0.55 5.931 0.606
21 6.57 0.561 5.991 0.605 4.949 0.686 6.934 0.502 5.972 0.601 6.049 0.603 6.265 0.572 5.999 0.605 6.466 0.551 5.934 0.606
22 6.559 0.561 5.994 0.605 4.951 0.686 6.931 0.502 5.973 0.601 6.048 0.603 6.272 0.571 6.002 0.605 6.47 0.551 5.939 0.606
23 6.514 0.564 5.992 0.605 4.971 0.684 6.873 0.506 5.992 0.599 6.044 0.603 6.239 0.574 6.004 0.605 6.423 0.555 5.95 0.605
24 6.474 0.567 6 0.605 4.987 0.683 6.843 0.508 6.001 0.599 6.047 0.603 6.242 0.574 6.012 0.604 6.417 0.555 5.961 0.604
25 6.477 0.565 6.001 0.604 4.989 0.683 6.842 0.508 6.006 0.597 6.052 0.601 6.238 0.575 6.014 0.603 6.415 0.556 5.963 0.604
26 6.45 0.567 6 0.604 5.002 0.682 6.881 0.506 6.011 0.597 6.049 0.601 6.22 0.576 6.012 0.603 6.393 0.557 5.968 0.603
27 6.428 0.569 6.019 0.603 5.027 0.68 6.834 0.508 6.028 0.596 6.061 0.601 6.225 0.576 6.025 0.603 6.39 0.558 5.985 0.602
28 6.427 0.57 6.019 0.603 5.026 0.68 6.835 0.508 6.028 0.595 6.061 0.6 6.224 0.577 6.026 0.603 6.39 0.558 5.985 0.603
29 6.463 0.567 6.003 0.604 5.022 0.681 6.8 0.51 6.016 0.596 6.027 0.603 6.174 0.581 6.005 0.604 6.334 0.562 5.968 0.604
30 6.459 0.567 6.001 0.604 5.024 0.681 6.822 0.511 6.015 0.596 6.025 0.603 6.176 0.581 6.004 0.604 6.336 0.563 5.969 0.604
31 6.454 0.567 6 0.604 5.028 0.681 6.811 0.511 6.014 0.596 6.024 0.603 6.178 0.581 6.004 0.604 6.337 0.563 5.969 0.604
32 6.455 0.567 5.999 0.604 5.028 0.681 6.81 0.51 6.013 0.596 6.023 0.603 6.178 0.581 6.003 0.604 6.337 0.563 5.969 0.604
33 6.455 0.567 5.997 0.605 5.026 0.682 6.809 0.511 6.012 0.596 6.022 0.603 6.176 0.582 6.002 0.605 6.335 0.564 5.968 0.605
34 6.453 0.567 6.001 0.605 5.035 0.682 6.824 0.511 6.015 0.596 6.024 0.603 6.18 0.582 6.005 0.604 6.337 0.564 5.972 0.604
35 6.444 0.569 6.001 0.605 5.039 0.681 6.817 0.512 6.021 0.595 6.03 0.602 6.172 0.584 6.006 0.604 6.332 0.565 5.971 0.605
36 6.424 0.572 6.009 0.603 5.069 0.676 6.788 0.517 6.071 0.587 6.034 0.601 6.169 0.584 6.013 0.603 6.326 0.566 5.977 0.604
37 6.412 0.573 6.005 0.604 5.073 0.676 6.813 0.516 6.068 0.587 6.028 0.602 6.165 0.584 6.01 0.603 6.325 0.566 5.974 0.604
38 6.417 0.571 6.01 0.602 5.077 0.675 6.81 0.517 6.072 0.586 6.032 0.601 6.167 0.584 6.014 0.602 6.325 0.566 5.978 0.603
39 6.415 0.571 6.011 0.602 5.083 0.675 6.823 0.517 6.073 0.586 6.034 0.601 6.168 0.584 6.015 0.602 6.329 0.566 5.98 0.603
40 6.396 0.573 6.02 0.602 5.103 0.673 6.853 0.515 6.084 0.585 6.042 0.6 6.17 0.584 6.023 0.602 6.329 0.566 5.991 0.602
41 6.391 0.573 6.018 0.602 5.106 0.673 6.861 0.515 6.083 0.585 6.042 0.6 6.169 0.584 6.022 0.602 6.324 0.566 5.99 0.602
42 6.38 0.573 6.022 0.601 5.121 0.672 6.854 0.515 6.087 0.585 6.043 0.6 6.17 0.584 6.026 0.601 6.323 0.566 5.995 0.602
43 6.375 0.573 6.023 0.601 5.128 0.672 6.847 0.515 6.088 0.585 6.043 0.6 6.17 0.584 6.026 0.601 6.323 0.566 5.996 0.602
44 6.367 0.575 6.027 0.601 5.143 0.67 6.851 0.515 6.093 0.584 6.05 0.599 6.168 0.584 6.031 0.601 6.323 0.566 6 0.601
45 6.296 0.58 6.011 0.602 5.131 0.67 6.802 0.518 6.08 0.585 6.032 0.6 6.138 0.586 6.014 0.602 6.284 0.569 5.986 0.602
46 6.296 0.58 6.011 0.602 5.131 0.67 6.802 0.518 6.08 0.585 6.032 0.6 6.137 0.587 6.014 0.602 6.284 0.57 5.986 0.602
47 6.289 0.582 6.01 0.602 5.132 0.67 6.797 0.519 6.079 0.585 6.031 0.6 6.133 0.588 6.013 0.602 6.275 0.572 5.984 0.603
48 6.289 0.582 6.01 0.602 5.132 0.67 6.797 0.52 6.079 0.585 6.031 0.601 6.133 0.588 6.013 0.602 6.275 0.572 5.984 0.603
49 6.292 0.582 6.01 0.602 5.133 0.67 6.798 0.52 6.079 0.585 6.031 0.601 6.133 0.588 6.013 0.602 6.276 0.572 5.984 0.603
50 6.29 0.582 6.011 0.602 5.138 0.67 6.801 0.52 6.08 0.585 6.032 0.601 6.135 0.588 6.014 0.602 6.278 0.572 5.986 0.603
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Table C6. Results of iterated regression in estimating pi,T = âi,T + b̂i,T × wT using
OLS in Treatment U for Subjects 21-29.

Period(t) â21 b̂21 â22 b̂22 â23 b̂23 â24 b̂24 â25 b̂25 â26 b̂26 â27 b̂27 â28 b̂28 â29 b̂29
3 6.611 0.643 5.746 0.567 4.118 0.871 5.465 0.748 0.238 1.206 7.182 0.635 9.881 0.142 4.901 0.808 8.004 0.44
4 5.881 0.72 6.174 0.522 5.409 0.734 7.03 0.582 5.774 0.62 5.715 0.791 5.779 0.576 5.38 0.758 5.91 0.662
5 7.46 0.419 5.682 0.616 5.966 0.628 6.966 0.594 6.291 0.521 6.191 0.7 6.552 0.429 6.111 0.618 6.617 0.527
6 7.181 0.437 5.703 0.614 5.889 0.633 6.521 0.623 6.818 0.487 6.265 0.695 6.937 0.404 6.058 0.622 6.423 0.54
7 6.993 0.448 5.761 0.611 5.854 0.635 6.314 0.635 6.63 0.498 5.915 0.715 6.617 0.422 5.973 0.627 6.235 0.55
8 6.942 0.475 5.751 0.617 5.864 0.63 6.34 0.62 6.537 0.548 6.025 0.654 6.511 0.48 5.988 0.618 6.232 0.552
9 6.856 0.501 5.738 0.621 5.898 0.62 6.391 0.605 6.535 0.549 6.117 0.627 6.39 0.516 6.002 0.614 6.162 0.573
10 6.709 0.528 5.799 0.609 5.909 0.618 6.454 0.594 6.449 0.564 6.205 0.611 6.19 0.552 6.044 0.607 6.051 0.593
11 6.661 0.53 5.912 0.604 5.58 0.635 6.031 0.616 6.662 0.553 6.619 0.59 6.12 0.556 6.023 0.608 6.018 0.594
12 6.658 0.536 5.912 0.604 5.58 0.635 6.032 0.615 6.664 0.549 6.622 0.582 6.119 0.557 6.023 0.607 6.021 0.588
13 6.657 0.539 5.912 0.604 5.581 0.634 6.036 0.609 6.662 0.551 6.624 0.579 6.116 0.563 6.023 0.607 6.018 0.593
14 6.627 0.54 5.923 0.604 5.605 0.633 6.043 0.608 6.768 0.547 6.661 0.578 6.135 0.562 6.006 0.608 6.132 0.589
15 6.588 0.542 5.957 0.602 5.654 0.63 6.04 0.609 6.931 0.538 6.53 0.585 6.183 0.559 5.997 0.608 6.032 0.595
16 6.501 0.547 5.92 0.604 5.648 0.63 6.009 0.61 6.732 0.55 6.476 0.588 6.153 0.561 5.945 0.611 6.141 0.588
17 6.498 0.547 5.931 0.604 5.679 0.629 6.018 0.61 6.721 0.55 6.488 0.587 6.173 0.56 5.958 0.611 6.032 0.594
18 6.454 0.555 5.925 0.605 5.699 0.625 6.056 0.603 6.706 0.553 6.584 0.571 6.132 0.567 5.963 0.61 5.973 0.604
19 6.372 0.56 6.037 0.596 5.766 0.621 6.142 0.597 6.543 0.564 6.516 0.576 6.328 0.553 5.967 0.609 6.172 0.589
20 6.373 0.56 6.029 0.597 5.766 0.621 6.165 0.596 6.485 0.566 6.499 0.576 6.334 0.553 5.967 0.609 6.131 0.59
21 6.355 0.561 6.023 0.597 5.782 0.62 6.155 0.597 6.404 0.57 6.462 0.578 6.325 0.553 5.964 0.609 6.148 0.589
22 6.359 0.561 6.015 0.597 5.787 0.62 6.151 0.597 6.371 0.57 6.467 0.578 6.321 0.553 5.966 0.609 6.143 0.589
23 6.321 0.564 5.994 0.599 5.827 0.617 6.121 0.599 6.283 0.577 6.382 0.585 6.205 0.562 5.972 0.609 6.147 0.589
24 6.321 0.564 6.008 0.598 5.844 0.616 6.091 0.601 6.318 0.575 6.379 0.585 6.205 0.562 5.981 0.609 6.174 0.588
25 6.318 0.565 6.011 0.597 5.849 0.614 6.096 0.599 6.32 0.574 6.385 0.583 6.201 0.563 5.984 0.608 6.185 0.584
26 6.297 0.567 6 0.597 5.867 0.613 6.093 0.599 6.331 0.574 6.419 0.58 6.223 0.562 5.984 0.608 6.172 0.585
27 6.299 0.567 6.014 0.597 5.888 0.612 6.099 0.599 6.306 0.575 6.395 0.582 6.219 0.562 5.998 0.607 6.196 0.584
28 6.299 0.567 6.011 0.601 5.888 0.611 6.099 0.599 6.304 0.577 6.397 0.58 6.217 0.565 5.998 0.606 6.194 0.586
29 6.252 0.571 5.968 0.604 5.891 0.611 6.078 0.601 6.256 0.581 6.359 0.583 6.201 0.566 5.98 0.608 6.097 0.593
30 6.253 0.571 5.964 0.604 5.889 0.611 6.073 0.601 6.255 0.581 6.354 0.583 6.206 0.566 5.979 0.608 6.088 0.593
31 6.254 0.571 5.966 0.604 5.889 0.611 6.071 0.601 6.255 0.581 6.345 0.583 6.209 0.566 5.978 0.608 6.091 0.593
32 6.254 0.571 5.968 0.605 5.888 0.611 6.069 0.6 6.251 0.579 6.337 0.579 6.207 0.566 5.978 0.607 6.089 0.592
33 6.252 0.573 5.97 0.604 5.887 0.611 6.068 0.6 6.251 0.579 6.336 0.58 6.206 0.566 5.977 0.608 6.087 0.594
34 6.256 0.573 5.975 0.604 5.891 0.611 6.086 0.6 6.236 0.579 6.336 0.58 6.212 0.566 5.98 0.608 6.083 0.594
35 6.242 0.575 5.981 0.603 5.895 0.61 6.08 0.601 6.235 0.579 6.359 0.576 6.16 0.576 5.982 0.608 6.086 0.593
36 6.231 0.577 5.986 0.602 5.908 0.608 6.094 0.599 6.236 0.579 6.37 0.574 6.197 0.57 5.992 0.606 6.081 0.594
37 6.227 0.577 5.991 0.602 5.906 0.608 6.09 0.599 6.238 0.579 6.363 0.574 6.195 0.57 5.988 0.606 6.094 0.594
38 6.228 0.577 5.994 0.601 5.91 0.607 6.095 0.598 6.24 0.579 6.364 0.573 6.194 0.57 5.993 0.605 6.092 0.594
39 6.23 0.577 5.998 0.601 5.914 0.607 6.098 0.598 6.24 0.579 6.364 0.573 6.197 0.57 5.994 0.605 6.099 0.594
40 6.229 0.577 6.008 0.601 5.932 0.606 6.104 0.597 6.222 0.58 6.384 0.572 6.211 0.569 6.004 0.604 6.106 0.594
41 6.228 0.577 6.011 0.601 5.934 0.606 6.103 0.597 6.227 0.58 6.381 0.572 6.216 0.569 6.002 0.604 6.098 0.594
42 6.229 0.577 6.008 0.601 5.943 0.606 6.105 0.597 6.229 0.58 6.369 0.573 6.231 0.568 6.006 0.604 6.095 0.594
43 6.23 0.577 6.009 0.601 5.944 0.606 6.103 0.597 6.232 0.58 6.365 0.573 6.234 0.568 6.006 0.604 6.097 0.594
44 6.227 0.577 6.012 0.6 5.953 0.604 6.109 0.596 6.228 0.58 6.366 0.573 6.237 0.568 6.012 0.603 6.097 0.594
45 6.196 0.58 5.988 0.602 5.926 0.606 6.071 0.599 6.204 0.582 6.343 0.574 6.191 0.571 5.997 0.604 6.075 0.595
46 6.196 0.58 5.988 0.602 5.926 0.606 6.071 0.599 6.203 0.583 6.343 0.574 6.19 0.572 5.997 0.604 6.075 0.596
47 6.191 0.581 5.989 0.602 5.927 0.605 6.079 0.597 6.196 0.584 6.343 0.574 6.179 0.574 5.996 0.604 6.077 0.595
48 6.191 0.581 5.989 0.602 5.927 0.605 6.079 0.597 6.196 0.584 6.343 0.574 6.179 0.575 5.996 0.604 6.077 0.596
49 6.191 0.581 5.987 0.602 5.927 0.605 6.078 0.597 6.198 0.585 6.346 0.575 6.181 0.575 5.996 0.604 6.078 0.597
50 6.193 0.581 5.988 0.602 5.929 0.605 6.078 0.597 6.199 0.585 6.344 0.575 6.177 0.575 5.997 0.604 6.075 0.597
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Appendix D: Modelling the Forecasting Strategy at the Indi-
vidual Level

Table D.1. The mean squared error of the recursive least squares learning learning
model for each subject in Treatment A and U.

Treatment A MSEa MSEb Treatment U MSEa MSEb
1 20.2748 0.2272 1 0.0038 0.0001
2 1.4377 0.0234 2 0.0293 0.0003
3 1.4622 0.0138 3 5.5731 0.0993
4 2.6421 0.0361 4 0.9670 0.0074
5 1.6777 0.0277 5 1.1212 0.0211
6 3.5342 0.0475 6 4.1360 0.0437
7 10.8363 0.1156 7 0.2593 0.0063
8 4.7650 0.0498 8 1.8924 0.0238
9 2.0785 0.0288 9 1.8127 0.0272
10 4.1401 0.0440 10 1.7940 0.0226
11 1.0212 0.0129 11 0.9237 0.0054
12 3.6883 0.0383 12 0.0100 0.0003
13 3.9192 0.0437 13 7.7283 0.0537
14 15.2220 0.1851 14 6.8075 0.0571
15 1.2980 0.0138 15 0.2685 0.0064
16 4.0759 0.0513 16 0.0255 0.0003
17 1.5917 0.0229 17 0.3302 0.0029
18 1.7316 0.0173 18 0.0026 0.0001
19 5.7752 0.0532 19 0.4103 0.0050
20 0.6736 0.0084 20 0.0034 0.0000
21 1.0703 0.0121 21 0.3498 0.0028
22 2.9990 0.0392 22 1.3446 0.0183
23 0.4317 0.0061 23 0.1309 0.0022
24 3.0107 0.0370 24 1.0970 0.0112
25 1.9935 0.0158 25 1.2195 0.0292
26 1.5810 0.0198 26 3.8584 0.0668
27 0.4781 0.0080 27 1.2913 0.0077
28 5.1372 0.0770 28 0.0145 0.0006
29 1.3162 0.0164 29 0.5750 0.0073
30 1.3409 0.0194
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Table D.2. The mean squared error of the learning by averaging heuristic for each
subject in Treatment A and U.

Treatment A MSE Treatment U MSE
1 0.4623 1 0.4826
2 0.9803 2 0.4313
3 0.2500 3 12.9155
4 1.0926 4 3.1209
5 0.7714 5 1.1043
6 0.6954 6 2.6982
7 0.3960 7 0.4852
8 0.3095 8 4.4884
9 1.0730 9 1.7100
10 0.6949 10 3.0934
11 0.1305 11 3.2289
12 0.3410 12 0.3773
13 1.2440 13 1.8802
14 1.0216 14 1.3178
15 0.2451 15 1.5661
16 1.8393 16 0.5327
17 0.3047 17 1.1930
18 0.6630 18 0.4510
19 0.2313 19 1.3047
20 0.1672 20 0.4854
21 0.2053 21 1.2381
22 0.4540 22 1.3235
23 0.1316 23 0.8392
24 0.6092 24 1.8006
25 0.7027 25 4.4112
26 0.1583 26 5.6637
27 0.1684 27 3.4084
28 0.9507 28 0.4250
29 0.3060 29 2.8162
30 0.3348
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Table D.3. The mean squared error of the constant gain learning model for each
subject in Treatment A and U.

Treatment A MSEa MSEb γ Treatment U MSEa MSEb γ
1 25.1347 0.2460 0.01 1 0.0384 0.0002 0.27
2 2.4421 0.0369 0.01 2 0.0729 0.0002 0.01
3 3.1365 0.0340 0.3 3 7.9946 0.0577 0.15
4 3.5402 0.0502 0.26 4 1.5429 0.0086 0.22
5 2.5643 0.0398 0.32 5 0.5393 0.0195 0.32
6 4.1357 0.0445 0.5 6 5.9779 0.0528 0.2
7 12.1870 0.1652 0.01 7 0.5267 0.0128 0.31
8 6.4276 0.0793 0.31 8 2.2658 0.0274 0.62
9 4.1499 0.0576 0.3 9 0.8746 0.0210 0.3
10 6.0884 0.0674 0.28 10 2.2412 0.0216 0.17
11 2.1186 0.0318 0.37 11 1.3765 0.0047 0.08
12 2.9955 0.0459 0.33 12 0.0352 0.0006 0.31
13 3.3969 0.0427 0.37 13 6.8487 0.0457 0.41
14 13.7778 0.1480 0.22 14 5.9884 0.0551 0.29
15 4.9380 0.0680 0.39 15 1.0784 0.0267 0.37
16 6.3307 0.0558 0.21 16 0.0579 0.0005 0.32
17 3.7499 0.0543 0.39 17 0.5174 0.0072 0.44
18 4.5664 0.0514 0.3 18 0.1464 0.0007 0.25
19 3.5210 0.0524 0.01 19 1.0154 0.0130 0.34
20 1.3215 0.0161 0.32 20 0.0014 0.0000 0.02
21 4.1122 0.0571 0.37 21 0.1139 0.0050 0.49
22 3.9143 0.0472 0.38 22 1.4359 0.0226 0.36
23 2.4223 0.0310 0.01 23 0.4680 0.0046 0.28
24 6.1098 0.0748 0.5 24 1.6112 0.0116 0.19
25 3.5249 0.0370 0.45 25 2.1439 0.0415 0.26
26 2.7143 0.0301 0.32 26 3.9461 0.0669 0.3
27 2.2466 0.0316 0.37 27 1.9689 0.0141 0.31
28 5.3577 0.0572 0.34 28 0.0965 0.0017 0.34
29 2.4703 0.0360 0.29 29 0.6744 0.0090 0.01
30 2.8794 0.0327 0.01

D-3



Table D.4. The mean squared error of the least mean square learning model for
each subject in Treatment A and U.

Treatment A MSEa MSEb λ Treatment U MSEa MSEb λ
1 8.2152 0.3560 0.21 1 0.2004 0.1436 0.03
2 0.3995 0.0234 0.01 2 0.0520 0.0137 0.01
3 0.7293 0.2409 0.14 3 7.4191 0.3794 0.18
4 2.0970 0.2693 0.11 4 1.0352 0.1852 0.06
5 5.4008 0.2731 0.25 5 3.2267 0.2507 0.15
6 2.7783 0.2374 0.17 6 4.8819 0.2525 0.13
7 2.0770 0.1385 0.06 7 2.5854 0.2315 0.14
8 2.1135 0.2537 0.17 8 2.6754 0.3079 0.16
9 1.8980 0.2597 0.15 9 0.4979 0.1606 0.03
10 0.6168 0.2511 0.08 10 2.1554 0.1417 0.02
11 0.2400 0.2457 0.06 11 1.4309 0.1534 0.04
12 0.4615 0.2401 0.12 12 0.1391 0.1718 0.04
13 0.9391 0.2307 0.13 13 2.4645 0.1985 0.1
14 8.3568 0.3701 0.27 14 3.1031 0.2396 0.08
15 0.0898 0.0023 0.01 15 0.9297 0.1530 0.03
16 2.6797 0.2681 0.11 16 0.2568 0.1596 0.04
17 0.1063 0.0032 0.01 17 0.3953 0.1181 0.03
18 1.4588 0.2394 0.13 18 0.2022 0.1634 0.04
19 0.1457 0.0128 0.02 19 0.5795 0.0218 0.01
20 0.5006 0.2298 0.04 20 0.0003 0.0030 0.01
21 0.0006 0.0008 0.01 21 0.2596 0.1495 0.03
22 1.0577 0.2457 0.13 22 0.8757 0.2029 0.05
23 0.8560 0.2364 0.04 23 0.3875 0.1692 0.03
24 3.6128 0.2627 0.03 24 1.0726 0.2220 0.05
25 0.9682 0.2456 0.2 25 1.3857 0.1760 0.02
26 1.0451 0.2336 0.04 26 3.4554 0.1029 0.01
27 0.3987 0.2337 0.07 27 1.1324 0.0595 0.01
28 1.4380 0.2433 0.11 28 0.3684 0.2021 0.07
29 0.4659 0.2496 0.05 29 0.9378 0.1781 0.03
30 1.9773 0.1055 0.03
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Table D.5. Mean, standard error and 95% confidence interval (CI) of a+ 10b in
Treatments A and U.

Treatment A Treatment U

Sub Mean Std. Err. 95% CI Mean Std. Err. 95% CI
1 11.81 0.09 11.63 12.00 11.99 0.01 11.96 12.02
2 11.97 0.15 11.66 12.28 11.99 0.02 11.95 12.04
3 11.93 0.07 11.78 12.08 13.04 0.39 12.26 13.83
4 12.05 0.17 11.70 12.40 11.83 0.24 11.36 12.31
5 11.99 0.11 11.76 12.22 12.07 0.09 11.89 12.24
6 12.00 0.17 11.65 12.34 12.51 0.20 12.11 12.91
7 12.07 0.08 11.91 12.24 11.92 0.09 11.74 12.10
8 11.84 0.09 11.67 12.02 12.30 0.27 11.76 12.84
9 12.00 0.19 11.61 12.39 12.18 0.13 11.93 12.44
10 11.95 0.13 11.70 12.21 12.11 0.22 11.68 12.55
11 11.95 0.04 11.87 12.04 11.73 0.23 11.26 12.19
12 11.94 0.08 11.77 12.10 11.96 0.03 11.91 12.01
13 11.93 0.15 11.63 12.23 12.38 0.10 12.17 12.58
14 11.76 0.14 11.47 12.05 11.94 0.14 11.67 12.22
15 12.05 0.05 11.95 12.15 12.10 0.14 11.83 12.37
16 12.16 0.15 11.85 12.47 11.92 0.06 11.81 12.04
17 11.91 0.07 11.78 12.04 11.99 0.10 11.79 12.19
18 11.97 0.13 11.71 12.23 11.94 0.07 11.79 12.09
19 11.98 0.06 11.86 12.11 11.99 0.12 11.74 12.23
20 11.97 0.03 11.91 12.02 12.00 0.01 11.99 12.02
21 12.00 0.05 11.91 12.09 11.93 0.10 11.72 12.14
22 12.03 0.14 11.75 12.30 11.68 0.16 11.35 12.00
23 11.94 0.05 11.83 12.05 12.14 0.11 11.92 12.35
24 12.03 0.09 11.84 12.21 11.83 0.19 11.44 12.21
25 11.87 0.10 11.66 12.07 12.01 0.29 11.43 12.59
26 11.92 0.06 11.80 12.03 10.92 0.28 10.35 11.49
27 11.92 0.06 11.79 12.04 11.99 0.22 11.54 12.44
28 11.83 0.15 11.53 12.13 11.95 0.04 11.86 12.04
29 11.89 0.10 11.68 12.10 11.87 0.20 11.46 12.27
30 11.93 0.11 11.72 12.15
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Table D.6. The mean squared error of the learning by REE or the satisficing rule
for each subject in Treatment A and U.

Treatment A MSE Treatment U MSE
1 1.1678 1 0.8700
2 1.1804 2 1.1339
3 1.1930 3 0.9752
4 1.1112 4 0.9592
5 1.1018 5 1.0387
6 1.0945 6 1.3506
7 1.0930 7 0.8944
8 1.1017 8 0.9949
9 1.0912 9 1.0806
10 1.0946 10 1.0315
11 1.0912 11 0.8232
12 1.0824 12 0.9767
13 1.0980 13 1.1182
14 1.1111 14 1.0963
15 1.0827 15 0.8329
16 1.0571 16 1.1173
17 1.0739 17 0.8391
18 1.0765 18 0.9648
19 1.0964 19 0.8823
20 1.0775 20 0.8348
21 1.1064 21 0.8500
22 1.1059 22 1.0253
23 1.1325 23 0.8478
24 1.1662 24 0.8899
25 1.1777 25 0.9673
26 1.1307 26 0.8259
27 1.0961 27 0.9214
28 1.0038 28 0.9248
29 1.1821 29 0.9820

30 1.0278
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Table D.7. The mean squared error of the recursive least squares learning learning
model for each subject in Treatment U-small.

Treatment U-small MSEa MSEb
1 1.6698 0.0180
2 0.7010 0.0101
3 2.0330 0.0229
4 1.2415 0.0148
5 1.3357 0.0141
6 0.7326 0.0046
7 0.1226 0.0014
8 7.8125 0.0939
9 0.5409 0.0049
10 5.0122 0.0527
11 9.9383 0.1600
12 0.8320 0.0069
13 3.7341 0.0372
14 0.6133 0.0058
15 2.1616 0.0250
16 0.9387 0.0132
17 1.2077 0.0107
18 4.6295 0.0798
19 1.1164 0.0126
20 1.7963 0.0163
21 16.5291 0.1526
22 1.0526 0.0124
23 3.5740 0.0277
24 2.0934 0.0264
25 2.1683 0.0253
26 5.4308 0.0795
27 0.7442 0.0033
28 0.4933 0.0226
29 1.2931 0.0127
30 1.5832 0.0199
31 0.6596 0.0112
32 2.4226 0.0313
33 4.0436 0.0528
34 0.5593 0.0072
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Appendix E: Experimental Instructions and Quiz

Appendix E.1: Experimental Instructions

Welcome to this experiment in economic decision-making. Please read these instruc-
tions carefully as they explain how you earn money from the decisions you make in
today’s experiment. There is no talking for the duration of this session. If you have
a question at any time, please raise your hand and your question will be answered
in private.

General information
Imagine you are an advisor to a farm that is the only supplier of a product in a

local market. In each time period the owner of the farm needs to decide how many
units of the product he will produce. To make an optimal decision each period, the
owner requires a good prediction of the market price of the product in each period.
As the advisor to the farm owner, you will be asked to predict the market price, pt
of the product during 50 successive time periods, t=1,2,. . .,50. Your earnings from
this experiment will depend on the accuracy of your price predictions alone. The
smaller are your prediction errors, the greater will be your earnings.

About the prediction of the market price
Your firm will use the following model to predict the market price for the product

in each time period, t.

pet = a+ b× wt
where a is a positive number that is usually between 0 and 10, wt is the a meas-

ure of how good the weather is for producing the agricultural product, and b is the
coefficient that measures how sensitive the product is to the change of weather.

The weather variable is randomly drawn in each period, and you will see the
realisation of it at the beginning of each period. Suppose in one period, wt=8, you
estimates are a=3, b=0.5, your implied prediction will be:

pet = 3 + 0.5× 8 = 7

Suppose the market price in this period turns out to be pt = 4.9. Your forecast
error, |pt − pet | = |7− 4.9| = 2.1. This forecast error of 2.1would determine your
points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of
the weather in your local market may be different from 8. The price determination
function in this example may also be different from the price determination function
in your local market. The precise value of weather in your market in each period
will be given on your decision page.
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Your task
Your only task in this experiment is to correctly predict the market price in each

time period as accurately as possible. You need to choose the value of a and b using
the slider bar on the computer screen. The value of a is between 0 and 10, and the
value of b is between 0 and 1. The slider bar starts at the midpoint of the interval,
and you can feel free to move it to any value that you want to choose. You can see
your implied prediction pet = a + b × wt in real time in the line below. When you
have decided on your choice of the parameters, you can press “send” to submit your
decision.

At the beginning of the experiment you are asked to give a prediction for the
price of your farm’s product in period 1. Note that, while there are several farms
being advised by a forecaster like you in each period, these different local markets
are totally separate from your own so what happens in other markets does not have
any influence on your market. After all forecasters have submitted their choice
of parameters (and hence implied predictions) for the first period, the local market
price for period 1 will be determined and will be revealed to you. Based the accuracy
of your prediction in period 1, your earnings will be calculated. Subsequently, you
are asked to enter your prediction for period 2. When all forecasters have submitted
their predictions for the second period, the market price for that period in your local
market will be revealed to you and your earnings will be calculated, and so on, for
all 50 consecutive periods.

Information
Following the first period, you will see information on your computer screen that

consists of 1) a plot of all past prices together with your predictions and 2) a table
containing the history of the past prices, your past estimates of a, b, the implied
price forecasts and payoffs.
About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown
on the computer screen will be in terms of points. When your prediction is pet and
the market price pt your payoff is a decreasing function in your prediction error,
namely the distance between your forecast and the realised price.
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payoff =
100

1 + |pet − pt|
Recalling the example above, if your forecast error for the period, |pt − pet |, was

3.2, then according to the payoff function you would earn 100/4.2=23.81 points for
the period.

Notice that the maximum possible payoff in points you can earn from the fore-
casting task is 100 for each period, and the larger is your prediction error,|pet − pt| ,
the fewer points you earn. There is a Payoff Table on your desk, which shows the
points you can earn for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will
be converted into Euros at the rate of 1 dollar for every 200 points that you earned.
Thus, the more points you earn, the greater are your Euro earnings.

Questions?
If you have questions about any part of these instructions at any time, please

raise your hand and an experimenter will come to you and answer your question in
private.

Appendix E.2: Quiz

We want to make sure that you understand the instructions. Therefore, we ask a
few questions. You can only go to the decision page after you have answered all the
questions correctly.

Question 1: Suppose in one period, the Weather is equal to 6, your estimates for
the parameters in the model are a=3.6, b=0.5. What is your implied prediction for
the price (a+b*Weather) in this period? (Answer: 6.6)

Question 2: If your forecast error for a period is 1, what is your payoff in this period?
(Answer: 50)

Question 3: Is the price in our market influenced by other participants’ price fore-
casts? (Answer: No)
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Appendix F: Experimental Interface, Respondent Questionnaire,
and Weather List

Figure F.1. Experimental interface.
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Respondent Questionnaire

You have made your prediction for all periods! Here is a questionnaire to complete
on your backgrounds. Please answer the questions and press “send” to submit. After
that you will see the payment page.

1. Age:

2. Gender:
� Male
� Female

3. Study Program: choose from list
� Faculty of Economics and Econometrics
� Faculty of Social and Behavioural Sciences: Psychology
� Faculty of Social and Behavioural Sciences: other than Psychology
� Faculty of Science, Mathematics and Computer Science
� Faculty of Law
� Faculty of Humanities
� Faculty of Medicine
� Another University
� Others

4. Have you come to an economics experiment before?
� No
� Yes, only once
� Yes, more than once

5. How do you describe your strategy in this experiment?
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Table F.1. Distribution of weather wt in Treatments A and U and εt ∼ N(0, 1).
period Weather A Weather U εt
1 10 10.92 0.2872
2 10.12 5.49 -0.3316
3 9 2.25 -1.3085
4 8.32 19.35 0.5709
5 8.62 2.32 -0.2499
6 10.1 3.7 -1.5791
7 9.59 14.14 0.1971
8 8.2 15.92 -0.3451
9 8.34 19.9 -0.4954
10 9.58 5.07 0.2918
11 10.22 14.55 0.442
12 10.09 14.63 1.4143
13 10.88 8.29 -0.5298
14 9.46 5.5 0.6355
15 6.89 5.15 -2.7869
16 8.12 6.51 0.9556
17 9.05 18.41 0.8365
18 9.61 0.37 -0.1459
19 11.12 8.36 0.6092
20 10.23 5.24 -0.0798
21 10.4 9.18 0.9335
22 9.22 1.21 0.2988
23 9.98 5.54 1.2221
24 8.25 14.7 -0.5452
25 7.3 2.99 0.0912
26 7.1 4.14 1.8649
27 6.77 12.93 0.4169
28 9.65 0.63 -1.6766
29 10.63 9.54 0.1737
30 9.66 8.97 0.1636
31 9.92 11.47 -0.3594
32 9.83 13.14 2.132
33 8.96 8.4 1.3624
34 9.72 17.89 0.7295
35 10.07 19.93 -0.4855
36 10.91 8.22 -0.5949
37 10.71 14.98 -1.891
38 10.04 9.57 0.8072
39 9.43 3.16 1.4417
40 10.29 9.15 -0.189
41 10.5 6.12 1.0415
42 10.72 8.51 0.5437
43 11.01 17.37 -0.8844
44 11.69 0.48 -1.8038
45 9.55 13.25 0.3485
46 8.71 15.98 1.0516
47 8.21 13.08 0.8825
48 9.01 11.88 0.6185
49 8.57 9.52 0.8332
50 11.38 10.74 0.6123
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Appendix G: Omitted Proof on Cobweb Model

For completeness of explanation, we repeat what we have mentioned in Section 2.1.

Consider the cobweb model in Evans and Honkapohja (2001) based on the ana-
lysis of Bray and Savin (1986), and Fourgeaud et al. (1986). It consists of a single
competitive market with a time lag in production (e.g. agricultural product), where
demand depends negatively on the prevailing market price; supply is assumed to
depend on both the average expectation across the homogeneous firms of the price
of the product in the current period, as well as the weather in the current period in
the form of an observable shock. 22, denoted as:

dt = mI −mppt + v1t, mp > 0

st = rI + rpp
e
t + rwwt + v2t, rp > 0

dt, st represents the demand and supply of the product, mI and rI denotes the
intercept, v1t and v2t are the random variables of unobserved random noise. Thus,
at the market clearing price where dt = st, the reduced form of price determination
function is:

dt = st

mI −mppt + v1t = rI + rpp
e
t + rwwt + v2t

pt =
mI − rI
mp

+

(
−rp
mp

)
pet +

(
−rw
mp

)
wt +

(
v1t − v2t
mp

)
Thus,

pt = µ+ αpet + δwt + ηt

In the above equation, µ = m−1p (mI − rI), α = −m−1p rp < 0, δ = −m−1p rw < 0,
ηt = m−1p (v1t − v2t), and ηt iid(0, σ2

η). The distribution of the weather wt can be
followed by an iid process as was assumed in Bray and Savin (1986). Alternatively,
it can follow a stationary exogenous VAR (vector autoregression) process driven by
a multivariate white noise shock with bounded moments as the setting in Evans and
Honkapohja (2001).

According to the least squares principle, prediction of estimators of a simple lin-
ear regression model will be more precise (i.e. with lower variance) when there is
a larger variation of independent variables23. Therefore theoretically, the variance

22Note that the weather in the original setting is assumed to based on the weather in the previous
term wt−1, assuming that the supply in the current period will depend on the observable shock
brought from weather in the last period. However, we change the source of this observable shock
into wt. This is to help the subjects understand the setting more easily, and the change in the
term will not change the quantitative results from the model.
23In the simple linear regression model yi = β1 + β2xi + ei, an estimated model ŷ = b1 + b2xi can
be formed using least squares principle, where yi = ŷi + êi. V ar (b1) =

σ2N−1 ∑
x2
i∑

(xi−x)2
, V ar (b2) =

σ2∑
(xi−x)2

. Thus, the wider spread of independent variable weather (i.e. a larger
∑

(xi − x)
2
)

will lead to a more precise estimate (i.e. smaller variance) on both of the parameters. Note
that the spread of the independent variable does not affect the accuracy on the estimator because
the expectation of the estimates following least squares principle should always be unbiased, i.e.
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of the estimates from Bray and Savin (1986) should be smaller than in the setting
of Evans and Honkapohja (2001). We design two separate treatments to verify this
hypothesis.

If we assume that subjects form a rational belief following the adaptive expecta-
tion or any other fixed-weight distributed lag formula, that is, the expected price in
the current terms is to be based on (or conditional on) the information of informa-
tion available in the previous term, then the expectation price in the current term
can be written as:

pet = Et−1pt

Operating with Et−1 on both sides and solve for Et−1pt, and combining with the
equation of pt = Et−1pt + ηt we have:

E(pt) = E(µ+ αpet + δwt + ηt)

Et−1pt = µ+ αEt−1pt + δwt

Et−1pt =
µ

1− α
+

δ

1− α
wt

pt =
µ

1− α
+

δ

1− α
wt + ηt

Thus,
pt = a+ bwt + ηt, a = (1− α)−1 µ, b = (1− α)−1 δ

The equation above states the unique REE of the cobweb model, and it is said
to have unique REE because pt does not depend on the expected future prices.

Though the firms may have difficulty in obtaining the real value of REE, the pro-
cess is still learnable using LS learning according to Evans and Honkapohja (2012)
since LS learning assumes that firm to have a subjective model of the relationship
between pt and the observable shock, namely the perceived law of motion, denoted
as:

pt = a+ bwt + ηt

Subsequently, under the assumption that firms have data on the evolution of the
economy from periods i = 0,. . .,t−1, they will update their belief on the parameters
of a, b repeatedly in each period, using the information from the past. Letting (at−1,
bt−1) denote the estimation through time t−1, using the information set {pi, wi}t−1i=0.
Thus, their prediction for period t would be the expectation of pt using the price
information from period 0 to period t− 1:

Et−1pt = pt − ηt = a+ bwt

pet = at−1 + bt−1wt

In this approach, the rationality is implied through the process of a continu-
ous update on the parameters in the model instead of the immediate formation of

E (b1) = β1, E (b2) = β2.
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expectation. Agents are to update the model like econometricians or statisticians
using LS learning, with the formula denoted as the equation of:(

at−1
bt−1

)
=

(
t−1∑
i=1

zi−1z
′
i−1

)−1( t−1∑
i=1

zi−1pi

)

where
z′i = (1 w′i)

The fully specified dynamic system is: at the beginning of time t, subjects form
the expectation based on pet = at−1+bt−1wt, and update their parameter according to(
at−1

bt−1

)
=
(∑t−1

i=1 zi−1z
′
i−1
)−1(∑t−1

i=1 zi−1pi
)
, where z′i = (1 w′i). On top of it, given the

wt and the random noise ηt, the time t price is determined by pt = µ+αpet +δwt+ηt.
This result could thus be used by the agent to update the parameters again, through
adding (pt, wt) to the data set and computing the revised estimates at and bt, and
subsequently to forecast pet+1 using wt+1 in the beginning of time t+ 1. This process
continues repeatedly over time.

Meanwhile according to the E-stability principle (as the basic required concept
governing the stability of equilibria that mapping from PLM to ALM from learning),
in order for at and bt to exhibit an asymptotic stability of an REE under LS learning
(i.e. PLM is gradually converged towards ALM), the condition of α < 1 must be
satisfied to let at → a, bt → b.

In other words, for a cobweb model, it must meet the condition of a downward-
sloping demand curve as well as |mp| > rp, to reach an expectational stability or
“E-stability” to let α = −m−1p rp < 1.
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