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Abstract
We report on an experiment examining whether individuals can solve a simple

signal extraction problem of the type found in models with imperfect information.

In one treatment, subjects must form point predictions based on observing both

public and private signals, while in another they receive the same information but

must decide on the weight to attach to each signal, which then determines their point

prediction. We find that, at the aggregate level, signal extraction provides a good

characterization of subjects’ behavior in both treatments, but at the individual level,

there is considerable heterogeneity in subjects’ ability to perform signal extraction.

Keywords Signal extraction model � Belief updating � Heterogeneous
expectations � Bayesian learning

1 Introduction

The process of extracting signals corrupted by noise is known as the signal

extraction problem. Signal extraction is a particular type of linear filtering, known

as the Wiener–Kolmogorov filter, that is applicable to settings where the sources of

noise follow stationary processes.1
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In economics, signal extraction is an important micro building block in

characterizing the equilibria of models of imperfect information. Perhaps the most

famous application of signal extraction is found in Lucas’s (1972) ‘‘island model’’

where firms that are located on different islands (and thus lacking perfect

information about the prices of other firms) have to determine the extent to which an

increase in the price of their own product is due to an increase in the demand for

their product or to a rise in the general level of prices.2

While the Lucas example is perhaps the most well-known application of signal

extraction, there are many other economic applications involving the use of signal

extraction problems. Fang and Moro (2011) show that statistical discrimination

amounts to solving a signal extraction problem. Wolfers (2002) asks whether voters

can assess the record of politicians apart from factors the politicians are unable to

affect, which amounts to a signal extraction problem. Gabaix and Laibson (2017)

show that agents can exhibit as-if discounting behavior when they face imperfect

information and estimate the value of future events by applying a signal extraction

model. Specifically, when signals about far distant future events are noisier, agents

assign those signals less weight in their decision problem, and that partially mimics

the properties of classical time preferences.

While the signal extraction model has been widely used, particularly in

macroeconomic modelling (see the seminal works by Lucas 1972; Mills 1982;

Sargent 1991 and Wallace 1992), we are not aware of any prior empirical testing of

this fundamental building block used in economic models with imperfect

information. Thus, the first contribution of this paper is to provide some evidence

on the extent to which humans can solve signal extraction problems. In the

experimental game theory literature, some researchers do study decision making by

subjects who face a signal extraction problem, e.g., between two noisy signals, as in

the global game experiments of Heinemann et al. (2004), Cornand and Heinemann

(2008) and the generalized beauty contest game experiment of Cornand and

Heinemann (2014). In that setting, subjects have to use one or more noisy signals to

form expectations/beliefs about a payoff relevant state variable. However, those

studies do not directly examine how well subjects are able to solve the signal

extraction problem that they face; rather, they elicit a discrete action choice from

subjects, who are players in an n-player game, (e.g., whether or not to attack a

currency), which is theorized to depend on subjects’ estimate of the state variable.

Thus, they do not directly elicit subjects’ beliefs or expectations regarding the state

variable, or the decision weights they assign to each signal explicitly. Our

experiment complements this type of research by providing a way to discern the

effect of factors that influence the belief/expectation of payoff relevant state

Footnote 1 continued

(Pollock 2013). This was the first statistical filter and predecessor to many others, including the Kalman

filter, which is relevant for filtering noise arising from non-stationary processes.
2 In macroeconomics, the use of signal extraction to model imperfect information gave way to more

tractable timing assumptions. As Sims (2003) observes, ‘‘much of subsequent rational expectations

macroeconomic modeling has relied on the more tractable device (relative to signal extraction) of

assuming an ‘information delay,’ so that some kinds of aggregate data are observable to some agents only

with a delay, though without error after the delay.’’
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variables prior to the choice of actions. In the experimental macroeconomics

literature, Menzies and Zizzo (2012) study how subjects’ exchange rate expectations

adjust to monetary shocks, in a model where the rational expectations equilibrium

relies on signal extraction to solve for the correlation coefficient between the

exchange rate and the interest rate. The subjects in their experiment, however,

submit bid/ask prices for the exchange rate and are not asked to infer the correlation

coefficient directly. Therefore, the Menzies–Zizzo study is also not a direct test of

the signal extraction model. We note that the signal extraction model can be

considered a sub-case of Bayesian updating models. Previous experimental studies

of Bayesian updating (e.g., Benjamin 2019; Massey and Wu 2005; Henckel et al.

2017) usually consider Bayesian updating only under a Bernoulli distribution.

Signal extraction is Bayesian updating under a Gaussian distribution, and people

may process information and make choices in a systematically different way when

the signals are drawn from different distributions. While the Bernoulli distribution is

often used in individual decision-making experiments, (e.g., where the aim is to

guess which of two urns signals are being drawn from), the Gaussian distribution is

more often used in macroeconomic and finance models (e.g. where the aim is to

forecast prices or exchange rates).

A second contribution of this paper is to compare direct elicitation of subjects’

beliefs/expectations in the face of a signal extraction problem with a setting where

subjects instead decide how to weight information from different sources. Subjects’

weighting choice determines their point prediction for the state variable. Thus, our

experiment also makes a methodological contribution to the literature on

experimental design for experiments examining how subjects process information

from different sources.

To preview our results, we find that at the aggregate level, the predictions of the
signal extraction model are a good fit to the experimental data, but that there is

substantial heterogeneity at the individual level. We further find that the signal

extraction model provides a better characterization of individuals’ belief updating

process when subjects are asked to weight their different information sources as

opposed to the case where they are asked to make a point prediction forecast.

2 The signal extraction task

Suppose the state, h, is a random variable. Agents desire to know the realization of

this random state variable in each period t, ht, as it is payoff relevant, e.g., it

represents the general price level. The distribution of this random variable (signal) is

assumed to be known. For example, in our experiment we shall assume that

ht �Nðy; 1aÞ. However, signals of the state variable are only observed with some

noise. Specifically, each agent i only observes a noisy private signal of ht, sit, e.g.,
the price of the good being sold on i’s own island. This signal distribution is known

as well. In our experiment, we assume that sit �Nðht; 1bÞ. Further, for simplicity, we

assume that there is no covariance between the two signals.
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The signal extraction problem for agent i is to find EðhtjsitÞ. Application of the

Wiener–Kolmogorov filter yields the optimal solution:

EðhtjsitÞ ¼
ayþ bsit
aþ b

see, e.g., DeGroot (2004). Based on this theory, agent i’s expectation, conditional on

the private signal, sit, is a weighted average of the two signals, with the inverse of the
variance of each signal serving as the weights. A further implication, given our

assumption of normally distributed random variables, is that the posterior expec-

tation lies between the prior expectation, y, and the noisy signal sit, that is, there is

updating toward the signal; see Chambers and Healy (2012).

We are interested in the extent to which individual agents can perform this

optimal filtering task. We are further interested in whether the framing of the

problem as a prediction task or as a weighting task matters for the accuracy of

individual forecasts.

3 Experimental design

To investigate these questions, we design an individual-decision making experiment

where subjects are repeatedly confronted with a signal extraction task and

incentivized to correctly guess the random state variable given only a noisy signal of

this variable. Our experiment consists of two treatments.

In treatment P, subjects predict the realization of ht in each of 15 periods, given

their signal, sit. That is, we directly elicit their ‘‘prediction’’ or expectation, EðhitjsitÞ.
In treatment W, subjects decide on a weight, wi

t 2 ½0; 1�, to assign to their private

signal, sit, in each of 15 periods. They choose the weight by moving a slider bar in

the experimental interface. Their implied price forecast is calculated as the weighted

average of their private signal, sit, and the public signal, y, the known mean of the

distribution for h. Thus, after choosing a weight, we calculate their prediction

according to Eðhitjwi
tÞ ¼ wi

ts
i
t þ ð1� wi

tÞy, and this procedure is known to them.

Subjects can view their implied prediction for ht in real time as they move the slider

bar to select their weight. They can thus experiment with different weighting

possibilities before finally settling on a choice they like, at which point they simply

click ‘‘Submit’’ to enter that weighting choice. We chose this slider design for the W

treatment since subjects are rewarded for the accuracy of the point prediction

implied by their weight choice, and we wanted to make this difference clear to

subjects.

Indeed, in both treatments, subjects are paid according to the accuracy of their

forecasts for ht. Specifically, subject i’s payoff in experimental currency units

(ECUs) in period t of either treatment is given by:

pit ¼
100

1þ jEðhitjxÞ � hitj

where x ¼ sit or w
i
t depending on the treatment (P or W).

123

222 T. Bao, J. Duffy

Author's personal copy



In both treatments, the distribution for the state variable is perfectly known.

Specifically, we set y ¼ 10 and a ¼ 1, so that h�Nð10; 1Þ. The private signal

distribution is also perfectly known: sit �Nðhit; 1btÞ. The variance of the private signal
1
bt
is the same for all subjects, and took on one of three values in different periods of

the experiment:

bt ¼
1; t 2 ½1; 5�:
4; t 2 ½6; 10�:

0:25; t 2 ½11; 15�:

8
><

>:

That is, the variance of the private signal is 1 for periods 1–5, 0.25 for periods 6–10,

and 4 for periods 11–15, and these values were perfectly known to subjects. Thus,

the private signal is equally noisy as the public signal in the first 5 periods, less

noisy than the public signal in the second 5 periods, and noisier than the public

signal in the last 5 periods. The realized value of the state variable and the private

signal, hit and sit, are different for each individual, i, in each period. All the values

were randomly generated before the experiment.

The sessions were run at the Laboratory of Experimental Economics at Nanyang

Technological University (NTU), Singapore. 96 subjects (48 for treatment P and 48

for treatment W) were recruited via the ORSEE system. The subjects are

undergraduate students of NTU. The session subjects were recruited for consisted

of two parts, of which the signal extraction task reported on in this paper was the

first part of the session.3 Payment for the first part (the 15 period signal extraction

experiment) was based on Subjects’ ECU earnings from one randomly chosen

period among all 15 periods they played. Each subject’s ECU earnings from the

randomly chosen period was converted into Singapore Dollars at the known

exchange rate of 100 ECU ¼ 10 Singapore Dollars. The average payoff earned by

subjects was 7 Singapore dollars for this signal extraction experiment and subjects

also received a 3 Singapore dollars show-up payment. Subjects were given written

instructions on the task they would face in each of the 15 periods (see the Electronic

Supplementary Appendix for copies). These instructions made it clear to subjects

what is meant by a random variable drawn from a normal distribution (as used in the

experiment). To insure that subjects had a good understanding of the tasks they

faced, after the instructions were read, we asked subjects some control questions to

check their comprehension of the instructions. Subjects could only start the

experiment if they had answered all of the control questions correctly.

4 Results

We divide our discussion of the results into aggregate level results, focusing on the

mean or median behavior of all subjects of a treatment, and individual-level

behavior.

3 The second part of the session was an asset pricing experiment which we do not report on in this paper,

but for which subjects could earn additional money payments.
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4.1 Deviations from theoretical predictions

We first consider the deviation of subjects’ expectations from the theoretical

predictions given by the signal extraction model, hit in each of our two treatments.

Figure 1 plots the mean squared error in each period, t, MSEt ¼
P

i
ðEðhit jwi

tÞ�hitÞ
2

N ,

(where N is the total number of subjects in each treatment) of the signal extraction

model in treatment P or W. We did not elicit point predictions directly in treatment

W, but for each weight that a subject i assigned to the private signal in treatment W,

wði; tÞ, the implied point prediction for hit is

Eðhitjwi
tÞ ¼ ð1� wi

tÞ10þ wi
ts
i
t:

In general, as Fig. 1 reveals, this aggregate MSE is not very large in either treat-

ment, though it is found to be greater in treatment P as compared with treatment W.

We next consider individual MSEs in the two treatments. The MSE for individual

i is given by MSEi ¼
P

t
ðEðhit jwi

tÞ�hitÞ
2

15
, that is, individual i’s average MSE over all 15

periods. Figure 2 shows the empirical cumulative distribution function (CDF) of

these individual MSEs from the signal extraction model (where each subject i is an
observation). We see clear evidence for first order stochastic dominance: the MSE

for the P treatment stochastically dominates that of the W treatment. Indeed, the two

distributions are significantly different according to a Kolmogorov–Smirnov test

(D ¼ 0:4375; p ¼ 0:000).

Fig. 1 The MSE of the signal extraction model over the 15 periods of treatments P and W
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Still, the difference between the subjects’ predictions and the prediction of the

signal extraction model are very small in both the P and W treatments. The results

of a t test on the individual level data (each subject is an independent observation,

and the number of observations is 48) suggests that the average difference between

the subjects’ predictions and the predictions of the signal extraction model is not

significantly different from 0 at the 5% level in both treatment P

(t ¼ �0:1462; p ¼ 0:8858) and treatment W (t ¼ �0:712; p ¼ 0:4795).
For treatment P, the MSE of the signal extraction model is 1.4808 for the whole

experiment, 1.0531 in the first 5 periods, 1.0762 in the second 5 treatments and

2.3131 in the final 5 periods. For treatment W, the MSE is 0.2604 for the whole

experiment, 0.1313 in the first 5 periods, 0.0781 in the second 5 periods and 0.5719

in the final 5 periods.

The MSE in the final 5 periods, when the variance in the private signal is the

highest, appears to be larger than the other two blocks of 5 periods in both

treatments. In treatment P, the differences between the MSEs of the first and second

5 periods (t ¼ �0:0265; p ¼ 0:9789) and second and third 5 periods

(t ¼ �1:2392; p ¼ 0:2214) are not significantly different from 0, while there is a

significant difference between the MSEs in the first and third 5 periods

(t ¼ �2:9860; p ¼ 0:0045). In treatment W, the difference between the MSE in

the first and second 5 periods is not significant at the 5% level

(t ¼ 1:8526; p ¼ 0:0702), while the difference is significant at 5% level between

Fig. 2 The empirical CDF of the MSE of the signal extraction model in treatments P and W
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the first and third 5 periods (t ¼ �3:8715; p ¼ 0:0003) and between the second and

third 5 periods (t ¼ �4:3491; p ¼ 0:0001).
The above findings can be summarized as Result 1:

Result 1: The signal extraction model provides a good description of subjects’
predictions at the aggregate level. The difference between the average predictions
of subjects is not significantly different from the theoretical predictions of the signal
extraction model, and the average difference tends to be small (usually less than
10% of the true realized value of the variable). Deviations tend to be greater when
subjects make point predictions (P) versus a weighting decision (W), and when the
variance of the private signal is larger.

4.2 Weight allocated to the private signal

For treatment W, we directly elicited the weight that subjects assigned to the private

signal. This weight is not directly observable in treatment P, but we can calculate

the implied weight for treatment P using the following equation:

wi
t ¼

Eðhitjwi
tÞ � 10

si;t � 10
;

since Eðhitjwi
tÞ ¼ ð1� wi

tÞ10þ wi
ts
i
t.

Using the directly elicited or implied weights, Fig. 3 plots the median weight

assigned to the private signal by subjects in treatments P and W in each period,

along with the signal extraction model prediction.

Table 1 reports the average and median elicited or implied weight assigned to the

private signal by subjects in all periods of the experiment and in each of the three

5-period subperiods.

In treatment P, the average implied weight is a very noisy measure; it lies outside

of the interval [0, 1] for the whole sample and for the first and last 5 periods.4

Therefore, we focus our analysis on the median implied weight.

For the P treatment, the median implied weight assigned to the private signal is

0.5543 for all periods (not significantly different from 0.5, z ¼ 0:9270; p ¼ 0:3587);
0.5088 in the first 5 periods (not significantly different from 0.5,

z ¼ 0:9679; p ¼ 0:3381), 0.8440 in the second 5 periods (not significantly different

from 0.8, z ¼ �0:5582; p ¼ 0:5794) and 0.3100 in the third 5 periods (not

significantly different from 0.2, z ¼ 1:5778; p ¼ 0:1213).
For the W treatment, the average elicited weight is 0.5225 for all periods (not

significantly different from 0.5, t ¼ 1:3037; p ¼ 0:1987), 0.5399 in the first 5

4 We also considered only focusing on subjects whose implied weight choice was ‘‘rational’’ in the sense

that it lied between 0 and 1, i.e., it satisfied the definition of updating towards the signal according to

Chambers and Healy (2012), but it turns out that among the 720 decisions in treatment P, 131 (18.19%)

decisions are associated with an implied weight wi
t\0, and 187 (25.97%) are associated with an implied

weight wi
t [ 1. Among all the subjects, only 5 (10.42%) subjects made 0 implied weight decisions lying

outside the [0, 1] interval over all 15 periods, and 32 subjects (66.67%) made irrational implied weight

decisions more than 5 times. On average, the number of implied weight decisions that satisfy the

definition of updating toward the signal is only 8.4, less than 60% of the total decisions. This result makes

it difficult for us to simply remove the irrational decisions or subjects from the sample.
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periods (not significantly different from 0.5, t ¼ 1:9338; p ¼ 0:0592), 0.6433 in the

second 5 periods (significantly different from 0.8, t ¼ �5:8873; p ¼ 0:0000) and

0.3843 in the final 5 periods (significantly different from 0.2,

t ¼ �17:3405; p ¼ 0:0000). The median elicited weight assigned to the private

signal is 0.5206 for all periods (not significantly different from 0.5,

z ¼ 0:923; p ¼ 0:3560), 0.5318 in the first 5 periods (not significantly different

from 0.5, z ¼ 1:744; p ¼ 0:0812), 0.6878 in the second 5 periods (significantly

different from 0.8, z ¼ �4:831; p ¼ 0:0000) and 0.3422 in the final 5 periods

(significantly different from 0.2, z ¼ 5:4260; p ¼ 0:0000). Differently from the P

treatment, where subjects make a point prediction, subjects in the W treatment do

not seem to have a consistent tendency to overweight the private signal. Instead,

they appear to overweight the private signal when the theoretical prediction calls for

a low weight, and they underweight the private signal when the theoretical

prediction calls for a high weight. In other words, they seem to overweight/

underweight predicted low/high weights to avoid making extreme predictions.5

We can summarize the above findings as Result 2:

Result 2: The signal extraction model generally provides a good description of
subjects’ weighting of private versus public signals. In treatment P, the average
implied weight assigned to the private signal often deviates from signal extraction

Fig. 3 The median elicited or implied weight assigned to the private signal in treatments P and W as
compared with the prediction of the signal extraction model

5 Such behavior is reminiscent of the nonlinear weighting of probabilities that is a behavioral primitive of

Prospect theory.
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model substantially, i.e., it lies outside of the [0, 1] interval. Yet, there is no
significant difference between the median implied weights and the theoretical
predictions of the signal extraction model. Using the average implied weight, there
appears to be overweighting of the private signal in this treatment. In treatment W,

the signal extraction model provides an unbiased prediction for both the average
and the median weights chosen in the population. Finally, for both treatments, the
deviation from the signal extraction model is greatest in the final 5 periods when the
private signal is noisier than in the other two blocks of 5 periods. Subjects’ behavior
seems to be better described by the signal extraction model in treatment W than in
treatment P.

4.3 Individual behavior over time

In this section we focus on individual behavior over time. We consider a simple

linear panel data regression model for subjects’ predictions in each period t:

EðhitÞ ¼ c1yþ c2s
i
t þ �it; ð1Þ

where y ¼ 10 is the public signal, and sit is the private signal. We add a fixed effect

for each individual subject in the regression to rule out the influence of idiosyncratic

factors at the subject level. Notice that this panel data regression provides an

alternative means of estimating the weight placed on the private signal in the P

treatment, which here amounts to the estimate of the coefficient, c2.
The first 5 columns of Table 2 report results from the panel data regression

estimation of (1) for each treatment, P or W, using the whole sample and for each

block of 5 periods. The coefficient, c2, on the private signal in the current period, sit,
is significantly different from zero at the 1% level for all samples and subsamples.

Table 1 The average and

median implied or elicited

weight assigned to the private

signal

Treatment P

Period Average Median Theoretical prediction

All periods 1.458 0.554 0.5

First 5 3.07 0.509 0.5

Second 5 0.173 0.844 0.8

Third 5 1.132 0.31 0.2

Treatment W

Period Average

weight

Median

weight

Signal extraction

model

All

periods

0.5225 0.5206 0.5

First 5 0.5399 0.5318 0.5

Second 5 0.6433 0.6878 0.8

Third 5 0.3843 0.3422 0.2
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After controlling for individual fixed effects, we still find overweighting of the

private signal in the first (0:645[ 0:5), second (0:979[ 0:8) and third 5 periods

(0:532[ 0:2) of the P treatment. In treatment W, controlling for fixed effects, we

find that the private signal is over-weighted in the first (0:562[ 0:5) and third 5

periods (0:393[ 0:2), and under-weighted in the second 5 periods (0:674\0:8).
Overall, the deviation of subjects’ weight allocations from the signal extraction

model predictions is again found to be smaller in treatment W as compared with

treatment P.

We further consider evidence for learning behavior using a modified version of

the linear, individual fixed effects regression model (1). Specifically, we suppose

that even though the realization of hit is known to be independent across each period

of our experiment, subjects nevertheless employ some type of adaptive learning

behavior. That is, they incorrectly incorporate the immediate lagged forecast error

into their prediction for the current period hit. To allow for this possibility, we

estimate the following forecast rule:

EðhitÞ ¼ c1yþ c2s
i
t þ c3ðhit�1 � Eðhit�1ÞÞ þ �it; ð2Þ

where, as before, y ¼ 10, sit is the private signal and ðhit�1 � Eðhit�1ÞÞ is the lagged

forecast error which captures subjects’ tendency to adjust their expectations

upwards/downwards when their expectation was too low/high in the last period.

When running this estimation, we deleted the values of ðhit�1 � Eðhit�1ÞÞ for periods
6 and 11 because they are the first period of a new block with a different variance of

the private signal. Of course, we also do not have an error term in the first period as

well.

Results from a fixed effects panel data regression of the modified specification (2)

are reported in columns 6–9 of Table 2 for each treatment, P or W, using the whole

sample (all Pds) and for each block of 5 periods. In general, the fit of this model

seems a little better; the adjusted R2 values are the same or better than for the model

without the error term. The coefficient, c2, on the private signal in the current

period, sit, is again significant at the 1% level for all samples and subsamples. After

controlling for individual fixed effects, the private signal continues to be

overweighted in the first (0:658[ 0:5), second (1:017[ 0:8) and third 5 periods

(0:500[ 0:2) in treatment P, and it is overweighted in the first (0:565[ 0:5) and
third 5 periods (0:385[ 0:2), but underweighted in the second 5 periods

(0:671\0:8) of treatment W. For the P treatment, the coefficient on the lagged

error term, c3, is positive and significant at the 10% level for the whole sample, and

at the 5% level for each block of 5 periods in treatment P. By contrast, in the W

treatment, the coefficient on the lagged error term is not significantly different from

zero for the whole sample and among the 5 period blocks, it is only significantly

different from zero in the third block of 5 periods (albeit at the 1% level). This

difference suggests that subjects may have been engaging in some type of adaptive

learning behavior in the more complex treatment P, even though they should not be

using their own past prediction errors in this experiment given that the realization of

hit is i.i.d., and this fact was made clear to subjects in the instructions. Still, this
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difference may help to explain why the deviation from the signal extraction model is

larger in treatment P than in treatment W. When the lagged error term is included in

the regression for treatment P, we observe that the estimated average weights

assigned to the private signal, c2, get closer to the theoretical predictions for the

whole sample and for the final 5 periods. Still, the added explanatory power of the

forecast error term in the P treatment is somewhat limited, as the increase in the

adjusted R2 value from the model including the lagged error term is rather modest.

The above findings can be summarized as Result 3:

Result 3: The signal extraction model also provides a good description of
subjects’ predictions at the individual level. As indicated by Result 2, subjects
deviate less from the signal extraction model predictions in treatment W than in
treatment P. There is a general tendency of subjects to overweight the private signal
in treatment P (particularly in the first and third 5 periods) while subjects in
treatment W over- (under-) weight the private signal when the theoretical prediction
of the signal extraction model is low (high). Adaptive behavior (utilization of past
forecast errors) has some explanatory power in treatment P, but not for treatment
W.

5 Conclusions

We have reported the first direct experimental evidence on the empirical relevance

of the signal extraction model. Our experimental setup serves as a good platform for

testing economic models that make use of signal extraction, e.g., Lucas (1972),

Wallace (1992), Allen et al. (2006), Nimark (2008)) and Gabaix and Laibson

(2017), among many others.

In general, we find that the signal extraction model provides a good description of

agents’ behavior at the aggregate level, which may be considered as a supportive

evidence for applying signal extraction in macroeconomic modeling, using a

representative agent framework. However, we also find that individuals may deviate

from the predictions of the signal extraction model substantially at the disaggregated

individual level, especially when they make point predictions as in our P treatment.

We suspect that the comparatively better, individual-level performance of subjects

in our W treatment stems from the fact that our W treatment puts constraints on the

weighting of the two signals that are not present in the prediction (P) treatment. It

would be of interest to think about extensions where we restricted the range of

admissible predictions in the P treatment in a similar fashion to explore whether

such restrictions also improved individual level performance in the P treatment.

Alternatively, one might explore a reverse version of the W treatment where

subjects use a slider to choose a point prediction and see the implied weight on the

private signal. Finally, it would be of interest to compare individual subject’s

behavior when facing both the P and W treatments with the same variance for the

private signal, to see if there is any consistency in their behavior. We leave all of

these extensions to future research.
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