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Abstract. We propose the use of a new techinque{symbolic regression{as a method

for inferring the strategies that are being played by subjects in economic decision

making experiments. We begin by describing symbolic regression and our implemen-
tation of this technique using genetic programming. We provide a brief overview of

how our algorithm works and how it can be used to uncover simple data generating

functions that have the 
avor of strategic rules. We then apply symbolic regression
using genetic programming to experimental data from the repeated \ultimatum

game." We discuss and analyze the strategies that we uncover using symbolic re-

gression and conclude by arguing that symbolic regression techniques should at
least complement standard regression analyses of experimental data.

1 Introduction

A frequently encountered problem in the analysis of data from economic
decision{making experiments is how to infer subjects' strategies from their
actions. The standard solution to this inference problem is to make some
assumptions about how actions might be conditioned on or related to cer-
tain strategically important variables and then conduct a regression analysis
using either ordinary least squares or discrete dependent variable methods.
A well-known di�culty with this approach is that the strategic speci�cation
that maps explanatory variables into actions may be severely limited by the
researcher's view of how subjects ought to behave in the experimental envi-
ronment. While it is possible to experiment with several di�erent strategic
speci�cations, this is not the common practice, and in any event, the set of
speci�cations chosen remains limited by the imagination of the researcher.

In this paper, we propose the use of a new technique { symbolic regression
using genetic programming { as a means of inferring the strategies that are be-
ing played by subjects in economic decision-making experiments. In contrast
to standard regression analysis, symbolic regression involves the breeding of
simple computer programs or functions that are a good �t to a given set
of data. These computer programs are built up from a set of model prim-
itives, speci�ed by the researcher, which include logical if{then{else oper-
ations, mathematical and Boolean operators (and, or, not), numerical con-
stants, and current and past realizations of variables relevant to problem that
is being solved. These programs can be generated for each subject in a pop-
ulation and may be depicted in a decision tree format that facilitates their
interpretation as individual strategies.
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The genetic programming algorithm that we develop for breeding and se-
lecting programs is an automated, domain{independent process that involves
large populations of computer programs that compete with one another on
the basis of how well they predict the actions played by experimental sub-
jects. These computer programs are selected for breeding purposes based
on Darwin's principle of survival of the �ttest and they also undergo nat-
urally occurring genetic operations such as crossover (recombination) that
are appropriate for genetically mating computer programs. Following several
generations of breeding computer populations, the algorithm evolves pro-
grams that are highly �t in terms of their ability to predict subject actions.
The directed, genetic search process that genetic programming embodies, to-
gether with the implicit parallelism of a population{based search process has
proven to be a very powerful tool for function optimization in many other
applications.[4]

The advantage of symbolic regression over standard regression methods
is that in symbolic regression, the search process works simultaneously on
both the model speci�cation problem and the problem of �tting coe�cients.
Symbolic regression would thus appear to be a particularly valuable tool
for the analysis of experimental data where the speci�cation of the strategic
function used is often di�cult, and may even vary over time. We begin by
describing genetic programming and how it can be used to perform symbolic
regression analysis. We then show that our algorithm is capable of uncover-
ing simple data generating functions that have the 
avor of strategic rules.
We apply our symbolic regression algorithm to experimental data from the
repeated ultimatum game. We discuss and analyze the strategies that we
uncover using symbolic regression and we conclude by arguing that sym-
bolic regression should at least complement standard regression analyses of
experimental data.

2 Symbolic Regression Using Genetic Programming

The use of genetic programming for symbolic regression was �rst proposed by
John Koza[4] as one of several di�erent applications of genetic programming.
In addition to symbolic regression, genetic programming has been success-
fully applied to solving a large number of di�cult problems such as pattern
recognition, robotic control, the construction of neural network architectures,
theorem proving, air tra�c control and the design of electrical circuits and
metallurgical processes. The genetic programming paradigm, as developed by
Koza and other arti�cial intelligence researchers, is an approach that seeks to
automate the process of program induction for problems that can be solved
on a computer i.e. for problems that are computable. The basic idea is to
use Holland's[3] genetic algorithm to search for a computer program that
constitutes the best (approximate) solution to a computable problem given
appropriate input data and a programming language. A genetic algorithm
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is a stochastic, directed search algorithm based on principles of population
genetics that arti�cially evolves solutions to a given problem. Genetic al-
gorithms operate on populations of �nite length, (typically) binary strings
(patterned after chromosome strings) that encode candidate solutions to a
well{de�ned problem. These strings are decoded and evaluated for their �t-
ness, i.e. for how well each solution comes to solving the problem objective.
Following Darwin's principle of survival of the �ttest, strings with relatively
higher �tness values have a relatively higher probability of being selected for
mating purposes to produce the succeeding `generation' of candidate solu-
tions. Strings selected for mating are randomly paired with one another and,
with certain �xed probabilities, each pair of `parent' strings undergo versions
of such genetic operations as crossover (recombination) and mutation. The
strings that result from this process, the `children', become members of the
next generation of candidate solutions. This process is repeated for many gen-
erations so as to (arti�cially) evolve a population of strings that yield very
good, if not perfect solutions to a given problem. Theoretical work on ge-
netic algorithms, e.g. [2] reveals that these algorithms are capable of quickly
and e�ciently locating the regions of large and potentially complex search
spaces that yield highly �t solutions to a given problem. This quick and ef-
�cient search is due to the use of a population{based search, and to the fact
that the genetic operators ensure that highly �t substrings, called schema,
(or subtrees in genetic programming) increase approximately exponentially
in the population. These schema constitute the \building blocks" used to
construct increasingly �t candidate solutions. Indeed, Holland[3] has proven
that genetic algorithms optimize on the trade{o� between searching for new
solutions (exploration) and exploiting solutions that have worked well in the
past.

Genetic programming is both a generalization and an extension of the
genetic algorithm that has only recently been developed by Koza (1992)
and others. In genetic programming the genetic operators of the genetic al-
gorithm e.g. selection, crossover and mutation operate on a population of
variable rather than �xed length character strings that are not binary, but
are instead interpretable as executable computer programs in a particular
programming language, typically LISP. In LISP (or in similar LISP{like en-
vironments), program structures, known in LISP as Symbolic expressions, or
`S{expressions' can be represented as dynamic, hierarchical decision trees in
which the non{terminal nodes are functions or logical operators, and the ter-
minal nodes are variables or constants that are the arguments of the functions
or operators. The set of non{terminal functions and operators and the set of
terminal variables and constants are speci�ed by the user and are chosen so
as to be appropriate for the problem under study.

In our application, each decision tree (self executing computer program)
is viewed as a potential strategy for one subject, playing a particular role in
a particular economic decision-making game. The �tness of each candidate
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decision tree is simply equal to the number of times the program makes the
same decision as the experimental subject over the course of the experimental
session, given the same information that was available to the subject at the
time of the decision. Koza has termed the problem of �nding a function, in
symbolic form, that �ts a �nite sample of data as symbolic regression. While
there may be other ways of performing a symbolic regression, we know from
the work of Holland that a genetic-algorithm-based search will be among the
most e�cient, hence, the use of genetic programming for symbolic regression
analysis. As mentioned in the introduction, the major advantage of symbolic
regression using genetic programming over standard regression methods is
that one does not have to prespecify the functional form of the solution, i.e.,
symbolic regression is data{to{function regression. Instead, one simply spec-
i�es two sets of model primitives: (1) the set of non{terminal functions and
operators, N , and (2) the set of terminal variables or constants, T . The dy-
namical structure of the player's strategy (in our application) is then evolved
using genetic operations and the grammar rules of the programming language
(LISP).

3 An Illustration

Our application of symbolic regression using genetic programming is per-
haps best illustrated by an example. We will consider the well-known two
player, repeated ultimatum game, using data from an experiment conducted
by Du�y and Feltovich[1] where subjects played this game for 40 periods. The
symbolic regression technique that we illustrate here can easily be applied to
other experimental data sets as will (hopefully) become apparent from the
description that follows.

In the ultimatum game, there are two players, A and B, sometimes re-
ferred to as proposer and responder. The proposer (player A) proposes a split
of a $10 pie and player B can either accept or reject the proposed split, with
acceptance meaning implementation of the o�er and rejection resulting in
nothing for either player. In the Du�y{Feltovich experiment, the proposers
(player As) could propose only integer dollar amounts, e.g. a split of $6 for A
and $4 for B; this set{up greatly simpli�es our implementation of symbolic
regression using genetic programming. In this experiment, players of both
types were randomly paired in each of 40 periods. Here we will focus on the
strategy of player Bs, the responders, to the proposals of player As.

The large number of observations (40) for each subject allows us to run
separate regressions for each subject, in an e�ort to uncover individual strate-
gies. This will allow us to look for heterogeneity in the strategic behavior of
subjects who were assigned to play the same role in the experiment. In data
sets with a smaller number of observations per subject, one could use the
symbolic regression technique to search for the strategy that best character-
izes a population of players of a given type.
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4 The Regression Model

The �rst step in conducting a symbolic regression is to specify a grammar for
the programming language that will be used to evolve the structures (com-
puter programs) that characterize the play of the game. A generative gram-
mar for a programming language simply speci�es the rules by which the set of
non{terminal symbols and terminal symbols may be combined. Non{terminal
symbols are those requiring further input, and terminal symbols are those
that do not require any further input. For example, the non{terminal sym-
bolic logic operator \if" requires three additional inputs, denoted in brackets
f g: if fconditiong then fdo somethingg else fdo other thingg. The inputs
to the non{terminal \if" symbol may themselves be either non{terminals or
terminals. An example of a terminal is a variable, constant or action requir-
ing no further input. For example, in modeling the behavior of responders in
the ultimatum game, the input for fdo somethingg in the if expression above
might be the terminal action accept; the input for do other thing might be
the terminal action reject.

As in spoken languages, the grammar of a programming language is in-
tended to be extremely general, admitting a wide variety of di�erent symbolic
operators and expressions. Rather than constructing the grammar of a pro-
gramming language from scratch, the practice in genetic programming is to
make use of the grammar of an existing, high-level programming language
like LISP or APL. In this paper we make use of grammar of LISP. The advan-
tage of LISP is that the input structures are all symbolic text arrays which
are readily converted into programs (and vice versa). Furthermore, parse tree
manipulations are easily implemented and program structures are free to vary
in size up to some maximum length.

Our implementation of LISP is simulated using C++, but other program-
ming languages can also be used, including, of course, LISP itself.

4.1 Grammar

We us the Backus{Nauer form grammar as described in Geyer{Schulz.[2]
This grammar consists of non{terminal and terminal nodes of a tree, and
a structure with which to build the tree. An example grammar that allows
for nested \if" statements, and which we use for the ultimatum game is
given in Figure 1. The grammar we use for the ultimatum game speci�es
that the set of non{terminals includes nested if{then statements, logical and,
or, and not statements, and the mathematical operators <, >, and =. The
set of terminals includes the past 3 proposals made by the player As that a
player B has met (a1{a3), along with the player B's own past 3 responses
(b1{b3). Also included is player A's current proposal, denoted a0. In our
application, the internal representation of a player A proposal is an integer
from 0-9 which denotes the amount of the $10 prize that a player A pro-
poses to keep for him or herself (thus $10 - the player A's proposal is the



6 John Du�y and Jim Engle{Warnick

  
Node                  Possible Derivations 
 
<fe> = ( <f6><f0><fe><fe> ) or ( <f6><f0><f2><fe> ) or  
                                                ( <f6><f0><fe><f2> ) or ( <f6><f0><f2><f2> ) 

 <f0> = ( <f7><f0><f0> ) or ( <f8><f0> ) or ( <f1> ) or ( <f10> ) 
 <f1> = ( <f9><f3><f3> ) or ( <f9><f4><f5> ) 
 <f2> = ( <f10 >) 
 <f3> = ( <f11> ) 
 <f4> = ( <f12> ) 
 <f5> = ( <f13> ) 
 <f6> = “if” 
 <f7> = “or” or “and” 
 <f8> = “not” 
 <f9> = “<” or “>” or “=” 
 <f10> = “0” or “1” or “b1” or “b2” or “b3” 
 <f11> = “4” or “5” or “6” or “7” or “8” or “a0” or “a1” or “a2” or “a3” 
 <f12> = “T” 
 <f13> = “5” or “10” or “15” or “20” or “25” or “30” or “35 
  
 

Fig. 1. \Nested If Statement" Grammar for Ultimatum Game

amount to be received by player B). The internal representation of a player
B's response is either a 0 or a 1 with a 0 representing reject, and a 1 rep-
resenting accept. The set of terminals also includes the set of integers from
4{8, which player Bs may use to condition their decisions; we chose this set of
integers since most player A proposals are for dollar amounts in this range.
Finally, we include time, T , as an additional terminal symbol, along with
integer values for 5-period intervals of play. If T is chosen, then the number
referenced comes from hf13i as indicated by the grammar (hf9ihf4ihf5i). If
one of the mathematical operators, <, >, or = are chosen, the two numbers
compared come from hf11i as indicated by the grammar (hf9ihf3ihf3i).
The nodes hf2i � hf5i simply add parentheses to nodes hf10i � hf13i, so
that our algorithm understands these symbols to be terminal nodes. We can
summarize the textual aspects of the grammar by noting that the set of non{
terminals, N = fif; or; and; not; <; >; =g and the set of terminals, T
= fa0; a1; a2; a3; b1; b2; b3; 4; 5; 6; 7; 8; T; 5; 10; 15; 20; 25; 30; 35g.

In addition to specifying the set of non{terminals and terminals, the gram-
mar also speci�es how operations may be performed on the set N (T ). The
starting node, as speci�ed in Figure 1, allows for four di�erent initial deriva-
tions of a decision tree, (individual strategy) all of which begin with the
non{terminal logical operator \if" = node hf6i. As noted above, this opera-
tor requires three inputs, and the grammar in Figure 1 speci�es restrictions
on these inputs. For instance, the second input, which is the condition state-
ment that the if operator evaluates, must always come from node hf0i, which
in turn requires either a Boolean operator from nodes hf7i � hf8i, (and, or
, not), or a mathematical operator from node hf9i or a terminal from node
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hf10i. The other two inputs in hfei are designed to be as general as possible,
with either node hfei or node hf0i possible for each input position. Simi-
larly, the rules for non{terminal nodes hf0i take account of the input needs
of the operators in the �rst position. For instance, an \and" or \or" operator
requires two inputs, whereas a \not" operator requires only one, and termi-
nals from node hf10i require no inputs. In addition to de�ning the structure
of if{then statements and logical statements the hfei and hf0i nodes also
call on their own nodes, thus allowing for nested versions of both types of
statements. The internal representation of these various nodes is discussed in
Appendix A1.

When constructing a tree we �rst choose uniformly from one of the four
given derivations for hfei. Note that each of these derivations begins with the
conditional if statement. Given a particular choice for hfei, we then proceed
from left to right and choose uniformly from the possible derivations for each
non{terminal node until only terminal nodes remain. To illustrate how this is
done, we will derive a rule using the grammar of Figure 1 for the ultimatum
game.

4.2 Deriving a rule

Consider the following rule for player B, the responder, in the ultimatum
game: reject if the current period o�er is greater than 5, otherwise accept. In
the syntax of LISP, the symbolic expression is written as:

(if((> (a0)(5)))(0)(1):

Parentheses are used to control the evaluation of the expression, with the
expression in the innermost set of parentheses being evaluated �rst. Figure 2
shows how the construction of this rule proceeds starting with a random
choice for hfei. At each step we take the �rst non{terminal node, working
from left to right through the rule, and replace it with one of its derivations.
The process continues until the only remaining nodes are terminal. The result
is a valid, interpretable decision rule. To see the internal representation for
this process, see appendix A2.

4.3 Tree representation

What we have really derived (and what provides for a better interpretation) is
a dynamic, hierarchical decision tree which consists of non{terminal and ter-
minal nodes. The genetic program begins with a randomly generated popula-
tion of these decision trees. Over many generations, the program creates trees
of variable length up to a certain maximum depth using the non{terminal
nodes to perform genetic operations in a search to �nd the best �t tree. The
tree for the above rule is given in Figure 3. The depth of the tree is de�ned
as the number of non{terminal nodes, in this case 13. When generating rules,



8 John Du�y and Jim Engle{Warnick

Symbol         Derivation                     Resulting Rule 

 start  ---   <fe> 
 <fe>  4th     (<f6><f0><f2><f2>) 
 <f6>  1st    (if<f0><f2><f2>) 
 <f0>   3rd     (if(<f1>)<f2><f2>) 
 <f1>  1st    (if((<f9><f3><f3>))<f2><f2>) 
 <f9>  2nd     (if((><f3><f3>))<f2><f2>) 
 <f3>  1st     (if((>(<f11>)<f3>))<f2><f2>) 
 <f11>  6th    (if((>(a0)<f3>))<f2><f2>) 
 <f3>  1st    (if((>(a0)(<f11>)))<f2><f2>) 
 <f11>  2nd     (if((>(a0)(5)))<f2><f2>) 
 <f2>  1st    (if((>(a0)(5)))(<f10>)<f2>) 
 <f10>  1st    (if((>(a0)(5)))(0)<f2>) 
 <f2>  1st    (if((>(a0)(5)))(0)(<f10>)) 
 <f10>  2nd    (if((>(a0)(5)))(0)(1)) 
 

Fig. 2. Derivation of a Decision Rule

 

                    <fe> 

                             ( <f6><f0><f2><f2> ) 

                  if                ( <f1> )         ( <f4> )                 ( <f4> ) 

                     ( <f9><f3><f3> )      0                1  

                      >   ( <f11> ) ( <f11> )       

                               a0          5  

 

Fig. 3. Tree for Rule: (if((>(a0)(5)))(0)(1))

a maximum allowable depth is chosen, and whenever a random tree is gener-
ated that is larger, it is thrown out and replaced. The depth can be thought
of as a measure of the complexity of the tree (or strategy).

4.4 Genetic Operation { Crossover

The crossover operation �rst selects two rules to be parents. It then randomly
chooses one of the non{terminal nodes in the �rst parent, �nds all identical
nodes in the second parent and uniformly chooses one of these. It then cuts
the two subtrees at these nodes, swaps them and recombines the subtrees with
the parent trees. By cutting and swapping at the same nodes, the crossover
operation ensures that the resulting recombined trees are always syntactically
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(and semantically) valid programs. If the crossover operation results in a
tree that exceeds the maximum depth, the tree is discarded and crossover is
repeated until two valid trees result or until a maximumnumber of attempts
is exceeded.

As an example, consider again the rule derived above, and also consider
another rule for the second parent, say, if T is less than 30, then accept if the
current o�er is less than seven and reject otherwise, else reject. The trees are
shown in Figures 4 and 5.

 

                    <fe> 

                             ( <f6><f0><f2><f2> ) 

                  if                ( <f1> )         ( <f4> )                 ( <f4> ) 

                     ( <f9><f3><f3> )      0                1  

                      >   ( <f11> ) ( <f11> )       

                                a0           5  

Fig. 4. Parent 1 for Crossover: (if((>(a0)(5)))(0)(1))

 

            <fe> 

                     ( <f6><f0><fe><f2> ) 

         if         ( <f1> )                 ( <f6><f0><f2><f2> )                ( <f10> ) 

            ( <f9><f4><f5> )         if       ( <f1> )      ( <f10> ) ( <f10> )  0            

  <   ( <f12> ) ( <f13> ) ( <f9><f3><f3> )        1           0    

             T  30        <   ( <f11> ) ( <f11> ) 

                                                 a0     7  

 
Fig. 5. Parent 2 for Crossover: (if((<(T)(30)))(if((<(a0)(7)))(1)(0))(0))

To illustrate crossover, suppose we randomly choose the �rst node hf0i
in the second level of the �rst parent tree. We then have to choose an hf0i in
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the second parent, so suppose we take the hf0i in the third level of the second
parent tree. Both nodes are highlighted in the Figures 4 and 5. Next, follow
these non{terminal hf0i nodes in each parent until their paths terminate
at terminal nodes. These are the subtrees that will be swapped between
the parents to create new o�spring, or children. One of these children is
illustrated in Figure 6: Note that the new strategy is quite di�erent from the

 

                    <fe> 

                             ( <f6><f0><f2><f2> ) 

                  if                ( <f1> )         ( <f4> )                 ( <f4> ) 

                     ( <f9><f3><f3> )      0                1  

                      <   ( <f11> ) ( <f11> )       

                               a0           7 

Fig. 6. Child 1 from Crossover: (if((<(a0)(7)))(0)(1))

parent strategy (parent 1) from which it came, as this new strategy instructs
the player to reject if the current o�er is less than 7.

The internal representation of the crossover operation is provided in ap-
pendix A3.

A few genetic programs also include a mutation operation that is in ad-
dition to the crossover operation. However, as Koza[4] has pointed out, the
position{independence of subtrees in genetic programming would seem to
obviate the need for a separate mutation operation; in e�ect, the crossover
operation by itself serves as a kind of macromutation. Indeed, Koza[4] shows
that the addition of a separate mutation operator does not lead to any sub-
stantial improvement in the performance of genetic programming. Following
Koza and most other genetic programming researchers, we chose not to use
a mutation operation in our application of genetic programming.

4.5 Evaluation of the rule

The decision in LISP form must be interpreted in order to determine what
decisions it makes when playing the game. This is accomplished by recursively
calling an evaluation function which begins returning values as it reaches ter-
minal nodes. The details of this part of the program are available on request.



Using Symbolic Regression to Infer Strategies from Experimental Data 11

5 The Algorithm

The following algorithm is used in our application of symbolic regression to
the ultimatum game data.

1. Randomly generate a population of n rules.
2. Play the rules against the same opponents that each experimental subject

faced and evaluate their �tness. If stopping criterion is met, then stop.
3. Choose k rules to survive to the next generation, with the probability of

survival proportional to relative �tness.
4. Choose n�k parent rules on which to perform crossover with probability

of being chosen proportional to relative �tness. The resulting recombined
decision rules are the parent's o�spring or \children."

5. The next \generation" of rules is changed to include only the k survivors
and the n� k children. Go to step 2 and repeat steps 2{5.

6. End the algorithm after a maximumnumber of generations, or if a perfect
�tness score is achieved.

Note that a genetic program can be seen as the piecing together of build-
ing blocks, or sub{trees, which contribute a greater than average �tness to
the complete rule, and which are small enough to survive crossover. The
fact that reproduction and crossover are performed based on relative �tness
increases the probability that a better than average �t subtree is used in fu-
ture generations, and thus help to direct the search, as in Holland's genetic
algorithm.

6 Parameters and Fitness Speci�cation

In our regression analysis of the ultimatum game data we used the grammar
as described in Figure 1. We considered population sizes of n = 200 trees,
with a maximum depth of 150. The number of trees that were selected for
copying intact into the next generation was k = 20 or 10%. The remaining 180
trees were created through crossover alone. The selection of trees to be copied
into the next generation as well as the selection of trees for crossover purposes
was based on an adjusted and normalized �tness criterion. First, each decision
rule was decoded to determine its raw �tness, which is simply the number of
actions out of 37 that it correctly predicted for a particular player B. (Recall
we are allowing for 3 lagged values and we have 40 observations). Let us
denote the raw �tness score of decision rule i at generation t by f(i; t). The
adjusted �tness measure of rule i at generation t is given by:

af(i; t) =
1

1 + f(i; t)
:

This transformation converts the raw �tness value into the [0; 1] interval, and
also ensures that small �tness di�erences are su�ciently exaggerated, which
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becomes an important issue as the population of decision rules becomes in-
creasingly �t over time. Note too, that this adjustment implies that the most
�t rules are now those with the lowest adjusted �tness values. The normal-
ized �tness value takes the adjusted �tness value, and makes it a relative,
population{wide measure. The normalized �tness of rule i at generation t is
de�ned by

nf(i; t) =
af(i; t)

P
n

j=1
af(i; t)

:

The sum of all normalized �tness values is 1. When selection and crossover
decisions are made they are made on the basis of this normalized �tness value.
In particular, the 10% of strings selected for reproduction as well as the strings
selected for crossover purposes are selected randomly (with replacement) with
probability that is inversely proportional to normalized �tness values. These
�tness measures and methods for determining the next generation from the
current generation are standard in the genetic programming literature (see,
e.g. [4]).

7 Regression Results for the Ultimatum Game

We selected 8 individual player Bs from the ultimatum game experimental
data. The criterion for selecting a particular player B was that the player
rejected a Player A o�er at least twice in a 40{round game; we focused on
these cases, as other cases had too little variation in actions played to detect
any meaningful strategy other than \always accept". We present the data
for each of these 8 player B subjects in the 8 examples of Table 7 below. In
each example, the �rst line of data reveals the integer amount that a player
A proposed to keep for him/herself. The second line represents the player B's
actual response: 0 = reject, 1 = accept.

For each player B history, we report the results of our symbolic regres-
sion in several ways. First, we provide the binary string strategy that was
generated by the best{of{generation rule, along with this rule's raw �tness
value and the mean raw �tness value of the population of 200 rules at var-
ious generations (iterations of the algorithm). The symbolic regression was
stopped after a maximum of 30 generations, or earlier if a perfect raw �tness
score was achieved. If there was more than one best of generation rule at each
generation that we report, we chose to report the most parsimonious rule,
i.e. the rule with the minimum depth. We also provide the best of genera-
tion rules themselves, in both symbolic (computer program) form, and in a
decoded and reduced (\plain English") form.

Recall that a perfect raw �tness score in this application is 37. This perfect
score was achieved (within 30 generations) in only one of the 8 examples,
example number 4. In this example the player B's strategy was uncovered
to be of the form: reject any proposed split that gives player A more than
$7, otherwise accept. This strategy was uncovered by our genetic program
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algorithm after only 7 generations. Of course, this strategy is fairly easy to
uncover by carefully examining the history of play for this particular player
B. However, the point of our exercise is that we can use our technique to
automate this inference process. Furthermore, inference may not be so easy
if the player's strategy is not deterministic as in this example, or is time{
varying due to learning.

Indeed, time dependence is shown to matter in Example 5, where the
minimumdepth, best{of{generation rule at the end of 30 generations yielded
a raw �tness score of 30. This rule had player B playing the same action played
in the previous period for the �rst 10 periods of the game. Following period
10, the strategy was to always accept any player A proposal. This rule, of
course, misses the player B's rejections of player A o�ers of 8 following period
10, but it is able to detect that a change has occurred in the proposals being
made by player As starting around period 10 (in this case, it is a change in
the magnitude of player A proposals, which become smaller). Of course, if we
allowed for a more continuous dimension for time T this rule might be further
improved. Note that the T < 10 substring survives in the best of generation
string for some time (the last 10 generations). The survival of this substring
illustrates the notion that highly �t building blocks are more likely to be
chosen over time. The actual strategy of the player B in example 5, like the
rule in example 4, is a deterministic rule: a close study of the history of play
of player B in example 5 reveals that this player always rejected proposals
that were greater than 7. While our algorithm was not able to detect this
rule in 30 generations with a population of 200 strings, when we increased the
population size to 500 strings, we were able to perfectly uncover this player
B's deterministic rule in 10 generations.

The other 6 examples in Table 7 yield best{of{generation rules that are
more di�cult to interpret, with ending raw �tness scores of 30 or less. We
see in these rules that time conditioning is of some importance. For instance,
in Example 6, the best of generation rule at the end of the simulation run
(30 generations) is able to detect a break in player B behavior around period
20, and the rule conditions its actions on this break{point. We also see the
survival over many generations of highly �t substrings in the best of gener-
ation rules. For example, the substring \if accepted at t� 3" appears in the
minimum depth, best �t rule of generations 10, 20 and 30 in Example 3 as
does the substring \if t > 35" in Example 8. The survival of such highly �t
substrings would be more apparent if we reported all of the rules, not just the
minimum depth, best{of{generation rule. Finally, we see a lot of strategies
that condition on the actions played by the player B in the past, as well as
on the proposals made by player As in the past, rather than on the current
t = 0 proposal. While the responders in the experiment may have been con-
ditioning on this type of information, { they did have the past history of 10
rounds of play on their computer screens { we suspect that what the genetic
program is actually doing is using conditioning on past actions as a means



14 John Du�y and Jim Engle{Warnick

of implementing probabilistic choices. In our current implementation, there
is no randomization mechanism; therefore, the genetic program may have to
invent such a mechanism in order to advance the search for more �t strings.
We plan to implement the possibility of randomized choices in future work,
by including in the set of terminals a 
oating point constant chosen randomly
from the set of real numbers on the unit interval.

8 Summary and Conclusions

In this paper we have discussed how genetic programming can be used to
conduct a symbolic regression analysis. We have then applied this procedure
to experimental data from the repeated ultimatum game. Our aim was to
uncover player's strategies from the actions these players played, a perennial
inference problem in the analysis of experimental data. We �nd that our
algorithm is frequently capable of uncovering simple, deterministic strategies,
but has more di�culty with strategies that appear to be random or time-
varying. While simple rules may be detected by careful inspection of the
data, the fact that our algorithm can automate this process is an appealing
feature. We believe that with further work, as well as with longer simulation
run{times, we will be able to make further progress on the recovery of random
or time{varying rules.

The main advantage of our approach over standard regression analyses is
that we do not have to prespecify the structure of the regression equation.
Instead, we only need provide a set of terminals and nonterminals as part
of the grammar of some language that is then used to derive decision trees
(e.g. LISP). Finally, our technique can be used to assess the degree of ho-
mogeneity of strategic play among subjects assigned to play the same role in
economic decision making experiments. If strategic behavior is not su�ciently
homogeneous, as we have found in our simple examples, then it may not be
reasonable to pool data across subjects as is frequently done in analyses of
experimental data.
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Table 7: Symbolic Regressions on Player B actions in the Ultimatum Game: 8 examples. 
 
Example 1 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 6658766656766776677667886676566666656666 
     B 1010011110011001000110001001110110111000    best rule fitness         mean fitness 
   rule 
      1            1011000011001101110011101100010010001  25  17.62  
    10            1011000011001101110011101100010011100  26  19.20 
    20            0001000001000100110001100100000000000  23   19.67 
    30            1011100011101101111011101110011011001  25  19.71  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1  (IF(B2)(0)(1)) 
10  (IF((<(T)(35)))(IF(B2)(0)(1))(B1))  
20  (IF(NOT(AND(NOT(NOT(B2)))(NOT(NOT(NOT((=(T)(15))))))))(IF(B3)(0)(1))(IF((>(5)(8)))(0)(0)))  
30  (IF(NOT(NOT(NOT(B2))))(1)(IF(NOT(B3))(B1)(IF(B3)(0)(IF(B2)(0)(1)))))  
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if accepted at t-2, reject 

else accept  
  10   if t < 35  

if accepted at t-2, reject 
else accept 

else repeat action at t-1 
  20  if rejected at t-2 and t is not 15  

  if accepted at t-3, reject 
else accept   

else reject 
  30   if rejected at t-2, accept 
 else if rejected at t-3, repeat action at t-1 
 else if accepted at t-3, reject 
 else accept 
 
 
Results of expanded search with population size 500 
 
(if(not((>(7)(a0))))(if(((>(8)(4))(0)(0))(1)), fitness = 29, generation 21 
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Example 2 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 6546577776665666656576666556666676666656 
     B 1110110001111001111101100110011101010011    best rule fitness         mean fitness 
   rule 
      1       1011011111101111110110111011110111011  24  17.55  
    10       1110000111111111111111110111111111111  25  20.44 
    20       1110011111111111111110110111110101011  25   21.56 
    30       0010011111101111100110110010100101011  27  22.49  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1  (IF(OR(NOT((<(T)(10))))(NOT(NOT(NOT((=(7)(5)))))))(IF(0)(B1)(IF((<(A0)(A3)))(1) 
      (IF(B2)(B1)(1))))(IF(B3)(IF((>(T)(20)))(IF(1)(B2)(1))(B2))(0)))  
10  (IF((>(A0)(A2)))(B3)(IF(AND(1)((<(T)(15))))(IF((=(T)(30))) 
      (IF(NOT(AND((=(A1)(7)))(OR((<(A0)(A3)))(AND((=(T)(10)))(1)))))(1)(B2))(B1))(1))) 
20  (IF((>(A0)(A2)))(B3)(IF(NOT(NOT(B2)))(IF((=(T)(30)))(IF(NOT((>(A2)(A0))))(1)(B2))(B1))(1)))  
30  (IF((=(T)(30)))(IF(AND((=(T)(10)))((<(T)(20))))(B1)(B3))(IF(B2)(IF(B2) 
      (IF(NOT((>(A0)(A2))))(B1)(0))(B1))(IF((<(T)(5))) 
      (IF(AND(NOT(NOT(NOT(B3))))(AND((<(A3)(A2)))(OR(NOT(0))(AND(B3)(B3)))))(0)(B1))(1))))  
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if offer at t-0 > offer at t-3, accept 

else if accepted at t-2, repeat action at t-1 
else accept  

  10   if offer at t-0 > offer at t-2, repeat action at t-3 
 else if t < 15, repeat action at t-1 
 else accept 
  20  if offer at t-0 > offer at t-2, repeat action at t-3 
 else if accepted at t-2 
  if t = 30 
   if offer at t >= offer at t-2, accept 
   else repeat action at t-2 
  else repeat action at t-1 
  30   if t = 30, repeat action at t-3 
 else if accepted at t-2 
  if not offer at time t > offer at time t-2, repeat action at t-1 
  else reject 
 else if t < 5 
  if rejected at t-3 and offer at t-3 < offer at t-3, reject 
  else repeat action at t-1 
 else accept 
 
 
Results of expanded search with population size 500 
 
no improvement over original search 
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Example 3 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 5667977729777637577788887781777886878777 
     B 1100011100111111111100011101111001010111    best rule fitness         mean fitness 
   rule 
      1            0001110011111111110001111111110010101  27  20.32 
    10            0011110011111111110011110111100111111  28  23.52 
    20            0011110111111111110011110111100111111  29   24.50 
    30            0111110111111111110111110111101011111  29  25.63  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1  (IF((>(5)(A0)))(1)(IF(NOT((>(T)(30))))(IF((=(T)(25)))(B1)(IF(1)(B1)(0)))(B2)))  
10  (IF(B3)(B1)(1)) 
20  (IF(OR(0)(B3))(IF((<(A2)(6)))(IF(1)(IF(AND(B1)((<(A0)(A1))))(1)(1))(1))(B1)) 
      (IF(0)(0)(IF((>(7)(7)))(IF((=(T)(20)))(B2)(0))(1))))  
30  (IF(B2)(IF(B3)(IF(AND(0)(B3))(B3)(B1))(1))(IF((=(A1)(6)))(B3)(1))) 
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if offer at t-0< 5, accept 
 else if t <=30, repeat action at t-1 
 else repeat action at t-2 
  10   if accepted at t-3, repeat action at t-2 
 else accept 
  20  if accepted at t-3 
  if offer at t-2 < 6, accept 
  else repeat action at t-1 
 else accept 
  30   if accepted at t-2 
  if accepted at t-3, repeat action at t-1 
  else accept 
 else if offer at t-1 = 6, repeat action at t-3 
 else accept 
  
 
Results of expanded search with population size 500 
 
higher fitnesses with more complicated “randomizing” rules 

Example 4 
 
Data/rule comparisons in generations 1, 6, & 7 
 
 subject  
     A 9576766977866797778477788877778767467786 
     B 0111111011011101110111100011110111111101    best rule fitness         mean fitness 
   rule 
      1            1111111111111111111111111111111111111  28  22.18 
      6            1011000111100110111000011110111111001  30  25.95 
      7            1111011011101110111100011110111111101  37   26.96 

 
Rule expressions (minimum depth among best fit in generations 1, 6, & 7) 
 
  1  (IF(NOT(0))(1)(1))  
  6  (IF((>(A0)(A3)))(0)(1))  
  7  (IF((>(A0)(7)))(0)(1))  
 
Minimum depth best fit rule interpretations in generations 1, 6 & 7 
 
    1   always accept 
    6   if offer at time 0 > offer at time t-3, reject 
 else accept 
    7  if offer at time 0 > 7, reject 
 else accept 
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Example 5 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 6676598996677778766778747787786778777777 
     B 1111100001111110111110111101101110111111    best rule fitness         mean fitness 
   rule 
      1            1111000111111111111111111111111111111  29  23.11  
    10            1110000111111111111111111111111111111  30  27.08 
    20            1110000111111111111111111111111111111  30   27.62 
    30            1110000111111111111111111111111111111  30  27.65  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1  (IF(NOT(B1))(IF(B1)(B1)(B2))(IF(B1)(1)(1)))  
10  (IF(NOT(0))(IF(NOT(B1))(IF((>(7)(A3)))(B1)(B3))(1))(IF(NOT(B1))(B1)(1)))  
20  (IF(0)(1)(IF((<(T)(10)))(B1)(1)))  
30  (IF((<(T)(10)))(IF(OR(OR(1)((=(T)(25))))(NOT(B1)))(B1)(1))(1))   
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if rejected at t-1, repeat action at t-2 

else accept  
  10   if rejected at t-1 
  if offer at t-3 > 7, repeat action at t-1 
  else repeat action at t-3 
 else accept 
  20  if t < 10, repeat action at t-1 
 else accept 
  30   if t < 10, repeat action at t-1 
 else accept 
 
 
Results of expanded search with population size 500 
 
(if(not((>(8)(a0))))(0)(1)), fitness = 37, generation 10 
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Example 6 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 5769777776698396887777667778767757877758 
     B 1010000011100101001111111111111110000010    best rule fitness         mean fitness 
   rule 
      1            0000000110000000011111111111111000000  28  22.79  
    10            0000001110110100111111111111111000011  29  24.91 
    20            0000000110100101111111111111111010000  29   25.42 
    30            0000001100010000111111111111111000000  30  26.02  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1   (IF((>(A2)(A3)))(B2)(IF(B1)(B2)(B1)))  
10   (IF((=(A0)(7)))(IF((<(4)(A3)))(B1)(B3))(IF(B2)(IF(1)(IF(B2)(B1)(0))(B1))(IF((<(T)(5))) 
       (IF((>(T)(10)))(IF((=(T)(30)))(IF(NOT(1))(1)(IF(NOT(1)) 
       (IF((>(T)(25)))(B1)(B3))(B3)))(0))(0))(1))))   
20   (IF((=(8)(A3)))(IF((<(4)(A3)))(B1)(B3))(IF(B2)(IF(B2)(IF(B2)(B1)(0))(B1))(IF(NOT((>(T)(10)))) 
       (IF(B2)(B1)(0))(IF(NOT((<(T)(10))))(B3)(B3)))))  
30   (IF((<(T)(20)))(IF(NOT(AND(NOT(1))(AND((=(T)(5)))(OR(AND((>(7)(5)))(1))(AND(B3)(B2)))))) 
       (IF(B3)(IF((>(6)(5)))(0)(B2))(B1))(B2))(IF(B2)(IF(B2)(B1)(0))(IF(B2)(B1)(0))))    
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if offer at t-2 > offer at t-3, repeat action a t -2 
 else if accepted at t-1, repeat action at t-2 
 else repeat action at t-1 (reject) 
  10   if offer at t = 7 
  if offer at t-3 < 4, repeat action at t-1 
  else repeat action at t-3 
 else if accepted at t-2, repeat action at t-1 
 else if t < 5, reject 
 else accept 
  20  if offer at t-3 = 8, repeat action at t-1 
 else if accepted at t-2, repeat action at t-1 
 else if t <= 10 
  if accepted at t-2, repeat action at t-1 
  else reject 
 else repeat action at t-3 
  30   if t < 20  
  if accepted at t-3, reject 
  else repeat action at t-1 
 else if accepted at t-2, repeat action at t-1 
 else reject 
 
 
Results of expanded search with population size 500 
 
no improvement over original search 
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Example 7 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 5478669677977762778875778877087787787877 
     B 1110110111011111110011110011101101101011    best rule fitness         mean fitness 
   rule 
      1            1111111111111111111111111111111111111  26  20.39  
    10            1111111111111111111111111111111111111  26  24.26 
    20            1111111111111111011111011111111111111  28   25.12 
    30            1111111111111111111111111111111101111  27  25.28  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1   (IF(0)(B1)(1))  
10   (IF(1)(1)(1))  
20   (IF((<(A0)(8)))(1)(IF((<(8)(5)))(1)(IF(NOT((=(5)(8))))(B1)(B1))))  
30   (IF(1)(IF(AND(NOT(NOT(AND(NOT(NOT(AND((=(T)(35)))(B1))))(B1))))((>(T)(5)))) 
       (IF((<(A3)(A1)))(1)(IF(NOT((<(A0)(4))))(IF((<(8)(5)))(B1)(IF((<(T)(15)))(B1)(B3)))(B2)))(1)) 
       (IF(AND(NOT(AND(1)(NOT((<(T)(10))))))(NOT((<(8)(5)))))(1)(B3)))  
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   always accept 
  10   always accept 
  20  if offer at t < 8, accept 
 else repeat action at t-1 
  30   if t = 35 and accepted at t-1 
  if offer at t-3 < offer at t-1, accept 
  else if offer at t >= 5, repeat action at t-3 
  else repeat offer at t-2 
 else accept 
 
 
Results of expanded search with population size 500 
 
(if((>(a0)(7)))(if((<(7)(a0)))(0)(b1))(if(0)(b1)(1))), fitness = 37, generation 6 
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Example 8 
 
Data/rule comparisons in generations 1, 10, 20, & 30 
 
 subject  
     A 5696746586546556656575676766666665666666 
     B 1001111101110111111101101011110001100100    best rule fitness         mean fitness 
   rule 
      1            1111111111111111111111111111000000000  28  20.28  
    10            1111111111111111111111111111111111100  27  23.60 
    20            1111111111111111111111111111111110000  27   23.82 
    30            1111111111111111111111111111111110000  27  24.22  

 
Rule expressions (minimum depth among best fit in generations 1, 10, 20, & 30) 
 
  1  (IF((>(T)(30)))(0)(1))  
10  (IF((>(T)(35)))(B3)(1))   
20  (IF((>(T)(35)))(0)(1))   
30  (IF((>(T)(35)))(IF(OR(NOT(NOT((<(T)(5)))))((<(A3)(7)))) 
      (IF(NOT(OR(NOT(NOT(1)))(OR(NOT((>(8)(A1))))(OR(NOT(NOT((>(7)(4))))) 
      (OR(1)((<(A3)(7))))))))(1)(0))(1))(1)) 
 
Minimum depth best fit rule interpretations in generations 1, 10, 20, & 30 
 
    1   if t > 30, reject 
 else accept 
  10   if t > 35, repeat action from t-3 
 else accept 
  20  if t > 35, reject 
 else accept 
  30   if t > 35 
  if offer at t-3 < 7, reject 
  else accept 
 else accept 
 
Results of expanded search with population size 500 
 
no improvement over original search  

 
 


