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Competition for scarce resources under birth and death (the struggle for survival) has long

shaped social and economic interaction. This study is a first effort to induce selection pressure

in controlled N -player strategic decision-making experiments via performance-based participant

replacement. We compare behavior in repeated Tullock contests with and without selection pres-

sure. While prior experiments without selection pressure reveal excess competition inconsistent

with profit maximization, we find that adding selection pressure decreases competitive intensity.

Behavior under selection aligns closely with the finite-population evolutionarily stable strategy

(ESS), as many participants adapt quickly to survive at the expense of new entrants. Without

selection, behavior is more erratic and overly competitive. Selection pressure thus disciplines

decision-making, lengthens contestant lifespans, and raises average round payoffs across the

entire population.
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1 Introduction

Much of human history has been governed by the “perpetual struggle for room and food” (Malthus,

1798, p. 84), i.e., the competition among individuals or groups for scarce resources in the face of

birth and death. In Economics, Alchian (1950) was first to point out that competition between

firms and other agents in modern society involves similar selection pressures. In particular, just

like the struggle for “biological survival”, the struggle for “economic survival” features repeated

contests in which unsuccessful agents (e.g., bankrupted firms) are replaced by “newly birthed”

contestants (e.g., entrants) whereas successful agents (e.g., incumbent firms) continue operating.

Friedman (1953) echos this analogy arguing that “natural selection” arguments can be used to

justify the notion that firms maximize their expected returns.

In this paper, we investigate how human participants adapt their behavior to the presence of

evolutionary selection pressures in an incentivized decision-making experiment. Specifically, we con-

sider repeated Tullock contests, which are known to feature a conflict between profit maximization-

and survival-incentives (Schaffer 1989, Hehenkamp et al. 2004, Alós-Ferrer and Ania 2005).

Our experiment has subjects play repeated contests where, as in previous experiments, they

earn money based on their decisions. Differently from previous experimental studies, we introduce

stochastic “birth and death” during sessions: contestants play an indefinitely repeated (randomly

terminating) supergame, and following the final round of each supergame a selection event takes

place in which one incumbent contestant is replaced by a fresh subject from a waiting room.

Specifically, at each selection event the single lowest-payoff contestant from the preceding round

(the last round of the supergame) is replaced, with ties broken at random. We compare this

Pressure treatment to a No Pressure control treatment in which, after the final round of each

indefinitely repeated supergame, one active participant is also replaced by a new entrant, but the

participant who is replaced is determined at random, independently of their payoff in the last round

of the repeated game.

Our Pressure-condition thus resembles the settings of evolutionary game theory (Weibull 1997,

Nowak 2006, Sandholm 2010), which has successfully modeled both economic- and biological-

selection pressures. As in evolutionary game theory, the relative payoffs of subjects serve as a

fitness basis for determination of their (expected) lifespan in the experiment. While evolutionary

game theory typically assumes fixed strategies, our experimental design allows human participants

to adapt their strategies over time in response to selection pressure as the repeated contest un-

folds over time. In particular, stage-game payoffs in the Tullock contest lead to a mixed-motive

game, where the chance of surviving to play additional contests has to be traded off against the

expected payoffs that can be earned in each contest round. This allows us to study how the pressure

for survival faced by actual human decision-makers interacts with individual payoff maximization-

incentives as traditionally considered in theoretical- and experimental-economics.

Indeed, the setting we study has real-world counterparts. For instance, it is similar to “rank and
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yank” programs at technology firms (e.g., General Electric, Microsoft, Amazon and Tesla), where

employees are ranked based on their performance and the lowest-performing employees – typically

the bottom 10% – are either let go or reassigned to less critical roles. Similarly, the dictum

“publish or perish” associated with university tenure decisions, has an element of performance–

based selection of talent.

Surprisingly, and contrary to theoretical predictions, we find that selection pressure decreases

participants’ competitiveness as measured by average investment levels across contests, relative

to the No Pressure-control treatment. This happens because the pressure to survive exerts a

strong, disciplining influence on participants’ decision-making in the Pressure-treatment, with

average investments closely approximating the survival-optimal level. In particular, a specifically

simple behavioral rule (which we refer to as an “average unbeatable strategy” in Section 3) allows

incumbent contestants under Pressure to all but ensure survival. By contrast, the absence of any

connection between decision making and survival chances in the No Pressure-treatment leads to

large fluctuations in investment levels, as well as to widespread and substantial over-investment

beyond both profit- and survival-maximizing levels.

Strikingly, selection pressure does not merely redistribute profits to successful contestants.

Rather, the average round payoffs for the entire population of contestants in the Pressure-

treatment are increased relative to the No Pressure-treatment. Indeed, an important takeaway

from this paper is the need to consider the survival pressure that agents may be operating under

as an important payoff-relevant factor.

The remainder of the paper is organized as follows. Section 2 reviews related experimental work,

including the studies most relevant to our selection-pressure design. Section 3 outlines the theo-

retical background on profit maximization and survival incentives germane to the repeated Tullock

contest game that we study. Section 4 describes the experimental design. Section 5 presents the

main findings, both at the aggregate and individual levels of analysis. Finally, section 6 concludes

with a summary and suggestions for future research.

2 Related Literature

While experimental economists have studied zero-sum games and contests (see e.g., Dechenaux et

al. 2015), implemented relative performance-based incentives (e.g., Andreoni 1995), and examined

decision-making under induced time pressure (e.g., Kocher and Sutter 2006), under stress (e.g.,

Starcke and Brand 2012), and under cognitive load (e.g., Deck and Jahedi 2015), we are not aware

of any experimental work involving explicit, pre-announced replacement of participants based on

their performance relative to others.

The only prior experiment that explicitly examines survival versus payoff-maximization incen-

tives is by Oprea (2014). However, his study involves a non-strategic environment, in which partici-

pants repeatedly withdraw funds from a stochastically replenished account, balancing the potential
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for additional earnings against the risk of bankruptcy from depleting the account. We suspect

that the lack of experiments studying selection pressure in an n-player setting stems from the

logistical challenges of implementing subject replacement in traditional laboratory environments.

These difficulties have recently been mitigated by the feasibility of conducting online sessions with

participants, as implemented in this study.

The closest contest experiment to ours is by Brookins et al. (2021), who compare indefinitely

repeated two-player contests to finitely repeated contests of the same expected duration. In their

indefinitely repeated contest, cooperative behavior (both players invest 0) is sustainable via trig-

ger strategies, whereas it unravels by backward induction in the finitely repeated game. In our

study, selection events are randomly determined so that both our Pressure and No Pressure

treatments resemble indefinitely repeated games. However, unlike standard random termination,

in our approach, only a subset of players exit after a terminal round (selection event), while others

continue, complicating the use of history-dependent strategies such as grim trigger.

A number of experimental studies have implemented closely related overlapping generations

structures in the laboratory (see, e.g., Cadsby and Frank 1990, Marimon and Sunder 1993, Lim et al.

1994, van der Heijden et al. 1998, Offerman et al. 2001, and Duffy and Lafky 2016). In these studies,

new, inexperienced “young” subjects periodically replace “old” experienced subjects. However, the

birth-and-death processes in these overlapping generation studies are all fully deterministic and

are not based on relative payoffs as in our design. Moreover, in some of these studies, subjects

are “reincarnated” (the old become young again) due to the logistical challenges of recruiting new

participants and dismissing others. We do not allow for such reincarnation in our approach.

Lastly, several experiments (e.g., Huck et al. 1999, Offerman et al. 2002, Friedman et al. 2015)

have examined selection by imitation in settings where the underlying payoff structures are un-

known, partially known, or complex. In contrast, our study introduces a novel form of selection

pressure by explicitly and transparently pre-announcing the replacement of participants based on

their relative performance—an approach that, to our knowledge, has not been implemented in prior

experimental work.

3 Theory

Many competitive interactions in biological and socioeconomic environments share the incentive

structure of rent-seeking contests (Tullock 1980). Examples include mate selection, military conflict,

R&D races among firms, promotion tournaments within organizations, litigation, political lobbying,

fundraising, and charitable auctions. In this section, we outline the theoretical framework that

underlies our experimental design which makes use of an indefinitely repeated contest. We show

that, in the finite-population setting we study, the evolutionarily stable strategy (ESS) prediction

differs from the Nash equilibrium prediction. Moreover, under our assumption that rewards are

allocated deterministically in proportion to relative investment, we show that the ESS is uniquely
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unbeatable on average.

Formally, consider a population of n active players competing for a resource of common value

V > 0. Each player i chooses an effort or investment amount xi ≥ 0. Given an individual investment

xi and a vector of opponents’ investments x−i = (xj)j≠i, players are deterministically awarded shares

in the resource,1 with i’s share following:

pi(xi, x−i) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

xi
∑j xj

, if ∑j xj ≠ 0,

1
n , otherwise.

Player i’s payoffs are thus given by πi(xi, x−i) = pi(xi, x−i)V − xi. Given an endowment of X, the

period payoff maximization problem is:

max
xi≤X

{πi(xi, x−i)} .

Maximization yields the best-response function:

xπi (x−i) =
√

∑

j≠i
xjV −∑

j≠i
xj .

In the unique Nash equilibrium of this symmetric n-player game,

xNEi =

n − 1

n2
V.

Tullock contests belong to a class of games for which Alchian’s (1950) intuition that evolu-

tionary pressure changes the predictions of economic models holds true in a radical way (also see

Hehenkamp et al. 2004): That is, a player seeking to maximize their chance of survival and, hence,

maximizing their payoff relative to the group average will choose a strictly higher investment level

than does a player who is simply maximizing period profits. In particular, the equilibrium among

players maximizing relative payoffs– Schaffer’s (1988) finite population ESS – implies strictly higher

investment levels than the standard Nash equilibrium.2

1A commonly used alternative implementation stochastically awards the full resource to one player. In this
“winner-take all” implementation, pi(xi, x−i) is the probability with which player i wins the resource. In our ex-
periment, deterministic proportional allocation of resource shares based on relative investments was chosen over the
stochastic allocation of the full resource to make the connection between investment decisions and survival chances
in the repeated contest less noisy and more easy for subjects to comprehend. Theoretically, assuming risk neutral
preferences, there should be no difference in equilibrium outcomes between these two methods of allocating the prize.

2As seen below, the difference between Nash equilibrium and finite-population ESS is decreasing in n. In partic-
ular, for an infinite number of players, each with vanishing influence on aggregate profits, the difference disappears
altogether. This corresponds to the more widely known analysis of evolutionary stability for a continuum of players
(Weibull 1997), in which ESS becomes a refinement of Nash equilibrium with further stability properties with respect
to mutants making up a “small” share of the infinite population.

There also exists a class of games for which ESS and Nash equilibrium coincide for arbitrary finite numbers of
players, see Hehenkamp et al. (2010).
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To see this, consider the maximization problem

max
xi

{πi(xi, x−i) −
1

n
∑

i

πi(xi, x−i)} ∼ max
xi

⎧
⎪⎪
⎨
⎪⎪
⎩

πi(xi, x−i) −
1

n − 1
∑

j≠i
πj(xj , x−j)

⎫
⎪⎪
⎬
⎪⎪
⎭

.

Noting that xi ≠ 0 is not optimal at ∑j≠i xj = 0,3 i’s relative-payoff best-response function xsi follows

from taking first-order conditions:4

xsi (x−i) =
√

n

n − 1
∑

j≠i
xjV −∑

j≠i
xj .

Under relative payoff maximization, investment choices are uniformly higher than under profit

maximization, i.e., xsi (x−i) > xπi (x−i) for all x−i. And, in particular, the finite-population ESS

xESS (equilibrium among relative payoff-maximizing players), implies strictly higher investment

levels than under the standard (profit-maximizing) Nash equilibrium:

xESS =
V

n
> xNE =

n − 1

n2
V.

Hence, Tullock contests provide an ideal incentive structure to observe experimental subjects

trading off profit maximization- against survival-incentives.5

In addition, ESS-play in the n-player Tullock contest has an extra, previously unstudied, sta-

bility property. That is, strategy xESS is uniquely “unbeatable on average”:6

Proposition 3.1. (ESS is uniquely unbeatable on average)

xESS = V
n is the unique strategy in the Tullock contest such that

πi(x
ESS , x−i) −

1
n−1πj(x

ESS , x−i) ≥ 0 for all x−i.

Proof. To see that xESS is unbeatable on average, note that

πi(x
ESS , x−i) −

1

n − 1
∑

j≠i
πj(x

ESS , x−i) = (

V

n
−

∑j≠i xj

n − 1
)

2
n − 1

V /n +∑j≠i xj
≥ 0.

To see that xESS is uniquely unbeatable on average, let xESS−i be the n − 1-row vector of ones

3This follows from observing that i’s relative payoff for ∑i xi = 0 is 0, whereas investing 0 < ε < V would yield a
relative payoff of V − ε. A similar argument shows that ∑i xi = 0 never occurs among profit-maximizing contestants.

4The value function’s second derivative is negative everywhere, showing that a local optimum derived in this way
is, in fact, global. This is also true for standard profit maximization in the Tullock contest.

5More generally, such incentives obtain for quasisubmodular aggregative games as in Alós-Ferrer and Ania (2005).
Next to more general versions of Tullock contests (allowing for Tullock’s-r in the range 0 < r < n

n−1 ), this includes
popular games featuring strategic substitutes such as Cournot competition, and the Tragedy of the Commons. While
all of these games would be suitable in terms of featuring the trade-off described above, xESS is not necessarily
“unbeatable on average” as described below.

6This property was first suggested by Possajenikov (2023). He proves that the finite-population ESS is unbeatable
in 2-player Cournot games with decreasing demand function. In particular, this includes 2-player Tullock contests
with Tullock r ≤ n

n−1 . Possajenikov’s results do extend to average unbeatability in some n > 2-player versions of these
games. In particular, the finite-population ESS is unbeatable on average for n > 2-player Tullock contests with r ≤ 1.
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multiplied by xESS , and note

πi(xi, x
ESS
−i ) −

1

n − 1
∑

j≠i
πj(xi, x

ESS
−i ) = −

(xESS − xi)
2

x
≤ 0

with equality iff xi = x
ESS .

Thus, independent of other contestants’ behavior, playing xESS guarantees a (weakly) positive

relative payoff. While this is not sufficient to guarantee survival in a general stochastic setting, it

does the job in our Pressure-treatment described below, where incumbent contestants face a risk

of replacement iff their payoffs are below the population average. Thus, in our repeated contest

experiment described below, we expect that xESS will be a salient choice for participants focusing

on surviving in our repeated contest experiment. Furthermore, to the extent that participants pick

up the average unbeatability of xESS , we expect widespread investments at that level and little

change of investment levels around xESS in reaction to other participants’ investment behavior.

4 Experimental Design

The experimental design implements selection pressure in indefinitely repeated Tullock contests.

We consider a constant population of n = 4 active participants who repeatedly compete for a

resource of value V = 100. The contest success function is the same as in Section 3, with each

contestant choosing an investment amount from a fixed per-round budget of X = V . Any unused

portion of this budget, as well as any contest winnings, contribute to per-round profits.7 Investment

budgets are non-transferable across rounds. Since the endowment is the same, constant amount for

all participants, it does not affect equilibrium calculations.

Given our setup and parameterization, the evolutionarily stable strategy (ESS) investment in

the one-shot contest is xESS = 25, while the Nash equilibrium investment is xN = 18.75. Under

the ESS, total expenditures equal the prize value so dissipation is complete, nxESS

V =
4⋅25
100 = 1. By

contrast, the Nash equilibrium implies underdissipation, nxN

V =
4⋅18.75
100 =

3
4 . Taking the endowment

into account, each player would earn a payoff of 100 if all four invested at the ESS level, compared

with 106.25 if all four invested at the Nash equilibrium level.

In our design, the Tullock contest is played repeatedly by the n = 4 participants. The interaction

always lasts for at least one round and continues for an indefinite number of additional rounds. After

each round, there is a fixed and commonly known probability, ρ = 0.1, that a replacement event

occurs. When such an event takes place, one incumbent contestant is eliminated and replaced by a

new subject drawn from the waiting room who has not previously participated in the experiment.

Replacement events also govern the termination of the game. Specifically, we draw game lengths

from a negative binomial distribution with 11 replacement events in total using probability ρ = .1,

7Specifically, the profit to player i in our experiment is: πi(x) = V −xi + V ⋅
xi

∑j xj
, with xi

∑j xj
∶=

1
n

if ∑j xj = 0.
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where the 11th replacement event simply terminates the game. Hence, each of our sessions features

10 replacements of a contestant (replacement events) before the game’s termination, with a random

number of intermittent rounds between any two replacement events. The number of replacement

events is not disclosed to participants.8 All game configurations (i.e., numbers of intermittent

rounds between replacement events) are pre-drawn and balanced across treatments.

We employ two distinct treatments, corresponding to the extremes of no selection pressure

and deterministic selection based on relative payoffs. In our first No Pressure control treatment,

contestant replacement is fully random. Conditional on a replacement event, each of the four partic-

ipants faces the same probability of being replaced, 1
4 , regardless of their prior decisions or payoffs,

and this feature is common knowledge. Because replacement is not related to relative performance,

subjects have no incentive to adjust their behavior in response to the threat of elimination, so this

treatment provides a natural benchmark without selection pressure.

In our second Pressure treatment, replacement is deterministic and explicitly based on rela-

tive performance. Conditional on a replacement event, the worst performing active participant is

selected for replacement with certainty, and this fact is also common knowledge. Performance is

measured by relative payoffs in the contest round immediately preceding the replacement event.

To avoid portfolio effects across contests, we use the outcome of a single contest round rather than

the sum or average of multiple rounds. In cases of multiple worst-performers, random tie-breaking

is used to determine which contestant is replaced.9

Figure 1 below shows the decision interface used in the experiment. Participants used a slider

to submit investment amounts in lab dollars L$ from their budget of L$100 in each contest round.

They used a second slider (above the investment choice slider) to specify their expectation of the

average investment amount of their opponents. As an alternative to the sliders, contestants could

directly input investments and predictions in a field above the respective slider. A dynamically

updating pie chart showed the expected split of the resource given a subject’s investment and their

prediction of their opponents’ average investment amounts. The expected share of the resource

and the resulting expected payoff for the players and his opponents was displayed at the bottom of

the decision screen. Subjects could experiment with different predictions and investment choices

and the calculator would display the consequences of those choices (see the bottom of Figure 1 for

their own expected earnings as well as those of their opponents. Prediction in puts and investment

choices were not final until the subject clicked on the “Send” button. By using this prediction tool,

8From the contestant’s perspective, the game features an unknown number of replacement events arriving at rate
ρ = .1. Statistically, the game’s unknown length from the participant’s perspective can be modeled as a geometric
process with an additional, uncertain parameter δ ∈ (0,1) determining termination.

9Since only the last round before a replacement event is relevant, and replacement events arrive randomly,
incentives are equivalent to a procedure where a single round is drawn at random for evaluation. Using the last
round has the additional benefit that the feedback participants receive about payoffs is identical whether or not a
replacement occurs.
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it is possible for players to discover the unbeatable on average strategy.

Figure 1: Decision screen used in the experiment

Beginning with the second round of each repeated game, the top of the decision screen displayed

a green summary box reporting the prior round’s outcomes: each contestant’s own investment (bid)

and payoff, together with the group-average investment and payoff. In rounds without replacement,

the prior round’s inputs were pre-populated as default entries for the current round prediction and

investment choices. The decision screen also included a countdown timer that reset to 30 seconds at

the start of each round and ticked down to zero. This time limit was intentionally soft : exceeding

it carried no penalty, and default entries were never submitted automatically; instead, a choice was

recorded only when the contestant actively clicked the “Send” button. We adopted these interface
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features to reduce frictions and decision errors and thereby focus participants’ attention on the

strategic problem they faced.

Note that the prediction of the other contestants’ average investment was unincentivized (to

avoid complicating instructions and incentives). This prediction feature was added to assist sub-

jects in making their investment decisions. Although we did not pay participants separately for

their predictions, as noted earlier, expected earnings were based on these predictions, so predic-

tion accuracy was endogenously incentivized : more accurate beliefs improved expected-earnings

assessments and thus supported better investment decisions, which did have payoff consequences.

As noted, after the initial round and every round thereafter, continuing contestants in both

treatments are shown their own investment and payoff, as well as the average investment and pay-

off of the other contestants in the previous round. Importantly, we did not furnish new entrants

with historical data on prior gameplay. This design choice serves two purposes. First, it ensures

that each entrant begins with the same information set they would have upon entering an ongoing

contest: they observe the contemporaneous feedback available from their first round onward, but

do not receive a curated summary of what transpired before they arrived. Second, it preserves a

clear experiential channel through which beliefs evolve, so that any differences in behavior between

incumbents and entrants can be attributed to differential experience within the environment rather

than to information transfers or “second-hand” histories.10 In addition to the previous round’s

results, contestants were informed each time a replacement event occurred, including when they

were or were not selected for replacement.

Subjects were recruited from UC Irvine’s ESSL student subject pool and from UC Santa Cruz’s

LEEPS student subject pool to remotely participate in our study.11

We have data for 12 sessions of each treatment (24 sessions in total) with 14 subjects per session,

or 336 subjects in total. As described above, sessions were run online with a constant number of 11

replacement cycles (with the final replacement event terminating the game) and random numbers

of rounds in between replacement events. Sessions lasted around 2 hours, though subjects were

instructed that a session could last up to 3 hours (180 minutes).12 Twelve allocations of rounds

(supergame lengths) were pre-drawn, with each allocation being implemented for one session of

the Pressure- and one session of the No Pressure-treatment. Table 1 reports the number of

rounds between each replacement cycle in the twelve allocations. This design allows for stochastic

variation in the number of rounds between selection events, while the pairing of treatments to

10This approach also aligns with evidence that individuals’ expectations are disproportionately shaped by their
own lived experiences; see, e.g., Malmendier and Nagel (2011).

11We used subjects from both schools as the number of subjects needed for this study exceeds the typical supply
available at a single campus. We find no statistical differences in investment behavior between these two samples.

12We chose to have just 10 replacement events (11 cycles) as we did not want to make the duration of the experiment
too burdensome for subjects who began their participation in the first cycle, and who may have survived many or all
10 replacement events. A total of 13 subjects in the experiment started in the first cycle and went on to survive the
entire experiment (4 subjects in No Pressure and 9 subjects in Pressure).
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each allocation ensures that the randomness is balanced between the two treatments. The average

number of rounds over all 24 session-pairs was 96.

The experiment was computerized and programmed using oTree (Chen et al., 2016). At the

starat of each session, subjects first signed in using the Zoom software to verify their identities.

Then subjects were sent remote links to the study. After opening these links, the first page asked

subjects permission to enable notifications. Each session started with 4 active subjects making

choices in a 4-player contest. Subjects yet to enter the session were instructed to wait patiently;

a timer on their screens indicated the estimated time until their participation, and they remained

connected to the experimenter via Zoom (with chat among participants other than the experimenter

disabled). At some time prior to their entrance into the study, a notification and sound went off on

these subjects’ computer screens to alert them that their participation would begin soon. At that

stage, subjects were presented experimental instructions for their treatment and had to complete

a related comprehension quiz. The full instructions and quizzes are shown in Appendix B. After

completing the quiz, a subject entered the game following a replacement event. In this manner, all

subjects read instructions at the same time, that is just prior to their participation in the study.

The subject who was removed from the session at each replacement event either randomly (No

Pressure) or based on relative payoff (Pressure) was informed of their removal. They then had to

answer an exit questionnaire that is shown in Appendix section B.11. In this questionnaire, subjects

provided demographic information, their educational background and self-assessed measures of risk,

patience, and competitiveness. They also answered four cognitive reflection test (CRT) questions.

After that, they were told their payoff from the study, and they were no longer able to make

decisions in the experiment; once participation was over, subjects were free to close their study

links and leave the session. They were paid their earnings electronically shortly after the session

had concluded. In this manner, the population of active subjects was kept constant at 4 in every

round of a session. At the end of the final cycle, instead of another replacement event, the session

was declared over and all four remaining subjects were informed of this outcome (they did not

know in advance which replacement cycle would result in termination of the session). They then

answered the exit questionnaire and received payoffs in the same manner as the subjects who left

before them.

Subjects were given a budget of L$100 in every round of every cycle they participated in and

could not invest more than that amount, so it was not possible for any subject to lose money in

our experiment. Subjects were instructed that every L$20 earned in a Tullock contest selected

for payment amounted to $1 in earnings. In addition to a $10 show-up fee, participants received

their earnings from the last round of each replacement cycle in which they were active players.

Since subjects did not know when the final round of a cycle would occur, this payment rule was

equivalent to randomly selecting one round of each cycle for payment.13 Thus, subjects in the

13Paying only the last round of each randomly terminated cycle is theoretically robust, as it preserves dynamic
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Table 1: Number of contest rounds within each of the 10 replacement cycles,
Sessions 1–24. Cycle 11 was the final cycle in each session.

Cycle 1 2 3 4 5 6 7 8 9 10 11 ∑

1, 2 2 2 12 7 6 24 17 3 3 3 3 82

3, 4 8 8 12 4 13 4 1 6 8 35 3 102

5, 6 5 3 30 9 2 6 5 23 7 12 5 107

7, 8 2 6 8 10 10 16 4 7 1 13 5 82

9, 10 4 2 4 21 2 9 16 13 4 9 1 85

Sessions
11, 12 11 1 8 2 26 5 1 10 3 17 2 86

13, 14 4 11 6 8 5 30 1 11 17 16 2 111

15, 16 6 6 3 12 19 6 4 31 4 8 10 109

17, 18 9 7 2 3 6 9 31 3 1 8 12 91

19, 20 5 1 8 8 2 15 12 3 28 7 20 109

21, 22 9 5 3 4 6 24 2 8 21 4 2 88

23, 24 4 3 15 22 9 13 5 2 14 1 12 100

Pressure treatment had a strong incentive to survive, as doing so enabled them to participate

in more cycles and thus receive more payments. Participants were paid electronically, using the

platform of their choice (Paypal, Venmo or Zelle) and earned an average of $25.44 including the $10

show-up fee, with a minimum payoff of $12.82 and a maximum of $68.02. We will discuss further

the payoff differences between the two treatments in the next section.

5 Main Results

In this section, we present our main experimental findings. We start with aggregate comparisons

between the No-Pressure and Pressure treatments, and then examine individual-level behavior

within each treatment.

5.1 Aggregate Investment

The left panel of Figure 2 reports the average investment levels for the two treatments, No Pres-

sure and Pressure, considering all rounds of all 11 cycles. For reference purposes, the figures

include both the Nash and ESS predictions. We further include a reference to the findings of

the empirical literature (’Lit’) regarding the mean investment fraction of endowment bid in a four

player contest experiment by Sheremeta (2010) without selection pressure or random replacement.
14 While the average investment level is not significantly different between the Pressure and the

incentives under any risk preferences and avoids distortions from paying all rounds or a randomly chosen subset of
rounds–see (Sherstyuk et al., 2013) for details.

14(Sheremeta, 2010, Table 4.1) reports that in a one-shot, four player contest, the mean subject bid was 34.1 out
of an endowment of 120, or 28.4%.
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Figure 2: Average Investment Levels by Treatment. Bars: 95% confidence interval.

No Pressure treatments using all cycles, when we eliminate the first 3 cycles and look only at

average investment in cycles 4-11, the difference between the two treatments is significant at the

5% level, with investments being lower under Pressure as compared to No Pressure. Starting

the analysis at cycle four is justified because, assuming each player has a 3/4 chance of surviving

a given cycle, this is the earliest point at which a majority of initial players are expected to have

been replaced and the replacement mechanism can meaningfully influence group composition. Note

further that for both treatments, investments significantly exceed xNE and they significantly exceed

xESS in the No Pressure treatment.

Table 2 reproduces these investment comparisons numerically and reports the corresponding

standard deviations. The table reveals that the dispersion of investments in the No Pressure

treatment, as measured by the standard deviation, is substantially greater than in Pressure. This

difference remains robust when restricting the analysis to the “stable” stage, defined as excluding

the first three cycles.

Figure 3 plots average investments across the 10 sessions in each treatment by replacement

cycle, in the left panel and by supergame/contest round in the right panel. While cycle investment

levels are not very distinct across treatments in the first three cycles, they become more distinct in

the later cycles. Further, investment levels in Pressure tend to display low variance and closely

track the ESS-investment level. By contrast, investments in No Pressure are higher and more

volatile, rarely falling below the ESS-level. The right panel of Figure 10 reveals that over the

course of a cycle, investment levels become more similar between the two treatments, so the cycle

differences stem largely from investment level differences in the first few rounds (of which there

are many more observations, given our choice of ρ = .10 for the replacement event probability.)

12



Table 2: Investment Levels, Pressure vs. No Pressure

Pressure CI(1) No Pressure CI(1) Nash ESS

All Cycles
Mean 25.43 [24.60, 26.26] 27.50 [25.92, 29.08]

18.75 25
Std.dev. 12.40 [11.61, 13.26] 19.41 [18.66, 20.21]

Stable stage(2)
Mean 25.00 [ 24.12, 25.87] 27.70 [25.92, 29.47]

18.75 25
Std.dev. 10.86 [9.97, 11.84] 19.00 [18.15, 19.90]

1 Mean: 95% confidence interval with errors clustered at the subject-cycle level; Std.dev.: 99%
Bonett confidence interval.

2 Replacement cycles 4–11.

However, the variance of investments at the round level remains higher in No Pressure compared

to Pressure.

Figure 3: Average Investment Levels by Replacement Cycle and Contest Round. Grey line: Ex-
pected number of rounds per cycle.

While the picture of higher investment levels and higher variance absent pressure is generally

corroborated by average investment patterns for individual session pairs, there is significant session-

level heterogeneity in investments patterns. In particular, significant movement and volatility in

investment levels for both treatments tends to coincide with the entry of new contestants, suggesting

a destabilizing influence of replacements especially in No Pressure. See Appendix C for average
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investment patterns across the 12 session pairs.

5.2 Investments, Lifespans and Profits

Figure 4 shows data on the distribution of investments across treatments. The top panels a and

b show investments using a histogram and cumulative distribution function. Pressure displays

a high percentage of bids within 5 points of xESS , with close to 35% of investments in that bin.

By contrast, less than 20% of No Pressure-participants’ investments lie in that bin. A two-

sample Kolmogorov-Smirnov test rejects equality of investment distributions across treatments at

all conventional levels (p = .000), while indicating that No Pressure-investments are significantly

less concentrated than Pressure-investments. The bottom panels c and d of Figure 4 show how

investment in early cycles of Pressure (panel c) are as scattered as in No Pressure (panel d)

but that as these sessions progress, investment more clearly clusters around the ESS level under

Pressure while this is not the case under No Pressure.

(a) Histogram (b) CDF

(c) CDF by Cycle - Pressure (d) CDF by Cycle - No pressure

Figure 4: Distribution of Investment by Treatment. Vertical Dotted line: ESS Investment

Figure 5 shows the distributions of selection events survived by participants in the two treat-

ments. For comparison purposes, red dashes in the Figure indicate the theoretical asymptotic

distribution of survived events absent any selection pressure, that is, based on random replacement

with probability ρ = .1. As Figure 5 reveals, the No Pressure-realizations in our sample closely
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approximate this asymptotic distribution. By contrast, in Pressure we observe an increased share

of participants surviving entire sessions. On the flip side, the share of participants surviving zero se-

lection events in Pressure rises by a whopping 15% over No Pressure. This comparison suggests

that Pressure enables a small number of experienced players to survive most rounds of selection

at the expense of less experienced participants.

Figure 5: Selection events survived by treatment. Red lines indicate the asymptotic distribution
under random replacement (p = 0.1).

Since each additional survived replacement event opens up the chance for additional earnings,

it is clear that the increased lifespan of some participants in Pressure also tends to increase their

payoffs relative to the average earned by No Pressure-participants. Indeed, Table 3, which reports

on mean final payoffs net of the showup payment, reveals that Pressure increases the variance of

final payoffs among participants, while both lowering minimum- and increasing maximum-earnings.

Table 3: Final Payoffs, US$ (Net of Show-up Fee)

Mean Std.Dev. CI(1) Min Max

No Pressure 15.29 11.12 [13.61, 16.98] 3.06 57.31

Pressure 15.62 14.77 [13.39, 17.86] 2.82 58.02

1 Mean: 95% confidence interval with errors clustered at
subject-cycle level.

However, it turns out that Pressure-participants are also doing better than No Pressure-

contestants when looking at round payoffs. Specifically, Pressure-participants’ round payoffs

average 99.88 points (95% CI: [99.58,100.18]) – significantly more than their No Pressure-

counterparts average round payoffs of 96.57 (99% CI: [96.07,97.08]). This finding is further cor-
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roborated in Figure 6, which shows the cumulative distribution of round payoffs by treatment. The

distribution of round payoffs in Pressure is significantly more concentrated around the ESS-payoff,

with No Pressure-round payoffs displaying a more pronounced left tail. Indeed, a two-sample

Kolmogorov-Smirnov test supports the observation that round payoffs under No Pressure tend

to be smaller than payoffs under Pressure (p < .001).

Figure 7 compares average round payoffs by replacement cycle across treatments. As seen in this

figure, average round payoffs are initially indistinguishable across treatments, whereas Pressure-

round payoffs tend to significantly exceed No Pressure-round payoffs in later cycles. Furthermore,

No Pressure-round payoffs generally lie below the ESS-payoff benchmark and (hence) imply

negative average returns on investments in the contest. By contrast, Pressure-round payoffs tend

to equal or exceed the ESS-payoff benchmark implying mildly positive (but sub-Nash) average

returns on investment in the contest for most replacement cycles.

Figure 6: Cumulative Distribution of Round Payoffs by Treatment. Vertical dashed (solid) line:
Round payoff at ESS (Nash).

In summary, selection pressure has a moderating effect on participants’ investments in the

contest, and this significantly improves round payoffs in Pressure as compared to No Pressure.

In the next section, we will zoom in on the behavioral channels that lead to these differences in

investment- and payoff-patterns across treatments.

5.3 Dissipation

The experimental literature studying Tullock contests (Dechenaux et al. 2015) absent selection

pressure documents results that seem eerily supportive of our theoretical predictions under selection

pressure. Starting with Millner and Pratt (1989), experiments have typically found substantial

levels of over-dissipation. That is, contestants’ aggregate investment in the contest ∑i xi typically
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Figure 7: Distribution of Round Payoffs by Replacement Cycle.

exceeds the value of the resource.

Remarkably, significant shares of participants invest in a manner consistent with evolutionarily

stable behavior.15 At the same time, there also tends to be a significant minority of subjects that

go beyond what is supported by ESS-play, sometimes even exceeding the resource’s monetary value

(Sheremeta 2013, Mago et al. 2016, Gneezy and Smorodinsky 2006). In particular, over-dissipation

rates average 15.55% across a large number of previous contest experiments surveyed by Sheremeta

(2013), whereas the ESS would predict zero overdissipation (or, equivalently, full dissipation of the

resource’s value).

Figure 8 demonstrates that our No Pressure treatment generally replicates the amount of over-

dissipation found in prior research (marked as ’Lit’ in the figure), despite participants engaging in

more complex, repeated contests in our study. By contrast, over-dissipation is drastically lower and

essentially absent in our Pressure treatment approximating theoretical predictions under ESS-play

and remaining significantly above Nash-equilibrium levels (labeled ESS and Nash in the figure).

As seen in Figure 9, these findings generally hold up at the cycle level once incumbent contestants

are sufficiently experienced, that is, following the first three cycles.

These findings regarding excess dissipation suggest that the large rates of over-dissipation re-

ported in previous contest experiments are at least partially driven by participants’ singular focus

on monetary earnings in those experimental settings. By contrast, the threat of performance-based

replacement faced by contestants in our Pressure-treatment leads to more modest investments.

Moreover, Pressure-investments are well-approximated by ESS-play that would theoretically max-

imize a decision-makers’ survival chances.

15See, e.g., Figure 2 in Dechenaux et al. (2015), which reproduces findings from Sheremeta (2011). The Figure
shows a high concentration of investments at the ESS-investment level of 30 points which is not further discussed by
the authors.
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Figure 8: Average Excess Dissipation by Treatment. Bars: 95% confidence interval.

5.4 Individual Behavior and Decision-Making

The previous sections reported on results at the aggregate level. In this section, we look more

closely at what subjects were doing at the individual level.

Figure 10 reports on the stability of subjects’ investment decisions, as measured by the standard

deviation of each subject’s investments across replacement cycles. As this figure reveals, the within-

cycle standard deviations of individual investments are large for No Pressure, generally ranging

between one fifth and one fourth of the resource’s value. By contrast, individual investments show

less variation in Pressure ranging between 10-15% of the resource’s value and sometimes even less.

This finding indicates that selection pressure has a disciplining effect on individual behavior, causing

Pressure-subjects to make more consistent investment decisions within a given replacement cycle.

Next, Figure 11 considers the possible drivers of individual investment patterns. This figure

examines the relationship between individual lifespans in the experiment, as measured by selection

events survived (on the horizontal axis) and three summary measures of individual decision-making:

average distance to the ESS-investment level (panel a), average distance to the best response (panel

b), and average absolute prediction error (panel c). The cumulative distributions by treatment of

these same three measures are included in panels a, b and c of Figure 12.

As seen in the top panel (a) of Figure 11, there is a direct relationship between longevity

(selection events survived) in Pressure and increased ESS-play in that treatment, as indicated

by the declining distance to the ESS strategy. By contrast, the average distance of investments

from the ESS in the No Pressure treatment are unrelated to the number of selection events

survived. The CDFs in panel (a) of Figure 12 reveal that the Pressure treatment exhibits first-
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Figure 9: Dissipation by Replacement Cycle.

order stochastic dominance over the No Pressure treatment in terms of proximity to the ESS: for

every percentile, subjects under Pressure are closer to the ESS. This finding suggest that the higher

incidence of near-ESS play in Pressure is driven by subjects adapting to the presence of selection

pressure in that treatment.

Next, as seen in the middle panel (b) of Figures 11–12, Pressure also improves players’ decision

making as measured by their average distance to best-response play. Under Pressure, subjects’

distance to best-response behavior decreases with the number of selection events survived, whereas

under No Pressure this distance is slightly increasing.

However, as panel (b) of Figure 12 shows, the Pressure treatment does not exhibit first-order

stochastic dominance in reducing the distance to best-response play.

Finally, as shown in panel (c) of Figures 11–12, the accuracy of successful players’ predictions re-

garding the average investments of others is also greater under Pressure relative to No Pressure.

However, a joint regression of selection events survived under Pressure on distance to ESS, dis-

tance to best response, and predictive accuracy shows that only the distance to ESS is a significant

predictor of lifespan at the 1% level (p < 0.0001), whereas distance to best response and predictive

accuracy do not explain significant variation in lifespans (p = 0.042 and p = 0.896, respectively).

None of these three variables explain significant variation in lifespans under No Pressure.

The Figure 11-patterns and the related regression results indicate that subjects in Pressure

display a tendency to choose ESS-level investments that are independent of best-response behavior.

To examine this further, Figure 13a investigates individual play-dynamics relative to the ESS. As

seen in the left panel, average investments across replacement cycles are lower in Pressure than

in No Pressure and they exhibit a significant decrease towards the ESS investment level, with no
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Figure 10: Individual-level Standard Deviations of Investments by Replacement Cycle.

comparable decreasing pattern absent pressure.

At the same time, there is no trend towards ESS-play in either treatment as the Tullock contest

gets repeated within cycles. This is seen in the right panel where average distance to the ESS is

plotted by within-cycle contest rounds, averaged across all cycles.16

Taken together, these findings suggest that increased ESS-play is chiefly driven by subjects

reacting to the selection pressure intervention, rather than by learning- or imitation-dynamics,

which had been found to support ESS-play in previous experiments absent selection pressure (see,

e.g., Friedman 1996, Huck et al. 1999, Offerman et al. 2002, Friedman et al. 2015).

Figure 13b below redoes the Figure 13a-analysis with respect to best response-dynamics. As

seen in this figure, while subjects in Pressure are closer to best-responding in most cycles and

for most contest rounds within a cycle, no tendency towards increased best-response behavior is

observed within or across cycles for either treatment. This is a first piece of evidence supporting

the idea that subjects tend to select the ESS-investment level not for optimizing reasons but based

on a more rigid behavioral rule such as average unbeatability (see also see Section 3).

To better understand the decision rules followed by subjects, Figure 14 compares the distance

of investments to the ESS between new entrant subjects starting to play in a given replacement

cycle and incumbent subjects that have survived the previous replacement cycle.17

Strikingly, while there are no notable differences across treatments with respect to entrant

16As the number of contest rounds increases, there are fewer and fewer cycles for which we observe that many
rounds, with no cycle having more than 31 rounds in our sample. The figure therefore reports results up to contest
round 19. Given the negative binomial distribution that we use to draw game lengths, this corresponds to the
expected number of contest rounds for each cycle plus one standard deviation.

17Note that the Cycle 1-data is fully included in the Figure 14-top panels as all subjects in Cycle 1 are entrants.
The results regarding new entrant behavior across contest rounds reported in the top right panel are robust to
excluding Cycle 1-data.
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(a) Average Distance to ESS

(b) Average Distance to Best Response

(c) Average Absolute Prediction Error

Figure 11: Decision-Making v. Lifespan.
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(a) Distance to ESS

(b) Distance to Best Response

(c) Absolute Prediction Error

Figure 12: Decision-Making CDF.
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(a) Dynamics of play vs. ESS

(b) Dynamics of play vs. Best Response

Figure 13: Dynamics of play. Grey line: Expected number of rounds per cycle.
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behavior (top panels), incumbent subjects in Pressure display both a tendency to approach ESS-

investment levels across cycles and essentially constant investments in close proximity to the ESS

within cycles. By contrast, No Pressure-incumbent subjects do not approach ESS-investments

in later replacement cycles, and their within-cycle investments are significantly higher than the

ESS-benchmark and incumbent investment in Pressure.

(a) Entrants

(b) Incumbents

Figure 14: Dynamics of play vs. ESS. Grey line: Expected number of rounds per cycle.

This demonstrates that selection pressure causes surviving subjects to adopt a rather rigid

behavioral rule of investing close to the ESS-level, with fluctuations in investment for Pressure

being chiefly driven by entrants and their decision-making. This rigid incumbent behavior is very

much in line with the average unbeatability-property of the ESS which was demonstrated in Section

3. That is, investing at the ESS-level guarantees survival in the Pressure-treatment while at least

one other player invests at a different level. Pressure-incumbent subjects appear to exploit this

property to maximize their lifespan in the experiment without much regard to other, potentially

conflicting, objectives such as maximizing their round payoffs.

This behavioral rule “works” as long as other less experienced subjects do not pick up on the

ESS’s unbeatability quickly enough, leading them to face disproportionately higher odds of being

eliminated from the repeated contest. And indeed, as seen in figure 15 below, the share of entrants
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among eliminated subjects18 is significantly higher under Pressure than under No Pressure, and

it significantly exceeds the 25%-theoretical asymptotic share of entrants eliminated under random

replacement that would obtain with an infinite sample of No Pressure sessions.

Figure 15: Share of entrants among eliminated contestants. Grey line: Asymptotic share of entrants
replaced under random replacement.

5.5 Long-Lived vs. Short-Lived Subjects

The Pressure mechanism alters the evolution of the population by selectively eliminating lower-

performing subjects. We therefore compare the behavior of subjects who were repeatedly selected

to survive with those who were not. We classify a subject as “long-lived” if they survive at least

two selection events, and as “short-lived” otherwise.19

The cutoff at two selection events is motivated by the empirical hazard pattern: under Pres-

sure, the per-cycle hazard rate is high in a subject’s first two personal cycles (average ≈ 0.33) but

then drops sharply and stabilizes from the third personal cycle onward (average ≈ 0.13; See Table 8

in Appendix D). Thus, surviving two selection events marks passage out of the early high-attrition

phase and into the stable survival regime.

After removing censored cases, 70 of 163 participants (43%) in the Pressure treatment are

classified as long-lived, compared to 84 of 148 (57%) under No Pressure. This difference is sta-

tistically significant (χ2
= 5.38, p = 0.020), consistent with the higher early-cycle hazard under

18For both treatments, we exclude Cycle 1 as there are no incumbents. Cycle 11 is excluded for No Pressure,
whereas for Pressure we use round payoffs in the final round of Cycle 11 to determine which subjects would have
survived had there been a 12th cycle. The results in Figure 15 are robust to excluding Cycle 11 data for both
treatments.

19That is, a long-lived subject survives two selection events: one after entering and at least one subsequent event
as an incumbent. Under Pressure, payoffs in Cycle 11 determine whether a subject would survive a hypothetical
twelfth cycle. We exclude subjects whose long-lived status is censored. Examples include: under Pressure, subjects
who enter in Cycle 11 and would have survived; and under No Pressure, subjects who enter in Cycle 10 and survive,
as well as all subjects who enter in Cycle 11.

25



Pressure. The proportion of long-lived subjects under No Pressure closely matches the theoret-

ical baseline survival probability, (3/4)2 = 56.25%, consistent with random attrition in the absence

of performance pressure.

Figure 16: Mean Performance by Treatment and Group (First Cycle)

To compare behavioral differences between long-lived and short-lived participants, we restrict

attention to subjects’ decisions in their first personal cycle in order to equalize experience across

the two groups. Table 4 reports the average distance from several performance benchmarks, using

(i) all decisions in a subject’s first personal cycle and (ii) only the first two contest rounds, which

minimizes learning effects while still permitting a lagged measure. Under Pressure, long-lived

subjects’ initial decisions (long) are significantly closer to all performance benchmarks—except

prediction error—than those of short-lived subjects (short), both when using the full first cycle and

when restricting to the first two rounds. Long-lived subjects in Pressure also begin closer to these

benchmarks than long-lived subjects in No Pressure, indicating a systematic difference in the

composition of survivors across treatments. This pattern indicates that long-lived subjects do not

succeed merely by learning or adapting more effectively over time; rather, they enter the experiment

already making systematically better initial choices, even though their prediction accuracy is no

better than that of short-lived subjects.

In addition to starting out closer to the performance benchmarks, long-lived subjects under

Pressure also display modestly more effective early adjustments than their short-lived counter-

parts. Table 5 reports the mean change in distance to each benchmark during a subject’s first

personal cycle, and Figure 17 visualizes these dynamics. Across most measures, long- and short-

lived subjects adjust similarly, both under Pressure and under No Pressure. The one clear

exception is movement toward the ESS: long-lived subjects in Pressure reduce their distance to
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Table 4: Comparison of Mean Distance Measures between Long- and Short-Lived Subjects

First Personal Cycle First Two Iterations

Distance Measure Treatment Mean (Long) Mean (Short) t-stat p-value Mean (Long) Mean (Short) t-stat p-value

BRdist No Pressure 26.2 19.2 2.72 0.007** 28.2 22.3 1.73 0.086

Pressure 16.6 25.0 -3.94 0.000*** 17.6 24.9 -2.77 0.006**

ESSdist No Pressure 17.6 13.8 1.93 0.056 17.6 16.0 0.63 0.531

Pressure 9.0 18.5 -5.48 0.000*** 11.1 18.9 -3.79 0.000***

pred error No Pressure 12.2 12.2 0.02 0.987 14.3 14.6 -0.12 0.903

Pressure 10.4 11.2 -0.48 0.636 11.2 11.8 -0.37 0.714

Notes: Distance measures are constructed as follows. BRdist: absolute difference between a subject’s bid and the payoff-maximizing best response to the
contemporaneous bids of others; ESSdist: absolute difference between a subject’s bid and the ESS investment level (25); pred error: absolute prediction error
(difference between a subject’s predicted and actual mean bid of others).
All statistics are computed at the individual level: for each subject, we compute their mean distance in the relevant period (first personal cycle or first
two contest rounds). Two-sample t-tests compare these subject-level means between long- and short-lived groups, separately by treatment. Because each
observation is aggregated to the subject level, standard errors are implicitly clustered by subject.
†p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.

the ESS significantly more than short-lived subjects, whereas no such pattern appears in No Pres-

sure. This limited evidence of differential adjustment is consistent with the ESS serving as the

principal adaptive target when selection pressure is present, but it is small relative to the large

differences in initial decision quality documented above.

Table 5: Differences in Learning Across Long- and Short-Lived Participants in their First Cycle

No Pressure Pressure

Measure Mean (Long) Mean (Short) t-stat p Mean (Long) Mean (Short) t-stat p

∆BR Distance 0.009 -0.720 0.60 0.552 -0.283 -1.010 0.65 0.518

∆ESS Distance -0.246 0.100 -0.36 0.717 1.290 -0.381 2.07 0.040∗

∆Prediction Error 0.074 0.956 -1.06 0.293 -0.354 0.595 -1.19 0.236

Notes: For each subject i and benchmark B, let di,t(B) = ∣bidi,t−Bi,t∣ denote the absolute distance to the benchmark
in round t of the subject’s first personal cycle. The learning measure is the average round-to-round change in this
distance:

∆i(B) =

1

Ti − 1

Ti

∑

t=2
(di,t−1(B) − di,t(B)),

where Ti is the number of rounds in subject i’s first personal cycle. Positive values indicate improvement (movement
toward the benchmark). Reported values are group means for long- and short-lived subjects. T-statistics and p-
values are from two-sample tests of equal means. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

We also examine how subjects responded to performance feedback, again restricting the analysis

to each participant’s first personal cycle. In each round, subjects observed their own investment

and payoff as well as the average investment and payoff from the previous round20; see Figure 1

for a screenshot of the feedback screen. We classify bid adjustments as “No Change” if the new

bid differed by less than 0.5 from the previous bid; otherwise, changes are coded as moving to-

ward or away from the previous-round average. Figure 18 plots adjustment patterns when sub-

jects were performing above or below the average, separately by longevity and treatment. Under

Pressure, short-lived subjects exhibit little systematic responsiveness to feedback. By contrast,

20Unless they had just joined and did not participate in the prior round.
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Figure 17: First-Cycle Distance Measures by Group and Treatment

long-lived subjects display risk-sensitive adjustments: they move their bids toward the average

when underperforming—when the risk of elimination is highest—and maintain their bids when

performing above average and at lower risk. This pattern does not appear under No Pressure,

where feedback-driven adjustments are weaker and do not systematically differ between long- and

short-lived subjects.

5.6 Behavioral vs Mechanical Effects

The preceding sections document large population-level differences between the Pressure and No

Pressure treatments, as well as systematic differences between subjects who ultimately survive

many selection events and those who do not. A remaining question is whether the observed diver-

gence in population outcomes is driven primarily by mechanical selection—where higher-performing

subjects are retained but behave no differently than they would in the absence of selection pres-

sure—or whether subjects’ behavior itself changes in response to the presence of selection pressure.

In other words, does the treatment affect outcomes solely by reshaping population composition, or

does it also alter how surviving subjects play the game?

To address this question, we regress long-lived status among Pressure subjects on a set of

distance and learning measures from their first cycle of play.21 We then apply the estimated model

to No Pressure subjects to generate counterfactual predictions of how likely each subject would

have been to survive under selection pressure based on their initial behavior. Model performance,

evaluated on the Pressure sample, yields a log loss of 0.5521 and a ROC value of 0.7828, indicating

reasonable predictive accuracy.

21See Table ?? for regression results.
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Figure 18: Direction of bid adjustments by relative payoff in subjects’ first cycle

Figure 19 plots the cumulative distribution functions (CDFs) of subjects’ predicted probabilities

of being long-lived under Pressure, separately by treatment. If subjects’ initial behavior differed

systematically across treatments, these predicted survival distributions would diverge. Instead,

the distributions are nearly identical: a two-sample Kolmogorov–Smirnov test yields D = 0.0742

with p = 0.8427, indicating no statistically detectable difference in predicted long-lived probabilities

across treatments.

These results indicate that the observed differences in population evolution are primarily driven

by the selection mechanism rather than by differences in individual behavior. When survival is

predicted solely from subjects’ first-cycle behavior under Pressure, the implied probabilities of

being long-lived are nearly identical across treatments for new entrants (Figure 21), suggesting

little systematic difference in initial behavior between Pressure and No Pressure. Selection

pressure instead operates through differential retention: subjects whose early behavior predicts

longer survival are increasingly overrepresented among incumbents under Pressure, leading to a

widening divergence in population composition over time (Figure 20). As these surviving subjects

converge toward the ESS, incumbents become increasingly entrenched (Figure 22).

5.7 Individual Characteristics and Effects of Selection Pressure

Having shown that population-level differences are driven primarily by selection rather than differ-

ential entry behavior, this section considers whether individual characteristics can account for the

remaining treatment effects. We examine demographics and post-experiment survey measures and

explore their relationship to decision-making in the two treatments.

To begin, Table 6 summarizes subjects’ responses to the demographic- and survey-questions and
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Figure 19: CDF of Predicted Long-Lived Probabilities by Treatment

compares the means and standard deviations of their responses across treatments. No significant

differences are found between subjects assigned to the two treatment conditions.

Table 6: Overview of Survey and Demographics

Total No Pressure Pressure

Variable Mean Std.Dev. Mean Std.Dev. 95% CI Mean Std.Dev. 95% CI

Age 20.82 2.90 20.96 2.90 [20.52, 21.40] 20.69 2.90 [20.25, 21.13]

Gender .67 .47 .64 .48 [.56, .71] .70 .46 [.63, .77]

GPA 3.52 .46 3.46 .51 [3.38, 3.54] 3.59 .38 [3.53, 3.65]

Quant 6.49 6.16 6.90 6.87 [5.85, 7.95] 6.08 5.34 [5.26, 6.89]

CRT 2.31 1.28 2.29 1.30 [2.09, 2.48] 2.33 1.25 [2.14, 2.52]

Risk 4.17 1.46 4.03 1.52 [3.80, 4.26] 4.32 1.50 [4.09, 4.54]

Time Pref. 4.86 1.46 4.83 1.55 [4.60, 5.07] 4.89 1.37 [4.68, 5.10]

Competitiveness 4.51 1.83 4.45 1.80 [4.18, 4.73] 4.57 1.87 [4.29, 4.86]

Notes: CI is 95% normal confidence interval; Gender takes value 1 for female subjects, value .5 for
non-binary subjects, and value 0 for male subjects; Quant is number of economics-, statistics-, and math-
courses taken; CRT is score out of 4 on cognitive reflection test; Risk is 7-point Likert scale measure of
willingness to take risks; Time Pref. is 7-point Likert scale measure of willingness to incur costs today for
future benefits; Competitiveness is 7-point Likert scale measure of willingness to compete.

Next, to investigate whether variations in demographic and survey responses influence behavior

across treatments, Table 7 reports on a regression of: (1) investment amounts, (2) round payoffs,

and (3) distance to the ESS on a treatment dummy for Pressure and on the demographic and

survey responses we collected from subjects at the end of the experiment. As this table reveals, the

selection pressure treatment effect remains significant at the .01 level of significance for all three
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Figure 20: Predicted Concentration of Long-Lived Participants in Population by Cycle and Treat-
ment

dependent variables when controlling for demographics and survey responses. Furthermore, there is

a significant and consistent effect of subjects’ self-reported willingness to take risks across all three

dependent variables; a greater willingness to take risks increases investments and the distance to the

ESS while lowering round payoffs. None of the other individual characteristics provide significant

and consistent effects on investments, payoffs and distance to ESS. The gender dummy variable is

significant for investments, but not for payoffs or distance to the ESS. These results suggest that

our treatment interventions are the primary driving force behind the results that we obtain.

6 Conclusion

Economists have long argued that selection pressure, – the struggle to survive – is an important

driving force underlying a variety of economic decisions. Examples include investments in research

and development, the acquisition of new skills or education, the adoption of new technologies, and

competitive pricing in oligopolistic markets. In this paper, we have presented causal evidence from

a controlled experimental setting – a first of its kind – regarding how individuals respond to such

selection pressure. Our design allows us to directly observe the impact of selection pressure on

decision-making in repeated Tullock contests. Our Pressure treatment is analogous to real-world

mechanisms like rank-and-yank policies and high-stakes performance evaluations.

We find that selection pressure due to performance-based replacement (mimicking evolutionary

selection pressure) significantly impacts on contest investments and payoffs. Contestants in our

Pressure treatment exhibit more moderated and survival-oriented investment strategies compared

to contestants in the No Pressure control, where replacement is random. In particular, the Pressure

group’s investments align closely with the finite-population ESS of the Tullock contest. By contrast,
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Figure 21: Entrants’ Predicted Probability of Being Long-Lived by Cycle and Treatment

Table 7: Regression Analysis of the Impact of Demographics and Survey Responses on
Investments, Payoffs and Distance to ESS

(1) (2) (3)

Investments Payoffs Distance to ESS

Coeff. 95% CI Coeff. 95% CI Coeff. 95% CI

Pressure (d) -1.91 [ -3.68, -0.14] 2.18 [ 1.21, 3.14] -6.60 [ -7.90, -5.31]

Gender 3.50 [ 1.56, 5.45] -1.23 [ -2.23, -.22] 2.47 [ 1.06, 3.87]

GPA .62 [ -1.27, 2.52] -0.51 [ -1.57, 0.55] 1.48 [ -.10, 3.07]

Quant .21 [ .00, .42] -.05 [ -.17, .06] .06 [ -.07, .19]

CRT -.11 [ -.80, .58] .02 [ -.34, .38] -.03 [ -.56, .50]

Risk 1.76 [ 1.07, 2.45] -.71 [ -1.12, -.31] .72 [ .20, 1.24]

Time Pref. -.29 [ -.89, .31] .21 [ -.11, .53] -.30 [ -.82, .21]

Competitiveness -.45 [ -.98, .08] .07 [ -.26, .39] -.07 [ -.47, .32]

Constant 18.11 [ 9.20, 27.01] 101.90 [ 97.27, 106.53] 5.38 [ -2.15, 12.90]

N 9,216 9,216 9,216

R2 .03 .02 .08

(d) denotes dummy variable, effect of change from 0 to 1 reported.
Standard errors clustered at subject-cycle level.

investments in the No Pressure group are much higher, and they result in dissipation rates similar

to what is found across a large number of previous experiments studying finitely repeated contests

without selection pressure.
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Figure 22: Average Incumbent Age by Cycle and Treatment

Furthermore, selection pressure is found to cause a notable decrease in the variability of in-

vestments within the Pressure treatment, suggesting that the threat of replacement can induce

a more disciplined and consistent strategy among participants. Specifically, successful subjects

in the Pressure treatment appear to adopt a rather rigid behavioral rule, which implements near

ESS-investment levels independent of other contestants’ behavior. This behavior appears remi-

niscent of recent theoretical results establishing an unbeatability property of the ESS in certain

finite-population games. Disentangling unbeatability as a motivator for economic decision-making

under selection pressure from other potential drivers such as (e.g.) the maximization of absolute

or relative payoffs is an interesting avenue for future research.

Our findings are particularly relevant for understanding behaviors in high-stakes economic envi-

ronments, such as corporate settings or competitive markets, where survival and success are closely

tied to consistently outperforming benchmarks and peers. Our experiment shows that explicitly

accounting for selection pressures in such settings leads to qualitatively different predictions.

Finally, it is important to note that our Pressure treatment results in higher overall payoffs and

more efficient resource allocation among participants. This aligns with theories suggesting that

competition and selection pressures can lead to more efficient outcomes in economic and biological

systems. By contrast, the No Pressure condition, which lacks performance-based replacement, is

characterized by greater fluctuations in investments and often suboptimal decision-making, mirror-

ing less competitive economic environments or biological systems with low intensity of selection.

Our approach can be applied to many settings besides contests. For instance, we are currently

applying our selection pressure design to investigate competition and collusion in oligopolistic in-

dustries. Other possible applications are to bargaining games or financial asset markets.
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More broadly, our findings highlight an important limitation of traditional laboratory designs

that abstract from selection. In standard experiments, population composition is fixed by con-

struction, obscuring the role of survival and persistence in shaping aggregate outcomes. Our re-

sults demonstrate that even when individuals’ behavior is similar across environments, introducing

performance-based selection fundamentally alters how populations evolve over time. Selection pres-

sure need not induce different behavior at entry to matter; instead, it determines which behaviors

persist, spread, and ultimately dominate the population. By endogenizing population composition,

the Pressure treatment captures a central feature of natural and economic systems—namely, that

poorly performing strategies are gradually eliminated—thereby generating dynamics and outcomes

that static, no-selection designs are unable to reproduce.

In conclusion, this research not only reaffirms the relevance of evolutionary theory to economic

analysis, but it also expands our understanding of how survival pressures can shape competitive

strategies in significant ways. The experimental methods introduced here open up new avenues for

research into the adaptive behaviors of real-life economic agents under different types of selection

pressures. In this manner, they enhance our understanding of the complex interplay between

economic incentives and evolutionary dynamics.
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Appendix (For Online Publication)

A Additional Interface Screenshots

A.1 Selection event results screen, Pressure Treatment

1



A.2 Selection event results screen, Random Treatment

2



A.3 Ready to enter screen, Pressure Treatment

A.4 Ready to enter, Random Treatment

3



A.5 Wait screens

4



B Experimental Instructions
The experiment was programmed using oTree (Chen et al., 2016). The following screenshots show
the complete instructions for both treatment and related comprehension quizzes, as well as the
post-experiment questionnaire.

B.1 First screen, Pressure Treatment

5



B.2 First screen, No Pressure Treatment

6



B.3 Second screen, Pressure Treatment

7



B.4 Second screen, No Pressure Treatment

8



B.5 Third screen, Pressure Treatment

9



B.6 Third screen, No Pressure Treatment

10



B.7 Quiz screen 1, Pressure Treatment

11



B.8 Quiz screen 1, No Pressure Treatment

12



B.9 Quiz screen 2, Pressure Treatment

13



B.10 Quiz screen 2, No Pressure Treatment

14



B.11 Post-Experiment Survey screen 1

15



Post-Experiment Survey screen 2 and 3
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C Session-Level Investment Patterns
The Figures below display average Investment Patterns by session pair for the 12 sessions conducted
of each treatment (24 sessions in total) Recall that pairs of sessions use the same allocations of
replacement cycles. Most Pressure-sessions display lower levels and variance of investments. In
No Pressure-sessions, investment levels are highly volatile and rise significantly above both Nash-
and ESS-levels.
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D Hazard Rates by Personal Cycle

Table 8: Hazard Rates by Personal Cycle Under the Pressure Treatment

Personal Cycle x Alive at Start Eliminated at x Hazard Conditional Survival

1 168 66 0.3929 0.6071
2 102 27 0.2647 0.7353
3 70 11 0.1571 0.8429
4 54 9 0.1667 0.8333
5 40 5 0.1250 0.8750
6 34 6 0.1765 0.8235
7 25 1 0.0400 0.9600
8 23 3 0.1304 0.8696
9 18 3 0.1667 0.8333
10 12 1 0.0833 0.9167
11 9 0 0.0000 1.0000
12 9 0 0.0000 1.0000

Note: Personal cycle x indexes the number of consecutive cycles a subject has survived since first entering the
environment. Because subjects enter and exit at different times, personal cycles are distinct from global rounds and
represent each subject’s own survival sequence. Differences between successive “Alive at Start” values need not
equal the corresponding “Eliminated at x” values because some subjects are right-censored, meaning the experiment
ends before they face another elimination opportunity.
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