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Abstract

This chapter examines the relationship between agent-based modeling and economic
decision-making experiments with human subjects. Both approaches exploit controlled
“laboratory” conditions as a means of isolating the sources of aggregate phenomena.
Research findings from laboratory studies of human subject behavior have inspired
studies using artificial agents in “computational laboratories” and vice versa. In certain
cases, both methods have been used to examine the same phenomenon. The focus of
this chapter is on the empirical validity of agent-based modeling approaches in terms of
explaining data from human subject experiments. We also point out synergies between
the two methodologies that have been exploited as well as promising new possibilities.
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1. Introduction

The advent of fast and cheap computing power has led to the parallel development of
two new technologies for doing economic research—the computational and the exper-
imental laboratory. Agent-based modeling using computational laboratories grew out
of frustration with the highly centralized, top-down, deductive approach that continues
to characterize much of mainstream, neoclassical economic-theorizing.1 This standard
approach favors models where agents do not vary much in their type, beliefs or endow-
ments, and where great effort is devoted to deriving closed-form, analytic solutions
and associated comparative static exercises. By contrast, agent-based computational
economic (ACE) researchers consider decentralized, dynamic environments with pop-
ulations of evolving, heterogeneous, boundedly rational agents who interact with one
another, typically locally. These models do not usually give rise to closed-form solu-
tions and so results are obtained using simulations. ACE researchers are interested in
the aggregate outcomes or norms of behavior that emerge and are sustained over time
as the artificial agents make decisions and react to the consequences of those decisions.

Controlled laboratory experimentation with human subjects has a longer history than
agent-based modeling as the experimental methodology does not require the use of lab-
oratories with networked computers; indeed the experimental methodology predates the
development of the personal computer.2 However, computerization offers several ad-
vantages over the “paper-and-pencil” methodology for conducting experiments. These
include lower costs, as fewer experimenters are needed, greater accuracy of data collec-
tion and greater control of the information and data revealed to subjects. Perhaps most
importantly, computerization allows for more replications of an experimental treatment
than are possible with paper-and-pencil, and with more replications, experimenters can
more accurately assess whether players’ behavior changes with experience. For all of
these reasons, many human subject experiments are now computerized.

With advances in computing power, the possibility of combining the agent-based
computational methodology with the human subject experimental methodology has
been explored by a number of researchers, and this combination of methodologies
serves as the subject of this survey chapter. Most of the studies combining the two ap-
proaches have used the agent-based methodology to understand results obtained from
laboratory studies with human subjects; with a few notable exceptions, researchers have
not sought to understand findings from agent-based simulations with follow-up ex-
periments involving human subjects. The reasons for this pattern are straightforward.
The economic environments explored by experimenters tend to be simpler than those
explored by ACE researchers as there are limits to the number of different agent char-
acteristics that one can hope to “induce” in an experimental laboratory and time and
budget constraints limit the number of periods or replications of a treatment that can be

1 See, e.g., Axelrod and Tesfatsion (2006) or Batten (2000) for introductions to the ACE methodology.
2 See, Davis and Holt (1993) and Roth (1995) for histories of the experimental methodology.
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considered in a human subject experiment; for instance, one has to worry about human
subjects becoming bored! As human subject experiments impose more constraints on
what a researcher can do than do agent-based modeling simulations, it seems quite nat-
ural that agent-based models would be employed to understand laboratory findings and
not the other way around.

There is, however, a second explanation for why the ACE methodology has been used
to understand experimental findings with human subjects. Once a human subject exper-
imental design has been computerized, it is a relatively simple matter to replace some
or all of the human subjects with “robot” agents. Indeed, one could make the case that
some of the earliest ACE researchers were researchers conducting experiments with hu-
man subjects. For instance, Roth and Murnighan (1978) had individual human subjects
play repeated prisoner’s dilemma games of various expected durations against artificial
“programmed opponents” in order to more clearly assess the effect of variations in the
expected duration of the game on the human subjects’ behavior. Similarly, Coursey et al.
(1984) and Brown-Kruse (1991) tested contestable market theories with human subjects
in the role of sellers and robots in the role of buyers. The robots were programmed to
fully reveal their market valuations and were introduced after human subject buyers
were found to be playing strategically, in violation of the theory being tested. Gode and
Sunder (1993) were the first researchers to “go all the way” and completely replace
the human subject buyers and sellers in the experimental laboratory double auction en-
vironment with artificial agents, whom they dubbed “zero-intelligence” agents. Their
approach, discussed in greater detail below, serves as the starting point for our sur-
vey. Subsequently, many researchers have devised a variety of agent-based models in
an effort to explain, understand and sometimes to predict behavior in human subject
experiments.3

Of course, the great majority of ACE researchers, following the lead of Schelling
(1978), Axelrod (1984), or Epstein and Axtell (1996), do not feel constrained in any
way by the results of human subject experiments or other behavioral research in their
ACE modeling exercises. These researchers endow their artificial agents with certain
preferences and what they perceive to be simple, adaptive learning rules. As these ar-
tificial agents interact with one another and their environment, adaptation takes place
at the individual level, or at the population level via relative fitness considerations, or
both. The details of how agents adapt are less important than the aggregate outcomes
that emerge from repeated interactions among these artificial agents.

ACE researchers contend that these emergent outcomes cannot be deduced without
resorting to simulation exercises, and that is the reason to abandon standard neoclas-
sical approaches.4 But it is not always clear when ACE approaches are preferred over
standard, deductive economic theorizing. As Lucas (1986, p. 218) observed,

3 See Mirowski (2002) for an engaging history of the emergence of economics as a “cyborg science,” and, in
particular, the role played by experimentalists. See also Miller (2002) for a history of experimental analyses
of financial markets.
4 Batten (2000) offers some advice as to when ACE models are appropriate and when old-fashioned analytic

methods are preferred.
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“It would be useful, though, if we could say something in a general way about the
characteristics of social science prediction problems where models emphasizing
adaptive aspects of behavior are likely to be successful versus those where the
non-adaptive or equilibrium models of economic theory are more promising.”

Lucas went on to suggest that experiments with human subjects might serve to re-
solve such questions, and gave several examples. Of course, economic experiments are
not without problems of their own. ACE researchers (e.g., Gode and Sunder, 1993;
Chan et al., 1999) have argued that agent-based modeling permits greater control over
the preferences and information-processing capabilities of agents than is possible in
laboratory experiments, where human subjects often vary in their learning abilities or
preferences (e.g. in their attitudes towards risk), despite careful efforts to control some
of these differences by experimenters. Further, one can question the external validity of
the behavior of the human subjects, who are often inexperienced with the task under ex-
amination and who may earn payments that do not accurately approximate “real-world”
incentives.5

In addition to questioning when the ACE methodology is appropriate, one can also
question the external validity of ACE modeling assumptions and simulation findings.
Many ACE researchers, following the lead of Epstein and Axtell (1996) adopt the
“generative approach” to understanding empirical phenomena. This involves pointing
to some empirical phenomenon, for example, skewed wealth distributions, and asking:
“can you grow it?” In other words, can you specify a multi-agent complex adaptive
system that generates the empirical phenomenon.

While the ability to generate a particular empirical phenomenon via an ACE simula-
tion exercise does represent a certain kind of understanding of the empirical phenom-
enon, ACE researchers could do more to increase our confidence in this understanding.
Indeed, the empirical phenomena under study are often the result of some casual em-
piricism on the part of the ACE researcher. More precise and careful empirical support,
using field data or other observations could be brought to bear in support of a particular
phenomenon, but this is not (yet) the standard practice. Further, the processes by which
agents in ACE models form expectations, choose actions or otherwise adapt to a chang-
ing environment is not typically based on any specific micro evidence; the empirical
comparisons that most interest ACE researchers are between the simulated aggregate
outcomes and the empirical phenomenon of interest. The shortcomings of such an ap-
proach have not gone unnoticed. Simon (1982) for example, writes:

Armchair speculation about expectations, rational or other, is not a satisfactory
substitute for factual knowledge as to how human beings go about anticipating
the future, what factors they take into account, and how these factors, rather than
others, come within the range of their attention.

5 However, as Smith (1982, p. 930) observes, “... there can be no doubt that control and measurement can
be and are much more precise in the laboratory than in the field experiment or in a body of Department of
Commerce data.”
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As I argue in this chapter, data from human subject experiments provide a ready-made
source of empirical regularities that can be used to calibrate or test ACE models of in-
dividual decision-making and belief or expectation formation. Explaining the aggregate
findings of a human subject experiment might also serve as the goal of an agent-based
modelling exercise.

The main behavioral principle that ACE researchers use in modeling individual ar-
tificial agent behavior is, what Axelrod (1997) has termed, the “keep-it-simple-stupid”
(KISS) principle. The rationale behind this folksy maxim is that the phenomena that
emerge from simulation exercises should be the result of multi-agent interactions and
adaptation, and not because of complex assumptions about individual behavior and/or
the presence of “too many” free parameters. Of course, there are many different ways
to adhere to the KISS principle. Choosing simple, parsimonious adaptive learning rules
that also compare favorably with the behavior of human subjects in controlled labora-
tory settings would seem to be a highly reasonable selection criterion.

Experimental economists and ACE researchers are natural allies, as both are inter-
ested in dynamic, decentralized inductive reasoning processes and both appreciate the
importance of heterogeneity in agent types. Further, the economic environments de-
signed for human subject experiments provide an important testbed for agent-based
modelers. The results of human subject experiments are useful for evaluating the ex-
ternal validity of agent-based models at the two different levels mentioned above. At
the aggregate level, researchers can and have asked whether agent-based models give
rise to the same aggregate findings that are obtained in human subject experiments. For
instance, do artificial adaptive agents achieve the same outcome or convention that hu-
man subjects achieve? Is this outcome an equilibrium outcome in some fully rational,
optimizing framework or something different? At the individual level, ACE researchers
can and have considered the external validity of the adaptive rules they assign to their
artificial agents by comparing the behavior of individual human subjects in laboratory
environments with the behavior of individual artificial agents placed in the same en-
vironments. Achieving some kind of external validity, at either the aggregate or the
individual level, should enable agent-based modelers to feel more confident in their
simulation findings. They may then choose to abandon, with even greater justification,
the constraints associated with the experimental methodology or those of standard, de-
ductive economic theorizing.

This chapter surveys and critiques three main areas in which agent-based models have
been used to study findings from human subject experiments. In the next section, we ex-
plore what has been termed the “zero-intelligent” agent approach, which consists of a
set of agent-based models with very low rationality constraints. In the following section,
we explore a set of agent-based models that employ somewhat more sophisticated indi-
vidual behaviors, ranging from simple stimulus-response learning to more complicated
belief-based learning approaches. Finally, in the last section, we explore agent-based
models where individual learning is even more complicated, as in a classifier system, or
is controlled by population-wide selection criteria as in genetic algorithms. In all cases,



Ch. 19: Agent-Based Models and Human Subject Experiments 955

we compare the findings of human subject experiments with those of agent-based sim-
ulations.

2. Zero-intelligence agents

The zero-intelligence agent trading model was developed to explain findings from lab-
oratory double auction experiments with human subjects. We therefore begin with a
discussion of the double auction environment and laboratory findings.

2.1. The double auction environment

The double auction is one of the most celebrated market institutions, and is widely used
in all kinds of markets including stock exchanges and business-to-business e-commerce.
The convergence and efficiency properties of the double auction institution have been
the subject of intense interest among experimental economists, beginning with the work
of Smith (1962), who built on the early work of Chamberlin (1948). Altering Chamber-
lin’s design so that information on bids and asks was centralized as in a stock market,
Smith (1962) was able to demonstrate that experimental markets operating under double
auction rules yielded prices and trading volumes consistent with competitive equilib-
rium predictions, despite limited knowledge on the part of participants of the reserve
values of other participants.

The double auction markets studied by Smith and subsequently by other experimen-
talists and ACE researchers can be described using a simple, one-good environment,
though multi-good environments are also studied. The single good can be bought and
sold over a fixed sequence of trading periods, each of finite length. The N participants
are often divided up between buyers or sellers (in some environments agents can play
either role). Buyer i has valuation for unit j = 1, 2, . . . of the good, vij , where the
valuations satisfy the principle of diminishing marginal utility in that vij � vik for all
j < k. Similarly, seller i has a cost of selling unit j = 1, 2, . . . of the good, cij , which
satisfies the principle of increasing marginal cost, cij � cik for all j < k. Sorting the
individual valuations from highest to lowest gives us a step-level market demand curve,
and sorting the individual costs from lowest to highest gives us a step-level market sup-
ply curve. The intersection of these two curves, if there is one, reveals the competitive
equilibrium price and quantity. The left panel of Figure 1 taken from Smith (1962), pro-
vides an illustration. In this figure, the valuations of the 11 buyers (for a single unit) have
been sorted from highest to lowest, and the costs to the 11 sellers (of a single unit) have
been sorted from lowest to highest. The equilibrium price is $2.00 and the equilibrium
quantity is 6 units bought and sold.

In the experimental double auction markets, subjects are informed as to whether they
will be buyers or sellers and they remain in this role for the duration of the session.
Buyers are endowed with private values for a certain number of units and sellers are
endowed with private costs for a certain number of units. No subject is informed of the
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Figure 1. Values and costs induced in an experimental double auction design (left panel) and the path of prices achieved by human subjects (right panel). Source:
Smith (1962, Chart 1).
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valuations or costs of other participants. Buyers are instructed that their payoff from
buying their j th unit is equal to vij − pj , where pj is the price the buyer agrees to pay
for the j th unit. Similarly, sellers are instructed that their payoff from selling their j th

unit at price pj is equal to pj − cij . The double auction market rules vary somewhat
across studies, but mainly consist of the following simple rules. During a trading period,
buyers may post any bid order and sellers may post any ask order at any time. Further,
buyers may accept any ask or sellers may accept any bid at any time. If a buyer and
seller agree on a price, that unit is exchanged and is no longer available for (re)sale for
the duration of the period. The buyer-seller pair earns the profit each realized on their
transaction.

In many double auction experiments, the order book is cleared following each trans-
action, so that buyers and sellers have to resubmit bids and asks. It is also standard
practice to assume a closed order book, meaning that subjects can only observe the
best bid and ask price at any moment in time. To surplant the current best bid (ask) a
buyer (seller) has to submit a bid (ask) that is higher (lower) than the best bid (ask); this
is known as the standard bid/ask improvement rule. At all times, the current best bid-
ask spread is known to all market participants. The entire history of market transaction
prices is also public knowledge.

The striking result from applying these double auction rules in laboratory markets is
the rapid convergence to the competitive equilibrium price and quantity. The right panel
of Figure 1, shows the path of prices over five trading periods in session 1 of the Smith
(1962) study. The first transacted price in period 1 is for $1.70, the second for $1.80,
etc. Notice that the number of transacted prices in period 1 is 5, which is one short of the
competitive equilibrium prediction, and these prices all lie below the competitive equi-
librium price of $2.00. As subjects gain experience over trading periods 2–5, however,
the deviations of traded prices and quantities from the competitive equilibrium values
steadily decrease. This main finding has been replicated in many subsequent experi-
ments, and continues to hold even with small numbers of buyers and sellers (e.g., 3–5
of each).

2.2. Gode and Sunder’s zero-intelligence traders

Gode and Sunder (1993) were interested in assessing the source of this rapid con-
vergence to competitive equilibrium in laboratory double auction markets. They hy-
pothesized that the double auction rules alone might be responsible for the laboratory
findings and so they chose to compare the behavior of human subject traders with that
of programmed robot traders following simple rules. As these robot players chose bids
and asks randomly, over some range, Gode and Sunder chose to label them “zero-
intelligence” (or ZI) machine traders. This choice of terminology has stimulated much
debate, despite Gode and Sunder’s disclaimer that “ZI traders are not intended as de-
scriptive models of individual behavior.”

Gode and Sunder’s 12 ZI traders were divided up equally into buyers and sellers. In
the most basic environment, the buyer’s bids and the seller’s asks were random draws
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from a uniform distribution, U [0, B], where the upper bound B, was chosen so as to
exceed the highest valuation among all buyers. In particular, Gode and Sunder chose
B = 200. Buyers’ bids and sellers’ asks were made without concern for whether the
bids or asks were profitable. Gode and Sunder referred to these unconstrained traders as
ZI-U traders. In the other, more restrictive environment they considered, buyer i’s bid
for unit j was a random draw from the uniform distribution, U [0, vij ] and seller i’s ask
for unit j was random draw from the uniform distribution U [cij , B]. As the traders in
this environment were constrained from making unprofitable trades, they were referred
to as ZI-C traders.

A trading period consisted of 30 seconds for the ZI traders and 4 minutes for a paral-
lel human subject experiment. Within the 30 second period, the standard double auction
rules applied: the best available bid is the one that is currently the highest of all bids
submitted since the last transaction, while the best available ask is the one that is cur-
rently the lowest of all asks submitted since the last transaction. A transaction occurs
if either a new bid is made that equals or exceeds the current-best ask, in which case
the transaction occurs at the current-best ask price, or a new ask is made that equals or
falls below the current-best bid, in which case the transaction occurs at the current-best
bid price. Once a transaction occurs, all unaccepted bids/asks are cleared from the order
book and, provided that the period has not ended, the process of bid/ask submission be-
gins anew. Traders were further restricted to buying/selling their j th unit before buying
or selling their j + 1th unit. This sequencing restriction is not a double auction trad-
ing restriction, and it appears to be quite important to Gode and Sunder’s results.6 Of
course, if every agent has a single inframarginal unit to buy or sell (those units to the left
of the intersection of demand and supply) and one or more extramarginal units (units to
the right of the intersection point), as is often the case in double auction experiments,
then there is no sequencing issue.

The results from a simulation run of the ZI-U and ZI-C artificial trading environ-
ment and from a human subject experiment with 13 subjects (1 extra buyer) are shown
in the three panels of Figure 2. The left panels show the induced demand and supply
step-functions and the competitive equilibrium prediction (price = 80, quantity = 24)
while the right panels show the path of transaction prices across the 6 trading periods.
Gode and Sunder’s striking finding is that the transaction price path with the budget con-
strained ZI-C traders bears some resemblance to the path of prices in the human subject
experiment. In particular, prices remain close to the competitive equilibrium price, and
within a trading period, the price volatility declines so that prices become even closer
to the competitive equilibrium prediction. This finding stands in contrast to the ZI-U
environment, where transaction prices are extremely volatile and there is no evidence of
convergence to the competitive equilibrium. As the ZI-C or ZI-U agents have no mem-
ory regarding past prices, the difference in the simulation findings are entirely due to
the difference in trading rules, namely the constraint imposed on ZI-C traders ruling

6 See, e.g., the discussion of Brewer et al. (2002) below.
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Figure 2. Competitive equilibrium prediction (left) and path of transaction prices (right). Source: Gode and
Sunder (1993, figure 1).

out unprofitable trades. The dampened volatility in prices over the course of a trading
period arises from the fact that units with the highest valuations or lowest costs tend to
be traded earlier in the period, as the range over which ZI-C agents may submit bids or
asks for these units is larger than for other units. After these units are traded, the bid
and ask ranges of ZI-C agents with units left to trade become increasingly narrow, and
consequently, the volatility of transaction prices becomes more damped.

Gode and Sunder also examine the “allocative efficiency” of their simulated and hu-
man subject markets, which is defined as the sum of total profit earned over all trading
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periods divided by the maximum possible profit, which is simply the sum of consumer
and producer surplus (e.g., the shaded area in the left panel of Figure 1). They find that
with the ZI-U traders, market efficiency averages 78.3 percent, while with ZI-C traders
it averages 98.7 percent; the latter figure is slightly higher than the average efficiency
achieved by human subjects, 97.6 percent! Gode and Sunder summarized their findings
as follows:

“Our point is that imposing market discipline on random unintelligent behavior is
sufficient to raise the efficiency from the baseline level [that attained using ZI-U
agents] to almost 100 percent in a double auction. The effect of human motivations
and cognitive abilities has a second-order magnitude at best.”

One explanation for the high efficiency with the ZI-C agents is provided in Gode
and Sunder (1997b). They consider the consequences for allocative efficiency of adding
or subtracting various market rules and arrive at some very intuitive conclusions. First,
they claim that voluntary exchange by agents who are sophisticated enough to avoid
losses is necessary to eliminate one source of inefficiency, namely unprofitable trades.
By voluntary exchange, they mean that agents are free to accept or reject offers. The
second part of this observation, that agents are sophisticated enough to avoid losses, is
the hallmark of the ZI-C agent model, but its empirical validity is not really addressed.
We know from experimental auction markets, for example, where private values or costs
are induced and subjects have perfect information about these values or costs, that sub-
jects sometimes bid in excess of their private valuations (Kagel et al., 1987). Gode and
Sunder (1997a) are careful to note that they “are not trying to accurately model human
behavior,” (p. 604) but the subtext of their research is that the no unprofitable trades as-
sumption does not presume great sophistication; the traders are “zero-intelligence” but
constrained. Perhaps the more restrictive assumption is that agents have perfect infor-
mation about their valuations and costs and perfect recall about units they have already
bought or sold. Absent such certainty, it might be harder to reconcile the assumption
of no unprofitable trades with the observation that individuals and firms are sometimes
forced to declare bankruptcy.

Other sources of inefficiency are that ZI-C traders fail to achieve any trades, and that
extramarginal traders—traders whose valuations and costs lie to the right of the inter-
section of demand and supply—displace inframarginal traders whose valuations lie to
the left of the intersection of demand and supply and who have the potential to realize
gains from trade. Gode and Sunder (1997a, 1997b) define an expected efficiency metric
based on a simplified model of induced demand and supply and show that inefficiencies
arising from failure to trade can be reduced by having multiple rounds of trading. Ineffi-
ciencies arising from the displacement of inframarginal traders by extramarginal traders
can depend on the “shape” of the extramarginal demand and supply, e.g., whether it is
steep or not and on the market rules, e.g., whether bids and asks are ranked and a sin-
gle market clearing price is determined (as in a call market) or whether decentralized
trading is allowed (as in the standard, double auction).
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Gode and Sunder (2004) further consider the consequences of nonbinding price ceil-
ings on transaction prices and allocative efficiency in double auctions with ZI-C traders
(the analysis of price floors follows a symmetric logic). A nonbinding price ceiling is an
upper bound on admissible bid and ask prices that lies above the competitive equilibrium
price. If a submitted bid or ask exceeds the price ceiling it is either rejected or reset at
the ceiling bound. Since the bound lies above the competitive equilibrium price, theoret-
ically it should not matter. However, in experimental double-auction markets conducted
by Isaac and Plott (1981) and Smith and Williams (1981), non-binding price ceilings
work to depress transaction prices below the competitive equilibrium level relative to
the case where such ceilings are absent. Gode and Sunder (2004) report a similar finding
when ZI-C agents are placed in double auction environments with non-binding price
ceilings similar to the environments examined in the experimental studies. Gode and
Sunder explain their finding by noting that a price ceiling reduces the upper-bound on
the bid ask range, and with ZI-C agents, this reduction immediately implies a reduction
in the mean transaction price relative to the case without the price ceiling. Further they
show that with ZI-C agents, a price ceiling reduces allocative efficiency as well (which
is consistent with the experimental evidence) by making it more likely that extramar-
ginal buyers are not outbid by inframarginal buyers, and by excluding extramarginal
sellers with costs above the ceiling from playing any role.

Summing up, what Gode and Sunder (1993, 1997a, 1997b, 2004) have shown is that
simple trading rules in combination with certain market institutions can generate data
on transaction prices and allocative efficiency that approach or exceed those achieved
by human actors operating in the same experimental environment. This research finding
serves as an important behavioral foundation for the “KISS” principle that is widely
adopted in agent-based modeling. However, agent-based modelers are not always as
careful as Gode and Sunder to provide external validity (experimental or other evidence)
for the simple rules they assign to their artificial agents.

2.3. Reaction and response

Not surprisingly, the Gode and Sunder (1993) paper provoked a reaction, especially by
experimenters, who viewed the results as suggesting that market institutions were pre-
eminent and that human rationality/cognition was unimportant. Of course, the various
different market institutions are all of human construction, and are continually evolving,
so the concern about the source of market efficiency (institutional or human behavior)
seems misplaced.7 Nonetheless, there is some experimental literature addressing what
human subjects can do that Gode and Sunder-type ZI agents cannot.

Van Boening and Wilcox (1996) consider double auction environments where buyers
all have the same market valuation for units of the good, and sellers do not have fixed

7 Analogously, there was great outcry in May 1997 when Gary Kasparov, widely considered to be the great-
est player in the history of chess, first lost a chess match to a machine nicknamed “Big Blue,” even though
Big Blue’s hardware and algorithms were developed over many years by (human) researchers at IBM.
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or marginal costs for various units, but instead have large “avoidable costs”—costs they
incur only if they decide to actively engage in exchange. In such environments, seller
decisions to enter the market can be fraught with peril since they cannot anticipate the
entry decisions of other sellers and consequently, supply, and a seller’s average costs
(avoidable cost divided by number of units sold) can be highly variable. Van Boening
and Wilcox report that the efficiency of human subject traders in the more complex DA-
avoidable costs environment is much lower than in the standard DA environment with
pure marginal costs, but the efficiency of ZI traders in the DA-avoidable cost market is
significantly worse than the human subject traders operating in the same environment.

Brewer et al. (2002) consider a different but similarly challenging variant of the dou-
ble auction environment, where demand and supply conditions do not change within a
trading period as exchanges between buyers and sellers remove units from trade, but
where instead, market conditions remain invariant over each (and all) trading periods.
This is accomplished by continually refreshing the units that all buyers (sellers) are
able to buy (sell) following any trades, and Brewer et al. refer to this market environ-
ment as one with continuously refreshed supply and demand (CRSD).8 Recall that the
dampened volatility of prices over a trading period in the ZI-C simulations was owing
to the greater likelihood that inframarginal units with the lowest marginal cost/highest
reservation value would trade earlier than other inframarginal units where the difference
between marginal cost and valuation was lower. In the continually refreshed design of
Brewer et al. the forces working to dampen price adjustment over the course of a trading
period are removed. Hence prices generated by ZI-C traders in the CRSD environment
are quite random and exhibit no tendency toward convergence to any competitive equi-
librium notion (Brewer et al. consider several). On the other hand, the human subject
traders in the CRSD environment have no difficulty converging to the “velocity-based”
competitive equilibrium, and are also able to adjust to occasional perturbations to this
equilibrium.

Sadrieh (1998) studies the behavior of both human subjects and ZI agents in an
“alternating” double-auction market, a discrete-time version of the continuous double-
auction market that retains the double auction trading rules. The alternating DA is more
conducive to a game-theoretic analysis but differs in some respects from the standard
continuous DA in that only one side of the market (buyers or sellers) is active at once,
the bids or asks submitted are sealed (made simultaneously), and there is complete in-
formation about values, costs and ex post offers of all players. The determination of the
opening market side (buyers or sellers) is randomly determined, and then alternates over
the course of a trading period. Sadrieh’s game-theoretic prediction is that convergence
to the competitive equilibrium price would be from above (below) when sellers (buyers)
opened the market. By contrast, ZI simulations suggested that convergence to the mar-
ket price would be from above (below) when the surplus accruing to buyers (sellers) in

8 A motivating example is housing or labor markets without entry or exit of participants. A worker attracted
by a firm to fill a job vacancy, leaves another vacancy at his old firm, so that labor demand is effectively
constant.
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Figure 3. Demand (D) and supply (S) curves for four economies. Source: Cliff and Bruten (1997b).

the competitive equilibrium was relatively larger than that accruing to sellers (buyers).
Sadrieh’s experimental findings, however, were at odds with both of these predictions;
the most typical path for prices in an experimental session involves convergence to the
competitive equilibrium from below, regardless of which side opens the market or the
relative size of the surpluses. On the other hand, ZI simulations accurately predicted the
extent of another of Sadrieh’s findings, “the proposer’s curse.” The curse is that those
submitting bids or asks tend to do so at levels that yield them lower profits relative to
the competitive equilibrium price; the additional gains go to the players accepting those
bids or asks. Sadrieh reports that the frequency of proposer’s curse among inexperienced
subjects was comparable to that found in ZI simulations, though experienced subjects
learned to avoid the curse.

Experimentalists are not the only ones to challenge Gode and Sunder’s findings. AI
researchers Cliff and Bruten (1997a, 1997b) have examined the sensitivity of Gode and
Sunder’s findings to the elasticity of supply and demand. In particular they examine DAs
with four different types of induced demand and supply curves as shown in Figure 3.
Of these four economies, simulations using ZI-C agents converge to the competitive
equilibrium price, P0 and quantity, Q0 only in economies of type A, the same type that
Gode and Sunder consider, and not in economies of type B, C or D. The intuitive rea-
son for this finding (which Cliff and Bruten formalize) is that the probability density
function (pdf) for transaction prices (a random variable with ZI agents) is symmetric
about the competitive equilibrium price, P0, only in the case of economy A; in the
other economies, the transaction price pdf has P0 as an upper or lower bound. Since
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the expected value of a random variable, such as the transaction price, is the “center of
gravity” of the pdf, it follows that price convergence with ZI-C agents only occurs in
economies of type A. Cliff and Bruten’s simulations bear out this conclusion. It remains
to be seen how human subject traders would fare in economies such as B, C and D.
However, as a purely theoretical exercise, Cliff and Bruten suggest that an alternative
algorithm, which they call “zero-intelligence plus” (ZIP), achieves convergence to com-
petitive equilibrium in economies such as B, C, and D more reliably than does Gode and
Sunder’s ZI approach. By contrast with ZI agents, ZIP agents aim for a particular profit
margin on each unit bought or sold, and this profit margin dictates the bid or ask they
submit. Each agent’s profit margin is adjusted in real time depending on several factors
most of which concern properties of the most recent bids, asks and transactions made.
Hence ZIP involves some memory though it is limited to the most recent data available.
Comparisons of ZIP simulations with some of Smith’s aggregate experimental findings
are encouraging, though a more detailed analysis of the ZIP mechanism’s profit margin
adjustment dynamic with experimental data has yet to be performed.

As these critiques make clear, it is relatively easy to construct environments where
human subjects outperform ZI agents or environments where ZI agents fail to converge
to competitive equilibrium. However the broader point of Gode and Sunder’s pioneering
work is not that human cognitive skills are unimportant. Rather it is that, in certain
market environments, aggregate allocation, price and efficiency outcomes can approach
the predictions of models premised on high levels of individual rationality even when
individual traders are only minimally rational. Understanding precisely the conditions
under which such a mapping can be assured clearly requires parallel experiments with
both human and artificial subjects.

2.4. Other applications of the ZI methodology

In addition to Cliff and Bruten, several other researchers have begun the process of
augmenting the basic ZI methodology in an effort to explain economic phenomena in
various environments. The process of carefully building up an agent-based framework
from a simple foundation, namely budget-constrained randomness, seems quite sensi-
ble, and indeed, is well under way.

Bosch-Doménech and Sunder (2001) expand the Gode and Sunder (1993) double
auction environment to the case of m interlinked markets populated by dedicated buyers
in market 1, by dedicated sellers in market m, and consisting exclusively of arbitrage
traders operating in markets i = 1, 2, . . . , m. In the baseline model, arbitrageurs are
prevented from holding any inventory between transactions. They operate in adjacent
markets, simultaneously buying units in market i + 1 and selling them in market i. As
market m is the only one with a positive net supply of the asset, trading necessarily
begins there. Absent the possibility of inventories, a transaction in market m instanta-
neously ripples through the entire economy (the other m − 1 markets) so that the good
traded quickly ends up in the hands of one of the dedicated buyers in market 1. One
interpretation of this set-up is that of a supply-chain, consisting of producers in mar-
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ket m, middlemen in markets m,m − 1, . . . , 1 and ultimate consumers in market 1.
Bosch-Doménech and Sunder report simulations showing that regardless of whether
the number of markets, m is 2, 5 or 10, prices and volume in each market quickly con-
verge to the competitive equilibrium levels obtained by crossing demand in market 1
with supply in market m, and that market efficiency is close to 100%. Bosch-Doménech
and Sunder further examine what happens when arbitrageurs can take long or short in-
ventory positions. As the number of short or long positions that arbitrageurs can take
is increased, and the number of markets, m, gets large, prices remain very close to the
competitive equilibrium prediction in all m markets, but trading volume in the “middle”
markets (populated only by arbitrageurs) increases well beyond the competitive equilib-
rium prediction and market efficiency declines. This finding is an argument for keeping
supply chains short (or finding ways to “cut out the middleman”). An experimental test
of this prediction remains to be conducted.9

Duffy and Ünver (2006) use the ZI methodology to understand asset price bubbles
and crashes in laboratory market experiments of the type first examined by Smith et
al. (1988). In these laboratory markets there is a single “asset” that is traded in a finite
number, T , of trading periods; unlike the previously described double auction exper-
iments, players here can be either buyers or sellers, and so they are referred to as
traders. Those holding units of the asset at the end of each trading period are enti-
tled to a random dividend payment per unit, with expected value d. The fundamental
expected market value of a unit of the asset at the start of trading period t � T is given
by Dt = d(T − t + 1) + DT +1, where DT +1 is the final buy-out value per unit of the
asset held at the close of period T . All participants’ initial endowments of the asset and
money have the same expected value, though the allocation of assets and money differs
across agents. Consequently, risk neutral traders should be indifferent between engaging
in any trades or trading at the fundamental market value which is declining over time.
With groups of inexperienced human subjects, the path of the mean transaction price
tends to start below the fundamental value in the first trading periods, quickly soaring
above this fundamental value in the middle trading periods before finally crashing back
to or below fundamental value near to the final trading period T .

Duffy and Ünver show that such asset price bubbles and crashes can arise with ZI
agents, who are a little more sophisticated than Gode and Sunder’s ZI-C agents—Duffy
and Ünver call them “near-zero intelligence agents”. In particular, Duffy and Ünver’s
agents are not constrained from submitting bids or asks in excess of the fundamental
market value of the asset as such a constraint would rule out the possibility of bubbles.
As in Gode and Sunder (1993) there is an exogenously imposed range for bids and
asks given by the interval [0, κDT

t ], where κ > 0. In addition, bids and asks are not
entirely random. The ask of trader i in period t is given by ai

t = (1 − α)ui
t + αpt−1,

where ui
t is a random draw from [0, κDT

t ] and pt−1 is the mean transaction price from

9 See, however, the related work of Grossklags and Schmidt (2004), who add artificial arbitrage agents to a
double auction experiment with human subjects.
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the previous trading period; the weight given to the latter, α, if positive, introduces a
simple herding effect, and further implies that ask prices must rise over the first few
periods. A similar herding rule is used to determine bids. The random component to
bids and asks serves to insure that some transactions take place. As in Gode and Sunder
(1993) budget constraints are enforced; traders cannot sell units they do not own, nor
can traders submit bids in excess of their available cash balances. Finally, to account
for the finite horizon, which was known to the human subjects, Duffy and Ünver endow
their artificial agents with some weak foresight; specifically, the probability that a trader
submits a bid (as opposed to an ask) is initially 0.5, and decreases over time, so, over
time, there are more asks than bids being submitted reflecting the declining fundamental
value of the asset. Standard double auction trading rules are in effect. Duffy and Ünver
use a simulated method of moments procedure to calibrate the parameter choices of
their model, e.g. κ , α, so as to minimize the mean squared deviations between the price
and volume path of their simulated economies and the human subject markets of Smith
et al. (1988). They are able to find calibrations that yield asset price bubbles and crashes
comparable to those observed in the laboratory experiments and are able to match other,
more subtle features of the data as well.

2.5. ZI agents in general equilibrium

The original Gode and Sunder (1993) study follows the Smith (1962) partial equilibrium
laboratory design, where market demand and supply are exogenously given. In more re-
cent work, zero-intelligence traders have been placed in general equilibrium settings,
with the aim of exploring whether they might achieve competitive equilibrium in such
environments. Gode et al. (2000) placed zero-intelligence traders, who could both buy
and sell, in a two-good, pure exchange economy (an Edgeworth box). Traders are di-
vided up into two types i = 1, 2, that differ only in terms of the parameters of their
Cobb–Douglas utility function defined over the two goods and their initial endowments
of these two goods. The trading rules for ZI agents in the general equilibrium environ-
ment are similar to rules found in the partial equilibrium environment. In particular, in
the general equilibrium environment, ZI agents’s bids and asks are limited to utility im-
proving allocations. Specifically, each agent of type i begins by calculating the slope of
its indifference map at its current endowment point. The slope is calculated in terms of
radians, r , where 0 � r � π

2 ; this gives the number of units of good y the trader is will-
ing to give up per unit of good x. Next, the agent picks two random numbers, b ∈ [0, r]
and a ∈ [r, π/2], with the first representing its bid price for units of good y in terms of
good x, and the second representing its ask price for units of good y in terms of good x.
Finally, the unit of a transaction for simulation purposes involves a discrete step size
in the quantity of both goods; otherwise, with an infinitesimal quantity exchanged each
period, convergence could take a long time. A consequence of this discrete step size
assumption is that an adjustment has to be made to the bid and ask ranges to account for
the curvature of the indifference map. Given these trading restrictions, and the double
auction rules, market transactions will be limited to lie in the set of Pareto improving re-
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Figure 4. An illustration of the path of ZI transactions in an Edgeworth box. Source: Gode et al. (2000).

allocations, i.e., the area between the two indifference maps. Once an exchange occurs,
endowments are updated, and the process described above begins anew.

Figure 4 (taken from Gode et al., 2000) illustrates this process. The initial endowment
is at point A, and the indifference maps of the two agent types intersect at this point. The
ZI trading restrictions and discrete step size imply that the first transaction occurs along
the arc BC. If this first round transaction occurs at, say, point D, this point becomes the
new endowment point. The set of feasible trades in the subsequent period lie on the arc
B′C′, etc. Given this characterization of ZI trading rules it is clear—even without sim-
ulating the system—that this updating process must eventually converge to the contract
curve, representing the set of all Pareto optimal allocations, and will then cease, as the
bid-ask range shrinks to the null set.10 And, indeed, this is precisely what Gode et al.
(2000) find. Simulations of ZI agents operating according to the rules described above
yield limiting allocations that lie on the contract curve, and so these allocations are
Pareto optimal. However, these allocations do not necessarily correspond to the com-
petitive equilibrium allocation, the point on the contract curve where the two price-offer

10 One consequence of studying ZI, directed random search processes is that once the environment is spec-
ified, actual simulation of the search process may be unnecessary. Still, the value of this approach lies in
building the minimal, necessary restrictions on directed random search that achieve the desired outcome.
The ZI approach aids in formulating these restrictions, by greatly simplifying agent behavior, allowing the
researcher to concentrate on the institutional restrictions.
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curves of the two agent types intersect. So, by contrast with the findings in the partial
equilibrium framework, ZI-trading rules turn out to be insufficient to guarantee conver-
gence to competitive equilibrium in the two-good general equilibrium environment.

The nonconvergence of the ZI algorithm to competitive equilibrium is further ad-
dressed by Crockett, Spear and Sunder (CSS) (Crockett et al., 2004) who provide an
answer to the question of “how much additional ‘intelligence’ is required” for ZI agents
to find a competitive equilibrium in a general equilibrium setting with M agents and
� commodities. In their environment, ZI agents do not submit bids or asks. Rather a
proposed allocation of the � goods across the M agents is repeatedly made, correspond-
ing to a random draw from an epsilon-cube centered at the current endowment point.
Agent i compares the utility he gets from the proposed allocation with the utility he re-
ceives from the current endowment. If the utility from the proposed allocation is higher,
agent i is willing to accept the proposal. If all M agents accept the proposal, the pro-
posed allocation becomes the new endowment point. The random proposal generation
process (directed search) then begins anew and continues until no further utility im-
provements are achieved. At this point the economy has reached a near-Pareto optimum
(an allocation that lies approximately in the Pareto set), though not necessarily a com-
petitive equilibrium; this outcome is analogous to the final outcome of the Gode et al.
(2000) algorithm. Crockett, Spear and Sunder further assume that once agents have
reached this approximate Pareto optimum (PO), they are able to calculate the common,
normalized utility gradient at the PO allocation. The ZI agents are then able to deter-
mine whether this gradient passes through their initial endowment point (the condition
for a competitive equilibrium) or not. If it does not, then, in the PO allocation, some
agents are subsidizing other agents. Note that these assumptions endow the ZI agents
with some calculation and recall abilities that are not provided (or necessary) in Gode
and Sunder’s partial equilibrium environment.

Consider for example, the two agent, two-good case. In this case, the normalized
utility gradient corresponds to a price line through the tangency point of the two indif-
ference curves (preferences must be convex), representing the relative price of good 2
in units of good 1 at the PO allocation. Suppose that at the end of trading period t , agent
i’s approximate PO allocation is x̂t

i ∈ R2+. Agent i’s gain at this PO allocation can be
written as:

λt
i = pt

(
x̂t
i − ωi

)
,

where pt is the price line at the end of period t and ωi ∈ R2+ is agent i’s initial endow-
ment. Agent i is said to be subsidizing the other agent(s) if λi < 0. That is, at pt � 0,
agent i cannot afford to purchase his initial endowment. Crockett et al.’s innovation is
to imagine that if agent i was a ‘subsidizer’ in trading period t , then in trading period
t + 1 he agrees to trade for only those allocations, xt+1 that increase his utility and that
satisfy:

0 � pt
(
xt+1
i − ωi

)
� λt

i + νi,
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where νi is a small, positive bound. With this additional constraint in place, the PO
allocation achieved at the end of period t + 1, x̂t+1, is associated with a larger gain
for the subsidizing agent i, i.e. λt+1

i > λt
i , so he subsidizes less in period t + 1 than

in period t . When all i agents’ gains satisfy a certain tolerance condition, convergence
to a competitive equilibrium is declared. Crockett et al. show that while cycling is a
possibility, it can only be a transitory phenomenon. Indeed, they provide a rigorous
proof that their algorithm converges to the competitive equilibrium with probability 1.

This subsidization constraint puts to work the Second Welfare theorem—that every
Pareto optimum is a competitive equilibrium for some reallocation of initial endow-
ments. Here, of course, the initial endowment is not being reallocated. Instead, agents
are learning over time to demand more (i.e. refuse trades that violate the subsidization
constraint) if they have been subsidizing other agents in previous periods. The realloca-
tion takes place in the amounts that agents agree to exchange with one another.

The appeal of Crockett et al.’s “ε-intelligent” learning algorithm is that it imple-
ments competitive equilibrium using only decentralized knowledge on the part of agent
i, who only needs to know his own utility function and be able to calculate the nor-
malized utility gradient at the PO allocation attained at the end of the previous period
(or more simply, to observe immediate past prices). Using this information, he deter-
mines whether or not he was a subsidizer, and if so, he must abide by the subsidization
constraint in the following period. The algorithm is simple enough so that one might
expect that simulations of it would serve as a kind of lower bound on the speed with
which agents actually learn competitive equilibrium in multi-good, multi-agent general
equilibrium environments, analogous to Gode and Sunder’s (1993) claim for ZI agents
operating in the double auction.

Indeed, Crockett (2004) has conducted an experiment with paid human subjects
aimed precisely at testing this hypothesis. Crocket’s experiment brings the ZI research
agenda full circle; his experiment with human subjects is designed to provide external
validity for a ZI, agent-based algorithm whereas the original Gode and Sunder (1993)
ZI model was developed to better comprehend the ability of human subjects to achieve
competitive equilibrium in Smith’s double auction model. Crockett’s study explores sev-
eral different experimental treatments that vary in the number of subjects per economy
and in the parameters of the CES utility function defined over the two goods. For each
subject, a preference function was induced, and subjects were trained in their induced
utility function, i.e., how to assess whether a proposed allocation was utility improving.
Further, at the end of each trading period, Crocket calculated for subjects the end-of-
period-t marginal rate of substitution, pt , as well as the value of the end-of-period-t
allocation, ptxi , but did not tell subjects what to do with that information, which re-
mained on subjects’ screens for the duration of the following period, t + 1. Subjects
could plot the end-of-period-t price line on their screens to determine whether or not
it passed through their beginning-of-period-t endowment point. Thus, subjects had all
the information necessary to behave in accordance with the CSS algorithm, that is, they
knew what comprised a utility improving trade and they had the information necessary
to construct and abide by the subsidization constraint.



970
J.D

uffy

Figure 5. Median, end-of-period CSS-ZI allocations over periods 1–10 (left panel) versus median, end-of-period human subject allocations in periods 1 and 10
(right panel) in an Edgeworth box.
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The left panel of Figure 5 presents the median end-of-period allocation of CSS–ZI
agents for a particular 2-player CES parameterization, over trading periods 1–10, de-
picted in an Edgeworth box (the competitive equilibrium is labeled CE). The right
panel of Figure 5 presents comparable median end-of-period allocations from one of
Crockett’s human subject sessions conducted in the same environment. Support for the
hypothesis that the CSS-ZI algorithm accurately characterizes the behavior of paid hu-
man subjects appears to be mixed. On the one hand, nearly all of the human subjects
are able to recognize and adopt utility improving trades, so that end of period alloca-
tions typically lie on or very close to the contract curve. And, once the contract curve is
achieved, in subsequent periods, the human subjects appear to be moving in the direc-
tion of the competitive equilibrium allocation, as evidenced by the change in the median
allocation at the end of period 10 relative to the median at the end of period 1 in the right
panel of Figure 5. On the other hand, simulations of the CSS–ZI algorithm (left panel
of Figure 5) suggest that convergence to the competitive equilibrium should have been
achieved by period 6.

The reason for the slow convergence is that most, though not all subjects in Crockett’s
experiments are not abiding by the subsidization constraint; most are content to simply
accept utility improving trades, while a few behave as CSS-ZI agents. The median al-
location masks these differences, though the presence of some “CSS-ZI-type” agents
moves the median allocation towards the competitive equilibrium. Hence, there is some
support for the CSS-ZI algorithm, though convergence to competitive equilibrium by
the human subjects is far slower than predicted by the algorithm.

2.6. Summary

The ZI approach is a useful benchmark, agent-based model for assessing the marginal
contribution of institutional features and of human cognition in experimental settings.
Building up agent-based models starting from zero memory and random action choices
seems quite sensible and is in accord with Axelrod’s KISS principle. Using ZI as a
baseline, the researcher can ask: what is the minimal additional structure or restrictions
on agent behavior that are necessary to achieve a certain goal such as near convergence
to a competitive equilibrium, or a better fit to human subject data.

Thus far, the ZI methodology has been largely restricted to understanding the process
by which agents converge to competitive equilibrium in either the partial equilibrium
double auction setting or in simple general equilibrium pure exchange economies. ZI
models have achieved some success in characterizing the behavior of human subjects
in these same environments. More complicated economic environments, e.g. produc-
tion economies or labor search models would seem to be natural candidates for further
applications of the ZI approach.

The ZI approach is perhaps best suited to competitive environments, where individu-
als are atomistic and, as a consequence, institutional features together with constraints
on unprofitable trades will largely dictate the behavior that emerges. In environments
where agents have some strategic power, so that beliefs about the behavior of others
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become important, the ZI approach is less likely to be a useful modeling strategy. In
such environments—typically game-theoretic—somewhat more sophisticated learning
algorithms may be called for. We turn our attention to such learning models in the next
section.

3. Reinforcement and belief-based models of agent behavior

Whether agents learn or adapt depends on the importance of the problem or choice that
agents face. Assuming the problem commands agents’ attention, e.g., because payoff
differences are sufficiently salient, the manner in which agents learn is largely a func-
tion of the information they posses and of their cognitive abilities. If agents have little
information about their environment and/or they are relatively unsophisticated, then we
might expect simple, backward-looking adaptive processes to perform well as charac-
terizations of learning behavior over time. On the other hand, if the environment is
informationally rich and/or agents are cognitively sophisticated, we might expect more
sophisticated, even forward-looking learning behavior to be the norm.

This distinction leads to two broad sets of learning processes that have appeared in
the agent-based literature, which we refer to here as reinforcement and belief learning
following Selten (1991). Both learning processes are distinct from the fully rational,
deductive reasoning processes that economists assign to the agents who populate their
models. The important difference is that both reinforcement and belief learning ap-
proaches are decentralized, inductive, real-time, on-line learning algorithms that are
unique to each agent’s history of play. In this sense, they comprise agent-based models
of learning. Our purpose here is to discuss the use of these algorithms in the context of
the experimental literature, with the particular aim of evaluating the empirical plausibil-
ity of these learning processes.

3.1. Reinforcement learning

The hallmark of “reinforcement,” “stimulus–response” or “rote” learning is Thorndike’s
(1911) ‘law of effect’: that actions or strategies that have yielded relatively higher
(lower) payoffs in the past are more (less) likely to be played in the future. Rein-
forcement learning involves an inductive discovery of these payoffs; actions that are
not chosen initially, are, in the absence of sufficient experimentation, less likely to be
played over time, and may in fact, never be played (recognized). Finally, reinforcement
learning does not require any information about the play of other participants or even the
recognition that the reinforcement learner may be participating in a market or playing a
game with others in which strategic considerations might be important. Thus, reinforce-
ment learning involves a very minimal level of rationality that is only somewhat greater
than that possessed by ZI agents.

Reinforcement learning has a long history associated with behaviorist psychologists
(such as B.F. Skinner), whose views dominated psychology from 1920 through the
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1960s, until cognitive approaches gained ascendancy. Models of reinforcement learn-
ing first appeared in the mathematical psychology literature, e.g. Bush and Mosteller
(1955) and Suppes and Atkinson (1960). Reinforcement learning was not imported into
economics however, until very recently, perhaps owing to economists’ long-held scep-
ticism toward psychological methods or of limited-rationality heuristics.11

Brian Arthur (1991, 1993) was among the first economists to suggest modeling agent
behavior using reinforcement-type learning algorithms and to calibrate the parameters
of such learning models using data from human subject experiments. In his 1991 paper,
Arthur asks whether it is possible to design a learning algorithm that mimics human
behavior in a simple N -armed bandit problem. Toward this aim, Arthur used data from
an individual-choice, psychology experiment—a 2-armed bandit problem—conducted
by Laval Robillard four decades earlier in 1952–3 and reported in Bush and Mosteller
(1955) to calibrate his model.12

In Arthur’s model, an agent assigns initial “strength” si
0 to each of the i = 1, 2, . . . , N

possible actions. The probability of choosing action i in period t is then pi
t = si

t /Ct ,
where Ct = ∑

i si
t . Given that action i is chosen in period t , its strength is then updated:

si′
t = si

t + φi
t , where φi

t � 0 is the payoff that action i earned in period t . Finally, all of
the strengths, including the updated si′

t are renormalized so as to achieve a prespecified
constant value for the sum of strengths in period t : Ct = Ctν , where C and ν represent
the two learning parameters. When ν = 0 (as in Arthur’s calibration) the speed of
learning is constant and equal to 1/C.

Arthur ‘calibrated’ his learning model to the experimental data by minimizing the
sum of squared errors between simulations of the learning model (for different (C, ν)

combinations) and the human subject data over all experimental treatments, which
amounted to variations in the payoffs to the two arms of the bandit. He showed that
regardless of the treatment, the calibrated model tracked the experimental data rather
well. In subsequent work, (e.g. the Santa Fe Artificial Stock Market (Arthur et al., 1997)
discussed in LeBaron’s (LeBaron, 2006) chapter), Arthur and associates appear to have
given up on the idea of calibrating individual learning rules to experimental data in fa-
vor of model calibrations that yield aggregate data that are similar to relevant field data.
Of course, for experimental economists, the relevant data remain those generated in
the laboratory, and so much of the subsequent development of reinforcement and other
types of inductive, individual learning routines in economic settings has been with the
aim of exploring experimental data.

Roth and Erev (1995) and Erev and Roth (1998) go beyond Arthur’s study of the
individual-choice, N -armed bandit problem and examine how well reinforcement learn-
ing algorithms track experimental data across various different multi-player games that

11 An even earlier effort, due to Cross (1983), is discussed in Brenner’s (Brenner, 2006) chapter.
12 Regarding the paucity at the time of available experimental data, Arthur (1991, pp. 355–356) wrote:
“I would prefer to calibrate on more recent experiments but these have gone out of fashion among psy-
chologists, and no recent more definitive results appear to be available.” Of course, economists have recently
taken to conducting many such experiments.
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have been studied by experimental economists. The reinforcement model that Roth and
Erev (1995) develop is similar to Arthur’s, but there are some differences and important
modifications that have mainly served to improve the fit of the model to experimental
data. The general Roth–Erev model can be described as follows.

Suppose there are N actions/pure strategies. In round t , player i has a propensity
qij (t) to play the j th pure strategy (propensities are equivalent to strengths in Arthur’s
model). Initial (round 1) propensities (among players in the same role) are equal,
qij (1) = qik(1) for all available strategies j , k, and

∑
j qij (1) = Si(1), where Si(1)

is an initial strength parameter, equal to a constant that is the same for all players,
Si(1) = S(1); the higher (lower) is S(1) the slower (faster) is learning.

The probability that agent i plays strategy j in period t is made according to the linear
choice rule:

pij (t) = qij (t)∑n
j=1 qij (t)

.

Some researchers prefer to work with the exponential choice rule:

pij (t) = exp[λqij (t)]∑n
j=1 exp[λqij (t)] ,

where λ is an additional parameter that measures the sensitivity of probabilities to rein-
forcements. For now, however, we follow Roth and Erev (1995) and focus on the linear
choice rule.

Suppose that, in round t , player i plays strategy k and receives a payoff of x. Let
R(x) = x −xmin, where xmin is the smallest possible payoff. Then i updates his propen-
sity to play action j according to the rule:

qij (t + 1) = (1 − φ)qij (t) + Ek

(
j, R(x)

)
,

Ek

(
j, R(x)

) =
{

(1 − ε)R(x) if j = k,(
ε/(N − 1)

)
R(x) otherwise.

This is a three-parameter learning model, where the parameters are (1) the initial
strength parameter, S(1), (2) a forgetting parameter φ that gradually reduces the role
of past experience, and (3) an experimentation parameter ε that allows for some exper-
imentation.13 Notice that if φ = ε = 0 we have a version of Arthur’s model, where the
main difference is that the sum of the propensities is not being renormalized in every
period to equal a fixed constant. This difference is important, as it implies that as the
propensities grow, so too will the denominator in the linear choice rule and the impact
of payoffs for the choice of strategies will become attenuated. Thus, one possibility is

13 In certain contexts, the range of strategies over which experimentation is allowed is restricted to those
strategies that are local to strategy k; in this case, the parameter ε can be regarded also as a ‘generalization’
parameter, as players generalize from their recent experience to similar strategies.
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that certain strategies that earn relatively high payoffs initially get played more often,
and over time, there is lock-in to these strategies; alternatively, the “learning curve” is
initially steep and then flattens out, properties that are consistent with the experimental
psychology literature (Blackburn’s (1936) “Power Law of Practice”).

The ability of reinforcement learning models to track or predict data from human sub-
ject experiments has been the subject of a large and growing literature. Roth and Erev
(1995) compare the performance of various versions of their reinforcement learning
model with experimental data from three different sequential games: a market game, a
best-shot/weakest link game and the ultimatum bargaining game; in all of these games,
the unique subgame perfect equilibrium calls for one player to capture all or nearly all
of the gains, though the experimental evidence is much more varied, with evidence of
convergence to the perfect equilibrium in the case of the market and best-shot games
but not in the case of the ultimatum game. Roth and Erev’s simulations with their re-
inforcement learning algorithm yield this same divergent result. Erev and Roth (1998)
use simulations of two versions of their reinforcement model (a one parameter version
where φ = ε = 0) and the three parameter version to predict play in several repeated
normal form games where the unique Nash equilibrium is in mixed strategies. They re-
port that the one and three-parameter models are better at predicting experimental data
as compared with the Nash equilibrium point predictions, and that the three-parameter
model even outperforms a version of fictitious play (discussed in the next section).

Figure 6 provides an illustration of the performance of the three models relative to
human subject data from a simple matching pennies experiment conducted by Ochs
(1995). This game is of the form

Player 2
A2 B2

Player 1 A1 x, 0 0, 1
B1 0, 1 1, 0

where x is a payoff parameter that takes on different values in three treatments (x = 1,
4 or 9). The unique mixed strategy equilibrium calls for player 1 to play A1 with prob-
ability .5, and player 2 to play A2 with probability 1/(1 + x); these Nash equilibrium
point predictions are illustrated in the figure, which shows results for the three different
versions of the game (according to the value of x). The data shown in Figure 6 are the
aggregate frequencies with which the two players play actions A over repeated plays of
the game. The first column gives the experimental data, columns 2–3 give the results of
the 1 and 3 parameter reinforcement learning models, while column 4 gives the result
from a fictitious play-like learning model. The relatively better fit of the three-parameter
model is determined on the basis of the deviation of the path of the experimental data
from the path of the simulated data. Erev and Roth suggest that the success of reinforce-
ment learning in predicting experimental data over Nash equilibrium point predictions
is owing to the inductive, real-time nature of these algorithms as opposed to the de-
ductive approach of game theory, with its assumptions of full rationality and common
knowledge.
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Figure 6. Experimental data from Ochs (1995) and the predictions of the Roth–Erev and fictitious play learn-
ing models. Source: Erev and Roth (1998).

Other variants of reinforcement learning have been proposed with the aim of bet-
ter explaining experimental data. Sarin and Vahid (1999, 2001), for instance, propose
a simple deterministic reinforcement-type model where agents have “subjective assess-
ments,” qj (t), for each of the j = 1, 2, . . . , N possible strategies. As in Roth and Erev’s
model, an agent’s subjective assessment of strategy j gets updated only when strategy
j is played: qj (t + 1) = (1 − φ)qj (t) + φπj (t), where πj (t) is the payoff to strategy j

at time t , and φ is the forgetting factor and sole parameter of their model. The main
difference between Sarin and Vahid’s model and Roth and Erev’s is that the strategy
an agent chooses at time t in Sarin and Vahid’s model is the strategy with the maxi-
mum subjective assessment through period t − 1. Thus, in Sarin and Vahid’s model,
agents are acting more like optimizers than in the probabilistic choice framework of
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Roth and Erev. Sarin and Vahid show that their one parameter model often performs
well and sometimes better than Roth and Erev’s 1 or 3-parameter, probabilistic choice
reinforcement learning models in the same games that Erev and Roth (1998) explore.

Duffy and Feltovich (1999) modify Roth and Erev’s (Roth and Erev, 1995) model
to capture the possibility that agents learn not only from their own experience, but also
from the experience of other agents. Specifically, they imagine an environment where
agent i plays a strategy r and learns his payoff in period t , πi

r (t) but also observes the
strategy s played by another player j (of the same type as i) in period t and the payoff
that player earned from playing strategy s, π

j
s (t). Player i updates his propensity to

play strategy r in the same manner as Roth and Erev, (with φ = ε = 0) but also updates
his propensity to play strategy s: qi

s(t + 1) = qi
s(t) + βπ

j
s (t), where β � 0 is the

weight given to observed payoffs, or “second-hand” experience. Duffy and Feltovich
set β = .50 and simulate behavior in two of the games studied in Roth and Erev (1995),
the best-shot game and the ultimatum game. They then test their simulation predictions
by conducting an experiment with human subjects; their reinforcement-based model
of the effect of observation of others provides a very good prediction of the role that
observation of others’ actions and payoffs plays in the experiment.

Another modification of reinforcement learning is to suppose that agents have cer-
tain “aspiration levels” in payoff terms that they are trying to achieve. This idea has a
long history in economics dating back to Simon’s (Simon, 1955) notion of satisficing.
Aspiration learning has recently been resuscitated in game theory, e.g. by Karandikar
et al. (1998) and Börgers and Sarin (2000) among others. Bendor et al. (2001) provide
an overview and additional references. The reinforcement learning models discussed
above can be viewed as ones where a player’s period aspiration level is constant and
less than or equal to the minimum payoff a player earns from playing any action in
the given strategy set, so that the aspiration level plays no role in learning behavior.
More generally, one might imagine that an agent’s aspiration level evolves along with
the agent’s probabilistic choice of strategies (or propensities), and this aspiration level
lies above the minimum possible payoff. Thus, in aspiration-based reinforcement learn-
ing models, the state space is enlarged to include a player’s aspiration level in period t ,
ai(t). Suppose player i chooses strategy j in period t yielding a payoff of πi

j (t). If

πi
j (t) � ai(t), then player i’s propensity to play strategy j in subsequent periods is

assumed to be (weakly) higher than before; precisely how this is modeled varies some-
what in the literature, but the end result is the same: i’s probability of playing strategy j

satisfies pi
j (t +1) � pi

j (t). On the other hand, if πi
j (t) < ai(t), then pi

j (t +1) < pi
j (t).

Finally, aspirations evolve according to:

ai
t = λai

t + (1 − λ)πi
j (t),

where λ ∈ (0, 1). This adjustment rule captures the idea that aspirations vary with an
agent’s history of play. The initial aspiration level a0 as with the initial probabilities
for choosing actions, are assumed to be exogenously given. Karandikar et al. (1998)
also add a small noise term to the aspiration updating equation representing trembles.
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They show, for a class of 2 × 2 games that includes the prisoner’s dilemma, that if these
trembles are small, and aspiration updating is slow (λ is close to 1) that in the long-run,
both players are cooperating most of the time.

There is some experimental evidence in support of aspiration learning. Bereby-Meyer
and Erev (1998) studied behavior in a binary choice game where the probabilities of
achieving a ‘success’ were exogenously fixed at 0.7 for choice 1 and 0.3 for choice 2.
In one treatment, subject payoffs were set at 2 for a success and −2 for a failure, while
in another treatment, the payoffs were 4 for a success and 0 for a failure, amounting
to an addition of 2 to the payoffs in the first case. They found that learning of the
optimal choice of strategies (choice 1) was significantly reduced when the payoffs were
(4, 0) relative to the case where the payoffs were (2,−2). Erev et al. (1999) explain
this result by presenting an adjustable reference point reinforcement learning model. In
place of the assumption that R(x) = x − xmin in the Roth–Erev model, they propose
that R(x, t) = x(t) − ρ(t), and let the reference point, ρ(t) be a weighted average of
the past reference point and current payoffs, where the weights depend on the difference
between the payoff and the reference point; if payoffs are highly variable relative to the
reference point, learning is slower than if payoffs are less variable; this is simply another
version of aspiration learning. They report that this model tracks the difference in the
experimental findings rather well.

Huck et al. (2002) find evidence of aspiration learning in a laboratory oligopoly
experiment. They test the theoretical proposition that bilateral mergers in oligopoly
markets with n > 2 firms, homogeneous goods and constant returns to scale are un-
profitable; the profit share of the merged firm, 1/n − 1 is less than the total share of
the two firms prior to the merger 2/n (1/n each). In the experiment, n > 2 subjects
make quantity decisions in a Cournot game and midway through a session, two of the
subjects combine decision-making as a merged firm. The authors report that, contrary
to theory, the subjects in the role of the merged firm produce significantly more output
than the other unmerged firms and come close to sustaining total profit levels they would
have achieved as unmerged firms. The authors argue that pre-merger aspiration-levels
cause merged firms to increase output with the aim of maintaining total profits and the
other firms acquiesce by reducing their output. They connect this finding with Cyert
and March’s (1956) observation that oligopoly firms are guided by “an acceptable-level
profit norm” that is a function of market history.

Varieties of reinforcement learning algorithms have become a mainstay of agent-
based modeling, perhaps because they accord with Axelrod’s KISS principle. Other
attractive features are the low level of history-dependent rationality, and relatively few
parameters. Examples of the use of reinforcement learning in agent-based models are
commonplace. Epstein and Axtell (1996) use several variants of reinforcement learning
in their Sugarscape model. Nicolaisen et al. (2001) use Roth–Erev-type reinforcement
learning to model buyer and seller price–quantity decisions in a computational model of
the wholesale electricity market. Pemantle and Skyrms (2003) use reinforcement learn-
ing to study how groups of players play games in endogenously formed social networks.
Franke (2003) uses reinforcement learning to study Arthur’s (Arthur, 1994) El Farol Bar
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problem; Kutschinski et al. (2003) use a reinforcement learning model to study buyer
search and seller price setting behavior in a competitive market with induced demand
and supply schedules. Bendor et al. (2003) use a reinforcement learning model with
endogenous aspirations to model voter turn-out. Finally, Erev and Barron (2003) apply
reinforcement learning to cognitive strategies, e.g., loss avoidance, hill-climbing, rather
than to the direct strategies available to agents in simple, repeated decision problems.

There is also a parallel and much more voluminous literature on reinforcement learn-
ing in the machine learning literature. See, e.g., Kaelbling et al. (1996) and Sutton and
Barto (1998) for surveys. A popular reinforcement learning model in this literature is
Q-learning (Watkins, 1989), which is closely related to Bellman’s approach to dynamic
programming, but differs from the latter in being much less informationally demanding,
e.g. the agent need not know the period payoff or state transition functions. (See, e.g.,
Mitchell, 1997 for a good introduction the topic.) Q-learning algorithms involve on-line
estimation of an evaluation function, denoted Q(s, a), representing the maximum ex-
pected discounted sum of future payoffs the agent earns from taking action a in state s.
Starting from some random initialization of values, estimation of the Q function oc-
curs in real-time using the history of states and payoffs earned by the agent from action
choices in those states. To determine the action chosen, a probabilistic choice rule is
used: actions with higher Q-values for the given state s and the current approximation
of the Q-function, are more likely to be chosen than actions with lower Q-values. Thus,
the main difference between Q-learning and the reinforcement-learning models stud-
ied by economists is that Q-learners are learning an evaluation function mapping from
states to actions, analogous to the policy function of dynamic programming. An advan-
tage of Q-learning over reinforcement learning algorithms studied by economists is that
convergence results for Q-learning can be proved under certain assumptions, e.g. for
simple Markov-decision processes. Surprisingly, the predictions of Q-learning models
have yet to be compared with data from controlled laboratory experiments with human
subjects—a good topic for future research.

3.2. Belief-based learning

The primary difference between belief-based learning algorithms and reinforcement
learning algorithms is that in belief-learning models, players recognize they are play-
ing a game or participating in a market with other players, and form beliefs about the
likely play of these other players. Their choice of strategy is then a best response to
their beliefs. By contrast, reinforcement learners do not form beliefs about other play-
ers and need not even realize that they are playing a game or participating in a market
with others. Belief-based learning models range from naive, Cournot-type learning to
slightly more sophisticated “fictitious play,” to fully rational, Bayesian learning. Here
we discuss the first two types of belief learning models.

Fictitious play was proposed by Brown (1951) as a model of how players form beliefs
and best respond to them in two-person zero sum games. Fictitious play was originally
proposed as a means of determining the value of a game; indeed, Robinson (1951) shows
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that fictitious play converges to equilibrium in 2 × 2 zero sum games, though Shapley
shows via a counterexample that this result does not hold in more general games. Sub-
sequently, fictitious play has come to serve as a model of boundedly rational learning:
players form beliefs about their opponents based on the historical frequency of their
opponent’s actions choices and play myopic best responses to these beliefs; the best
responses are myopic because agents do not anticipate that their opponent is behaving
similarly toward them.

Cheung and Friedman (1997) propose a one-parameter class of learning rules that
yields Cournot and fictitious play learning as special cases and thus serves to com-
pactly illustrate the main difference between the two approaches. They suppose there
are i = 1, 2, . . . , N players, each of whom chooses an action ai from the set of possible
actions, A, in each period. Player i’s payoff function is π(ai, s

−i ), where s−i is a state
vector representing the distribution of action choices chosen by all of i’s opponents. It
is assumed that each player i discounts past states using a constant discount factor, γi ,
and possesses some initial prior, s−i (1). Player i’s belief about the state that will prevail
in periods t = 1, 2, . . . is given by:

ŝ−i (t + 1) = s−i (t) + ∑t−1
k=1 γ k

i s−i (t − k)

1 + ∑t−1
k=1 γ k

i

.

Cournot (naive) belief learning results from setting γi = 0 for all i; in this case,
players hold the naive belief that ŝ−i (t + 1) = s−i (t). Fictitious play belief learning
results from setting γi = 1 for all i; in this case, players’ beliefs about the current state
are simply the average of all past observed states. Weighted average, adaptive belief
learning results from setting 0 < γi < 1.14 Given beliefs, a player’s decision is to
choose ai ∈ A so as to maximize his expected payoff (i.e., maxai∈A π(ai, ŝ

−i )).
Consider by way of illustration, the class of 2 player, binary choice games that have

been widely studied in the experimental literature. Let the 2 × 2 payoff matrix be given
by M = (mij ), and let us assign a ‘1’ to the choice of action 1 and a ‘0’ to the choice
of action 2. With a single opponent per period, s−i (t) ∈ {0, 1} and ŝ−i (t) ∈ [0, 1]
represents player i’s belief about the likelihood that his opponent will play action 1 in
period t .15 Player i evaluates the expected payoff differential from choosing action 1
over action 2:

ri1 = R
(
ŝ−i (t)

) = (1,−1)M
(
ŝ−i (t), 1 − ŝ−i (t)

)′
.

A deterministic best response in the binary choice game is to choose action 1 if
R(ŝ−i (t)) > 0 and to choose action 2 if R(ŝ−i (t)) < 0. Some kind of tie-breaking
rule is needed for the special case where R(ŝ−i (t)) = 0. As Fudenberg and Levine

14 Other, less plausible possibilities include γ > 1, so that the past is given more weight than the present and
γi < 0, which implies cycling.
15 More generally, if player i faces up to n � N − 1 opponents in a binary action game, then s−i (t) =
n−1 ∑n

j=1 I (aj ), where I (j) = 1 if aj = 1 and I (aj ) = 0 otherwise.
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(1998) note, fictitious play (γ = 1) is a form of Bayesian learning in the special case
where a player’s prior beliefs over the distribution of opponent strategies is Dirichlet.

As was the case under reinforcement learning, researchers examining the predictions
of Cournot or fictitious play belief learning have added some kind of noise to the de-
terministic best response. Boylan and El-Gamal (1993) propose that agents play the
deterministic best response with probability 1 − ε, and any of the available actions
a ∈ A with probability ε/A.

Fudenberg and Levine (1998) propose a stochastic approximation to deterministic
fictitious play—smooth fictitious play—which can be implemented, as in Cheung and
Friedman (1997), through the use of the logistic function:

pij (t) = 1

1 + e−xi (t)
, where xi(t) = αi + βirij (t),

where αi is an individual specific fixed effect indicating individual i’s bias for action
j (αi = 0 reveals an unbiased choice) and βi representing the sensitivity of choices to
expected payoff differentials.

These stochastic versions of fictitious play have several advantages over deterministic
fictitious play. First, they do not imply that behavior switches dramatically with small
changes in the data agents use to form beliefs. Second, insisting that strategies remain
probabilistic has certain advantages, e.g., when agents have achieved near convergence
to a mixed strategy equilibrium and need to keep their opponent guessing even though
the differences in utility from the various actions may be quite small. (See Fudenberg
and Levine, 1998 for a further discussion.)

Boylan and El-Gamal (1993) use a Bayesian approach to assess the likelihood that
behavior in 9 different matrix game experiments (conducted by other researchers) is
consistent with either the noisy-Cournot or the noisy-fictitious play hypothesis. They
find that for some games, the Cournot belief hypothesis is favored while for other games
the fictitious play hypothesis is favored. Their over all assessment of the relative validity
of the two learning hypotheses is that fictitious play describes the experimental data
better than Cournot learning.

Cheung and Friedman (1997) estimate their three parameter model (α, β, γ ) on data
from several different bimatrix games. Median estimates of α, β and γ are all signifi-
cantly positive; the finding that γ > 0 rules out the Cournot belief hypothesis. Further
they report they can reject the hypothesis that γ = 1 (fictitious play). Indeed, their esti-
mates of γ always lie between 0 and 1 indicating that subjects’ belief updating process
is neither Cournot or fictitious play, but is instead approximated best by some adaptive
intermediate case.

In addition to asking which belief-based learning model best predicts experimental
data, one can also explore the empirical validity of the belief formation process as-
sociated with these belief-based models. This can be simply accomplished by asking
subjects to state, prior to play of the game, their beliefs about their opponent’s play and
comparing these stated beliefs with those predicted by belief-based learning models.
Nyarko and Schotter (2002) have carried out such an exercise in a simple 2 × 2 ma-
trix game where the unique Nash equilibrium prediction is in mixed strategies. The two
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Figure 7. Stated versus fictitious play beliefs of a typical subject in Nyarko and Schotter’s experiment. Source:
Nyarko and Schotter (2002, fig. 2).

strategies were labeled Green and Red, and the equilibrium calls on both players to play
Green (Red) with probability .4 (.6). Nyarko and Schotter asked subjects to state the
probability with which they thought their opponent would play Green prior to the play
of each round. Subjects’ compensation was determined in part by the accuracy of their
stated beliefs and in part by the payoffs they received from playing the game.

Figure 7 plots stated beliefs against those predicted by fictitious play for a “typical
subject” in Nyarko and Schotter’s experiment. As is apparent, the variance in subject
beliefs is much greater than predicted by fictitious play, and the differences do not de-
crease with experience. A similar difference is found in a comparison of the subjects’
beliefs with Cournot beliefs. Nyarko and Schotter further conclude that best responses
to subjects’ stated beliefs provide a better account of the path of actions chosen by sub-
jects than does reinforcement or a hybrid belief-reinforcement model discussed below.
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This evidence suggests both that subjects are following some kind of belief-learning
process and that a good model of that belief formation process has yet to be developed.

Belief-based learning models also make strong predictions regarding equilibrium
selection in environments with multiple, Pareto rankable equilibria. Essentially, belief-
based models predict that if the initial conditions lie in the domain of attraction of a
particular equilibria under the belief learning dynamic, then, with experience, agents
will learn over time to coordinate on that equilibrium, regardless of its efficiency. This
hypothesis has been experimentally tested by Van Huyck et al. (1997) and Battalio et
al. (2001) in the context of simple coordination games where the domain of attraction
of the two symmetric pure strategy equilibria is defined by the best response separatrix.
Van Huyck et al. (1997) show that both Cournot and fictitious play learning dynamics
predict different equilibrium outcomes depending on initial conditions in a median ef-
fort game (involving strategic complementarities), and their experimental findings are
remarkably accurate on this score. If the initial condition (median effort) lies in the do-
main of attraction of the unique, payoff-dominant equilibrium, subjects subsequently
coordinate on that equilibrium, otherwise they coordinate on the other symmetric Nash
equilibrium. As Van Huyck et al. point out, this behavior is very different from deduc-
tive equilibrium selection principles, which might involve, for instance, calculation of
all equilibria and selection of the payoff dominant one.

The use of belief-based learning models by economists is not limited to normal form
games. Varieties of belief-based learning models have also been used to study bid and
ask behavior in the double auction.16 Gjerstad and Dickhaut (1998) provide a partic-
ularly elegant characterization of the DA and propose heuristic rules by which buyers
and sellers assess and update the probability that their bids or asks will be accepted,
given market history. Using these beliefs together with private information on valua-
tions and costs, individual buyers or sellers propose bids or asks that maximize their
(myopic) expected surplus. The main parameter in their model is the length of memory
that players use in calculating probabilities. Using a stricter convergence criterion than
Gode and Sunder adopt, Gjerstad and Dickhaut show via simulations that their heuristic
belief-learning model can more reliably achieve convergence to competitive equilibrium
than Gode and Sunder’s ZI-C model, and the belief-learning model provides a better fit
to the aggregate human subject data as well. Indeed, in their chapter in this handbook,
Mackie-Mason and Wellman (2006) argue that this heuristic belief-learning model rep-
resents the best agent-based model of the DA. Still, the fit of this belief-learning model
to individual human subject behavior remains to be examined.

Belief-based learning models are less common in the agent-based literature than are
reinforcement learning models, perhaps for the simple reason that belief-based models
require that agents possess more memory (e.g. the histories of their opponents). Still,
some versions of belief-based learning can be found see, e.g. Kandori et al. (1993),
Young (1993, 1998); naive Cournot best response behavior is also found see, e.g. Ellison
(1993) or Morris (2000).

16 Early efforts include Friedman (1991) and Easley and Ledyard (1993).



984 J. Duffy

3.3. Comparisons of reinforcement and belief-based learning

A large literature is devoted to testing whether simple reinforcement or more compli-
cated belief-based learning algorithms better characterize experimental data from a wide
variety of different games. In addition to the papers of Roth and Erev and Cheung and
Friedman mentioned above, other papers comparing versions of these two approaches
to learning include Mookherjee and Sopher (1994, 1997), Camerer and Ho (1999),
Feltovich (2000), Salmon (2001), Blume et al. (2002), Stahl (1999) and Haruvy and
Stahl (2004) among others. In making these comparisons, researchers have adopted
some kind of goodness-of-fit metric or made use of an econometric estimator to assess
the fit of various candidate learning models to experimental data.

The findings from this literature are varied, but several conclusions appear to have
wide support. First, the evidence is very strong that either reinforcement or belief-based
learning models are better predictors of human subject behavior than are the static Nash
equilibrium point predictions. This is strong evidence in favor of the bottom-up, in-
ductive reasoning approaches used by ACE researchers as opposed to the top-down,
forward-looking, deductive reasoning of fully rational players that gives rise to those
equilibrium point predictions. Second, in the simple games that experimentalists have
studied, reinforcement and belief-based learning models do not yield predictions that
are all that distinct from one another and so identifying which rule performs well across
a variety of different games leads to murky outcomes that appear sensitive to various
particulars of the datasets or games examined (Feltovich, 2000; Salmon, 2001). Given
the lack of a clear bias in favor of reinforcement or belief-based approaches over a wide
variety of games, a natural approach is to adopt a hybrid model that allows for both
reinforcement and belief-based learning as special cases, as well as mixtures of both.
The hybrid modelling approach is taken e.g., by Camerer and Ho (1999), and discussed
in Brenner’s (Brenner, 2006) chapter. While this approach has had some success in
explaining data from human subject experiments (see Camerer, 2003 for an extensive
and detailed assessment), the additional complexity of such models, e.g., more parame-
ters to calibrate, may make this approach less appealing to ACE researchers.17 Third,
there is some evidence that if subjects’ information is restricted to their own histories
of play, that reinforcement learning models perform slightly better than belief-based
learning models that use data on opponent’s histories that was unavailable to subjects.
Analogously, in environments where data on opponent’s histories was made available,
players appear to condition their expectations, in part, on those histories, in line with
the predictions of belief-based models (Blume et al., 2002). These findings are not so
surprising, and, indeed, simply confirm that players use histories to form expectations.
Finally, there is some evidence that the complexity of the game, the manner in which
players are matched and the length of play are all important factors in the accuracy of
learning models in predicting the play of human subjects.

17 See, however, a simpler, one-parameter version of their model given in Ho et al. (2002).
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On the latter point, much of the observed differences in the two approaches to mod-
eling learning may be tied up with the relatively small periods of time over which
individual human subject experiments are conducted. While experimentalists often give
their subjects repeated experience with a game or decision, concerns about subject bore-
dom or the salience of participation payments severely restrict the length of the time
series that can be generated in the laboratory for any individual subject. By contrast,
ACE researchers do not feel bound by such considerations, and think nothing of sim-
ulating their models out for very long periods of time. Asymptotically, the behavior of
reinforcement and belief-based models may not be all that different. Hopkins (2002)
shows that both reinforcement learning and stochastic fictitious play can be viewed
as noisy versions of replicator dynamics (discussed later in Section 4.1), and that the
asymptotic predictions of these two models may be the same; roughly speaking if an
equilibrium is locally stable under stochastic fictitious play, then the same holds true
under reinforcement learning. Duffy and Hopkins (2005) conduct experiments with a
longer than typical number of repetitions under various information conditions in an
effort to test this prediction and find that it has some, qualified support. An implication
of these findings for ACE researchers is that the kind of learning rule that agents are
endowed with may not be of such great importance if the research interest lies in the
long-run behavior of the agent-based system.

3.4. Summary

Unlike ZI agent models, reinforcement and belief-based learning models presume that
agents have some memory. These models of inductive reasoning have been primarily
studied in the context of simple two player games. Reinforcement learners condition
their actions on their own histories of play and abide by the principle that actions that
have yielded relatively high (low) payoffs in the past are more (less) likely to be played
in subsequent periods. Belief-based learning models assume that players have history
dependent beliefs over the actions their opponents are likely to play, and they choose
actions that are myopic best responses to these beliefs. While there is no guarantee that
either type of learning model converges to an equilibrium, these models have neverthe-
less proven useful in tracking the behavior of human subjects in controlled laboratory
settings.

Reinforcement learning models have been widely used in the agent-based literature,
perhaps for the simple reason that they require only information on an individual’s own
history (payoffs and actions). In complex, multi-agent settings, this parsimony of infor-
mation may be an important consideration in the modeling of agent learning. On the
other hand, in settings with just a few agents, and especially in settings where agents
interact with one another repeatedly, a belief-based learning approach may be more ap-
propriate. Indeed, the available experimental evidence suggests that agents do condition
their actions on both their own history of play and, when available, on information about
the play of their opponents. However, the manner in which they do this does not appear
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to be strictly consistent with either reinforcement or belief-based learning models. As-
ymptotically, there may be little difference between the two approaches.

4. Evolutionary algorithms as models of agent behavior

In addition to directed random (ZI-agent) searches and individual learning approaches,
agent-based researchers have used a variety of different evolutionary algorithms to
characterize the behavior of populations of heterogenous, interacting, boundedly ratio-
nal agents facing various economic decisions. Examples include replicator dynamics,
genetic algorithms, classifier systems and genetic programming. These evolutionary
algorithms differ from the learning processes considered so far in several respects.
First, evolutionary algorithms were designed to mimic naturally occurring, biological
processes. Not surprisingly, these algorithms can be difficult for social scientists to in-
terpret and for experimentalists to test in the laboratory. Second, these methods are
population-based, which is to say that the fitness of a particular individual or strategy
(the distinction becomes blurred in this literature) is based on its performance relative
to a certain population of individuals (or strategies). Thus, these algorithms presume
that fitness values across individuals/strategies are readily and immediately available
for comparison purposes; in this regard, they can be viewed as the most complex class
of algorithms (or least decentralized) in the set of approaches considered in this chapter.
Third, as with ZI or reinforcement learning, evolutionary algorithms are not belief-
based; players are not aware that they are playing a game against other players and
do not act strategically in any way. Fourth, some evolutionary algorithms, e.g., genetic
algorithms and genetic programming, are employed in environments where strategies
or equilibrium policy functions cannot be characterized analytically. This (alternative)
use of evolutionary algorithms is owing to the performance of these algorithms as func-
tion optimizers in complex landscapes; indeed, genetic algorithms were developed for
precisely this purpose. Finally, evolutionary algorithms may or may not be well-suited
to modeling economic decision-making. Evolution is often a slow process and so algo-
rithms that mimic this process tend to work best on an unchanging landscape. However,
economic systems are often modeled as state dependent, and may also be subject to
temporary shocks or more permanent structural shifts. In such environments, the perfor-
mance of evolutionary algorithms may be degraded relative to the less volatile (natural)
landscapes for which they were developed.

Despite these potential problems and shortcomings, evolutionary algorithms are
widely used by agent-based modelers. By contrast with the other agent-based ap-
proaches we have discussed, evolutionary algorithms have not been developed or
adapted to explain data from economic decision-making experiments. For the most part,
the opposite has occurred; agent-based researchers have sought to validate the predic-
tions of evolutionary algorithms by conducting experiments with human subjects placed
in the same environments. In certain cases, the experimental environment has been mod-
ified to better approximate the evolutionary environment! These comparisons have met
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with some success, but as I will argue, some difficulties of interpretation remain, for
example, the question of the appropriate time-frame for comparisons. It may simply be
that evolutionary algorithms cannot be adequately tested using human subject experi-
ments.

4.1. Replicator dynamics

Replicator dynamics comprise the simplest class of evolutionary algorithms that econo-
mists have used to model the behavior of populations of players. See Hofbauer and
Sigmund (1988, 1998) for a complete treatment. These models presume that the set of
strategies (or phenotypes) does not evolve, and that reproduction is asexual. The as-
sumption of a small strategy space is most likely to be satisfied in simple games, and
so it is not surprising that replicator dynamics have mainly been employed by game
theorists.

To understand how replicator dynamics work, consider a game with N strategies, and
let s(t) ≡ (si(t))i=1,2,...,N be a vector representing the proportions of the N strategies
in the population at time t ;

∑
i si(t) = 1 for all t . The N × N payoff matrix M = (mij )

here represents the payoff earned by each strategy in the population when matched
against every other strategy, including itself. For illustration purposes, we focus here
in the simplest case where M is symmetric, known as the one-population model. The
fitness of strategy i at time t is given by Mis(t), where Mi denotes the row of the payoff
matrix corresponding to strategy i. The idea of assessing how a strategy fares against the
entire population of strategies is what Maynard Smith termed “playing the field.” The
deterministic replicator dynamic posits that strategy i’s representation in the population
be updated as follows:

si(t + 1) = si(t)Mis(t)

s′(t)Ms(t)
,

where the denominator can be interpreted as the average fitness level in the entire pop-
ulation of strategies, including strategy i. The idea of the replicator dynamic is that
strategies with above average fitness see their proportion in the population increase
while those with below average fitness see their proportion in the population decrease.
Further, if ŝ is a Nash equilibrium of the symmetric game M , then it is also a fixed point
of the replicator dynamic. In the deterministic version of the replicator dynamic, the
proportion of certain strategies can go to zero, i.e., extinction is possible. A stochastic
version of replicator dynamics due to Foster and Young (1990) eliminates extinction,
and can have quite different limiting dynamics than the deterministic version.

Friedman (1996) and Cheung and Friedman (1998) have examined the predictions
of replicator dynamics using data from human subject experiments. Friedman stud-
ies the predictions of the replicator dynamic for equilibrium stability, and Cheung and
Friedman compare replicator dynamic predictions with that of the individual, belief-
based, stochastic fictitious play learning algorithm. Most of the games they study are
two player, binary choice games with a unique Nash equilibrium in either mixed or
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pure strategies. In such games, the state, s(t)′ = (s1(t)), (1 − s1(t)), and the replicator
dynamic for strategy s1 is written as:

�s1(t + 1)

s1(t)
= β

[M1s(t) − s(t)′Ms(t)]
s(t)′Ms(t)

,

where β > 0 represents an adjustment parameter, and �s1(t + 1) = s1(t + 1) − s1(t).
Cheung and Friedman omit the denominator on the right hand side, s(t)′Ms(t), which
serves as a normalization device ensuring that proportions sum up to one; in the binary
choice case this device is unnecessary, and furthermore, Cheung and Friedman report
that the unnormalized version fits the data better.

In their experimental design, these authors make some accommodation for the “play-
ing the field” nature of the replicator dynamic; in their “mean matching” treatment,
each player is matched against all other players, receiving the average payoff from his
choice of action against that of all others. The other matching treatment is the standard,
random pairwise matching protocol. While game theory would treat these two environ-
ments very differently, with the first corresponding to an n-player repeated game and
the second to a two-player, one-shot game, the only difference under the replicator dy-
namic lies in the greater variance in payoffs that players receive in the random pairwise
matching protocol. Friedman and Cheung and Friedman are careful to address issues
concerning group size, the length of play of a single game, and of the information that
players receive, all of which are important to approximating the environment for which
the replicator dynamic was devised.

Cheung and Friedman (1998) use experimental data from the two binary choice
games they study to estimate the linear equation:

�s1(t + 1)/s1(t) = α + β
[
M1s(t) − s(t)′Ms(t)

] + γ dt + ε,

where dt = I (t)[M1s(t) − s(t)′Ms(t)], I (t) = 1 if the mean matching treatment
was used, and ε is an error term. They report that α is typically significantly differ-
ent from zero, implying a persistent bias from the pure replicator dynamic, and that
β is significantly positive as is γ . The latter finding suggests that the mean matching
protocol aids in the speed of adjustment relative to random pairings. In a head-to-head
comparison of the explanatory power of the replicator dynamic versus an individual, be-
lief learning model—the three parameter weighted fictitious play model of Cheung and
Friedman (1997) described in Section 3.2—Cheung and Friedman report that over the
two games they study, the belief learning model outperforms the replicator dynamic,
where performance is measured by either the root mean squared errors or the mean
absolute deviations computed from the three parameter belief-learning or replicator dy-
namic model.

This finding suggests that there is some value to thinking of human players as playing
best responses to beliefs about their opponents’ actions rather than thinking of them
as playing a game against nature. On the other hand, it is less clear that Cheung and
Friedman have successfully implemented the evolutionary game environment germane
to the use of replicator dynamics or that such an environment could be implemented
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in the laboratory, where budget and time constraints limit the number of subjects and
replications of a treatment that are possible. Further work reconciling the replicator
dynamic with human learning processes is needed.

4.2. Genetic algorithms

Genetic algorithms (GAs) have been widely used by economists to model learning by
populations of heterogenous, adaptive agents especially following Sargent’s (Sargent,
1993) encouraging assessment and the subsequent use of GAs by his student, Jasmina
Arifovic. These algorithms differ from replicator dynamics in that they allow for the
development of new strategies or decisions that may not have been included in the
initial population. As such, they are efficient sampling methods most appropriate to
large decision or strategy spaces.

Indeed, genetic algorithms, originally developed by Holland (1975), are stochastic,
directed search algorithms based on principles of population biology.18 These algo-
rithms have been demonstrated to perform well in large or “rugged” search spaces where
classical methods, e.g., grid search or gradient descent, are either inefficient or suscepti-
ble to getting stuck at local optima. While there is wide variation in the specific details of
genetic algorithms, there are some general principles and procedures that are regarded
as relatively standard. First, the researcher must specify the objective function of the
genetic algorithm search, the parameter values that will be used to maximize (or mini-
mize) that objective, and the range of admissible parameter values allowed in the search
for an optimum. Second, vectors of parameters, representing candidate solutions are
encoded as strings of finite length L. The strings are intended to mimic chromosomes,
with the individual elements of a string representing genes; hence the name genetic al-
gorithm. In the earliest implementation of genetic algorithms (e.g., Goldberg, 1989),
parameters were encoded using the binary {0, 1} alphabet, and much of the theory of
genetic algorithms as function optimizers is developed for binary encodings. However,
more recently, researchers have made use of real-valued, character, or tree encodings
in place of traditional binary encodings. Researchers typically work with a population
of strings of some fixed size, N . Third, the performance of each string in the popula-
tion is evaluated using the objective criterion—this is the string’s fitness. Fourth, a new
generation of N strings is determined using operations that mimic natural selection and
naturally occurring biological processes.

The first step in a genetic algorithm, known as selection, is to randomly select N

strings from the existing population in such a way that the fitness of the N randomly se-
lected strings is on average higher than the average fitness of the population from which
they were chosen. This selection operation can be accomplished in many ways, includ-
ing the biased roulette wheel selection mechanism originally proposed by Holland, in

18 For a complete treatment of genetic algorithms see, e.g., Goldberg (1989) or Michalewicz (1996). Dawid
(1999a) provides a thorough discussion of genetic algorithms as applied to economic problems. See also
Sargent (1993) and Judd (1998).
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g = 0
initialize population of N strings, P(0)
while tolerance criterion remains unmet or g < G

evaluate fitness of strings in P(g)

select N strings for P(g + 1) based on relative fitness
apply crossover to selected strings
apply mutation to recombined strings
evaluate tolerance criterion
g = g + 1
end while

Figure 8. Pseudo-code for a genetic algorithm.

which the likelihood of selecting a string is proportional to its relative population-wide
fitness or other methods e.g. binary tournaments or rank order lists. The selection oper-
ation is intended to mimic Darwinian survival-of-the-fittest. Once a new set of N strings
has been selected, these strings undergo two main biological operations that mimic ge-
netic inheritance. The first, crossover, typically involves randomly pairing strings and,
with some probability, pc, randomly cutting the two strings at one or more points and
swapping elements. Once crossover is applied to all strings, a second operator, mutation
is applied, which involves randomly changing each element in a string with a (small)
probability pm, to some other value; in the case of binary strings, a ‘0’ is flipped to a
‘1’ and vice versa. After these operations are complete, the new generation of N strings
is evaluated in fitness terms and the process of choosing a new generation begins again.
The genetic algorithm is terminated after a set number of generations, G, or after some
tolerance criterion based on the objective function has been satisfied. Some pseudo-code
for a genetic algorithm is given in Figure 8.

The main theoretical result for genetic algorithms is known as the schema theorem
(Holland, 1975). The idea of a schema can be understood by the addition of a don’t care
character, *, to the binary alphabet that is typically used to encode strings. A schema
is a template characterizing a set of chromosomes. For example, the schema of length
5, (*101*) characterizes the set of chromosomes {(11011), (11010), (01011), (11010)}.
The order of a schema is the number of fixed positions; e.g., the order of the schema in
our example is 3. The schema theorem (proved, e.g. in Goldberg, 1989) states that low-
order, above-average (below-average) schema appear exponentially more often (less
often) in subsequent generations of a genetic algorithm. This theorem follows directly
from the operation of fitness-proportional selection. These low-order schema are some-
times referred to as “building blocks.” Crossover plays the role of introducing new
schemata and mutation also contributes to variability while at the same time preventing
premature convergence to local optima.

How are the genetic operators to be interpreted when applied to economic systems?
Several authors, e.g., Arifovic (1996), Bullard and Duffy (1998), Dawid (1999a), Riech-
mann (1999, 2001a, 2001b), have offered interpretations. One can think of the individual
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strings as representing the strategies/decisions of individual agents, so that the GA is
made up of many interacting agents. Alternatively, one can imagine there is a single
agent with the individual strings of the GA representing different decisions/strategies
that agent might adopt. The selection operation is perhaps the easiest to defend; this
operator just insures that agents or decisions that have worked well in the past are more
likely to be chosen in the future while decisions that have fared poorly are more likely
to be discarded. This probabilistic choice of decisions based on relative payoff or fitness
success is similar to stochastic reinforcement learning or stochastic replicator dynamics.
The turnover of population need not be interpreted so literally as one of birth and death;
instead it can be interpreted as a turnover of decisions or ideas among players who are
long-lived. The crossover/recombination operator is easiest to interpret if the popula-
tion of strings is viewed as representing individual agents. In that case, crossover can be
thought of as communication between pairs of agents, who exchange bits and piece of
ideas, though the population as a whole retains core principles (low-order schema) that
have yielded high payoffs in the past. Finally, the mutation operator can be viewed as
representing trembles or experimentation.

A further issue concerns the choice of GA parameters: the number of strings, N , the
string length, the mutation and crossover parameters, pc, pm, etc. Here, the practice has
been to adopt parameterizations that computer scientists have found to perform well on
test suites of difficult static optimization problems. These optimization problems are not
ones that are so applicable to the dynamic settings studied by economists, and so further
research into this issue would be of some value.

What about the external validity of simulations using genetic algorithms? Arifovic
(1994) was the first to directly compare simulations of a genetic algorithm with the
behavior of human subjects in a controlled laboratory experiment.19 The economic en-
vironment studied was a textbook version of Ezekiel’s (Ezekiel, 1938) “Cobweb” model
of demand and supply for a single good. In this model, market demand in period t is a
decreasing, linear function of current period price, pt , while market supply in period t

is an increasing, linear function of the market price that suppliers expected in period
t − 1 would prevail in period t , Et−1pt ; the latter assumption captures the notion that
it takes time (one-period) to produce the good, and makes the model dynamic. Arifovic
followed experimental researchers, Carlson (1968) and Wellford (1989), who adopted
Ezekiel’s assumption of naive and homogeneous expectations, i.e. Et−1pt = pt−1 as a
benchmark assumption for expectation formation; in that case, the equilibrium is stable
(unstable) if the ratio of the slope of the supply curve to the slope of the demand curve,
in absolute value, is less than (greater than) unity. Bray and Savin (1986) have shown in
a stochastic version of the linear cobweb model that adaptive learners, running regres-
sions of prices on past prices, can learn the equilibrium price level in the stable case but

19 Similarly, Axelrod (1987) sought to determine whether the human-submitted ‘tit-for-tat’ strategy that won
his (Axelrod, 1984) prisoner’s dilemma tournament would emerge in a simulation exercise that used a genetic
algorithm to evolve strategies (it did).
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not in the unstable case.20 By contrast, a main finding of the experimental studies was
that groups of subjects generally converged to a neighborhood of the unique equilibrium
regardless of whether that equilibrium was stable or unstable under the naive expecta-
tions assumption. However, the variance of quantities or prices was much greater and
more persistent in the unstable case as compared with the stable case.

Arifovic represented firms (suppliers) in two ways. In the single-population repre-
sentation, each firm was represented as one of N = 30 strings in a single population.
In the multiple population representation, each of the m firms is represented by a dif-
ferent population of 30 strings. In both cases, each string in a population represents a
decision as to how much a firm might produce in the current period, qi(t) ∈ [0, q̄],
absent knowledge of the market price that will prevail. This decision was encoded as a
string, of length 30, using a binary alphabet; initial ‘bit’ values were randomly deter-
mined. The fitness criterion used was the firm’s current period profit; to evaluate fitness,
strings had to be decoded to real quantities. In addition to using the standard genetic al-
gorithm operations of selection, crossover and mutation on the binary strings, Arifovic
adopted a fourth operator, which amounted to an augmented, elitist selection criterion
which Arifovic called “election.” Following crossover and mutation, which yields two
new strings from two parent strings, the fitness of the new, offspring strings is evaluated
and compared with the fitness of the parent strings; of this group of four strings, the two
strings with the highest fitness values are allowed to enter the next generation of candi-
date solutions. This election operator simply allows the genetic algorithm to converge,
asymptotically to a solution; without it, mutations would lead to persistent heterogene-
ity in the string population in the neighborhood of a solution. In the case of the single
population representation, Arifovic reported the average value of q(t) in the population
of 30 strings; in the case of the multiple population simulation, Arifovic imagined that
each firm randomly chose one of its strings to determine its quantity decision in each pe-
riod; she then reported the average of these m quantity decisions. In certain simulations,
the model parameters were chosen to be the same as in one of Wellford’s treatments,
including the number of periods, 30, and the number of firms, m = 5.

Figure 9 shows results for the unstable parameter case; the left panel shows the
average quantity produced (with a 1-standard deviation band) for the human subject ex-
periments and the right panel shows the same for a simulation of the multiple-population
version of the genetic algorithm over the same number of periods. Both the human sub-
jects and the genetic algorithm converges to a neighborhood of the equilibrium quantity
of 14 though convergence takes longer and is more volatile in this ‘unstable case’ than
in the stable case (not shown). However, the average quantity in the GA simulation ap-
pears to get very close to the equilibrium prediction beginning after period 10 while the
same cannot be said of the experimental data. However, consistent with the experimen-
tal evidence, Arifovic is able to reject the null of no difference between the volatility

20 Hommes (1994) studies the more general case where demand is linear and supply is nonlinear. He provides
conditions under which adaptive learning dynamics converge to limit cycles or chaos in the unstable case.
Sonnemans et al. (2004) provide experimental evidence in support of Hommes’ predictions.
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Figure 9. Average quantity in the Cobweb model, unstable case (plus/minus one st. dev.). Left panel: human subject data, right panel: multiple-population GA
simulation. Source: Arifovic (1994).
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of prices in the stable and unstable cases using the simulation data. These findings pro-
vide some support for the reasonableness of genetic algorithms as models of adaptive
processes.

Several papers explore GA learning in general equilibrium, overlapping generation
models of money, and compare the results with experimental findings. Arifovic (1996)
studies exchange rate volatility in a two-country, two-currency, two-period overlap-
ping generations model due to Kareken and Wallace (1981). Details of this model are
discussed in LeBaron’s (LeBaron, 2006) chapter. Arifovic’s main conclusion is that,
counter to the theoretical prediction derived under the rational expectations assumption,
under genetic algorithm learning, the exchange rate displays persistent volatility, which
is due to the persistence of mutation and the election operator.

By contrast, Arifovic (1995) shows that in a single country model, an equilibrium
with valued fiat currency and low inflation is asymptotically stable under GA learning
with persistent mutation and the election operator in place. The selection by the GA of
the stationary, low inflation equilibrium, rather than another high inflation, stationary
equilibrium is consistent with the laboratory findings of Marimon and Sunder (1993).
Other, homogeneous and non-evolutionary learning algorithms, such as recursive least
squares learning, fail to converge to the same low inflation equilibrium (see, e.g., Marcet
and Sargent, 1989).

In Arifovic’s work, the strings of the GA encode decisions that agents make, e.g.,
how much to consume in the first period. The GA then works to find the optimal de-
cision, given feasibility and budget constraints. In Marimon and Sunder’s (Marimon
and Sunder, 1993, 1994) overlapping generation experiments, subjects were not asked
to make consumption/savings decisions as pilot studies suggested that subjects had a
difficult time solving that kind of intertemporal optimization problem. Instead, Mari-
mon and Sunder asked subjects to provide forecasts of the price level they expected
would prevail in the next period. Given a subject’s forecast, the computer program
solved that subject’s optimal consumption/savings allocation and determined market
clearing prices. Bullard and Duffy (1999) adopted this same learning-how-to-forecast
design in a GA-learning simulation of the environment studied by Arifovic (1995). They
imagine that agents have some belief about how prices in period t + 1 will be related to
prices in period t , and the strings of the GA encode this belief. Given the price forecast,
the program optimally determines each agent’s consumption/savings decision, along
with market clearing prices. Bullard and Duffy (1999) show that this learning-how-to-
forecast implementation of GA learning results in findings that are consistent with the
experimental evidence of Marimon and Sunder (1994) and also with Arifovic (1995)’s
learning-how-to-optimize implementation of GA learning.

Several papers use GAs to understand findings from auction experiments. A difficulty
with auctions is that participants frequently fail to win an item or agree to a transaction,
so that the fitness of strategies may need to be assessed over a longer period of time than
is typical in other applications of GAs.

Andreoni and Miller (1995) use genetic algorithms as a way of studying how close
populations of adaptive agents might come to learn equilibrium bid functions in a vari-
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ety of auction formats: first and second price affiliated-values auctions, first and second
price private-values auctions, and common value auctions. The design of their sim-
ulation experiments is aligned with that of laboratory experiments with paid human
subjects in several dimensions, e.g., the number of bidders in a group and the informa-
tion available to these bidders. However, their 20 simulation runs of 1000 generations
per auction format is more difficult to compare with the 20–30 auctions that human sub-
jects participate in the typical experiment. In Andreoni and Miller’s implementation, the
genetic algorithm is employed to search over two parameters of a general linear bidding
function of the form

b(xi) = βi1xi + βi2ε,

where xi is agent (string) i’s valuation and ε is some distribution parameter that varies
according to the knowledge that agents are assumed to have, e.g., whether valuations
are private-independent, private-affiliated or common. This functional form nests (to an
approximation) all the equilibrium bid functions that are predicted to obtain in the var-
ious auction formats. The binary strings of the GA encode the two parameters, β1 and
β2. For the standard GA implementation, Andreoni and Miller report that the GA sim-
ulations come closest to learning the equilibrium bid functions in the affiliated private
value, first or second price auction formats and have more difficulty achieving the equi-
librium bid functions in the independent-private and common value formats. Consistent
with evidence from human subject experiments, e.g. Cox et al. (1982), Kagel and Levin
(1986), they find violations of revenue equivalence between first- and second-price auc-
tion formats, and they find that smaller groups of 4 rather than 8 bidders are less prone
to the winner’s curse in common value auctions.

Dawid (1999b) examines genetic algorithm learning in a sealed bid, double auction
market. The N buyers’ each have some value, v, from consuming a unit of the single
good while the N sellers’ have some cost, c, of producing a unit of the good, and 1 >

v > c > 0. The strings of the GA encode the buyers’ bids and the sellers’ asks. In each
period, buyer and sellers are randomly paired. If a buyer’s bid, pb, exceeds a sellers’
ask, pa , a transaction occurs at price p = (pa +pb)/2; otherwise no transaction occurs.
Profits are determined in the usual way, v − p for buyers and p − c for sellers, and
the fitness of buyer/seller rules and application of genetic operators is assessed every
m periods. Dawid shows analytically that the only locally stable equilibria under GA
dynamics are those where all buyers (sellers) submit the same bid (ask) in the interval
[v, c]. In 50 simulation runs where v = 1 and c = 0, he reports that the most common
outcome is a single price equilibrium in a small neighborhood of .5. Interestingly, this
finding is quite similar to that observed in an experiment conducted by Valley et al.
(2002), where values of v and c are drawn randomly from [0, 1] and after learning
these values, pairs of players were allowed to communicate with one another prior to
submitting bids/asks. The most common outcome, in cases where gains from trade are
possible (v > c), was for both buyer and seller to name the same price. While this
experimental finding may not be so surprising, the fact that the GA simulation delivers
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this same finding, without any explicit communication between populations of buyers
and sellers, is quite interesting.

Finally, there are several papers comparing GA simulations with experimental find-
ings in labor markets. Pingle and Tesfatsion (2001) examine the impact of varying levels
of non-employment benefits on worker–employer matches and on-the-job cooperation
using data from both human subject experiments and computational experiments that
make use of genetic algorithms. The environment studied is a repeated two-stage game
where in the first stage workers decide whether (and for which employer) to work or
remain unemployed while employers decide whether to accept these offers or keep
a position vacant. At the end of this first stage, unemployed workers and employers
with vacancies receive a fixed non-employment benefit while matched workers and
employers proceed to the second stage, which involves play of a prisoner’s dilemma
game, with strategies labeled ‘shirk’ and ‘don’t shirk.’ The single treatment variable was
the size of the non-employment benefit. The human subject experiments revealed that
increases in the non-employment benefit both decreased the frequency with which re-
lationships formed, and the frequency of mutual cooperation between worker-employer
pairs, though this effect was not monotonic. Further, long-term relationships between
the same worker and employer were rare. The computational labor market had four
times as many workers and employers as the human subject experiment and was simu-
lated for a much longer period of time: 1000 generations. Each generation consisted of
successive trade cycles followed by an evolutionary step that updated strategies; the ge-
netic algorithm operates in the latter stage. A trade cycle consisted of both a matching
process, which utilizes a reinforcement learning algorithm to determine the expected
utility of potential partners, followed by a work-site interaction among matched play-
ers. The work-site interaction was governed by a finite state automaton, and the genetic
algorithm was used to search for potentially better work-site rules in the evolution step.
Among the findings from simulations of this model are that, consistent with the hu-
man subject experiments, the frequency of employment relationships decreases with
increases in the non-employment benefit. On the other hand, by contrast with the human
subject findings, in the computational experiment, nearly all employers and workers end
up in long-term fixed relationships, and either mutual cooperation or mutual defection
becomes the norm, depending on initial conditions. The authors suggest that these dif-
ferences may be owing to differences in the design of the two experiments, in particular
the different number of employers and workers in the computational versus the human
subject experiments appears to have played an important role in the outcomes, though
the different time-frames of analysis may also be a contributing factor.

Ünver (2001a) and Haruvy et al. (2002) use genetic algorithms to model the two-
sided, worker-firm matching process in markets for medical intern and federal law clerks
and compare these results with human subject experiments. These entry-level labor mar-
kets as well as others, have been susceptible to a phenomenon known as unraveling, in
which the date at which firms and workers agree to contracts becomes increasingly
earlier in time relative to the actual start-date of employment leading to possible inef-
ficiencies in matches due to unavailability of relevant information. Some markets have
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sought to address this problem by having centralized clearinghouses that match work-
ers with firms. Ünver studies three centralized matching mechanisms used in British
medical-intern markets. Of these three, two are still in use, though only one of these
two is stable in the Gale and Shapley (1962) sense. Ünver uses a GA to encode and
model the evolution of worker-firm strategies under these three mechanisms. Among
other findings, he shows that the theoretically unstable, “linear programming” matching
protocol may not be susceptible to unraveling under the GA adaptation, which is con-
sistent with the continued use of this mechanism in the field. He is able to corroborate
other findings of two-sided matching experiments conducted by Kagel and Roth (2000)
and Ünver (2001b) that explore the unraveling in the British medical intern markets.

Haruvy et al. (2002) conduct a parallel experiment with human subjects and with
artificial agents modeled using a genetic algorithm with the aim of studying two-sided
matching in the market for federal law clerks. Applicants initially decide whether to
submit applications to judges of varying qualities, and judges may in turn accept of-
fers. The grades of applicants, affecting the payoff from a match, are only fully revealed
later, during a centralized matching process. Matches not made by the end of the first
two periods (years) are, in certain treatments, subject to a centralized match in period 3
using a stable matching protocol. In the ‘idealized-centralized’ treatment, applicants are
not required to submit offers prior to the centralized match in order to participate in it,
while in the coerced-centralized treatment they are required to submit offers prior to the
match. In both cases, offers accepted prior to the centralized match date are binding,
consistent with practice in this market, though in the idealized treatment, binding offers
can be avoided by waiting for the centralized match. In the human subject experiments,
the authors report that many more subjects in the role of applicants and judges wait
for the centralized match under the ‘idealized-centralized’ treatment than do so under
the coerced-centralized treatment, and given the additional information that can be ob-
tained by waiting, welfare is higher in the former treatment than in the latter. In genetic
algorithm simulations, where the strategies of applicants and judges co-evolve, a similar
finding obtains. Haruvy et al. are careful to compare their findings for human subject
experiments over the same time-scale used in the genetic algorithm simulations. They
then carry out the genetic algorithm simulation exercise much further in time, and find
that this difference becomes even more pronounced over time. This seems a reasonable
merger of the two technologies they use to understand these matching markets. As they
observe (p. 3), “the computations will give us some assurance that our experimental
results are not artifacts of slow learning in the laboratory, while experiments will as-
sure us that the behavior produced by the genetic algorithms is in fact similar to human
behavior.”

The findings from all of these studies provide some support for the reasonableness
of genetic algorithms as models of adaptive learning by populations of heterogenous
agents. Genetic algorithms appear best suited for large, complex search spaces where it
is more efficient to sample from the set of possible actions/strategies than to enumerate
all possibilities and consider their relative fitness at every decision step. At the same
time, most of the studies treat the genetic algorithm as a kind of black box generator of
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new-and-improved decisions or strategies, without much regard to the interpretation of
genetic operators, or how they compare with actual human decision-making processes.
Toward this goal, it would be of interest to consider the marginal contribution of each of
the genetic operators in explaining data from human subjects, an exercise akin to adding
additional structure to ZI-algorithms or moving from reinforcement to hypothetical re-
inforcement (belief) learning models.

4.3. Comparisons between genetic algorithm and reinforcement learning

Two papers have compared the performance of genetic algorithm learning and reinforce-
ment learning in terms of explaining data from human subject experiments. Haruvy and
Ünver (2003) study matching behavior in procurement-type markets where the match-
ing decision is consequential to both the seller and the buyer. They are interested in the
question of whether buyers and sellers achieve a stable outcome, á la Gale and Shap-
ley (1962) and if so, whether the stable matching is optimal for the party who initiates
a proposed match (buyers or sellers). As the strategy space in the repeated game they
consider is highly complex, and there are multiple stable outcomes, deductive reason-
ing is not very useful and so they turn to inductive reasoning processes, in particular,
reinforcement learning and genetic algorithm learning, to predict what will happen in
the experiments they conduct with human subjects. Both the reinforcement and genetic
algorithm learning simulations predict that in seller- (buyer-) proposing markets, sellers
(buyers) are most likely to achieve the seller- (buyer-) optimal stable outcome, and this
prediction is consistent with the experimental findings. Aside from the observation that
the two learning models yield the same prediction however, Haruvy and Ünver do not
go into a deeper comparison of the performance of the two learning models.

By contrast, Arifovic and Ledyard (2004) look for a clear winner between reinforce-
ment and genetic algorithm learning in the context of a repeated public good game
that makes use of a Groves–Ledyard allocation mechanism. As the authors point out,
this environment differs from those typically studied by learning researchers in that the
strategy space is continuous. They compare the predictions of an “individual evolu-
tionary learning” model (a GA-without-crossover for each individual’s strategies) with
Roth–Erev-style reinforcement learning and Camerer and Ho’s (Camerer and Ho, 1999)
hybrid reinforcement-belief learning algorithm in terms of the fit of simulations of these
models to the experimental data. To facilitate a comparison, some discretization of
the action space is necessary. They report that for two different ways of discretizing
the strategy space, reinforcement learning fares substantially worse than the other two
learning approaches in that it takes much longer to converge to the Nash equilibrium
than does the human subjects. However, the version of reinforcement learning they use
is not as general as Roth and Erev allow. For instance, there is no forgetting factor nor
is there any spillover in the probability choice updating to nearby strategies. Given the
large strategy space considered, it is not so surprising that the genetic algorithm appears
to perform best for the reasons noted above. However, before concluding in favor of
one approach over others, it would be useful to compare the predictions of evolutionary
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and reinforcement-type learning models on a broad range of games including those with
both continuous and discrete strategy sets.

4.4. Classifier systems

Classifier systems, first proposed by Holland (1986), are inductive, rule-based learn-
ing systems that combine reinforcement-type learning over a set of simple logical rules
called classifiers, with occasional use of a genetic algorithm search for new classifiers.
As with genetic algorithms, there are many variants, but a typical classifier system con-
sists of four parts: 1) a set of if–then decision rules or classifiers, 2) an accounting
system for assessing the strength of classifiers and for apportioning credit, 3) an auction
system for determining which classifiers are invoked and 4) a genetic algorithm for the
introduction of new classifiers. Classifier systems are perhaps best viewed as models of
individual learning, akin to expert systems, while genetic algorithms, as typically mod-
eled are often interpreted as models of population or social learning. As Vriend (2000)
points out, simulations with classifier systems used to model social learning (mimicry)
at the population level can yield outcomes that differ substantially from simulations with
classifier systems used to model learning at the level of individual agents, especially in
environments where strategic considerations come into play.21

The first use of a classifier system (or a genetic algorithm) in an economic application
was due to Marimon et al. (1990), who used a classifier system to model behavior in
Kiyotaki and Wright’s (Kiyotaki and Wright, 1989) model of money as a medium of
exchange. That model has equal numbers of three types of agents who produce either
good 1, 2 or 3, but who desire to consume another good, e.g. type 1 produces good 2,
type 2 produces good 3, and type 3 produces good 1. Each agent may store a single unit
of a good at a time, and the goods have different storage costs, with good 1 being the
least costly to store and good 3 being the most costly to store. Agents receive utility
from consumption of the good they desire in an amount that exceeds the highest stor-
age cost. In each period, agents are randomly paired and decide whether to engage in
trade with their match. Trades must be mutually agreed upon by both parties, in which
case inventories of the two goods are swapped; otherwise, inventories of goods do not
change. Agents earn utility only when they trade for the good they desire; in that case
they immediately produce a new unit of their production good. In every period they in-
cur storage costs based on the type of good they hold in inventory. The optimal trading
strategy for a type 2 or 3 player is a fundamental, cost-reducing pure strategy in which
they agree (refuse) to trade the good they hold in storage for less (more) costly-to-store
goods in route to getting the good they desire to consume. On the other hand, depending
on parameter values, type 1 players may find it optimal to adopt the fundamental strat-
egy, or a speculative strategy in which they trade their production good 2 for the more
costly to store good 3 with the rational expectation that speculating in the more costly
to store good 3 will reduce the time it takes to acquire the good they desire, good 1.

21 For a further discussion of this issue see, e.g., Riechmann (2002) and Arifovic and Maschek (2004).
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In Marimon et al.’s implementation, there are two classifier systems for every agent, a
set of trade and consumption classifiers represented by strings. The trade classifier takes
as input the good an agent has in storage and the good that his match has in storage, and
provides, as output, a decision (or message) of whether to trade or not. The consumption
classifier takes as input the good a player has in storage and provides as output, a deci-
sion (message) of whether or not to consume that good. Each classifier has a strength or
fitness measure associated with it. In each period, the collection of classifiers that satisfy
the current state for an agent, consisting of the good the agent holds in storage and the
good in storage of the matched player, bid a fraction of their current strengths in an auc-
tion that determines which classifier the agent adopts; the highest bidding classifier of
each type is chosen, its bid is deducted from its strength and its decision is implemented.
The bid of the winning exchange classifier in the current period is paid to (added to the
strength of) the previous period’s winning consumption classifier, which determined
the current good the agent holds in storage, while the bid of the winning consumption
classifier is paid to the current period winning exchange classifier, which determine the
good the agent holds in storage. This payment system is what Holland termed a ‘bucket
brigade’ wherein classifiers that are not necessarily active in the current period, but
which were critical for activating classifiers that were active can still earn some share
of credit and see their strengths improve. The current winning consumption classifier
earns the ‘external’ payoff associated with its decision, which depends on whether the
good in storage is the desired good or not. Finally a genetic algorithm is called on, with
some decreasing frequency, to generate new classifiers, with the population of parent
strings being selected from the population of classifiers according to relative strengths.
The set of strings resulting from the genetic operators are assigned the strengths of the
parent strings.

In simulations of this system, Marimon et al. report many interesting findings, but
the main finding is that speculative trading strategies (e.g. by type 1 players) are not
observed in environments where, in equilibrium, they would comprise a unique best
response. Marimon et al. comment on this finding by observing that the behavior of
the artificial agents, modeled using classifier systems, can be very myopic in the begin-
ning, while it may take time for some optimal strategies, such as speculation, to achieve
strengths that will sustain these strategies. They conclude that “the present algorithm
seems defective in that it has too little experimentation to support the speculative equi-
librium even in the long simulations we have run.” 22

Inspired by Marimon et al.’s simulation findings, Duffy and Ochs (1999, 2002) sought
to test the Kiyotaki–Wright model in a laboratory experiment. They made an effort to
provide subjects with all the information relevant to making optimal decisions in the
theoretical environment. Duffy and Ochs sought to induce a stationary infinite horizon,

22 Subsequent applications of classifier systems in economic applications, include Başçi (1999), Beltrametti
et al. (1997) and Vriend (2000). LeBaron’s (LeBaron, 2006) chapter discusses the Santa Fe artificial stock
market (Arthur et al., 1997) which makes use of a classifier system to model traders’ decisions. See Lettau
and Uhlig (1999) for a comparison between classifier/rule learning and dynamic programming.
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as the theory presumes, by having an indefinite end to a sequence of pairwise trad-
ing rounds. Such concerns with implementation of infinite horizons do not typically
concern agent-based modelers, as the artificial agents in their models are not typically
forward-looking, alleviating concerns about backward induction due to end-game ef-
fects. Finally, among the parameterizations they chose was one that was also used by
Marimon et al. (1990). Though Duffy and Ochs had only 8 or 10 agents of each of
the three types, while Marimon et al. had 50, the findings from the human subject ex-
periments were quite similar to those obtained in the artificial agent simulations using
classifier systems. In particular, Duffy and Ochs also find that subjects failed to adopt
speculative trading strategies in environments where such strategies comprise an equi-
librium best response.23

Duffy (2001) considers two alterations of the Kiyotaki–Wright model that might
serve to promote the adoption of speculative strategies. In one version, agents whose
optimal equilibrium strategy calls for speculation are given more encounters with sit-
uations where playing the speculative strategy results in higher expected utility. In the
other, two of the three agent types are constrained to playing the strategies that are op-
timal for them in equilibrium. Duffy adopts a reinforcement learning model which is
similar to the exchange classifier of Marimon et al. (1990), automates the consumption
classifier and gets rid of the genetic algorithm. A similar model was found to provide
a good fit to the experimental data of Duffy and Ochs (1999). Duffy uses this rein-
forcement model to simulate what will happen in the two alternative environments, and
reports that both alternatives speed up the learning of speculative strategies. However,
the adoption of speculative strategies is greater in the second alternative, where two
thirds of the agent types are constrained to playing optimal strategies. He then conducts
an experiment with human subjects designed to test these same alternatives. In the hu-
man subject experiment, the model parameters, the number of agents, and other features
of the environment are kept as similar as possible to that of the simulated environments
to facilitate comparisons. The human subject findings are largely consistent with the
artificial agent findings. Duffy stresses that agent-based modeling exercises of this type
can be a useful tool for experimental design, and at the same time, the results of human
subject experiments might be useful in thinking about how to model the decisions of
artificial agents.

4.5. Genetic programming

Another variant of genetic algorithm learning, known as genetic programming, was de-
veloped by Koza (1992). In genetic programming, the same genetic operators of the
GA are used to search over a population self-executing computer programs represented

23 Brown (1996) conducted an experimental test of the Kiyotaki–Wright that was more narrowly focused on
the speculative equilibrium prediction and came to the same conclusion: most subjects failed to adopt the
speculative trading strategy.
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as decision trees (variable-length strings) in an effort to obtain an optimal functional
relationship or program. This type of genetic search is well-suited to finding functional
solutions to problems that do not readily yield closed-form solutions. Genetic program-
ming has been mainly used by economists to study financial market phenomena, e.g., to
uncover technical trading rules or to discover pricing formulas for financial derivatives.
Chen (2002) provides a good survey.

However, the external validity of genetic programming has been assessed through a
few comparisons with the results of human subject experiments. Perhaps the best known
work is that of Chen and Yeh (1996), who revisit the unstable cobweb model studied by
Arifovic (1994) and examined experimentally by Wellford (1989). Chen and Yeh note
that it is more general to view agents as learning a functional relationship for prices,
e.g. Et−1pt = f (pt−1, pt−2, . . .) than for them to be learning about what quantity to
produce as in Arifovic’s (Arifovic, 1994) implementation, as the former approach al-
lows for the possibility that the equilibrium is not a fixed point, e.g., it could be a limit
cycle. Chen and Yeh apply a genetic programming algorithm to search over a class of
price forecast functions. Essentially the algorithm allows for a wide range of linear and
nonlinear functions mapping from observations on as many as 10 past prices to deliver a
forecast for period t . These forecast functions determine quantities which subsequently
determine actual market prices via the equilibrium market clearing condition. Fitness of
individual forecast functions is then assessed, and genetic operations are applied to ad-
vance the search for better price forecast functions in a manner analogous to the genetic
algorithm search. Chen and Yeh report that for the same unstable parameterization of the
model considered by Arifovic and Wellford, (as well as for some even more egregious
cases) their genetic programming algorithm has no difficulty yielding price predictions
that were very close to the equilibrium price level without the need for an election oper-
ator to contain the effects of the mutation operator. The price forecasting functions are
initially quite complex and difficult to interpret. However, as convergence to the equi-
librium obtains, the price forecasting functions become quite simple, as prices cease to
vary so much.24

In a quite different application, Duffy and Engle-Warnick (2002) use genetic pro-
gramming to infer the strategies that human subjects play in a simple bargaining game,
given only the actions and histories of the players. This approach, which Koza (1992)
termed “symbolic regression”, involves evaluation of a population of computer pro-
grams in terms of their relative success in mapping from inputs, e.g., players’ histories,
to output, e.g., player’s action choices. An advantage of this approach is that the user
does not have to specify the functional form of the strategy model in advance, aside from
specifying a set of model primitives; both the form and the coefficients of the computer

24 Chen et al. (2002) use a genetic programming algorithm to reach a similar conclusion in a median effort
coordination game studied experimentally by Van Huyck et al. (1994). Chen et al. show that a steady state
effort level that is theoretically unstable under a myopic, homogeneous best-response learning dynamic turns
out to be stable under the genetic-programming-based learning system in accordance with Van Huyck et al.’s
(Van Huyck et al., 1994) finding from human subject experiments.
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programs are estimated simultaneously. Using this algorithm, Duffy and Engle-Warnick
report that simple threshold strategies characterize the behavior of most of the human
subject participants.

4.6. Summary

Evolutionary algorithms, by contrast with ZI and individual learning algorithms, are
derived from principles of population biology. While the principle of survival and prop-
agation based on relative fitness is similar to reinforcement learning, fitness assessments
in evolutionary algorithms are not made on the basis of an individual agent or strategy’s
own history, but instead are based on population-wide measures. The biological mod-
els from which evolutionary algorithms derive lead to some difficulties of interpretation
for social scientists. While some efforts have been made to interpret the operators of
evolutionary algorithms, the more common approach has been to treat these algorithms
as a kind of black box model of social learning and focus on the similarity between
aggregate outcomes in simulations and in human subject experiments.

Two main approaches in evolutionary models have been identified. With the replicator
dynamic, the set of strategies or actions must be fully specified at the outset. Such an
approach is reasonable in environments where the set of actions or strategies is small.
In environments where the search space is larger, a genetic algorithm approach may be
preferred. GAs are effective, population-based search algorithms that optimize on the
tradeoff between finding new strategies, and exploiting strategies that have worked well
in the past.

Comparisons between simulations using evolutionary algorithms and human subject
experiments suggest that there is some support for the use of evolutionary algorithms
as models of population learning. However, the time-frame and the number of agents
used in simulation of evolution algorithms is often quite different from that adopted in
human subject experiments.

5. Conclusions and directions for the future

Two parallel computer-based technologies, the experimental and the computational lab-
oratory, have begun to have a major impact on economic research. While top-down,
deductive theorizing with fully rational agents remains the standard in economics, the
findings of experimentalists and ACE researchers using bottom-up, boundedly rational,
inductive models of behavior are attracting increasing attention in the profession, as
these models often provide a better fit to experimental (as well as to field) data, and
operate without the centralized coordinating devices found in standard theory.

There are difficulties with the external validity of both approaches. Agent-based mod-
els have many degrees of freedom, while experimental methods are unable to perfectly
induce or control subject behavior, etc. Still, the fact that findings from agent-based
models and human subject experiments are often in agreement helps to allay concerns
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with either approach individually. Can an argument be made for one approach over the
other? Analogous to Judd’s (Judd, 1997) answer to the question of whether computa-
tional economics and economic theory are substitutes or complements, we have seen
that agent-based models and humans subject experiments are sometimes nearly perfect
substitutes (e.g., zero intelligent agents in certain versions of the double auction market)
but are more often complements (e.g., the degree of sophistication in individual learning
models can be calibrated based on experimental data).

There are several directions for future research. First, further comparisons of different
agent-based models using a variety of experimental data sets are needed. “Horse-races”
such as those between reinforcement learning and belief-learning and between belief-
learning and replicator dynamics are important for choosing among agent-based mod-
eling approaches. Second, further parallel experiments with human and artificial agents
situated in the same environment are needed to better understand the external validity
of agent-based models as well as to appropriately calibrate those models. These parallel
experiments will necessarily involve more constraints on agent-based modeling exer-
cises than on human subject designs owing to the stricter time and budget constraints of
laboratory research. However, if agent-based models can accurately track the behavior
of human subjects over the short-time frame of a human subject experiment, that find-
ing would give the ACE researcher some license to carry out simulations of the model
over a much longer time-frame, as might be necessary to achieve convergence to an
equilibrium. Third, new agent-based models might be developed based on laboratory
evidence.

There are at least two possibilities for attacking the latter goal. First, researchers
could seek to determine how players go about analyzing the experimental environments
in which they are placed. For example, the kind of information subjects consider, their
cognitive skills and other characteristics that Costa-Gomes et al. (2001) have termed
the players’ strategic sophistication. Costa-Gomes et al.’s use of the Mouselab software
which enables the researcher to capture and study the information that players consider
in playing normal form games, as well as Camerer et al.’s (Camerer et al., 1993) use of
the Mouselab software to study behavior in extensive form games, is very useful in iden-
tifying heterogeneity of player types, and testing cognitive concepts such as backward
induction.

A second possibility for designing agent-based models more fully grounded in labo-
ratory evidence is to make greater use of an experimental design known as the strategy
method, first proposed by Selten (1967). The strategy method requires subjects to simul-
taneously specify, prior to the start of a game, the strategies they will play in that game,
i.e. their action choice at every information set. Subjects’ choices are then made for them
based on the strategies they submit.25 Unlike observing how players make decisions as
a game unfolds in real-time and attempting to infer subjects’ strategies from their action

25 The counterpart of the strategy method in the agent-based literature is to hold a tournament á la
Axelrod (1984), in which researchers submit computer code (strategies) characterizing the behavior of
their gladiatorial-agent models. The tournament organizers then use some matching protocol or test suite
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choices, the strategy method provides researchers with all the information necessary to
program artificial agent strategies.26 In more complex environments, it may be neces-
sary to give subjects experience with the game prior to having them submit strategies.
For instance, Selten et al. (1997) have subjects play a Cournot duopoly game repeatedly
and then ask them to program their strategies. The programmed strategies were then
played against one another and the programmers were allowed to alter their strategies
based on their performance. The adoption of such an approach might well lead to the
development of new adaptive models with a greater claim to the term ‘agent-based.’
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