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Abstract

We report on an experiment testing the empirical relevance of least squares
(LS) learning, a common way of modelling how individuals learn a rational ex-
pectations equilibrium (REE). Subjects are endowed with the correct perceived
law of motion (PLM) for a price level variable they are seeking to forecast,
but do not know the true parameterization of that PLM. Instead, they must
choose and can adjust the parameters of this PLM over 50 periods. Consist-
ent with the E-stability of the REE in the model studied, 97.8% of subjects
achieve weak convergence to the REE in terms of their price level predictions.
However, the number of participants that can be can be characterized as least
squares learners via the adjustments they make to the parameterization of
the PLM over time depends on properties of the data generating process of
the dependent and independent variables. Participants learn the REE faster,
and behave more like least square learners when there is greater variance in
the independent variable of the model. We consider several alternatives to
least squares learning and find evidence that many subjects employ a simple
satisficing approach.
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This is our key bounded rational assumption: we back away from the RE as-
sumption, replacing it with the assumption that, in forecasting prices, firms act like

econometricians.

— Evans and Honkapohja, 2001: page 28

1 Introduction

The rational expectations hypothesis (REH) (Muth, 1961; Lucas Jr, 1972) has been
a dominant paradigm in macroeconomics since the 1970s. Nevertheless, many re-
searchers remain interested in finding an evolutionary microfoundation justifying
the REH (Arifovic (1994), Arifovic (1995), Arifovic (1996), Anufriev et al. (2013),
Arifovic and Duffy (2018); Arifovic et al. (2019)). As pointed out by Sargent (2008),
an important approach is to assume adaptive learning in combination with the “self-
confirming equilibrium” (SCE) approach where the rational expectations equilibrium

(REE) is considered as the possible destination of active learning by agents.

Adaptive learning models, including least squares learning models (Marcet and
Sargent (1988), Guesnerie and Woodford (1991), Sargent (1993), Evans and Honka-
pohja (1999), Evans and Honkapohja (2001), Evans and Honkapohja (2003), Evans
and Honkapohja (2009), Preston (2006), Branch et al. (2013), Branch and McGough
(2016), Branch and McGough (2018)) usually assume that agents do not know the
actual law of motion (ALM) of the economy. Instead, these learning agents use
a perceived law of motion (PLM) and update the parameters of this PLM as new
information arises. In the case of least squares learning, they minimize the sum of
squared errors according to the least squares updating rule, just as econometricians
do with their data.! Researchers in this field show that convergence to an REE can
arise under certain conditions regarding the mapping between the perceived law of

motion and the actual law of motion (i.e., E-stability).

In this paper, we take the theoretical prediction of least squares learning quite
seriously and evaluate its predictions using an experiment based on the model of
Bray and Savin (1986) and Fourgeaud et al. (1986). Differently from the many

“learning-to-forecast” experiments (e.g., Marimon et al., 1993; Hommes et al., 2005a;

LAlso, as in econometrics, the specification of the perceived law of motion can be correct or
incorrect, the former including the REE as a special case. Here we concentrate on the simpler case
where the PLM is correctly specified.



Hommes, 2011; Assenza et al., 2014; Petersen, 2014; Duffy, 2016; Bao et al., 2017;
Arifovic and Duffy, 2018; Anufriev et al., 2019; Arifovic et al., 2019; Assenza et al.,
2019; Hommes et al., 2019; Kryvtsov and Petersen, 2020; Bao et al., 2021; Rholes
and Petersen, 2021; Evans et al., 2022; Petersen and Rholes, 2022; Arifovic et al.,
2023; Hommes et al., 2023) where subjects make point predictions, subjects in our
experiment submit parameterizations for the PLM directly. This design enables us
to conduct the cleanest and most direct test of the structural form of the adaptive
learning model that agents are using when learning. In particular, we can directly
test whether individuals are adjusting the parameterization of their PLM as if they
were running least squares regressions in their own minds, albeit without the assist-
ance of computers and statistical software. In addition to least squares learning, we
also consider the performance of several other learning models for explaining our
results: past averaging models, constant gain learning, stochastic gradient descent

learning and a satisficing model.

Our experiment involves three treatments that alter the variance and the shape
of distribution of the independent variable of the model that agents are seeking to
learn. In Treatment A of our experiment, the exogenous independent variable of our
model, which we refer to as “weather”, follows a simple AR(1) process. By contrast,
in Treatment U and Treatment U-small, this same independent variable follows an
i.i.d. uniform distribution. The difference between Treatments U and U-small is
that, while the variance of the weather variable is the same in Treatment A and

U-small, it is much greater in Treatment U.

As is well known (see, e.g., Greene, 2000), least squares estimates tend to be
more accurate (that is, they have lower variance) the larger is the variance in the
independent variables. Since the variance in realizations of the independent vari-
able are greater in treatment U as compared with treatment U-small and this is the
only change made to the model between treatments U and U-small, it follows from
econometric theory that learning and convergence to the REE should be faster in
Treatment U as compared with Treatment U-small. Further, if the shape of distri-
bution does not matter very much, we should also see that participants’ forecasting

behavior and learning speed are similar in Treatment A and Treatment U-small.

We find that at the aggregate level, subjects’ forecasts in Treatment U do indeed
converge faster than subjects’ forecasts in Treatment A and Treatment U-small. By
the end of the 50 periods of the experiment, the average forecast in Treatment U has
converged to the REE while the average forecast in Treatment A and Treatment U-

small fails to do so within this timeframe. At the individual level, around 97.8% of



the expectations satisfy our criterion for weak convergence to the REE. The fraction
of individual expectations that converge to REE +5%oftheREE is 55.2% in Treat-
ment U, 10% in Treatment A and 17.7% in Treatment U-small. Finally, just 12 out
of 29 subjects (41.4%) in Treatment U, and 0 (0%) in Treatment A and Treatment
U-small can be categorized as least squares learners in terms of the adjustment of
their parameterization of the PLM over time. Still, some alternative models such as
constant gain learning model and “learning by averaging” perform even worse than
least squares learning in terms of their fit to the experimental data as measured by

the mean squared error.

Our findings suggest that while the E-stability criterion provides a good charac-
teriztion of stability under learning or “learnability” of rational expectations equilib-
rium at the aggregate level, individual subjects may update the parameters of their
PLM in a heterogeneous way that deviates from the least-squares learning specific-
ation. Our results suggest that instead of searching for the least-squares minimizing
combination of the two PLM parameters (a and b), many subjects seem to apply a
“satisficing” heuristic (Simon, 1955,9) and stick with the “wrong” pair of parameters
if that combination generates approximately the same point predictions as the true
but unknown parameters. In other words, when faced with an unfamiliar and com-
plex parameter search and updating problem in 2 dimensional (2-D) space, many
subjects in our experiment appear to have reduced the problem to a simpler and
more familiar single point prediction problem. This behavioral tendency to reduce a
2-D decision problem to its projection in 1-D space may also be found in theoretical
models of “misspecified equilibrium” (Grandmont, 1998) and “(stochastic) consist-
ent expectations equilibrium” (Hommes and Sorger, 1998; Hommes and Zhu, 2014).
Note that the subjects in our experiment did not have access to statistical software
or computational resources that would enable them to run the regressions associated
with least square learning. We did not provide such access since we interpret the no-
tion of adaptive learners-as-econometricians in the “as if” sense of Friedman (1953).2
Still, we find that 20.3% of subjects do form and adjust their forecasts according to
the predictions of the least squares learning model. However, the majority have to
apply some simplification method to make the problem (seemingly) more tractable

for them.

2Friedman (1953), p.21 argued that while expert billiard players might not know the complicated
mathematical formulas underlying optimal play, they nevertheless behaved as if they knew those
formulas. Here we are not supposing that subjects optimally form expectations but ask instead
whether they form them in the manner prescribed by least squares learning in favorable conditions,
i.e. given a PLM and the possibility to adjust the parameters of that PLM as new information
arises. We would further add that it is unlikely that most members of the general public would
have access to statistical software or be familiar with regression analysis.



Overall, this paper makes three main contributions to the literature.

First, to our knowledge, this is the first experiment where subjects submit struc-
tural expectations (model parameterizations) instead of simple point predictions of
the variable they are learning about. This design allows us to observe precisely how
individuals update the parameters of their PLM in real time. This is a particularly
useful method for comparing competing models that predict the same qualitative
outcome in terms of convergence, but which may differ in the way that individuals
update the parameters of their forecasting models. Most surveys on expectation
formation, like the Michigan Survey, only elicit point predictions or subjective prob-

ability distributions®

. Data from our laboratory experiment are therefore particu-
larly useful in answering questions regarding the structural path by which individu-
als update their expectations in real time and their weighting of different factors in
forming those expectations. In the learning-to-forecast experiment literature, one
study by Hommes et al. (2005b) also asks for forecasting strategies, instead of point
predictions in each period. But the strategies they elicited were regarding how par-
ticipants made their point predictions, not how they searched for or updated the

parameters of their perceived law of motion as in our study.

Second, this paper presents the first experimental test specifically evaluating
least squares learning as a behavioral primitive process. Bao and Duffy (2016) run
an experiment to explore differences in theoretical predictions between adaptive
and eductive learning (Binmore, 1987; Guesnerie, 1992; Evans and Guesnerie, 2005;
Evans et al., 2019) models. But the adaptive learning model in that paper is a
reduced form, point prediction version where the adaptive learning expectation de-
generates to the sample average of all past realizations for prices. Therefore, those
results do not reveal how people update the parameters of their perceived law of
motion for the economy and in relation to a specific process such as least squares

learning.

Third, our experiment also serves as a test of the capacity of humans to con-
front complex tasks without the help of computers. To this end, we also contribute
to the literature on how the complexity of decision-making influences the accuracy

of forecasting behavior (Charness and Levin, 2009; Mirdamadi and Petersen, 2018;

3For studies using this survey dataset, see Branch (2004), for studies that compare laboratory

and field data on expectations, see Cornand and Hubert (2020) and Afrouzi et al. (2023). For
evidence on how information rigidity leads to deviations from RE from survey data, see Coibion
et al. (2018). For studies using Randomized Controlled Trials or field experiments, see e.g., Binder
and Rodrigue (2018), Armona et al. (2019), Coibion et al. (2020b), Coibion et al. (2020a), Coibion
et al. (2022).



Arifovic et al., 2019; Enke and Zimmermann, 2019; He and Kucinskas, 2019) and
bounded rationality in expectation formation in macroeconomics in general (Honka-

pohja, 1995; Branch, 2004; Woodford, 2013).

The rest of the paper is organized as follows: Section 2 presents the experimental
design, Section 3 reports on the experimental results, and finally, Section 4 provides

a summary and conclusions.

2 Experimental Design

2.1 The Cobweb Model

Consider the cobweb model in Bray and Savin (1986), and Fourgeaud et al. (1986).
There is a single market for a product that has a time lag in production (e.g.,
an agricultural product). The demand for this product depends negatively on the
prevailing market price, p;. The supply of the product is assumed to depend on both
the average expectation across the homogeneous firms of the prices that will prevail
in the current period, p§, as well as the weather in the current period in the form of

an observable shock, w;.* The demand d,, and supply s; equations are given by:

dy = mp — mppy + vy, my >0
St = T + TpD; + TypWi + Vo, 7, >0

where m;, m, and r;, r, are the intercept and slope coefficients, respectively of
the demand and supply functions, while vy; and vy, are random noise terms. Thus,
in equilibrium, when d; = s;, the true law of motion for the price of the product is

given by:
Pt = W+ ap; + owy + 1. (1)

In the above equation, u = m_*(m; —r;), a = —m;'r, < 0, § = —m 'ry,

ne = my (v — va), and 1y ~ iid(%, o). The distributioil of the weather Vazjriable
wy is an i.i.d. process in Bray and Savin (1986). Alternatively, it may also follow a
stationary exogenous VAR (vector autoregression) process driven by a multivariate
white noise shock with bounded moments as assumed by Evans and Honkapohja

(2001). In our paper, we experimented with both cases, that is, the weather follows

4Note that in the original Bray and Savin (1986) model, the current price level, p; is assumed to

depend on the lagged weather variable, w;_1, as the supply in the current period will depend on
the observable shock due to weather in the last period. In our experiment, we change this term
to wy in order to help subjects understand the setting more easily. This is a nominal change only
and does not alter the results from the model because in the experiment, w; is also realized and
revealed to subjects before they make their decisions.



an i.i.d. distribution in two of the treatments, and an autocorrelated distribution in

the other treatment.

Under adaptive learning, it is typically assumed that agents have a perceived
law of motion (PLM) for prices. This law can be misspecified or correctly specified.
Here we consider the case of a correctly specified PLM as it nests the REE as
a special case. That is, the PLM we give to subjects implicitly takes account of

5

the expectation feedback term, apy in the true law of motion.” For the model we

consider, this perceived law of motion (PLM) is given by:
pr=a+bw, +n (2)

An implication of the least squares learning approach (as well as variants such
as weighted least squares) is that the estimates of the linear regression model will
be more precise (i.e., have lower variance) when there is a larger variation in the
independent variables®. Therefore, theoretically the variance of the estimated coeffi-
cients a, b should be smaller in the treatment where the exogenous weather variable

has a larger variance.

The unique REE prediction for prices in the Cobweb model is as follows:”
pr=a+bw+n,a=(1-a) 'y b=(1-a)'s

Given the PLM (2), the REE of the system is learnable only if the parameters of
the model satisfy the expectational stability (or E-stability) criterion. Specifically,
E-stability requires that 0 < o < 1.8

®Misspecified PLMs are also considered in Evans and Honkapohja (2001). Here we focus on the
case where the PLM is correctly specified since our aim is to understand how agents update the
parameters of a PLM that actually enables learning of the REE.

6Tn the simple linear regression model y; = (3, + f22; +¢;, an estimated model 4j; = by +byx; can be

formed following the least squares principle, where y; = g; + é;. Var(by) = %, Var(by) =
Z(EU%Z—E’)Z' Thus, the wider the spread of the independent variable z, (i.e., a larger > (z; — Z)?)

will lead to a more precise estimate (i.e., smaller variance) of both of the parameters. Note that
the spread of the independent variable does not affect the accuracy of the estimator because the
expectation of the estimates derived using the least squares principle should always be unbiased,
i.e., E(bl) = Bla E(bg) = [32.

"A detailed derivation can be found in Appendix F).

8See Evans and Honkapohja (2001) Theorem 2.1.



2.2 Least Squares Learning in the Cobweb Model

A common way of modeling the learning of REE is to assume that agents are least

squares learners.9

Under a least squares learning (LSL) assumption, agents are
assumed to start with some initial estimates for the parameters a and b of their
PLM, e.g., ay, by, and adjust these estimates over time so as to minimize the mean
of the sum of squared errors between the linear PLM model predictions and actual
realizations for prices, p. In our setting, agents regress p; on a matrix x;, where the
latter is the combination of a vector of 1s, and w;, a vector the contains the values

of realized weather through period ¢.

7 = (1u).

Thus, if agents are least squares learners, in each period t they will update their

parameter estimates d; and b, for the PLM, (2) like econometricians so that

R t -1 t

Qy /

~ ] = ;X T; 3
(bt) > > 3)

Using the LS estimates, 6, = (ZZ), the learning agent forecasts the price level for

period t:
Py =017 (4)

This forecast (4) is substituted into equation (1) to determine the actual value for
p;. The formula for determining the least squares estimates can also be written

recursively as:

R R 1
0, =01+ ;Rfliﬂt(pt — 0, 1)

1
Rt = Rt—l + ;(l't.il?; — Rt—l)

where R, is the variance-covariance matrix of this regression equation for period ¢.

A simple alternative to least squares learning that we will also consider is constant
gain learning. In this case the gain term on the coefficient vector 6 and the moment
matrix R is not 1/t (decreasing) as it is under least squares learning but is instead
a constant value, A € (0, 1), that bests fits the data.

9We understand that there is an important literature on how subjects switch between forecasting
rules in learning to forecast experiments, e.g. Anufriev and Hommes (2012), Anufriev et al. (2019),
Anufriev et al. (2022) based on Brock and Hommes (1998). Given the large mean squared error
generated by the least squares learning model in our study, if we were to explore a heuristic
switching model we might find that LS learning gets almost zero weight in favor of other approaches.
But in that case, we would be mainly using the LSL forecast predictions and not the (a,b) vector
elicited by our experiment.



ét = ét—l + )\Rt_lxt(pt - é;s_ﬂ/’t)
Rt = Rt_l + /\(l’t.fl?; — Rt—l)

Note that under constant gain learning, the parameter vector is updated by a
constant v times the prediction error in the last period. Therefore, the weight of
the most recent past error will not decrease with ¢, and this algorithm exhibits
more volatile dynamics. Indeed, if there is any source of noise in the model (as
there is in our system), the constant algorithm will never quite settle down to the
REE. Nevertheless, constant gain learning systems have been used by researchers to
study learning dynamics, particularly in systems (unlike ours) that are subject to
potential structural breaks in the variables being forecast, and so we also consider

this specification.

2.3 Parameterization and Treatments
For the experiment, we chose to set u =9, « = —0.5 and § = 0.9, so that the market
price is given by:

pe =9 —0.5pf +0.9wy + 1, m ~ 3.0.dN(0,1)

For each parameter tuple (a,b) submitted by subjects, the price expectation in
each time period t is:

pi =a+bxuw
Assuming that agents have rational expectations, i.e., pf = p;, the REE path for
prices is given by!:
pt = 6+ 0.6w; + n.

Our experiment consists of three treatmens that vary the process for the weather
term, w;. Under all three treatments, the long-run, expected value of the weather
variable, F;(w;) = 10. The treatments differ mainly in the variance and persistence

of the independent weather variable, w;.

Treatment U (Uniform Noise): In this treatment, the time ¢ realization of wy

19Tn our experiment, the subjects are told that a € [0,10],b € [0,1]. Our experience with previous
forecasting experiments suggests that subjects are very likely to start with the midpoint of the
interval, i.e. (5, 0.5). To test whether least squares learning will result in convergence to REE, we
should choose a pair of a,b that are not (5, 0.5) but followin the learning literature in macroeco-
nomics, not too far from the REE values either. We therefore choose (6, 0.6) so that the REE is
learnable and subjects have sufficient incentives to learn.



is an i.i.d. uniform random draw over the interval [0, 20], i.e. w; ~ U(10,20). Thus,
Ei(w;) = 10 and the variance of weather in this treatment is given by:
, (20—0)* 100
= ——7" = — =~ 33.33.
T 12 3
In treatment U, the expected value of the market price is F(p;) = 6+ 0.6 x 10 =
12, which is the expected value of the REE for the market price in this treatment.

Treatment A (Autoregressive Noise): In this treatment, we suppose that w

follows the auto-regressive process:
Wy = 2+ 0.8wt_1 + €, €~ N(O, ].)

For treatment A, we add a constant term to the DGP for w; to ensure that the
long-run equilibrium expected value E(w;) = 10, is the same as in treatment U to
facilitate comparisons.!! Therefore, the REE value of the market price in Treatment
A is the same as in Treatment U: E(p;) = 6 + 0.6 x 10 = 12. According to the
definition of the AR(1) process, the variance of the weather variable in this treatment
is given by: ,
o 25
o2 = 1 o0& 6.82 =3 ~~ 2.78.

The careful reader may note that our Treatments U and A differ in two dimen-
sions: the size of the variance of the weather, and the shape of the distribution and
autocorrelation. This may lead to a confounding factors issue: when the results
from the two treatments differ, is it because of the size of variance, or the shape of

the distribution? To address this issue, we added:

Treatment U-Small (Uniform Noise with the Same Variance as Treatment
A): In this treatment, the weather variable follows an i.i.d. uniform distribution as
in Treatment U, but the size of the variance is set to be %, which is the same level
as in Treatment A. If results from Treatment U-small are closer to Treatment U (A),
then that would suggest the differences between Treatments U and A are mainly
driven by the shape of distribution (size of the variance).'?

Specifically, the time ¢ realization of w; in Treatment U-Small is an i.i.d. uniform
random draw over the interval [10 — 5/4/3,10 4+ 5/+/3]. Thus, E,(w;) = 10 and the

variance of the weather variable in this treatment is given by:

H\We are aware that E (wy) = 24 0.8w;—1 is not a constant anymore, therefore, the REE in this
system is no longer a point like in Treatment U. Detailed data on w; and €; can be found in Table
E.1.

12We do not run a treatment where the weather variable follows an AR(1) process and the variance
is 33.33, since given our high AR(1) coefficient (0.8), having such a large variance could result in
negative realizations for the weather variable.
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Figure 1 shows the time series realizations for w, that were used in the three

treatments of our experiment, Treatments A, U and U-small. The fourth, bottom
right panel of Figure 1 shows a plot of 7;, the noise term realizations used in all three
treatments. We used the same 50 realizations for w, for all subjects who participated
in Treatment A, U, or U-small in order to facilitate comparisons across subjects and
not add further noise across treatments. As Figure 1 reveals, the variation in w; is

much greater in Treatment U as compared with Treatments A or U-small.

Treatment A Treatment U
= =
o o
0 10 20 30 40 50 0 10 20 30 40 50
period period
Treatment U Small o

5 o) l Y ?J I N‘T.m .‘T ) h IUT Tmm
i° J [ Il | [ ii[ J[

0 10 20 30 4o 50 i 10 20 30 40 50

period period

Figure 1. The time series realizations for w, in Treatment A (top left panel),
Treatment U (top right panel), Treatment U-Small (bottom left panel) and the
error term, 7, (bottom right panel) as used in the experiment.

2.4 Testable Hypothesis

Figure 2 shows the simulated time series for the estimates of a, b assuming that indi-
viduals follow least squares learning (top panels) or constant gain learning (bottom
panels). Since individuals choose values from a € [0,10],b € [0, 1], a natural guess
would be that most of them would start from the midpoints of those intervals, i.e.,
a; = 5,b; = 0.5, and so we start all simulations at these points. The model updates
the estimates ay, b using the realized p;, w;, in exactly the same way that the least

squares learning or constant gain learning model does.

10



The simulated dynamics for least squares learning suggest that while the least
squares estimates a, b have a tendency to converge to the REE values in all three
treatments, the convergence is quicker and more reliable in Treatment U as compared

with either Treatment A or U-small.

Recursive Least Square, Treatment A Recursive Least Square, Treatment U Recursive Least Square, Treatment U-Small
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Figure 2. Least squares learning predictions for the paths of the parameter
estimates a (top panels) and b (bottom panels) against the REE in each treatment.
We initialize each simulation by setting a = 5, and b = 0.5, and we use the same
realizations for w; and 7, that were used in the experiment. The theoretical values
are a* = 6,b* = 0.6.

Treatment A Treatment U Treatment U-small
| | |

7 8 9 10
7 8 9 10
7 8 9 10

6
6
6

a
01 2 3 4 5
a
01 2 3 4 5
a
01 2 3 4 5

Figure 3. A scatter plot of the least squares learning prediction for the path of the
parameters a and b against the REE in Treatment A (left panel), Treatment U
(middle panel) and Treatment U-Small (right panel). The labels near the points

indicate the period number. We initialize the simulation by setting a = 5, b = 0.5,

and use the same realizations of w; and 7; that were used in the experiment. The

dashed lines are a = 6,b = 0.6

We also generated the simulated dynamics for a, b using the constant gain learn-
ing model. As suggested by Branch and Evans (2006); Pfajfar and Santoro (2010),
the constant gain learning model that best fits the data is usually one with a small
gain parameter, A, e.g., between 0.01 and 0.02. We performed a grid search over A
values between 0.01 and 1 with a step length of 0.01, and selected the A value (con-

stant gain) that minimizes the MSE between the model’s 1 period ahead forecast and

11



each individual’s forecast. The results suggest that the mean of the optimal values
for the constant gain term A is 0.0148 in Treatment A, 0.0132 in Treatment U and
0.0081 in Treatment U-Small. The bottom panel of Figure 2 shows the simulated
a,b estimates over time. As the figure reveals, the simulated paths for a, b under
constant gain learning model are not that different from those under least squares
learning. This is because when A is small, the “learning speed” of the constant gain
learning model is not very high. The constant gain learning model also suggests
that agents are able to learn the REE within 50 periods in Treatment U, but not
within 50 periods in Treatment A and U-small.

Figure 3 shows a scatter plot of pairs of the least squares learning estimates a,
b over time in a 2-D plane for all three treatments. (Scatter plots for constant gain
learning are similar and omitted). The labels (which are admittedly hard to read
after the first few periods) indicate the period numbers. This figure shows that
while the parameters seem to make large movements along a downward-sloping line
in Treatment A and Treatment U-Small, they do not quite reach the REE by the
end of the 50 period horizon. By contrast, in Treatment U, the parameter estimates
follow a more compact spiral that does yield convergence to the REE within 50
periods.

Based on these theoretical predictions, we formulate the following main testable

hypotheses:

Hypothesis 1 (E-stability): Subjects can learn the REE, a,b by the end of the

experiment.

Hypothesis 2 (Least-squares learning): Subjects update the parameterization of the
PLM (2) following the least squares principle, i.e., their estimates for a; and I;t follow
the predictions of (3), given the complete history of {ps,ws}i_;. Subjects behave
more like least square learners in the treatments where there is greater variation in

the exogenous weather variable.

Recall that the latter hypothesis is a property of the OLS estimator. Hypothesis
2 may not be supported if subjects use other forms of learning. For example, if
subjects apply sample average learning, their performance may be worse when the

exogenous weather variable is more volatile and has no auto-correlation.

2.5 Experimental Details

The experiment uses a between-subjects design in which individual subjects are
assigned either to Treatment A, U or U-small; each subject only participates in a
single treatment. Subjects must then repeatedly choose parameter vectors (a, b) for

the PLM, equation (2) over the 50 periods of an experimental session.
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Since this is an ndividual decision-making experiment where subjects do not
interact with other subjects, we regard each subject as an independent observation.
In total, 93 subjects were recruited from Nanyang Technological University (NTU,
Singapore) to participate in our experiment, which was conduced in five experi-
mental sessions. Subjects were recruited using ORSEE (Greiner, 2015).

We assigned 30 participants to Treatment U, 29 participants to Treatment A and
34 participants to Treatment U-Small. Table A.1 of Appendix A summarizes the
number of observations in the different sessions and treatments. After completing
50 periods of parameterizing the PLM, subjects were asked to complete a survey.'?

The experiment was computerized. At the start of each session, subjects were
given written instructions explaining the decisions they would make, the computer-
ized decision screens they would use in making those decisions, and how they earned
money from their participation in the experiment. A copy of the experimental in-
structions is found in Appendix D and screenshots of the experimental interface are
found in Appendix E. Before subjects could proceed on to the experiment, they
had to correctly answer several control questions testing their understanding of the
instructions. These questions are also found in Appendix D.

Subjects earned points during the experiment based on the accuracy of their
price predictions. They are asked to predict the price of the commodity in the
form of Price = a + b x Weather. They see the realized value of Weather in the
same period when making the price prediction, but are not told explicitly the data
generating process of the Weather variable. They are told that the value of a is
between 0 and 10, and the value of b is between 0 and 1. They are not told the range
of Weather variable as they could learn it from the realizations of this variable, and
the current value of w; is always revealed to them before they make any choices.
The payoff function (in points) is a decreasing function of the price prediction error,

and is denoted by:
100

1+ |p§ _pt’

Subjects were told that at the end of the experiment, points earned over all 50

Payoff =

periods would be converted into money earnings at a fixed and known rate (200
points = 1 SGD). Note that we did not incentivize subjects to choose pairs (a, b)
to be as close as possible to the values that least squares learning would predict at
any moment in time, as our interest was in whether subjects would in fact choose
their parameter estimates in the LSL fashion. Incentivizing subjects to update the
PLM parameters in the LSL manner would only bias behavior in the direction of

the LSL model since the necessary incentivization scheme would require disclosing

13The survey asked them about their age, sex, and how many times they had participated in prior
economic experiments. The survey also asked them to provide the strategies they used throughout
the experiment. A copy of the survey can be found in Appendix E.
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to subjects the LSL updating rule by way of explaining their payoff function.!*

Subjects chose a and b using two slider bars on their decision screen with a
parameter range of [0,10] for @ and a parameter range of [0,1] for b. (See screenshots
in Appendix E). Note that these ranges include the REE values, @ = 0.6 and b = 6.
It is important to note that with a linear PLM, and a new i.i.d. realization of the
exogenous variable, wy, in each period, the subject’s choice of the parameters a and
b in every period ¢ is the same situation that someone using least squares learning
would face.

As subjects moved the sliders for either parameter, the computer program showed
both the value of @ and b and the implied price forecast, p§ that would result from
their choices for a and b. By moving one slider at a time, they could see how a
change in a or b affected their price forecast pf. Subjects had unlimited time to
move the sliders around to see what they implied for price forecasts before clicking
on a submit button that finalized their choices for a and b in each period ¢t. Thus,
subjects were incentivized to think about their choices for the two parameters a and
b of the PLM and what those choices implied for their price forecast, p¢.!6 Following
each period, subjects received feedback in the form of an updated plot of all past
prices together with their predictions. They also saw a table containing the history
of all their prior period estimates for a, b, realizations of the weather variable w,
their implied price forecast p® the realized price, p their prediction error, |p® — p|,
and both their period and cumulative point totals.

Recall from the payoff function that the maximum payoff for a perfect forecast
is 100 points per period. Subjects’ final payoff is the sum of their 3 SGD show-up
fee, and the money value of the points they earned from all 50 periods of the exper-
iment. The experiment takes around two hours on average to complete (including
instructions, quiz and the 50 period task and the exit survey) and the average total
payment (including the show-up fee) is 20.83 SGD for Treatment A, 20.70 SGD for
Treatment U and 21.51 SGD for Treatment U Small. The total average payoff of
the experiment is 21.04 SGD.

14 Gimilarly, we did not incentivize subjects to choose values for (a, b) to be as close as possible to
the REE values (@, b) since subjects would have been able to discover these REE values by looking
at their payoff point discrepancies alone.

15The midpoints of these parameter ranges, (0.5 and 5, respectively) are a natural first period
guess for subjects and are not too far away from REE values. This choice of interval ranges was
by design since most learning analyses (see, e.g. Evans and Honkapohja (2001)) study how agents
learn in response to very small perturbations of expectations away from REE values.

16This design is similar in spirit to the “strategy method” of Selten (1965) that is used to elicit
strategies as opposed to actions alone in game theory experiments.

14



3 Experimental Results

3.1 Convergence to REE

3.1.1 Convergence of the Market Price

Figure 4 shows the average deviation and the average absolute deviation of the
actual price from the REE in Treatments U, A and U-small using all data for
reach treatment. As Figure 4 reveals, on average, the deviation from the REE
price is small in all three treatments. The difference between the average market
price and the REE is usually less than 1. The results of a t-test suggest that
the absolute difference between the market price and the REE is significant at
the 5% level in Treatment U (¢ = 11.626,p — value = 0.000), Treatment U-Small
(t = 31.4834, p — value = 0.0000) and Treatment A (¢t = 10.257, p — value = 0.000).
On the other hand, the average difference between the market price and the REE
is not significantly different from zero at the 5% level for either Treatment U
(t = —0.105, p—value = 0.381), Treatment U-Small (t = 1.2230, p—wvalue = 0.2272)
or Treatment A (¢t = —0.884, p — value = 0.299).

We also performed a t-test on whether the difference between the actual market
price and the REE price is significantly different from 0 at the 5% significance level
for each individual subject and we report these results in Table A.2 in Appendix A.
It turns out that we cannot reject the null hypothesis of no difference for all but one
subject each in each of the three Treatments. That is, we cannot reject the null of
no difference for 29 out of 30 subjects in Treatment A, and 28 out of 29 subjects in
Treatment U and 33 out of 34 subjects in Treatment U-Small.

This result shows that when the economy satisfies E-stability (o < 1), the market
price indeed converges to the REE. But it is important to remain aware that for
the same realized wy, there are infinitely many pairs of values of a and b that satisfy
the equation a + bw; = 6 4+ 0.6w;. Therefore, we cannot rule out the possibility that
individuals successfully predict the REE but are using a model that differs from
the REE values for a and b or from what least squares learning would predict for
the estimates of those parameter values at any point in time. In the next section,
we will consider in more detail whether individuals indeed learn to choose the right

combination of values for a and b.
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Figure 4. The average deviation (left panel) and average absolute deviation (right
panel) of market price from the REE in Treatment A (triangles), Treatment U
(circles) and Treatment U-Small (squares).

3.1.2 Sample Means for a, b

In this section, we investigate whether the mean parameter estimates for a, b con-
verge to the REE values, @, b. We test two important characteristics, namely whether
the parameter estimates are biased and whether they exhibit excess volatility, by
comparing the mean and the variance of the coefficient estimates with the REE

values in all treatments.

Figure 5 plots the average of all subject predictions of the parameters a, b in each
of the 50 periods of the experiment against the REE values which are represented
by the horizontal lines, where @ = 6, and b = 0.6. The Figure reveals the rapid
and dampened adjustment over time toward the REE in Treatment U. By contrast,
in Treatment A, we observe a persistent upward bias in the average estimate for a
and a corresponding downward bias in the average estimate for b, relative to REE
predictions.!” Similarly, (but opposite) in Treatment U-small, the estimate of a is
persistently below the REE value while the estimate of b is persistently above the
REE value.

1"We also conduct tests on the speed of convergence, where following the analysis in Figure 1,
subjects in Treatment U are able to reach the REE much faster than subjects in Treatment A.
Details of this analysis can be found in Appendix A.
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Figure 5. Average predictions for the parameters a and b for treatment A (upper
panel), Treatment U and treatment U-Small (lower panel) against the REE values.
The theoretical values are a* = 6,b* = 0.6.

We next make a more direct comparison between the mean values for a;, by and
the REE values. Table 1 shows the sample means and standard deviations of the
parameter estimates for a and b in the first 25 periods, the last 25 periods, and the
full sample of 50 periods for the two treatments. We note that the means for a, b in
Treatment U are closest to the REE values, a = 6, b = 0.6 for all three intervals as

compared with treatments A and U-small.
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Table 1. Sample means and standard deviations for a, b, over the first 25 periods,
the second 25 periods, and the full sample of 50 periods for the two treatments.
The theoretical values are a* = 6,b* = 0.6.

Periods 1-25 Periods 26-50 Periods 1-50

sample average  s.d sample average  s.d sample average  s.d

Treatment A

a 6.170 1.453 6.188 1.404 6.179 1.428
b 0.574 0.152 0.580 0.148 0.577 0.152
Treatment U
a 5.988 1.220 6.018 1.390 6.003 1.120
b 0.598 0.134 0.603 0.114 0.600 0.126
Treatment U-Small
a 5.824 0.041 5.865 0.038 5.845 0.028
b 0.612 0.004 0.616 0.004 0.614 0.003

Table 2 shows results from a t-test of the null hypothesis that the sample means
of subjects’ choices for a, b differ from the REE values over the first 25 periods,
and the last 25 periods, and the full sample of 50 periods of all treatments. For
Treatment U the t-tests reveal that the null hypothesis that the sample mean of the
parameters equals the REE values cannot be rejected at the 5% significance level over
each of the three time windows. However, for Treatment A and Treatment U-Small,
the t-tests lead to rejection of the null that the sample means of both parameters
are equal to the REE values over all three time windows. These results imply that
both parameters in Treatment U converge to REE on average over all three samples,
while the parameters fail to converge to the REE in Treatment A and Treatment

U-Small in any time sample.

Table 2. Test of whether the means of the predicted parameters a, b, are different
from the REE values (a* = 6,b* = 0.6) over the first 25, and last 25 periods, and
all 50 periods for all treatments.

Periods 1-25 Periods 26-50 Periods 1-50
a=26 b=0.6 a=26 b=0.6 a=26 b=0.6
Treat t-stat P t-stat p t-stat P t-stat p t-stat P t-stat p
A 3.213 0.001 -4.676 0.000 3.433 0.000 -3.882 0.000 4.702 0.000 -8.790 0.000
U -0.262 0.794 -0.437 0.662 0.660 0.509 0.626 0.531 0.229 0.819 0.152 0.880

U-Small -4.339 0.000 2.936 0.003 -3.504 0.000 4.175 0.000 -5.561 0.000 4.998 0.000

Tables B.1 and B.2 in Appendix Appendix B show the 95% confidence intervals
for a and b for each individual subject. If the confidence interval of a (b) contains 6
(0.6), it should imply that we cannot reject the null hypothesis that a = 6 (b = 0.6)
for this individual. We count the number of subjects for whom we can reject neither
a =6 or b = 0.6 in each treatment, and find that we cannot reject that the means of

a and b are equal to their REE level for 5 out of 30 subjects (16.67%) in Treatment
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A, 3 out of 34 subjects (8.82%) in Treatment U-small and 14 out of 29 subjects
(48.28%) in Treatment U.

3.1.3 Individual-level Analysis of the Convergence of a, b

The last section focused on whether the sample mean values for a, b are equal to the
REE values. In this section, we examine the development of the elicited a,b over
time, i.e., whether there is some tendency for estimates to converge to the theoretical
values of a = 6,b = 0.6 with experience.

We use a very intuitive convergence criterion: a subjects’ estimates for a, b are
said to converge to the REE if they lie in a very small neighborhood (£.3 or .03)
of the theoretical values, i.e., a € [5.7,6.3], b € [0.57,0.63] and do not leave that
interval following the first period the interval is entered (a consistency requirement).
We chose these intervals because they correspond to the REE 4+ 5% x REE. This
measure has also been used in previous learning-to-forecast experiments e.g., Bao
et al. (2013). Table 3 reports the distribution of individuals in terms of the number
of periods required for convergence to the REE. In treatment A, most subjects
never learn the REE; only 3 out of 30 subjects (10%) learn the REE within the
50 periods allowed in the experiment. By contrast, in Treatment U, 6 out of 29
subjects managed to learn the REE within 10 periods, and 10 more managed to
learn it within 50 periods. Thus, by the end of the experiment, more than half of
subjects in Treatment U, 16 out of 29 (55%), have learned the REE. In Treatment
U-small, only 6 out of 34 (18%) subjects converge within 50 periods.

Table 3. Distribution of the number of periods it takes for subjects to converge to
both REE parameter values, a € [5.7,6.3], b € [0.57,0.63].

Treatment

A U U — Small
No. of Periods
before Convergence No. of subjects Percentage No. of subjects Percentage No. of subjects Percentage
T=1 0 0.0% 1 3.4% 0 0.0%
T € [2,5] 0 0.0% 4 13.8% 0 0.0%
T € [6,10] 0 0.0% 1 3.4% 2 5.9%
T € [11, 25] 1 3.3% 4 13.8% 0 0.0%
T € [26,49] 2 6.7% 6 20.7% 4 11.8%
T > 50 27 90.0% 13 44.8% 28 82.35%
Total 30 100% 29 100% 34 100%

In addition to this simple convergence criterion, we also examine convergence
using regression analysis. We use the convergence formula suggested by Bao et al.
(2013) to find the number and percentage of subjects who successfully achieve con-

vergence to the REE in each treatment.
The linear equation we use for testing whether convergence obtains is as follows.

We assume the updating of the parameters follows an AR(1) process. For the para-

meter submitted by each subject ¢ in period ¢, we test how that parameter depends
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on last period’s (t — 1) submitted parameter, where p stands for the coefficient of

that relationship, p is a constant term, and € is the error term.
ai,t = paiai,tfl + ,U/ai + 80,7;

b’i,t = pbibi,t—l + ,U“bl —I— gbi

We say there is weak convergence if the parameter submitted by subject i has

an estimated value for p that is significantly smaller than 1, i.e., if

pi| <1

We find that the null hypothesis that |p;| = 1 is rejected for 97.8% of our sample
(or 180 out of 184 predictions,'® at the 5% significance level in favor of the alternative
that |p;| < 1, implying that our sample exhibits some overall weak convergence when
predicting the parameters.

We summarize our results to this point as follows:

Result 1 (E-stability): On average, subjects’ predictions for both parameters con-
verge to the REE values in treatment U but not in treatments A or U-small. At the
individual level, 97.8% of all parameter choices (180 out of 184) satisfy a weak form

of convergence to the REE values.

3.2 Fit of the Least Squares Learning Model to the Data

3.2.1 Aggregate Level

In this section, we test whether subjects update their parameter estimates in each
of the periods in the manner predicted by least squares learning (3).

The least squares learning model states that subject ¢ will update their parameter
estimates for a, b in the current period ¢, based on the new realization for the weather
variable w and past realized price information i.e., prices for periods 1 to t — 1. For
each subject 4, in period ¢, the simple mathematical expression of these least squares

learning estimates is given by:

t—1 _ _
S )
it = =1 g y Qi = Pi — O3 cW;
Zs:l(wi,s - wl)
o Zt—l W . Zt—l pi . o0
where w; = === p; = === Thus, the parameter estimates a,b are the ones

that subject ¢ should submit in time period ¢ if he or she follows the LS learning rule.

18Note that there are two parameters a,b, so the total number of equations is 92 x 2 = 184.
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In each period, the LS learning model uses the same information set as subjects
had available to them in the experiment and makes a one period ahead forecast for
subjects’ choices, a;, IA)” Note that this is different from the simulation we did in
Figure 2 of Section 2 where the model makes 50 periods ahead forecasts for subject’s
choices for a, b in all 50 periods after we initialized the model using a; = 5,b; = 0.5.
That is, while both simulations assume that the agent knows the history of the
weather. They use the past prices that each subject actually faced when deciding
how to update their estimates of a and b, but not on the past prices generated by

the LS learning algorithm.

We ran the iterated LS regression for all three treatments, and recorded the pre-
dicted parameter estimates. Note that unlessotherwise stated, the results we present
in this section start from period ¢t = 3 (7' € [1,2]). This is due to the sample size
being too small in period ¢t = 2 (T € [1,1]). The sample also ends at period ¢ = 50

as we do not have data on subjects’ submitted parameters for period 51.

Figure 6 plots the average estimated a, b for the LS learning model in each treat-
ment against the average a, b from the experimental data, and the REE. This figure
reveals a striking difference between subjects’ choices for a b and the least squares
learning predictions in Treatment A and Treatment U-Small. The estimated a (b)
is downward (upward) biased while the experimental data is upward (downward)
biased relative to the REE! Meanwhile, the least squares learning model tracks sub-
jects’ choices for a, b considerably better in Treatment U. In all treatments, the
human subject estimates are more volatile than the least squares learning estimates

for both parameters.
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Figure 6. Mean experimental data versus the mean prediction of the 1 period
least squares learning model for the parameters a (left panel) and b (right panel)
against the REE in each treatment. The theoretical values are a* = 6,b* = 0.6.

Table 4 reports the average mean squared error (MSE) of the least squares model
relative to the experimental data and the average (square) root MSE (o) for all
treatments over all 50 periods, the first 25 periods and the second 25 periods. In
general, the theoretical prediction of the least squares learning model is not far from
the experimental data. The average root MSE is always between 1 and 2 for para-
meter a, and between 0.01 and 0.05 for parameter b, corresponding to approximately
16% — 67% of the value of the REE. The MSE for the LS model higher in Treatment
A than in Treatment U or Treatment U-small in all intervals except for parameter a
in periods 26-50. Generally we find that the least squares model fits the data better

in Treatment U and U-small than in Treatment A.
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Table 4. MSE and root MSE (o) of the least squares learning model relative to the
experimental data in the first 25 periods, the second 25 periods, and the full sample
of 50 periods for all three treatments. The theoretical values are a* = 6,b* = 0.6.

Period 1-50 Period 1-25 Period 26-50
MSE o MSE o MSE o

Treatment A

a 4.536 1.984 6.733 2.479 2.428 1.219

b 0.050 0.207 0.073 0.257 0.055 0.132
Treatment U

a 1.837 1.121 2.470 1.343 1.228 0.774

b 0.020 0.117 0.025 0.136 0.016 0.088

Treatment U-small
1.350 1.162 1.430 1.196 1.271 1.127
b 0.013 0.116 0.014 0.119 0.013 0.112

We further investigate whether the null hypothesis that a;; = a;, biy = 8i7t,
holds on average over the aggregate level. We claim a successful adoption of the LS
learning rule if the null hypothesis that agent update parameter estimates according
to least squares learning predictions cannot be rejected at the 5% significance level.
The test results using t-tests, can be found in Table 5. It turns out that the estimates
differ significantly from the LS learning rule at the aggregate level when we use the
data over all 50 periods. The null hypothesis is also rejected even if we restrict the
sample to last 25 periods (periods 26-50) with the sole exception of parameter a
in Treatment U. In summary, we find almost no supportive evidence that subjects
update their parameter estimates following the LS learning model at the aggregate

level.

Table 5. Results of t-tests of the null hypothesis that a;; = a;, b = lA)i,t holds on
average over the full sample of subjects.The theoretical values a = 6,b = 0.6.

Treatment A Treatment U Treatment U-small
a b a b a b
All 50 Periods
z-stat p-value z-stat p-value z-stat p-value z-stat p-value z-stat p-value z-stat p-value
7.237 0.0000 -8.891 0.0000 -3.424 0.0006 3.6058 0.0003 -6.9882 0.0000 6.5729 0.0000
Second 25 Periods
z-stat p-value z-stat p-value z-stat p-value z-stat p-value z-stat p-value z-stat p-value
6.347 0.0000 -6.969 0.0000 -1.526 0.1274 2.423 0.0156 -4.9525 0.0000 4.6081 0.0000

3.2.2 Individual Predictions

In this section, we examine how many subjects follow least squares learning at the
individual level. When we conduct the estimation for each individual, we follow
the “1 period ahead” method, namely, in each period, the individual updates the
parameters a and b following the least squares learning rule as specified on page 9,

and we load the realized values of p; from the experimental data. We only show the
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fitted values a and b after Period 4 because we need at least 3 data points (periods)

to run a meaningful OLS estimation.

We calculate the mean squared error (MSE) between the least squares learning
model prediction and each subject’s choice for a, b in Treatments A, U and U-Small.
We consider the person a user of the least squares learning model if their MSE is
sufficiently small, i.e., if MSE < 0.36 (i.e. a Root MSE less than 0.6, or 10% of the
REE) for a and a MSE < 0.036 for b (a Root MSE less than 0.06, or 10% of REE)
for b. The results can be found in Table C.1 in Appendix C.

Our results reveal that while 12 out of 29 (41.4%) subjects in Treatment U (Sub-
jects 1, 2, 6, 12, 15, 16, 17, 18, 20, 21, 23 and 28) can be categorized as least squares
learners, there are no subjects in Treatment A or Treatment U-Small who can be

categorized as a least squares learners using the same approach.

Result 2 (Least Squares Learning): We reject the hypothesis that subjects up-
date the parameters of the PLM following the LS learning rule on average in the
aggregate. Yet at the individual level, around 41.4% of subjects in Treatment U
and no subject in Treatment A or Treatment U-Small appear to update their beliefs

following the LS learning rule (3).

3.3 Other Learning Models

Since least squares learning does not seem to characterize very well what most
subjects were doing in terms of parameterizing the PLM (2) over time, in this section
we ask whether other models might do a better job of rationalizing the behavior of
the subjects in our experiment. Specifically, we consider four alternatives to least
squares learning: (1) constant gain learning model, (2) the least mean squares (or

stochastic gradient) learning model, and finally (3) a model of satisficing.

3.4 Constant Gain Learning

We also estimate the constant gain learning model (discussed earlier in section 2.2
) for each individual and report the results in Table C.2 in Appendix C. Similar
to the exercise reported on in the previous section, we consider the person a user
of the constant gain learning model if the MSE between their parameterization of
the PLM and the constant gain learning model predictions are sufficiently small,
ie., if MSE < 0.36 (Root of MSE less than 0.6) for ¢ and MSE < 0.036 for b
(Root of MSE less than 0.06) for b. It turns out that there are only 8 out of 29
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(27.6%) subjects in Treatment U (Subjects 1, 2, 12, 15, 18, 20, 23 and 28) who
can be categorized as users of the constant gain learning model, and no subject in
Treatment A or Treatment U-Small who can be categorized as a user of constant
gain learning model. For the 8 subjects in Treatment U, the mean squared error
of the constant gain learning model is larger than for the least squares learning
model. In general, though the constant gain learning model is usually assumed to
converge “faster” to an REE than least squares learning and is more suitable in the
context where the price dynamics are more volatile, we do not find stronger evidence
for constant gain learning in our individual-level analysis even though the constant
gain learning model has a free parameter v estimated for each subject that helps to

best fit the experimental data.

3.5 Least Mean Squares Learning

The time and memory complexities of RLS and constant gain learning are both
O(m)?, where m is the dimension of x. A much simpler learning algorithm is the
least mean squares (LMS) learning model which is also known as stochastic gradient
descent learning (e.g. Evans et al. (2010)). In this case, only the parameter vector
0 is updated according to the gradient of the error term; the variance covariance
matrix is not used.

This algorithm is also derived from the objective of minimizing the mean of
squared errors, but it does not rely on cross-correlations or auto-correlations, i.e.,
on the variance-covariance matrix R. Thus, the time and memory complexities of
LMS learning are O(m). On the other hand, convergence to the global minimum
is not assured under least mean squares learning unless the gain parameter A is

gradually reduced over time as in RLS.

ét = étfl + )\xt(pt - é;il‘ft) (5)

We estimate the least means squares learning model (A) for each subject and
report the MSE between those predictions and subjects’ parameter choices in Table
6 in Section 4.6 and C.3 of Appendix C. The MSE of the least mean squares learning
model turns out to be larger than for the least squares and constant gain learning
models. If we consider a subject to be a user of the least mean square learning model
if the MSE between the data and that model’s predictions is sufficiently small, i.e.,
if MSE < 0.36 (root MSE less than 0.6) for a and MSE < 0.036 for b (root MSE
less than 0.06) for b, then it turns out that there are only 2 out of 29 (6.9%) subjects
in Treatment A (Subjects 15 and 21), 2 out of 30 (Subjects 2 and 20) subjects in
Treatment U (6.7%), and 2 out of 34 (Subjects 7 and 9) subjects in Treatment U

(5.9%) who can be categorized as users of the least mean square learning model.
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We think the main reason is that the stochastic nature of this learning process has
difficulty in capturing the convergence to REE that we observe among most of our

subjects.

3.6 A Satisficing Model

A final plausible explanation for the behavior of subjects in our experiment is that
they were using some type of “simple satisfying heuristic” or satisficing rule as sugges-
ted by Simon (Simon, 1955,9). In particular, subjects might stay with a prediction
rule, or a specific combination of a,b so long as those parameter choices kept their
prediction error small, or reached a close enough neighborhood of the REE. There-

after, they do not engage in any further updating of the parameter vector (a, b).

In our experiment, the unique REE of the economy is p¢ = 6 + 0.6w;. If we
ignore the variation in w; and simply use the expected value, Efw;] = 10, the nu-
merical value of the price point prediction associated with the REE is 64+ 0.6 F(w;) =
6+ 0.6 x 10 = 12.

If the variation in w; is small, then any combination of a,b that satisfies the
equation a + 10b = 12 should generate a point prediction that is not very far from
the REE of the economy, and hence yield only a small prediction error. If subjects
learn via experimenting with different combinations of a,b and adjust their choices
to minimize the prediction errors, this process may lead them to choose any pair of
values for a, b that are not too far away from a = 6,b = 0.6 but which also satisfy
the equation a + 100 = 12, for example, a = 7 and b = 0.5 or a = 4.8 and b = 0.72

would work.

Figures 9-7?7 show the dynamics of a; + 10b; for each subject ¢ in Treatments
A, U, and U-small, respectively. Indeed, though many subjects fail to learn the
REE values for a and b, most of them are able to choose a combination of the a, b

parameters that satisfies the equation a + 10b = 12.

Table C.4 in Appendix C reports on a 95% confidence interval for a + 10b in all
treatments. It turns out that this confidence interval includes the REE value for 12

out of 30 subjects in Treatment A, 25 out of 29 subjects in Treatment U (all subjects

9Indeed, if a subject starts from either the midpoint of the domain of @ or b and only updates the
other parameter, we should observe many subjects choosinga = 5,b = 0.7ora = 7,b = 0.5. It turns
out we cannot reject this type of behavior for 6 subjects in Treatment A (Subject 10,12,13,15,21
and 30), and 2 subjects in Treatment U (Subject 6 and 9).
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but 3, 6, 13 and 26), and all 34 out of 34 subjects in Treatment U-small. For these
subjects, a t-test indicates that we cannot reject the null that these subjects chose
a and b so as to satisfy the equation a + 10b = 12 at the 95% level. In other words,
across all treatments, most subjects are able to come up with a point prediction that
is close to the REE point prediction, even without learning the true REE values for

a and b.

Figures 10-12 show scatter-plots of @ and b over time for each individual in Treat-
ments A, U, and U-small, respectively. These figures reveal a substantial level of
heterogeneity in the ways that people update the parameter vector of the PLM over
time. While the behavior of some subjects (Subjects 1, 8, 14, 16, 24 in Treatment
A, Subjects 16 and 24 in Treatment U and Subjects 13, 17 and 21 in Treatment
U-small) seem to behave in a similar manner to the simulated path of a, b from
the least squares learning model as shown in Figure 3, other subjects behave very
differently. For example, some subjects (Subjects 11, 17, and 21 in Treatment A,
Subjects 12, 18 and 20 in Treatment U, and Subjects 28, 30 and 34 in Treatment
U-small) seem to experiment with different values for b while keeping the value of a
fixed. Some subjects (Subjects 11, 20, 27 and 29 in Treatment A, and Subjects 7, 9,
16 and 25 in Treatment U-small) are also able to reach a small neighborhood of the
REE fairly quickly. Some subjects (Subjects 3, 6, 8, 10, 25 in Treatment A, 26 in
Treatment U and Subjects 18 and 33 in Treatment U-small) explored a large range
of values for the parameters before they settled down in a region that was usually
not far from the REE values.
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Figure 7. The value of a + 100 for each individual in Treatment A. We report the 95% confidence intervals of a + 10b for each subject in
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Figure 9. The value of a + 10b for each individual in Treatment U-small. We report the 95% confidence intervals of a + 100 for each
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Figure 10. A scatterplot of a and b for each individual subject in Treatment A.
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3.7 Comparison of Model Fits to the Experimental Data

Table 6 summarizes the average mean squared errors across the different learning
models relative to the experimental data.?’ MSE, refers to the mean squared error
between the experimental data and the model for parameter a, while M SFE, refers
to the mean squared error between the experimental data and the model for para-
meter b and finally M SE, refers to the mean squared error between the data and
the model price forecast p. Note that the satisficing (SF) model assumes that agents
choose a combination of a,b that satisfies a + 10b = 12. Thus it is not possible to
calculate M SE,, M SE, for those two models, and the MSE, of the SF' model will
be the same as the RE model.

Table 6. The mean squared error for different learning models in terms of fitting
experimental data. M SFE, is the squared error between the data and model
prediction for parameter a, M SEj is the mean squared error between the data and
the model for parameter b and M SE, is the mean squared error between the data
and the model for the price forecast, p. The models we consider include RE
(rational expectations), RLS (recursive least squares learning), CGL (constant gain
learning), LMS (least mean squares learning) and SF (a satisficing rule).

Treatment A Treatment U Treatment U-small
MSE, MSE, MSE, MSE, MSE, MSE, MSE, MSE, MSE,
RE 2.069 0.023 0.969 1.254 0.016 1.168 1.662 0.019 1.119
RLS 1.837 0.020 1.345 4.536 0.050 0.979 2.671 0.032 1.245
CGL 5.076 0.061 0.989 1.779 0.019 1.280 3.034 0.032 0.518
LMS 1.767 0.210 5.934 1.521 0.169 5.284 1.235 0.135 4.362
SF NA NA 0.969 NA NA 1.168 NA NA 1.119

In general, there is not a large difference between the average MSEs of the dif-
ferent learning models (particularly least squares and constant gain learning) for all
treatments, and the average MSEs for most models are generally greater than that
of the rational expectations model where people constantly choose a = 6,b = 0.6.
A likely explanation for this finding is that most of the learning models have long
memory and put heavy weight on past observations. These models therefore predict
slower learning speeds than the subjects’ actual learning speed in the experiment,

and therefore underperform relative to the RE model/satisficing rule.

If we consider a subject to be a user of a model if the M SE, is sufficiently small,
ie., if MSE, < 1.44 (root MSE less than 1.2, 10% of the REE price prediction),

then the numbers of subjects who can be categorized as users of the different can-

2ONote that different from the RLS, CGL and LMS models, the satisficing rule uses a linear
combination of a and b instead of the exact values of them. Therefore, caution needs to be taken
in drawing any comparison between the satisficing rule and other model.
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didate models is reported in Table 7.

Table 7. The number of subjects who can be categorized as users of different
models based on the size of M SE,. The models we consider include RE (rational
expectations), RLS (recursive least square), CGL (constant gain learning), LMS
(least mean square learning) and SF (a satisficing rule).

Model Treatment A Percentage Treatment U Percentage Treatment U-small Percentage

RE 30 100.0% 29 100.0% 34 100.0%
RLS 19 63.3% 8 27.6% 25 73.5%
CGL 29 96.7% 23 79.3% 33 97.1%
LMS 5 16.7% 3 10.3% 13 38.2%
SF 30 100.0% 29 100.0% 34 100.0%

Among the learning models, the RE/SF learning model generates the smallest
MSE in terms of fitting the price data in Treatment A, the recursive least squares
learning model generates the smallest MSE in terms of fitting the price data in
Treatment U, and the recursive least squares learning model generates the smallest
MSE in terms of fitting the price data in Treatment U-small. Still, as we have seen,
the satisficing rule provides the best description of the overall pattern of subjects’
prediction behavior in all treatments, and like the RE prediction it has the lowest
overall MSE across all treatments as well as the largest number of users according
to the criteria of sufficiently small M SE,.

4 Conclusion

In this paper, we have conducted the first ever structural test of the seminal least
squares learning model using a simple Cobweb model economy. The subjects in our
experiment submit predictions for two unknown parameters in a linear PLM that
nests the REE as a special case. We observe how subjects update these parameters
over time. Since the slope coefficient on the expectations term, «, is less than 1,
our experimental economy satisfies the E-stability condition, and so learning agents
should converge to the REE.

In general, all of our markets converge to a neighborhood of the REE, which is
supportive of the E-stability prediction. We find that around 97% of the individual
predictions satisfy a weak convergence criterion. On average, the predictions by sub-
jects in Treatment U converge faster than the predictions of subjects in Treatment A
and Treatment U-small. Treatment U-small, which keeps the uniform nature of the

i.i.d. random draws for the weather term but lowers the variance, delivers findings
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that are closer to treatment A than to treatment U, which suggests that the size
of the variance rather than the persistence of the exogenous variable is the more

important factor in explaining departures from learning the REE.

Our results suggest that the least squares learning model yields correct predic-
tions at the aggregate level in terms of convergence or near convergence to the REE.
However, at the individual level, it does not seem to be a good descriptor of how indi-
vidual agents update their expectations over time. Least squares learners are found
only in treatment U where they comprise 41.4% of the subjects in that treatment;
we find no subject employing least squares learning in Treatment A or U-small, and

only one such subject in our treatment U-small.

For those who deviate from least squares learning, many of them seem to ad-
opt some kind of dimension-reducing strategy focusing on price point prediction
accuracy alone. This behavior is consistent with the “satisficing” approach of Simon
(Simon, 1955,9), and a simple satisficing heuristic appears to explain our experi-

mental data better than does least squares learning.

The environment we have studied is a very simple individual-decision making en-
vironment. Our lack of evidence in support of least squares updating of parameters
of the PLM doesn’t necessarily constitute a robust case against the use of recursive
least squares updating to model learning behavior. Our findings may simply reflect
current limitations in our ability to gather data that would validate the use of the
least squares learning approach. We hope that others can build upon our design in

ways that make the case for or against least squares learning more compelling.

Indeed, in future research, it would be of interest to study how agents update
the parameters of their PLM in settings where there is a group of n subjects whose
forecasts matter for realizations of the variables being forecasted as in an n-player
learning—to—forecast experiments. It would further be of interest to elicit subjects’
PLMs, rather than impose a PLM on them that explicitly nests the REE solution
as a special case and asking how they would parameterize that particular PLM. In
cases where subjects did not use a PLM that nested the REE, it might be the case
that they converge to some kind of self-confirming equilibrium (Cho and Sargent
(2008)). Finally it would also be of interest to give subjects access to statistical
software or to provide them with a choice of forecasting models to form forecasts of
future prices on their behalf that included least squares learning as one possibility
among others. We view the present study as a first, small step in the direction of

developing a more structural approach to understanding the manner in which agents
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form expectations and so we leave the study of these more complex environments

to future research.
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Appendices

Appendix A: Supplementary Information

Appendix A.1: Session Information

Table A.1. Characteristics of Experimental Design.

Session Number Treatment Type Number of participants (N)

1 A 13
2 A 17
3 U 14
4 U 10
5 U 5
6 U-Small 17
7 U-Small 17

A-1



Appendix A.2: t-test on the Price Level

We perform a t-test on the equality between the realized market price and the REE
price level and report the results in Table A.2.

Table A.2. t-test on the price level. The null hypothesis is that the average price is
equal to the REE, i.e. pj = 6 4 0.6wy.

Treatment A Treatment U Treatment U-small

Sub t-statistic p-value t-statistic p-value t-statistic  p-value
1 0.050 0.971 1.150 0.256 0.35 0.744
2 1.000 0.316 1.100 0.280 0.45 0.641
3 0.650 0.521 -1.750 0.086 1.3 0.202
4 0.150 0.873 1.150 0.247 0.1 0.91
5 1.350 0.189 -0.200 0.840 0.6 0.555
6 0.150 0.886 1.800 0.078 -0.15 0.891
7 0.950 0.353 0.850 0.411 1.3 0.194
8 1.500 0.135 -0.050 0.951 1.55 0.125
9 0.250 0.823 0.300 0.782 0.7 0.502
10 0.300 0.769 0.000 0.985 0.95 0.337
11 1.200 0.236 1.600 0.116 0.25 0.812
12 0.900 0.368 1.750 0.084 1 0.316
13 0.400 0.690 -2.800 0.007 0.4 0.675
14 0.250 0.790 0.400 0.702 1.05 0.289
15 1.250 0.213 -0.600 0.550 0.55 0.572
16 -0.900 0.385 1.350 0.185 4.65 0
17 2.250 0.030 0.300 0.752 0.35 0.718
18 0.150 0.881 1.300 0.198 -0.35 0.711
19 1.650 0.105 0.100 0.911 0.4 0.676
20 1.200 0.238 0.950 0.358 -0.3 0.76
21 1.750 0.083 0.250 0.803 1.3 0.199
22 -0.200 0.840 0.350 0.729 0.35 0.742
23 1.500 0.138 -0.450 0.656 -0.85 0.391
24 0.800 0.416 0.850 0.400 0.45 0.638
25 1.200 0.235 0.450 0.666 -0.75 0.456
26 1.350 0.185 1.250 0.212 0.35 0.718
27 1.600 0.114 -0.600 0.556 0.85 0.392
28 1.200 0.237 1.400 0.171 0.1 0.937
29 1.100 0.276 0.650 0.517 1.05 0.31
30 1.300 0.205 1.25 0.223
31 0.85 0.392
32 -0.25 0.813
33 1.1 0.271
34 0.45 0.667

A-2



Appendix A.3: Comparison of the Demographic Characteristics of Par-
ticipants in the Two Treatments

As a balance check to rule out the possibility of selection bias, we conduct a re-
gression analysis of differences in demographic characteristics between the group
of subjects assigned to Treatment A and the group assigned to Treatment U. Two
sample t-tests are used to compare the demographic characteristics and particip-
ation experience between the two groups. The results indicate that there is no
statistically significant difference at the 5% significance level between the groups on
the recorded factors. It confirms that our randomization was successful and gives us
more freedom to conclude that the observed differences with predictions are brought
about by differences in the treatment conditions alone.



Appendix B: Testing Convergence Using Linear Estimation

Table B.1. Mean, standard error and 95% confidence interval (CI) of a in Treatment A,
U and U-Small. The theoretical values are a* = 6, b* = 0.6.

Treatment A Treatment U Treatment U-Small

Sub  Mean  Std. Err. 95% CI1 Mean  Std. Err. 95% CI Mean  Std. Err. 95% CI

1 9.333 0.242 8.847 9.819 5.976 0.020 5.936 6.017 5.104 0.077 4.949  5.259
2 5.339 0.126 5.087 5.592  5.894 0.018 5.857 5931 5.456 0.086 5.284 5.628
3 6.849 0.086 6.676 7.022  5.557 0.340 4.874 6.240 5.616 0.019 5.578  5.654
4 5.798 0.144 5.509 6.087 5.902 0.141 5.618 6.186  5.440 0.062 5.315 5.565
5 5.320 0.162 4.995 5.644 5.573 0.140 5.290 5.855 5.110 0.048 5.013  5.207
6 6.269 0.182 5902 6.635 7.133 0.269 6.594 7.673  6.096 0.044 6.008 6.184
7 3.700 0.068 3.563 3.837 6.124 0.070 5.984 6.263 6.206 0.007 6.191 6.221
8 6.804 0.236 6.329 7.278 6.335 0.171 5.991 6.679 6.762 0.183 6.395 7.129
9 6.194 0.121 5.950 6.438 5.124 0.061 5.001 5.246 6.588 0.018 6.551  6.625
10 6.892 0.125 6.640 7.144 6.204 0.203 5.797 6.611  6.498 0.112 6.272 6.724
11 6.304 0.032 6.240 6.368  6.041 0.142 5.757 6.326  5.690 0.119 5.450 5.930
12 6.827 0.097 6.632 7.023  5.939 0.018 5903 5976 6.844 0.113 6.617 7.071
13 6.875 0.107 6.659 7.090 7.692 0.059 7.574 7.811  5.940 0.222 5.495 6.385
14 8.920 0.278 8.361 9.478  4.598 0.179 4.238 4.958 6.314 0.067 6.178  6.450
15 4.800 0.045 4.710 4.890 6.075 0.103 5.869 6.280 5.288 0.070 5.148 5.428
16 6.412 0.211 5.987 6.837 5.931 0.029 5.873 5990 6.798 0.047 6.704  6.892
17 5.322 0.019 5.284 5.359  6.090 0.089 5912 6.269 6.194 0.148 5.896 6.492
18 6.563 0.119 6.324 6.801 5.971 0.029 5.912 6.030 4.880 0.146 4.588 5.172
19 4.729 0.034 4.662 4.797  6.000 0.107 5.785 6.215  5.866 0.157 5.550 6.182
20 5.835 0.061 5.712 5.958  6.000 0.000 6.000 6.000 6.904 0.069 6.765  7.043
21 5.000 0.000 5.000 5.000 5.976 0.044 5.888 6.065 3.074 0.312 2.446  3.702
22 6.645 0.105 6.434 6.856 6.578 0.143 6.291 6.865 6.034 0.033 5.967 6.101
23 6.147 0.094 5.959 6.335 5.835 0.049 5.737 5933 6.910 0.118 6.672 7.148
24 5.592 0.195 5.201 5.983 6.159 0.148 5.862 6.456  5.406 0.101 5.204 5.608
25 6.725 0.121 6.483 6.968 5.735 0.155 5.424  6.046  4.908 0.035 4.838 4.978
26 6.247 0.081 6.084 6.410 5.002 0.201 4.597 5407 5.102 0.116 4.869 5.335
27 6.418 0.071 6.275 6.560 6.757 0.146 6.463 7.0561  6.952 0.072 6.808  7.096
28 6.235 0.104 6.027 6.444 5.976 0.026 5.925 6.028 4.950 0.106 4.737  5.163
29 6.131 0.130 5.870 6.393 6.016 0.110 5.796 6.236 5.786 0.160 5.465 6.107
30 5.022 0.125 4.771  5.272 5.890 0.133 5.623  6.157
31 6.058 0.062 5.933 6.183
32 6.890 0.098 6.694  7.086
33 5.466 0.183 5.097 5.835
34 5.698 0.019 5.660 5.736
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Table B.2. Mean, standard error and 95% confidence interval (CI) of b in Treatment A,
U and U-Small. The theoretical values are a* = 6,b* = 0.6.

Treatment A Treatment U Treatment U-Small

Sub  Mean Std. Err. 95% CI Mean  Std. Err. 95% CI Mean  Std. Err. 95% CI

1 0.227 0.021 0.185 0.269  0.601 0.001 0.599 0.604 0.690 0.006 0.677 0.703
2 0.679 0.019 0.641 0.717 0.610 0.001 0.609 0.611 0.653 0.012 0.630 0.677
3 0.506 0.005 0.495 0.516 0.750 0.038 0.674  0.826 0.634 0.003 0.628  0.640
4 0.622 0.017 0.589 0.656  0.593 0.011 0.570 0.615 0.660 0.011 0.638 0.682
5 0.683 0.020 0.643 0.722  0.649 0.013 0.622 0.676  0.689 0.005 0.679  0.699
6 0.564 0.017 0.530 0.598 0.537 0.027 0.483 0.592  0.596 0.005 0.586  0.606
7 0.841 0.005 0.831 0.851 0.580 0.009 0.562 0.597 0.578 0.002 0.575 0.582
8 0.504 0.023 0.459  0.550 0.595 0.021 0.552 0.638 0.516 0.020 0.476  0.556
9 0.573 0.014 0.545 0.600 0.705 0.009 0.688 0.722  0.541 0.002 0.538 0.545
10 0.519 0.011 0.497 0.540 0.593 0.022 0.550 0.636 0.542 0.007 0.528  0.557
11 0.565 0.002 0.561 0.570  0.569 0.010 0.549 0.590 0.626 0.013 0.601 0.651
12 0.527 0.012 0.503  0.551 0.602 0.001 0.599  0.605 0.507 0.003 0.501 0.513
13 0.495 0.013 0.469 0.521  0.469 0.010 0.450 0.488 0.604 0.021 0.561 0.646
14 0.264 0.027 0.209 0.319 0.735 0.011 0.713 0.756  0.562 0.005 0.552  0.571
15 0.714 0.015 0.684 0.745 0.602 0.016 0.571 0.634 0.668 0.012 0.644  0.692
16 0.571 0.021 0.528 0.613  0.599 0.004 0.591 0.608 0.500 0.000 . .
17 0.659 0.006 0.647 0.671  0.590 0.006 0.578 0.603 0.585 0.014 0.557 0.614
18 0.542 0.008 0.525 0.559  0.597 0.005 0.588 0.606 0.718 0.013 0.691 0.744
19 0.721 0.007 0.707 0.736 0.599 0.007 0.585 0.613 0.617 0.015 0.586  0.648
20 0.611 0.007 0.597 0.624  0.600 0.001 0.599 0.602 0.515 0.006 0.503 0.528
21 0.700 0.005 0.691 0.709 0.595 0.006 0.584 0.607 0.886 0.029 0.828 0.945
22 0.537 0.011 0.515 0.559 0.512 0.015 0.481 0.543  0.597 0.004 0.589  0.605
23 0.578 0.012 0.555 0.601 0.630 0.006 0.617 0.643 0.521 0.010 0.502  0.540
24 0.642 0.022 0.597 0.687  0.568 0.015 0.537 0.598  0.658 0.011 0.636  0.680
25 0.514 0.009 0.497 0.531 0.626 0.025 0.575 0.677 0.717 0.003 0.711 0.723
26 0.567 0.007 0.553  0.581 0.592 0.036 0.520 0.664 0.688 0.010 0.668 0.709
27 0.538 0.013 0.512 0.564 0.525 0.012 0.502 0.549  0.502 0.002 0.498 0.506
28 0.561 0.011 0.539 0.582  0.598 0.002 0.594 0.602 0.714 0.018 0.678 0.751
29 0.564 0.009 0.546  0.581  0.585 0.013 0.560 0.611 0.612 0.013 0.586  0.638
30 0.694 0.012 0.669 0.719 0.603 0.012 0.578 0.628
31 0.589 0.009 0.571  0.607
32 0.514 0.009 0.495 0.532
33 0.639 0.020 0.600 0.678
34 0.631 0.005 0.622  0.640
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Table B.3. Linear Estimation on parameter a in Treatment A.

Number Da p-value (|po] > 1) I R? Root MSE  Durbin Watson Equilibrium Wald test p-value
1 0.5466 0.0128 4.3842 0.3543 0.9517 2.3364 9.6777 0.0000
2 0.4304 0.0039 2.9828 0.1849 0.5606 2.3223 5.2333 0.0000
3 -0.1747 0.0000 8.1052 0.0366 0.5417 1.5705 6.8979 0.0000
4 -0.3225 0.0000 7.7630 0.1032 0.9402 1.8359 5.8677 0.2001
5 -0.0306 0.0000 5.2887 0.0020 0.6678 2.0131 5.1312 0.0000
6 0.1060 0.0005 5.5985 0.0117 1.2809 1.3254 6.2617 0.2007
7 0.0808 0.0000 3.4494 0.0173 0.3027 1.3677 3.7522 0.0000
8 0.7153 0.0017 2.0166 0.5706 1.0794 2.4043 7.0772 0.0488
9 -0.4139 0.0000 8.8678 0.2615 0.6072 1.7516 6.2716 0.0000
10 -0.2500 0.0000 8.5551  0.0630 0.7695 1.8870 6.8441 0.0000
11 0.2287 0.0000 4.8879 0.1569 0.1242 1.3604 6.3398 0.0000
12 0.3446 0.0000 4.4695 0.1542 0.4376 1.9248 6.8244 0.0000
13 -0.1271 0.0000 7.7926 0.0179 0.7325 2.0651 6.9148 0.0000
14 0.0083 0.0000 9.0764 0.0001 1.6261 2.0598 9.1515 0.0000
15 0.2406 0.0000 3.6101 0.0614 0.1371 1.6955 4.7563 0.0000
16 -0.0897 0.0000 6.8856 0.0072 1.4441 1.8947 6.3192 0.0947
17 0.435 0.0053 3.0136  0.2129 0.1158 2.2905 5.3345 0.0000
18 -0.0959 0.0000 7.2044 0.0098 0.8156 1.3068 6.5736 0.0000
19 -0.1225 0.0002 5.2974 0.0155 0.2384 1.6636 4.7168 0.0000
20 0.4822 0.0000 3.0389 0.2509 0.3745 2.0254 5.8668 0.2072
21 Omitted because of collinearity
22 -0.0630 0.0004 7.0351 0.0045 0.7205 2.1160 6.6181 0.0000
23 0.5436 0.0002 2.8251 0.3116 0.5551 2.0980 6.1952 0.2744
24 0.1987 0.0000 4.4617 0.0400 1.3907 1.9089 5.5705 0.0818
25 0.5415 0.0028 3.1490 0.4200 0.5665 2.4158 6.8756 0.0000
26 0.4306 0.0081 3.5829 0.2045 0.5081 1.2646 6.2970 0.0263
27 0.1050 0.0000 5.7847 0.0132 0.4664 2.0765 6.4637 0.0000
28 0.0094 0.0000 6.1970 0.0001 0.6662 1.9393 6.2556 0.0087
29 -0.1564 0.0000 7.2344 0.0264 0.5354 1.7212 6.2578 0.0001
30 0.0495 0.0000 4.8307 0.0025 0.8623 1.3318 5.0826 0.0000
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Table B.4. Linear estimation on parameter b in Treatment A. u is the intercept of
the regression while p is the slope.

Number Db p-value (|py| > 1) L R’ Root MSE Durbin Watson Equilibrium Wald test p-value
1 0.4512 0.0015 0.1188 0.2443 0.1194 2.2080 0.2168 0.0000
2 0.0503 0.0000 0.6452 0.0029 0.1204 1.9117 0.6792 0.0000
3 0.1641 0.0000 0.4227 0.0253 0.0384 1.9796 0.5060 0.0000
4 -0.2733 0.0000 0.7973 0.0869 0.1064 2.1886 0.6261 0.0267
5 0.1110 0.0000 0.6146 0.0260 0.0918 2.0267 0.6918 0.0000
6 0.2191 0.0000 0.4358 0.0629 0.0996 2.2610 0.5583 0.0156
7 0.3970 0.0004 0.5060 0.1576 0.0256 2.2699 0.8391 0.0000
8 0.7118 0.0560 0.1403 0.5312 0.1123 2.5591 0.4861 0.0572
9 -0.3416 0.0000 0.7795 0.1291 0.0835 1.4754 0.5805 0.0321
10 -0.1863 0.0000 0.6114 0.0428 0.0545 1.4801 0.5152 0.0000
11 0.2933 0.0116 0.4007 0.1307 0.0124 0.7740 0.5672 0.0000
12 0.6334 0.0949 0.1897 0.4013 0.0419 1.7072 0.5177 0.0000
13 -0.4799 0.0000 0.7472  0.2303 0.0552 1.3843 0.5047 0.0000
14 0.1943 0.0000 0.2117 0.0384 0.1909 2.0552 0.2630 0.0000
15 0.0551 0.0000 0.693 0.0133 0.0179 0.9173 0.7334 0.0000
16 -0.1969 0.0000 0.6941 0.0374 0.1296 1.9066 0.5798 0.1911
17 0.3991 0.0247 0.3992 0.2293 0.0309 2.0119 0.6639 0.0000
18 0.2261 0.0000 0.4220 0.0521 0.0586 2.1020 0.5452 0.0000
19 0.2941 0.0000 0.5170  0.2679 0.0197 1.7159 0.7323 0.0000
20 0.5458 0.0003 0.2777 0.3017 0.0395 2.0957 0.6123 0.3659
21 0.2621 0.0000 0.5207 0.3197 0.0127 1.4197 0.7060 0.0000
22 -0.1632 0.0042 0.6175 0.0462 0.0609 0.6189 0.5305 0.0000
23 0.3711 0.0004 0.3658 0.1396 0.0780 1.7425 0.5819 0.3005
24 0.1422 0.0000 0.5569 0.0216 0.1568 2.0167 0.6492 0.0598
25 0.1140 0.0014 0.4493 0.0250 0.0449 2.5970 0.5068 0.0000
26 0.6788 0.0376 0.1838 0.4738 0.0367 2.6100 0.5732 0.0513
27 -0.0552 0.0000 0.5799 0.0031 0.0532 1.7854 0.5497 0.0000
28 0.3800 0.0000 0.3551 0.2181 0.0565 2.3680 0.5726 0.0330
29 -0.2709 0.0000 0.7230  0.0962 0.0522 1.7406 0.5688 0.0000
30 0.6067 0.0022 0.2753 0.4106 0.0578 2.4363 0.6997 0.0000
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Appendix C: Modelling the Forecasting Strategy at the Indi-
vidual Level

Table C.1. The mean squared error of the recursive least squares learning learning
model for each subject in Treatment A, U and U-Small.

Treatment A MSE, MSE, TreatmentU MSE, MSE, Treatment U-Small MSE, MSE,

1 20.2748 0.2272 1 0.0038 0.0001 1 1.670 0.018
2 1.4377  0.0234 2 0.0293  0.0003 2 0.701 0.010
3 1.4622  0.0138 3 5.5731  0.0993 3 2.033 0.023
4 2.6421 0.0361 4 0.9670 0.0074 4 1.241 0.015
) 1.6777  0.0277 5 1.1212  0.0211 5 1.336 0.014
6 3.5342  0.0475 6 4.1360 0.0437 6 0.733 0.005
7 10.8363 0.1156 7 0.2593 0.0063 7 0.123 0.001
8 4.7650  0.0498 8 1.8924 0.0238 8 7.812 0.094
9 2.0785 0.0288 9 1.8127 0.0272 9 0.541 0.005
10 4.1401  0.0440 10 1.7940 0.0226 10 5.012 0.053
11 1.0212  0.0129 11 0.9237 0.0054 11 9.938 0.160
12 3.6883  0.0383 12 0.0100 0.0003 12 0.832 0.007
13 3.9192  0.0437 13 7.7283 0.0537 13 3.734 0.037
14 15.2220 0.1851 14 6.8075 0.0571 14 0.613 0.006
15 1.2980 0.0138 15 0.2685 0.0064 15 2.162 0.025
16 4.0759  0.0513 16 0.0255 0.0003 16 0.939 0.013
17 1.5917  0.0229 17 0.3302 0.0029 17 1.208 0.011
18 1.7316 0.0173 18 0.0026  0.0001 18 4.629 0.080
19 5.7752  0.0532 19 0.4103 0.0050 19 1.116 0.013
20 0.6736  0.0084 20 0.0034 0.0000 20 1.796 0.016
21 1.0703 0.0121 21 0.3498 0.0028 21 16.529  0.153
22 29990 0.0392 22 1.3446  0.0183 22 1.053 0.012
23 0.4317  0.0061 23 0.1309 0.0022 23 3.574 0.028
24 3.0107  0.0370 24 1.0970 0.0112 24 2.093 0.026
25 1.9935 0.0158 25 1.2195 0.0292 25 2.168 0.025
26 1.5810  0.0198 26 3.8584 0.0668 26 5.431 0.079
27 0.4781  0.0080 27 1.2913  0.0077 27 0.744 0.003
28 5.1372  0.0770 28 0.0145 0.0006 28 0.493 0.023
29 1.3162  0.0164 29 0.5750 0.0073 29 1.293 0.013
30 1.3409  0.0194 30 1.583 0.020

31 0.660 0.011

32 2.423 0.031

33 4.044 0.053

34 0.559 0.007
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Table C.2. The mean squared error of the constant gain learning model for each
subject in Treatment A, U and U-SMall.

Treatment A MSE, MSE, ¥ Treatment U MSE, MSE ¥ Treatment U-Small MSE, MSE, ¥
1 25.1347 0.2460 0.01 1 0.0384 0.0002 0.27 1 1.7787 0.0162 0.38
2 2.4421 0.0369 0.01 2 0.0729 0.0002 0.01 2 2.0724 0.0287 0.02
3 3.1365 0.0340 0.3 3 7.9946 0.0577 0.15 3 1.7150 0.0186 0.3
4 3.5402 0.0502 0.26 4 1.5429 0.0086 0.22 4 0.9662 0.0134 0.05
5 2.5643 0.0398 0.32 5 0.5393 0.0195 0.32 5 3.1067 0.0352 0.05
6 4.1357 0.0445 0.5 6 5.9779 0.0528 0.2 6 1.6670 0.0184 0.03
7 12.1870 0.1652 0.01 7 0.5267 0.0128 0.31 7 0.3516 0.0034 0.31
8 6.4276 0.0793 0.31 8 2.2658 0.0274 0.62 8 3.1137 0.0362 0.3
9 4.1499 0.0576 0.3 9 0.8746 0.0210 0.3 9 0.8678 0.0092 0.19
10 6.0884 0.0674 0.28 10 2.2412 0.0216 0.17 10 2.4762 0.0267 0.11
11 2.1186 0.0318 0.37 11 1.3765 0.0047 0.08 11 2.3548 0.0406 0.18
12 2.9955 0.0459 0.33 12 0.0352 0.0006 0.31 12 3.2162 0.0305 0.25
13 3.3969 0.0427 0.37 13 6.8487 0.0457 0.41 13 2.7470 0.0277 0.01
14 13.7778 0.1480 0.22 14 5.9884 0.0551 0.29 14 0.9377 0.0096 0.17
15 4.9380 0.0680 0.39 15 1.0784 0.0267 0.37 15 2.4906 0.0238 0.26
16 6.3307 0.0558 0.21 16 0.0579 0.0005 0.32 16 3.2395 0.0349 0.27
17 3.7499 0.0543 0.39 17 0.5174 0.0072 0.44 17 1.3869 0.0124 0.19
18 4.5664 0.0514 0.3 18 0.1464 0.0007 0.25 18 2.1843 0.0304 0.36
19 3.5210 0.0524 0.01 19 1.0154 0.0130 0.34 19 2.4193 0.0260 0.31
20 1.3215 0.0161 0.32 20 0.0014 0.0000 0.02 20 4.1917 0.0315 0.3
21 4.1122 0.0571 0.37 21 0.1139 0.0050 0.49 21 18.9455 0.2038 0.79
22 3.9143 0.0472 0.38 22 1.4359 0.0226 0.36 22 0.6075 0.0040 0.31
23 2.4223 0.0310 0.01 23 0.4680 0.0046 0.28 23 4.9157 0.0367 0.38
24 6.1098 0.0748 0.5 24 1.6112 0.0116 0.19 24 2.4792 0.0220 0.24
25 3.5249 0.0370 0.45 25 2.1439 0.0415 0.26 25 5.6081 0.0666 0.92
26 2.7143 0.0301 0.32 26 3.9461 0.0669 0.3 26 3.7881 0.0338 0.29
27 2.2466 0.0316 0.37 27 1.9689 0.0141 0.31 27 2.0800 0.0142 0.21
28 5.3577 0.0572 0.34 28 0.0965 0.0017 0.34 28 2.5506 0.0339 0.3
29 2.4703 0.0360 0.29 29 0.6744 0.0090 0.01 29 2.5459 0.0226 0.3
30 2.8794 0.0327 0.01 30 3.2130 0.0332 0.31
31 2.1399 0.0236 0.31
32 4.2473 0.0325 0.3
33 5.3634 0.0632 0.35
34 1.3906 0.0182 0.31
Table C.3. The mean squared error of the least mean square learning model for
each subject in Treatment A and U.
Treatment A MSE, MSE, A Treatment U MSE, MSE,, A Treatment U-Small MSE, MSE), A
1 8.2152 0.3560 0.21 1 0.2004 0.1436 0.03 1 1.4709 0.0132 0.01
2 0.3995 0.0234 0.01 2 0.0520 0.0137 0.01 2 0.8986 0.0155 0.01
3 0.7293 0.2409 0.14 3 7.4191 0.3794 0.18 3 0.3666 0.0041 0.01
4 2.0970 0.2693 0.11 4 1.0352 0.1852 0.06 4 0.4756 0.0127 0.01
5 5.4008 0.2731 0.25 5 3.2267 0.2507 0.15 5 3.3066 0.2499 0.03
6 2.7783 0.2374 0.17 6 4.8819 0.2525 0.13 6 0.1793 0.0023 0.01
7 2.0770 0.1385 0.06 7 2.5854 0.2315 0.14 7 0.0495 0.0245 0.02
8 2.1135 0.2537 0.17 8 2.6754 0.3079 0.16 8 1.7753 0.0234 0.01
9 1.8980 0.2597 0.15 9 0.4979 0.1606 0.03 9 0.0520 0.0052 0.02
10 0.6168 0.2511 0.08 10 2.1554 0.1417 0.02 10 0.7797 0.0387 0.02
11 0.2400 0.2457 0.06 11 1.4309 0.1534 0.04 11 1.5957 0.2483 0.11
12 0.4615 0.2401 0.12 12 0.1391 0.1718 0.04 12 0.4420 0.2419 0.11
13 0.9391 0.2307 0.13 13 2.4645 0.1985 0.1 13 1.2950 0.2532 0.05
14 8.3568 0.3701 0.27 14 3.1031 0.2396 0.08 14 0.2666 0.0040 0.01
15 0.0898 0.0023 0.01 15 0.9297 0.1530 0.03 15 0.2372 0.0726 0.02
16 2.6797 0.2681 0.11 16 0.2568 0.1596 0.04 16 0.1110 0.2400 0.08
17 0.1063 0.0032 0.01 17 0.3953 0.1181 0.03 17 1.1030 0.2126 0.03
18 1.4588 0.2394 0.13 18 0.2022 0.1634 0.04 18 2.9536 0.2529 0.09
19 0.1457 0.0128 0.02 19 0.5795 0.0218 0.01 19 1.2072 0.2221 0.03
20 0.5006 0.2298 0.04 20 0.0003 0.0030 0.01 20 1.0021 0.2402 0.14
21 0.0006 0.0008 0.01 21 0.2596 0.1495 0.03 21 8.9788 0.0835 0.01
22 1.0577 0.2457 0.13 22 0.8757 0.2029 0.05 22 0.1521 0.1976 0.03
23 0.8560 0.2364 0.04 23 0.3875 0.1692 0.03 23 1.3497 0.2362 0.13
24 3.6128 0.2627 0.03 24 1.0726 0.2220 0.05 24 0.6300 0.0656 0.02
25 0.9682 0.2456 0.2 25 1.3857 0.1760 0.02 25 1.6762 0.0186 0.01
26 1.0451 0.2336 0.04 26 3.4554 0.1029 0.01 26 2.1347 0.1931 0.04
27 0.3987 0.2337 0.07 27 1.1324 0.0595 0.01 27 0.2979 0.2382 0.08
28 1.4380 0.2433 0.11 28 0.3684 0.2021 0.07 28 0.5588 0.0300 0.01
29 0.4659 0.2496 0.05 29 0.9378 0.1781 0.03 29 1.6615 0.2044 0.03
30 1.9773 0.1055 0.03 30 0.9091 0.0104 0.01
31 1.1888 0.2564 0.06
32 1.0631 0.2397 0.11
33 1.6643 0.2407 0.05
34 0.1680 0.1951 0.03
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Table C.4. Mean, standard error and 95% confidence interval (CI) of a + 10b in
Treatments A, U and U-small. The theoretical values are a* = 6,b* = 0.6.

Treatment A Treatment U Treatment U-small
Sub Mean Std. Err. 95% CI Mean Std. Err. 95% CI
1 11.81 0.09 11.63 12.00 11.99 0.01 11.96 12.02 12.00 0.05 11.90 12.11
2 11.97 0.15 11.66 12.28 11.99 0.02 11.95 12.04 11.99 0.08 11.83 12.15
3 11.93 0.07 11.78 12.08 13.04 0.39 12.26 13.83 11.96 0.04 11.88 12.04
4 12.05 0.17 11.70 12.40 11.83 0.24 11.36 12.31 12.04 0.11 11.81 12.27
5 11.99 0.11 11.76 12.22 12.07 0.09 11.89 12.24 12.00 0.06 11.89 12.12
6 12.00 0.17 11.65 12.34 12.51 0.20 12.11 12.91 12.05 0.04 11.98 12.13
7 12.07 0.08 11.91 12.24 11.92 0.09 11.74 12.10 11.99 0.01 11.96 12.02
8 11.84 0.09 11.67 12.02 12.30 0.27 11.76 12.84 11.92 0.05 11.81 12.03
9 12.00 0.19 11.61 12.39 12.18 0.13 11.93 12.44 12.00 0.03 11.95 12.05
10 11.95 0.13 11.70 12.21 12.11 0.22 11.68 12.55 11.92 0.11 11.70 12.15
11 11.95 0.04 11.87 12.04 11.73 0.23 11.26 12.19 11.95 0.23 11.50 12.40
12 11.94 0.08 11.77 12.10 11.96 0.03 11.91 12.01 11.91 0.12 11.68 12.14
13 11.93 0.15 11.63 12.23 12.38 0.10 12.17 12.58 11.98 0.04 11.89 12.06
14 11.76 0.14 11.47 12.05 11.94 0.14 11.67 12.22 11.93 0.09 11.76 12.11
15 12.05 0.05 11.95 12.15 12.10 0.14 11.83 12.37 11.97 0.11 11.75 12.19
16 12.16 0.15 11.85 12.47 11.92 0.06 11.81 12.04 11.80 0.05 11.70 11.89
17 11.91 0.07 11.78 12.04 11.99 0.10 11.79 12.19 12.05 0.04 11.97 12.13
18 11.97 0.13 11.71 12.23 11.94 0.07 11.79 12.09 12.06 0.09 11.88 12.23
19 11.98 0.06 11.86 12.11 11.99 0.12 11.74 12.23 12.04 0.07 11.90 12.18
20 11.97 0.03 11.91 12.02 12.00 0.01 11.99 12.02 12.06 0.07 11.91 12.20
21 12.00 0.05 11.91 12.09 11.93 0.10 11.72 12.14 11.94 0.12 11.70 12.18
22 12.03 0.14 11.75 12.30 11.68 0.16 11.35 12.00 12.01 0.05 11.90 12.12
23 11.94 0.05 11.83 12.05 12.14 0.11 11.92 12.35 12.12 0.09 11.94 12.31
24 12.03 0.09 11.84 12.21 11.83 0.19 11.44 12.21 11.99 0.12 11.75 12.22
25 11.87 0.10 11.66 12.07 12.01 0.29 11.43 12.59 12.08 0.06 11.96 12.20
26 11.92 0.06 11.80 12.03 10.92 0.28 10.35 11.49 11.98 0.13 11.73 12.24
27 11.92 0.06 11.79 12.04 11.99 0.22 11.54 12.44 11.97 0.07 11.82 12.12
28 11.83 0.15 11.53 12.13 11.95 0.04 11.86 12.04 12.09 0.18 11.72 12.46
29 11.89 0.10 11.68 12.10 11.87 0.20 11.46 12.27 11.91 0.10 11.71 12.10
30 11.93 0.11 11.72 12.15 11.92 0.06 11.79 12.05
31 11.95 0.11 11.73 12.17
32 12.03 0.11 11.81 12.24
33 11.86 0.17 11.51 12.20
34 12.01 0.06 11.89 12.13
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Table C.5. The mean squared error of the learning by REE or the satisficing rule
for each subject in Treatment A and U.
Treatment A MSE Treatment U MSE Treatment U-Small MSFE

1 1.1678 1 0.8700 1 0.8768
2 1.1804 2 1.1339 2 0.8416
3 1.1930 3 09752 3 0.8222
4 1.1112 4 0.9592 4 0.9800
5 1.1018 5 1.0387 5 0.8822
6 1.0945 6 1.3506 6 0.8372
7 1.0930 7 0.8944 7 0.8182
8 1.1017 8 0.9949 8 0.9219
9 1.0912 9 1.0806 9 0.8211
10 1.0946 10 1.0315 10 0.8587
11 1.0912 11 0.8232 11 1.4193
12 1.0824 12 0.9767 12 0.9640
13 1.0980 13 1.1182 13 0.8380
14 1.1111 14 1.0963 14 0.8082
15 1.0827 15 0.8329 15 0.9061
16 1.0571 16 1.1173 16 0.8912
17 1.0739 17 0.8391 17 0.8077
18 1.0765 18 0.9648 18 0.9728
19 1.0964 19 0.8823 19 0.8802
20 1.0775 20 0.8348 20 0.8845
21 1.1064 21 0.8500 21 0.8268
22 1.1059 22 1.0253 22 0.8569
23 1.1325 23 0.8478 23 0.8662
24 1.1662 24 0.8899 24 0.8505
25 1.1777 25 0.9673 25 0.8310
26 1.1307 26 0.8259 26 0.9869
27 1.0961 27 0.9214 27 0.9124
28 1.0038 28 0.9248 28 1.1404
29 1.1821 29 0.9820 29 0.8679
30 1.0278 30 0.8444

31 0.9603

32 0.8245

33 1.3522

34 0.8719
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Appendix D: Experimental Instructions and Quiz

Appendix D.1: Experimental Instructions

Welcome to this experiment in economic decision-making. Please read these instruc-
tions carefully as they explain how you earn money from the decisions you make in
today’s experiment. There is no talking for the duration of this session. If you have
a question at any time, please raise your hand and your question will be answered
in private.

General information

Imagine you are an advisor to a farm that is the only supplier of a product in a
local market. In each time period the owner of the farm needs to decide how many
units of the product he will produce. To make an optimal decision each period, the
owner requires a good prediction of the market price of the product in each period.
As the advisor to the farm owner, you will be asked to predict the market price, p;
of the product during 50 successive time periods, t=1,2,...,50. Your earnings from
this experiment will depend on the accuracy of your price predictions alone. The
smaller are your prediction errors, the greater will be your earnings.

About the prediction of the market price
Your firm will use the following model to predict the market price for the product
in each time period, t.

p; =a+bxw

where a is a positive number that is usually between 0 and 10, w; is the a meas-
ure of how good the weather is for producing the agricultural product, and b is the
coefficient that measures how sensitive the product is to the change of weather.

The weather variable is randomly drawn in each period, and you will see the
realisation of it at the beginning of each period. Suppose in one period, w;=8, you
estimates are a=3, b=0.5, your implied prediction will be:

P=3+05%x8=7

Suppose the market price in this period turns out to be p; = 4.9. Your forecast
error, |p — p§| = |7 —4.9] = 2.1. This forecast error of 2.1would determine your
points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of
the weather in your local market may be different from 8. The price determination
function in this example may also be different from the price determination function
in your local market. The precise value of weather in your market in each period
will be given on your decision page.



Your task

Your only task in this experiment is to correctly predict the market price in each
time period as accurately as possible. You need to choose the value of a and b using
the slider bar on the computer screen. The value of a is between 0 and 10, and the
value of b is between 0 and 1. The slider bar starts at the midpoint of the interval,
and you can feel free to move it to any value that you want to choose. You can see
your implied prediction pf = a + b X w; in real time in the line below. When you
have decided on your choice of the parameters, you can press “send” to submit your
decision.

Your decision for period 1
Here is the model used by your firm to predict the market price of the commodity:
As the advisor of the firm, you should provide your estimates for the parameters in the model.
Price = a + b x Weather

In this period, Weather is 9.8,
What is your estimate for a in period 17 7.16
What is your estimate for b in period 17 0.36

Implied Prediction for Price: 10.69

A graph showing the history of the market price and your predictions will be presented here. T The |
realized
price

| Your
Period| guess
fora

Your
price
forecast

Your
prediction
error

I[" The pointe you |
earned in the
period

T ¥our R'v | The points you |
guess |Weather have earned so

for b

far

At the beginning of the experiment you are asked to give a prediction for the
price of your farm’s product in period 1. Note that, while there are several farms
being advised by a forecaster like you in each period, these different local markets
are totally separate from your own so what happens in other markets does not have
any influence on your market. After all forecasters have submitted their choice
of parameters (and hence implied predictions) for the first period, the local market
price for period 1 will be determined and will be revealed to you. Based the accuracy
of your prediction in period 1, your earnings will be calculated. Subsequently, you
are asked to enter your prediction for period 2. When all forecasters have submitted
their predictions for the second period, the market price for that period in your local
market will be revealed to you and your earnings will be calculated, and so on, for
all 50 consecutive periods.

Information

Following the first period, you will see information on your computer screen that
consists of 1) a plot of all past prices together with your predictions and 2) a table
containing the history of the past prices, your past estimates of a, b, the implied
price forecasts and payoffs.
About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown
on the computer screen will be in terms of points. When your prediction is p§ and
the market price p, your payoff is a decreasing function in your prediction error,
namely the distance between your forecast and the realised price.
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100
1+ ‘pf - pt‘

Recalling the example above, if your forecast error for the period, |p; — p§|, was
2.1, then according to the payoff function you would earn 100/3.1=32.26 points for
the period.

payoff =

Notice that the maximum possible payoff in points you can earn from the fore-
casting task is 100 for each period, and the larger is your prediction error,|p§ — py| ,
the fewer points you earn. There is a Payoff Table on your desk, which shows the
points you can earn for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will be
converted into dollars at the rate of 1 dollar for every 200 points that you earned.
Thus, the more points you earn, the greater are your Euro earnings.

Questions?

If you have questions about any part of these instructions at any time, please
raise your hand and an experimenter will come to you and answer your question in
private.

Appendix D.2: Quiz

We want to make sure that you understand the instructions. Therefore, we ask a
few questions. You can only go to the decision page after you have answered all the
questions correctly.

Question 1: Suppose in one period, the Weather is equal to 6, your estimates for
the parameters in the model are a=3.6, b=0.5. What is your implied prediction for
the price (a+b*Weather) in this period? (Answer: 6.6)

Question 2: If your forecast error for a period is 1, what is your payoff in this period?
(Answer: 50)

Question 3: Is the price in our market influenced by other participants’ price fore-
casts? (Answer: No)



Appendix E: Experimental Interface, Respondent Questionnaire,
and Weather List

Your decision for period 1
Here is the model used by your firm to predict the market price of the commodity:
As the advisor of the firm, you should provide your estimates for the parameters in the model.
Price = a + b x Weather

In this period, Weather is 9.8.
What is your estimate for a in period 1? 5
What is your estimate for b in period 1? 0.5

Implied Prediction for Price: To be computed based on the values of a and b s

A graph showing the history of the market price and your predictions will be presented here. Your Your Your The Your The points you The peints you |
Period| guess | guess |Weather| price | realized |prediction  earned in the have eamned so
| fora || forb | forecast | price emor | period | far

Your decision for period 9
Here is the model used by your firm to predict the market price of the commadity:
As the advisor of the firm, you should provide your estimates for the parameters in the model.

Price = a + b x Weather

In this period, Weather is 9.69.

What is your estimate for a in period 97 } 5
What is your estimate for b in period 97 0.5
Send
Implied Prediction for Price: To be computed based on the values of @ and b
Vour Frediction Your Your Your The Your The points you | The paints you
The Harket Price Period| guess guess Weather| price realized | prediction earned in the have earned so
»r | fora forb | | forecast price | emor | period | far
8 6.23 0.39 10.47 10.31 9.78 0.53 2585.1 15581.5
=[ 7 B D56 [797  [046 25 021 2507 66 12006 4
o a1t s le8a [o03 a1 022 2597 43 (103887
af 5 597 |p36  [853 |pod EE | (780128
4 202|031 |77 [585 1246 |B.51 [351.26 5206.36
sl 3 648 Jo7s (1078 [1457 688 769 o 48551
* PR T poz w6 [11n FI 2258 37 48561
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"
o 5 ) 15 n -] 0 E-] - 4 0

Figure E.1. Experimental interface.
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Respondent Questionnaire

You have made your prediction for all periods! Here is a questionnaire to complete
on your backgrounds. Please answer the questions and press “send” to submit. After
that you will see the payment page.

1. Age:

2. Gender:
[ ] Male
[ ] Female

3. Study Program: choose from list

[ ] Faculty of Economics and Econometrics

[ ] Faculty of Social and Behavioural Sciences: Psychology

[] Faculty of Social and Behavioural Sciences: other than Psychology
[] Faculty of Science, Mathematics and Computer Science

[ ] Faculty of Law

[ ] Faculty of Humanities

[ ] Faculty of Medicine

[ ] Another University

[ ] Others

4. Have you come to an economics experiment before?

[ ] No
[ ] Yes, only once
[ ] Yes, more than once

5. How do you describe your strategy in this experiment?




Table E.1. Distribution of weather w; in Treatments A and U and ¢, ~ N(0, 1).
period Weather A Weather U €

1 10 10.92 0.2872
2 10.12 5.49 -0.3316
3 9 2.25 -1.3085
4 8.32 19.35 0.5709
b} 8.62 2.32 -0.2499
6 10.1 3.7 -1.5791
7 9.59 14.14 0.1971
8 8.2 15.92 -0.3451
9 8.34 19.9 -0.4954
10 9.58 5.07 0.2918
11 10.22 14.55 0.442

12 10.09 14.63 1.4143
13 10.88 8.29 -0.5298
14 9.46 5.5 0.6355
15 6.89 5.15 -2.7869
16 8.12 6.51 0.9556
17 9.05 18.41 0.8365
18 9.61 0.37 -0.1459
19 11.12 8.36 0.6092
20 10.23 5.24 -0.0798
21 10.4 9.18 0.9335
22 9.22 1.21 0.2988
23 9.98 5.54 1.2221
24 8.25 14.7 -0.5452
25 7.3 2.99 0.0912
26 7.1 4.14 1.8649
27 6.77 12.93 0.4169
28 9.65 0.63 -1.6766
29 10.63 9.54 0.1737
30 9.66 8.97 0.1636
31 9.92 11.47 -0.3594
32 9.83 13.14 2.132

33 8.96 8.4 1.3624
34 9.72 17.89 0.7295
35 10.07 19.93 -0.4855
36 10.91 8.22 -0.5949
37 10.71 14.98 -1.891
38 10.04 9.57 0.8072
39 9.43 3.16 1.4417
40 10.29 9.15 -0.189
41 10.5 6.12 1.0415
42 10.72 8.51 0.5437
43 11.01 17.37 -0.8844
44 11.69 0.48 -1.8038
45 9.55 13.25 0.3485
46 8.71 15.98 1.0516
47 8.21 13.08 0.8825
48 9.01 11.88 0.6185
49 8.57 9.52 0.8332
50 11.38 10.74 0.6123




Appendix F: Omitted Proof on Cobweb Model

For completeness of explanation, we repeat what we have mentioned in Section 2.1.

Consider the cobweb model in Evans and Honkapohja (2001) based on the ana-
lysis of Bray and Savin (1986), and Fourgeaud et al. (1986). It consists of a single
competitive market with a time lag in production (e.g. agricultural product), where
demand depends negatively on the prevailing market price; supply is assumed to
depend on both the average expectation across the homogeneous firms of the price
of the product in the current period, as well as the weather in the current period in
the form of an observable shock. 2!, denoted as:

dy = my — MpPt + Vg, My > 0

S¢ = 11+ TpDp + ryw + vy, T, >0

dy, sy represents the demand and supply of the product, m; and r; denotes the
intercept, vy; and vy are the random variables of unobserved random noise. Thus,
at the market clearing price where d; = s, the reduced form of price determination
function is:
dy = 8

mp — Mppy + Vi = 11+ TpD; 4 TyWi + Uy
my—r - - Vg — U
Py = 1 1+< p>pf+( w)wt+(1t zt)
mp mp mp mp

Py = W+ ap; + ow + 1y

Thus,

In the above equation, = m ' (m; —r7), @ = —m;'r, <0, 0 = —m'r, <0,
n = my ' (v — vy), and 7, iid(0,07). The distribution of the weather w; can be
followed by an iid process as was assumed in Bray and Savin (1986). Alternatively,
it can follow a stationary exogenous VAR, (vector autoregression) process driven by
a multivariate white noise shock with bounded moments as the setting in Evans and
Honkapohja (2001).

According to the least squares principle, prediction of estimators of a simple lin-
ear regression model will be more precise (i.e. with lower variance) when there is
a larger variation of independent variables??. Therefore theoretically, the variance

2INote that the weather in the original setting is assumed to based on the weather in the previous
term w;_1, assuming that the supply in the current period will depend on the observable shock
brought from weather in the last period. However, we change the source of this observable shock
into w;. This is to help the subjects understand the setting more easily, and the change in the
term will not change the quantitative results from the model.

22Tn the simple linear regression model y; = 8, + B22; + €;, an estimated model § = by + byx; can

2 —1 2
be formed using least squares principle, where y; = ¢; + é;. Var (b)) = %, Var (by) =

: Thus, the wider spread of independent variable weather (i.e. a larger 3. (z; — 7)°)

S (@i—z)*
will lead to a more precise estimate (i.e. smaller variance) on both of the parameters. Note
that the spread of the independent variable does not affect the accuracy on the estimator because
the expectation of the estimates following least squares principle should always be unbiased, i.e.
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of the estimates from Bray and Savin (1986) should be smaller than in the setting
of Evans and Honkapohja (2001). We design two separate treatments to verify this
hypothesis.

If we assume that subjects form a rational belief following the adaptive expecta-
tion or any other fixed-weight distributed lag formula, that is, the expected price in
the current terms is to be based on (or conditional on) the information of informa-
tion available in the previous term, then the expectation price in the current term
can be written as:

p; = Eiap

Operating with E;_; on both sides and solve for E;_1p;, and combining with the
equation of p; = E;_1p; + n; we have:

E(p:) = E(pn+ apf + dw; + ;)
Eiapr = p+ o p + dwy

1
. =
t—1P¢ 1_06‘1'1_0471%

Thus, ~ ~
p=a+bw+mn, a=1—-a)  ub=0-a)"s

The equation above states the unique REE of the cobweb model, and it is said
to have unique REE because p; does not depend on the expected future prices.

Though the firms may have difficulty in obtaining the real value of REE, the pro-
cess is still learnable using LS learning according to Evans and Honkapohja (2012)
since LS learning assumes that firm to have a subjective model of the relationship
between p; and the observable shock, namely the perceived law of motion, denoted
as:

pe = a+ bwy +

Subsequently, under the assumption that firms have data on the evolution of the
economy from periods i = 0,...,t —1, they will update their belief on the parameters
of a, b repeatedly in each period, using the information from the past. Letting (a;_1,
b;_1) denote the estimation through time ¢ — 1, using the information set {p;, wi}Zé-
Thus, their prediction for period t would be the expectation of p, using the price

information from period 0 to period ¢ — 1:
Eiape =pi —ne = a+ buy

(4
i = a—1 + bi_qwy

In this approach, the rationality is implied through the process of a continu-
ous update on the parameters in the model instead of the immediate formation of

E(b1) = B, E (b2) = Ba.



expectation. Agents are to update the model like econometricians or statisticians
using LS learning, with the formula denoted as the equation of:

a t—1 -1 s
t—1 /
= E Zim17] § Zi—1Di

z = (1))

where

The fully specified dynamic system is: at the beginning of time ¢, subjects form
the expectation based on pf = a;—1+b;—1w;, and update their parameter according to
(Z:;l) = (Zf: zi_lzg_l)_l(zg;i zi—1pi), where 2/ = (1 w}). On top of it, given the
w; and the random noise 7, the time ¢ price is determined by p; = p+api +dw+mn;.
This result could thus be used by the agent to update the parameters again, through
adding (p¢, wy) to the data set and computing the revised estimates a; and b;, and
subsequently to forecast py,, using wyy; in the beginning of time ¢+ 1. This process
continues repeatedly over time.

Meanwhile according to the E-stability principle (as the basic required concept
governing the stability of equilibria that mapping from PLM to ALM from learning),
in order for a; and b, to exhibit an asymptotic stability of an REE under LS learning
(i.e. PLM is gradually converged towards ALM), the condition of o < 1 must be
satisfied to let a; — @, b; — b.

In other words, for a cobweb model, it must meet the condition of a downward-
sloping demand curve as well as |m,| > r,, to reach an expectational stability or
“E-stability” to let o« = —m'r, < 1.
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