

Approximating and Simulating the Stochastic Growth Model:
 Parameterized Expectations, Neural Networks, and the Genetic Algorithm

John Duffy∗
Department of Economics
University of Pittsburgh

Pittsburgh, PA 15260, USA

Paul D. McNelis
Department of Economics

Georgetown University
Washington, DC 20057, USA

Abstract

 This paper suggests a new approach to solving the one-sector stochastic growth
model using the method of parameterized expectations. The approach is to employ a
"global" genetic algorithm search for the parameters of the expectation function followed
by a "local" gradient-descent optimization method to ensure fine-tuning of the
approximated solution. We use this search procedure in combination with either
polynomial or neural network specifications for the expectation function. We find that
our approach yields highly accurate solutions in the case where an exact analytic solution
exists as well as in cases where no closed-form solution exists. Our results further suggest
that neural network specifications for the expectation function may be preferred to the
more commonly used polynomial specification.

JEL classification: C63; O41

Key words: Solution methods; stochastic growth model; parameterized expectations;
genetic algorithm; neural networks.

Send proofs to:
John Duffy
4S01 Forbes Quad
Department of Economics
University of Pittsburgh
Pittsburgh, PA 15260 USA
Tel: 412 648-1733
Fax: 412 648-3011

∗ Corresponding author. Email: jduffy@pitt.edu.

 1

1. Introduction

 This paper compares alternative methods for approximating and solving the

stochastic growth using the method of parameterized expectations. We distinguish

between polynomial and neural network specifications for expectations and between

gradient-descent and genetic algorithm methods for solving these models of

parameterized expectations.

Parameterized expectation methods, developed by Marcet (1988) and Den Haan

and Marcet (1990, 1994), work on the Euler equation that characterizes the solution to the

stochastic growth model. This approach involves approximation of the conditional

expectation function in the Euler equation with a pre-specified functional form and the

use of an optimization method to determine the parameterization of this functional form.1

Most approaches to parameterized expectations rely on a polynomial

approximation for the expectations mechanism and some type of iterative, gradient-

descent-based method for finding the appropriate parameter values of the expectations

function. Den Haan and Marcet (1990, 1994), for example, use non-linear least squares,

while Christiano and Fisher (1997) use ordinary least squares in their modified

parameterized expectations approach. We propose the use of a neural network

specification for the expectations function and the use of a real-coded genetic algorithm

to obtain the parameter values for the neural network specification.

Other researchers have also proposed the use of such artificial intelligence

techniques as an aid to solving stochastic growth models. Beaumont and Bradshaw

(1995, 1996) use distributed parallel genetic algorithms, Chyi (1997) uses neural

networks, and Schmertmann (1996) uses genetic programming. However, there has been

little effort to combine or hybridize these techniques. Moreover, these researchers have

used these techniques for direct recovery of the policy functions that solve the Euler

1 Thus, the method of parameterized expectations belongs to the more general class of projection methods
for solving functional equations as discussed in Judd (1992, 1998).

 2

equation. As Christiano and Fisher (1997) point out, a direct search for policy functions

can be difficult, especially in cases where there may be binding constraints, since the

researcher has to approximate the policy functions while simultaneously satisfying all

Kuhn-Tucker conditions.

By contrast, the method of parameterized expectations is easier to implement, as it

applies directly to the Euler equation so that the Kuhn-Tucker conditions are

automatically satisfied, and the resulting approximation of the expectation function can

be used to recover the policy functions.

For approximation purposes, neural network specifications have been shown to be

more efficient than polynomial specifications as they avoid the need for exponentially

increasing numbers of cross product terms. Thus, a neural network specification delivers

greater precision for the same number of parameters, or equal precision with fewer

parameters.

The search for the parameterization of a polynomial approximation in the standard

parameterized expectations approach is typically conducted using gradient-descent

identification methods that require arbitrary starting conditions for the initial parameters.

Depending on the choice of these initial parameters, the solution process may fail to

converge or may converge to local rather than global optima.

The genetic algorithm-based search for optimal parameter values that we employ

differs markedly from these gradient-descent methods and offers some advantages with

respect to the problem of choosing initial conditions. One difference is that genetic

algorithms avoid the need to take derivatives, thus allowing for the possibility of a much

larger class of functional approximations.

The genetic algorithm also differs from gradient descent methods in that it is a

population-based, evolutionary search process that begins with a very large set of initial

candidate parameter vectors. These vectors are subjected to selection pressure based on

relative fitness and other genetic operators that serve to advance the search for

 3

increasingly fit parameter vectors, where the fitness metric is specified by the user. In the

case of the growth model, this metric is minimization of the Euler equation residuals.

Genetic algorithms have been shown to optimize on the trade-off between

experimenting with new candidate solutions and utilizing solutions that have worked well

in the past (Holland (1975)). Because these search algorithms are population-based, they

are very well suited to searching over large parameter spaces and are especially useful in

situations where the choice of good initial parameter values may not be well known. As

Dorsey and Mayer (1995) point out, while the genetic algorithm may not find the point at

which the gradient is exactly zero, it will often come very close to achieving this goal.

Genetic algorithms thus can greatly enhance the performance of “locally efficient

gradient-type algorithms” by providing the “needed global efficiency” [Dorsey and Mayer

(1995): p. 565].2

A drawback, of course, is that the genetic algorithm is computationally more time

consuming as compared with other methods, such as the standard gradient descent

approach.

 The purpose of this paper is to show that a neural network approximation in

combination with a genetic algorithm search may give more accurate results than the

more commonly implemented parameterized expectations methods based on polynomial

approximations and gradient-descent optimization. Of course, computational time

considerations may prevent the genetic algorithm from taking the place of faster methods.

However, our results suggest that researchers working with relatively noisy or highly

nonlinear models might want to compare the results they obtain using parameterized

expectations with polynomial approximations, as well as other solution methods, with the

results they obtain using neural network approximations and genetic algorithms.

2 Dorsey and Mayer (1995) analyzed the performance of the GA for static non-linear econometric
estimation. Our work can be viewed as an extension of their work. We analyze the performance of the GA
for the solution of dynamic non-linear optimization models, rather than for estimation purposes.

 4

 In the next section we provide a description of our alternative neural network/

genetic algorithm approach for solving the benchmark stochastic growth model as

described and analyzed by Taylor and Uhlig (1990), Den Haan and Marcet (1990, 1994)

and many others. We also present a brief review of the parameterized expectations

approach. In section 3 we report and discuss our simulation results for two versions of

the model, one in which an analytic solution for the model is available and another

version in which there is no closed-form solution. Finally, section 4 provides a summary

and some concluding remarks.

2. Two Approaches to approximating and solving the Stochastic Growth Model
Using Parameterized Expectations

 Consider the following one-sector stochastic growth model:

given. ,,0 ,0

,10 ,0

),,0(~

,)ln()ln(

where

subject to

1
E)(E

Maximize

1

2

1

111

0

1

0
0

0

−

−

−−−

∞

=

−∞

=

∀>>

<<>

+=

 −=−+

−

=

 ∑∑

ktkc

N

kkkkc

c
cU

tt

t

ttt

tttttt

t

tt
t

t

t

ατ

σε

εθρθ

δθ

τ
ββ

α

τ

 (1)

Here ct denotes consumption at time t, kt denotes the capital stock at time t, β∈(0,1)

denotes the constant discount factor, δ is the constant rate at which the capital stock

depreciates from t-1 to t, and θ t denotes the time t stochastic shock to technology that

evolves according to an autoregressive process with parameter ρ< 1, and an error

process εt ∼ N(0,σ2).

The solution to this optimization problem yields a policy function:

and a law of motion for the stock of capital:
),,(ttt khc θ=

 5

It can be shown that equation system (1) has a closed form analytical solution only

when τ=δ=1 (the case of logarithmic preferences and full depreciation of the capital stock

in every period).3

In this special case, the optimal policy function and path for the capital stock are

given by the following system:

For all other cases that researchers have examined, numerical approximation methods are

needed to solve for the optimal policy function and the capital accumulation path, given

the stochastic shock process and the constraints in (1).

 An alternative to direct approximation of the policy functions is to use the method

of parameterized expectations due to Marcet (1988) and Den Haan and Marcet (1990,

1994). This method works on the Euler equation that emerges from the first order

necessary conditions to the maximization problem:

)].1([1
11 δαθβ αττ −+= −

+
−
+

−
ttttt kcEc (2)

The method of parameterized expectations proceeds in the following sequence of

steps. First, substitute the conditional expectation function on the right-hand side of the

Euler equation (2) by a parameterized function,),;(1 ttk θγ −Ψ , in order to obtain

),,;(1 ttt kc θγβψτ
−

− = (3)

where γ denotes a vector of parameters.

Then generate a single draw of a series for tθ of length T. This series is drawn

just once and is used repeatedly in finding a solution.

3 See, e.g., Sargent (1987) p. 122.

.

,)1(

1
α

α

αβθ
θαβ

ttt

ttt

kk

kc

=

−=

+

).,()1(),(1 tttttttt khkkkgk θδθθ α −−+==+

 6

Next, create a series for },{ kc of length T using equation (3) for tc and then

obtaining values for kt via the budget constraint in (1).

Finally, run the non-linear least squares regression

),,;(11 ttt k θγψλ −+ = (4)

where)].1([1
111 δαθλ ατ −+= −

+
−
++ tttt kc This regression iterates until the parameter vector γ

minimizes the sum of squared differences between 1+tλ and the parameterized function

ψ, to some degree of precision (Marcet and DenHaan (1990) use four digits of accuracy).

A common way to parameterize equation (3) is using a polynomial

approximation. Den Haan and Marcet (1994) showed that the second-order, logarithmic

polynomial expansion, involving six parameters,
2

514
2

1321101)ln()ln()ln()ln()ln()ln(ttttttt kkk θγθγγθγγγλ +++++= −−−+ (5)

provides a reasonably accurate approximation to the solution to the one--sector stochastic

growth model. We work with this same polynomial approximation as one of the ways in

which we implement the method of parameterized expectations.

 An alternative to a polynomial approximation is to use a neural network

approximation. While neural networks were originally developed as models of the

workings of the brain, they can also be used as alternatives to polynomials as function

approximators. The neural network approximation we chose to consider uses a

logsigmoid expansion and is written as:

.2,1,
1

1

,

,

,

514
2

312
1

21
101

=
+

=Ω

+=

+=

Ω+Ω+=

−

−

−

+

i
e

k

k

i
t

i
t

ttt

ttt

ttt

ω

θγγω
θγγω

γγλ

 (6)

 7

Equation (6) is referred to as a single hidden layer logsigmoid neural network with two

hidden nodes or "neurons," i
tΩ , i=1,2. 4

Hornik, Stinchcombe and White (1989) have proved that with sufficiently many

neurons, single hidden layer sigmoidal neural networks (i.e. linear combinations of

sigmoidal functions) can approximate any arbitrary function arbitrarily well in the space

of useful functions. For comparison purposes, our neural network approximation (6)

involves the same number of parameters -- six -- as the alternative, second-order

polynomial approximation that we also consider.

 The logsigmoid function used in equation (6) is one of the most commonly used

activation functions in neural network approximations. As Sargent (1993) has pointed

out, single hidden layer sigmoidal networks can achieve the same function approximation

accuracy using fewer parameters than traditional polynomial expansions. In particular,

Barron (1993) has proved that single hidden layer sigmoidal networks can achieve lower

approximation error rates using only linearly increasing numbers of parameters;

polynomial expansions can achieve these same approximation error rates only by using

exponentially increasing numbers of parameters.

In neural network estimation, the coefficient vector, γ , is typically obtained

through the backpropagation method, an iterative non-linear process similar to non-linear

regression. As in most gradient-descent methods, a random set of coefficients is used to

initialize the “learning,” and the coefficient vector is gradually adjusted through search

methods based on the first and second derivatives of an "error function." Marcet and

Den Haan's (1990, 1994) parameterized expectation method operates in a similar manner

on the coefficient vector of the polynomial expansion, making use of a simple iterative

procedure to update this coefficient vector.

4 See Bishop (1995) for an up-to-date treatment of neural network methods, and Kuan and White (1994)
for a clear discussion of the econometrics of neural networks.

 8

 An alternative optimization method is to use a genetic algorithm. A genetic

algorithm is a stochastic, directed search algorithm that has proved useful is finding

global optima in both static and dynamic environments.

Genetic algorithms work with large populations of candidate solutions that are

repeatedly subjected to selection pressure (survival of the fittest) and which undergo

naturally occurring genetic operations in the search for improved solutions. Originally

due to John Holland (1975), the three major processes of the genetic algorithm are

selection, crossover and mutation. Holland has shown that genetic algorithms optimize

on the tradeoff between searching for new solutions and making use of solutions that

have worked well in the past.5

 The genetic algorithm approach differs from the gradient descent method in that it

begins with not one, but a large set of randomly generated candidate solutions known as

“bit strings” because they are typically encoded using a binary alphabet.

In our application of the genetic algorithm, each string represents a candidate

coefficient vector that gets used in combination with either the polynomial or neural

network specification for the conditional expectation on the right hand side of the Euler

equation (3). The elements of each string thus consist of a set of six different coefficients

{ }5

0=iiγ , one for each of the six coefficients in the polynomial or neural network

specifications, equation (5) or (6). The elements of our strings are real-valued, floating

point numbers, not the binary encodings that are traditionally used in genetic algorithm

applications.6 The population size of the parameter vectors is kept constant over many

generations (i.e. iterations) of the genetic algorithm. We consider populations of size 40.

The initial population of strings (candidate parameter vectors) is randomly generated.

5 Mitchell (1996) provides a good introduction to genetic algorithms.
6 Real-coded genetic algorithms are increasingly being used in genetic algorithm applications as they avoid
the time consuming conversion into and out of binary representations. In many applications, real- coded
genetic algorithms have been shown to outperform binary-coded genetic algorithms [Davis (1991)].
Michalewicz (1994) and Herrera, Lozano and Verdegay (1998) discuss the advantages of real-coded
genetic algorithms.

 9

 A detailed description of our implementation of the genetic algorithm is provided

in the Appendix. Here we describe the genetic algorithm search process we use in more

general terms. Starting with some initial, randomly chosen population of strings, the

genetic algorithm proceeds in the following sequence of steps.

The first step involves selection based on relative fitness. Two strings are selected

at random with replacement from the entire population of strings. The "fitness" value of

each string is determined using a given objective function. In our application, the fitness

value of a string is inversely proportional to the sum of squared Euler equation residuals

which is computed by using the string’s approximation model in the Euler equation and

simulating the implied system for a sample of T=2,000 iterations. The fitness values of

the selected pair of strings are compared. The more fit of the two strings, i.e. the string

with the lowest sum of squared errors (or "highest fitness"), is retained for "breeding

purposes." This simple tournament selection process is intended to mimic the

evolutionary notion of survival of the fittest.7

 The tournament selection process is repeatedly applied so as to obtain a breeding

population that is equal in size to the original population of candidate solutions. A

consequence of this tournament selection process is that the fitness levels of the resulting

breeding or "parent" population will, on average, be higher than the fitness levels of the

preceding generation of strings.

The strings in this breeding population are then randomly paired. The crossover

operation is then applied to each pair of strings with some probability ϕ >0. If a pair of

strings is selected for crossover, then one of three different crossover operators is

employed, with each method having equal probability of being chosen. These various

methods of crossover have all been shown to have certain strengths relative to other

methods, and are particularly well suited to our real-coded genetic algorithm. A crossover

7 The simple tournament selection process that we use has several advantages over the more traditional
roulette-wheel selection method. See, e.g. the discussion in Mitchell (1996).

 10

operation involves swapping the elements of the two candidate vectors in various ways so

as to create two new candidate vectors that may yield improved fitness values (more

accurate approximations). The essential idea is that elements in certain positions of one

string might work better in combination with certain elements in another string; the

crossover operation provides a means of implementing such possibilities.

Following crossover, the recombined string pairs as well as the string pairs in the

breeding population that were not subject to crossover are then subjected to mutation. The

mutation operation is applied to each element of each string with some small probability

µ > 0. We used a non-uniform mutation operation that allows for large mutations of

coefficient values in the initial stages of the search, but which results in increasingly

smaller and localized mutations at later stages of the search, so as to allow for fine tuning

of the coefficient estimates. This kind of mutation operation is well suited to the real-

coded genetic algorithm that we employ. The string pair that results from application of

the crossover and mutation operations can be thought of as the two "offspring" or

"children" of the original pair of "parent" strings.

The final step is a selection tournament among the two parents and their two

children based on the fitness values of each member in the "family" of four coefficient

vectors. The two fittest members of the family survive, and take their place as members

of the next generation of candidate strings. The other two strings are discarded. This last

step, which Arifovic (1994) has termed the “election operator” is designed to keep the

search directed toward solutions with increasingly higher fitness values. Without this

operator, children with fitness values lower than their parents would be allowed into the

next generation of candidate strings.8

8 The election operator also serves to endogenously contain the destructive effects of the mutation operator
as one gets closer to an optimal solution.

 11

The above process is repeated until a new generation, equal in size to the previous

generation has been constructed. Some members of this new generation are “parents”

from the previous generation and others are new "children."

 After a given number of generations, the best coefficient set (the one with the best

fitness value), is chosen as the coefficient set for optimizing the model. Alternatively, the

process can stop when all coefficient strings are identical and have converged on a

solution or the fitness values of the strings fail to change by a given amount.9

 While it is clear from the process described above that only above average

coefficient strings will survive successive populations, one can insure that the one "best

string" always survives from one generation to the next by applying elitism, which we

employ in our algorithm.10 A given coefficient string, say, ()Gγ~ , from generation G,

ranking first in this generation (in fitness terms), may not be chosen for application of the

genetic operations leading to the creation of generation G+1. Under the version of elitism

used here, if the fitness criterion, as applied to all members of generation G+1, does not

yield a coefficient string with fitness higher than ()Gγ~ , then one copy of ()Gγ~ is made and

carried over intact into generation G+1, replacing the least fit coefficient string in G+1.

 As Hassoun (1995) points out, of the three genetic operators, the crossover

operator is the most crucial for obtaining global results. It is responsible for mixing the

partial information contained in the strings of the population. The mutation operator, by

contrast, diversifies the search and introduces new strings into the population, in order to

fully explore the search space. The selection operations insure that fitness pressures are

kept high in the direction of the search goal.

In our implementation of the genetic algorithm, we set the maximum number of

generations for finding the “fittest” string at 150.11 We will refer to the coefficient string

9 A more formal mathematical representation of the genetic algorithm appears in the Appendix.
10 See Ruldoph (1994) on the importance of elitist selection for global optimization by genetic algorithms.
11 Further details concerning our implementation of the genetic algorithm are provided in the appendix.

 12

with the best fitness in generation 150 as the outcome of the ’pure’ genetic algorithm

optimization.

However, in all of our simulations, we continued the search for the best

coefficient vector even further, taking the best-of-generation-150 coefficient vector from

the "pure" genetic algorithm search and using this single string to initialize a gradient-

descent algorithm, which had the same goal as the genetic algorithm search, to minimize

the sum of squared errors of the Euler equation residual over the sample size of 2,000

observations. This gradient-descent algorithm, based on a quasi-Newton method12, was

allowed to iterate for up to 3,000 iterations so as to fine-tune the best string resulting from

the genetic algorithm search. The gradient-descent algorithm was allowed to terminate

prior to 3,000 iterations if the minimal step change (1�10-8) in the line search for the

coefficient vector led to no change in a finite difference gradient calculation and the

objective function (the sum of squared errors of the Euler equation residual) had achieved

a precision of at least 1�10-4 (four digit accuracy).

We refer to this procedure as a "hybrid" genetic algorithm/gradient-descent

algorithm. The hybrid algorithm thus consists of a preliminary population-based "global"

search process, the result of which is used to initialize a second-stage "local" gradient-

descent algorithm.

We now examine the outcome of using our hybrid genetic algorithm/gradient-

descent algorithm in combination with the two different methods of parameterizing

expectations -- polynomial and neural network specifications -- for given parameter

values of the stochastic model:

.95. },0 ,1{ ,33. === ρδα

For approximating the exact solution, where δ=τ=1, we use two values of }98. ,95{.∈β ,

and three values of .10}. ,05. ,01{.∈σ For cases where 0=δ and }0.3 ,5.1 ,5.0{∈τ , we

12 The quasi-Newton method we used makes use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula
for updating the approximation of the Hessian matrix. This approach is described, e.g. in Judd (1998).

 13

again use two values of }98. ,95{.∈β but only two values of .10}. ,02{.∈σ These

parameter value choices allow us to make direct comparisons with the results reported in

Taylor and Uhlig (1990).

3. Simulation Results

 Tables 1 and 2 report simulation results from the genetic algorithm/gradient-

descent search algorithm for both the polynomial and neural network parameterization

methods in the case where τ=δ=1, and an exact analytic solution exists. This special case

provides us with a useful benchmark in which to assess the accuracy of our two

approximation methods, and we do so using a dimension-free measure, as advocated by

Judd (1992) -- the log10 average relative squared error.

Tables 3 through 7 provide simulation results from the genetic algorithm/gradient-

descent search algorithm for the polynomial and neural network approximations using the

Taylor-Uhlig (1990) version of the model where there is no depreciation, δ=0, and where

τ=0.5, 1.5, or 3.0, so that no closed-form solution exists.13 In these cases, we compare our

approximated solutions with the methods used by other researchers, as reported in Taylor

and Uhlig (1990) using the same set of summary statistics to assess solution accuracy.

3.1 Summary Statistics

For both the polynomial and neural network approximation methods, and for all

versions of the model, we compute the mean sum of squared parameterized expectation

(PE) errors for each solution that results from our combined genetic algorithm/gradient-

descent search process. We define this statistic as the Marcet PE-Error:

TkTu tttt /)],;ˆ(ˆ[/ErrorPE 2
11

2 θγψλ −+ −==− ∑ ∑ (7)

where)]1([1
111 δαθλ ατ −+= −

+
−
++ tttt kc , and T is the sample size, set at 2000.

13 Matlab codes for our approximation method and simulation exercises may be found on McNelis’s
website, www.georgetown.edu/mcnelis, under Recent Research, and the title of this paper.

 14

 In addition we present the volatility of the consumption series (denoted as "con-

vol" in the tables), which is simply the standard deviation of the Hodrick-Prescott (HP)

filtered series. We also report the ratio of the variance of investment to the variance of

the first difference of consumption, denoted as the "i-c ratio" in the tables.

For the case where 1== δτ , we are able to compute an exact solution. We thus

compute the correlation coefficient of the consumption series obtained under the

approximation method with the consumption series obtained using the exact solution.

This statistic is labeled "corr with exact" in Table 1.

In this case where the exact solution is known, we also compute an approximation

error statistic that is based on the difference between the actual and approximated policy

functions for consumption. The statistic we use is the log10 average relative squared error,

given by:

∑∑

 −=
kk kh

khkh

NN
he

θθ θ
θθ

2

10),(

),(),(ˆ1
log)((8)

where),(θkh is the true policy function, in this case, αθαβθ kkh)1(),(−= , and),(ˆ θkh

is the policy function recovered from either the polynomial or neural network

approximation method for parameterized expectations.14 The value of this accuracy

statistic, e(h), is obtained by evaluating both policy functions over a grid of Nk and Nθ

values for k and θ.

In particular, we generated values for tε for 80 equally spaced points between the

interval [σσ 2 ,2 +−]. These grid points were then converted into grid points for ln θ by

the long-run relation, ε
ρ

θ
−

=
1

1
ln , and for θ by simply taking the exponent of θln . To

generate grid points for k, we made use of the grid points for θ and the long run relation

between k and θ , ααβθ −= 1
1

)(k . With 80 grid points for k and θ , the error metric, e(h),

is thus evaluated over 6,400 different combinations of k and θ . We note that for each

14 This error metric is similar to the one advocated by Judd (1992) to assess approximation accuracy.

 15

value ofσ , the implied grid of k values lies within the set of feasible values for k:

].)/(,0[)1/(1 αδθ −

The log10 average relative squared error, e(h), was chosen because it provides an

easily interpretable measure of accuracy, expressing the approximation error as a fraction

of consumption. A log10 squared error of -2 represents an accuracy rate of 1 in 100,

implying that the approximation error costs $1 for every $100 in consumption

expenditures; a log10 squared error of -3 represents an accuracy rate of 1 in 1,000.

For the other case where 0 ,1 =≠ δτ , and no closed form solution exists, we use

the following four summary statistics to evaluate the accuracy of our results: (1) the Den

Haan-Marcet statistic, (2) the TR2 statistic, (3) the R2 statistic and (4) the ratio of the

variance of investment to the variance of the change in consumption. All of these

statistics are described and were reported in Taylor and Uhlig (1990) for a variety of

different solution methods. Therefore, we shall only briefly review these statistics here.

 The Den Haan-Marcet (1994) accuracy statistic, "DM-stat," in the tables, is

computed in the following way:

axxxxxxa

xxxa

ckc ttttt

ˆ)'()')('('ˆstatDM

')'(ˆ

)1(

12

1

1
1

1

−

−

−
−

−
−

−

=−

=

−−+=

η

η

δαθβη τατ

 (9)

Here, x is a matrix of instrumental variables, which in our case consists of a constant and

lagged values of consumption and the productivity shock. The "DM-stat" statistic is

distributed as a Chi-square variable with degrees of freedom equal to number of

instruments used, under the null-hypothesis of an accurate approximation to the optimal

path.

 16

 In calculating this statistic for our various solutions, we used as instruments, five

lags of consumption, c, five lags of the productivity shock, θ , and a constant term for

each sample size of 2,000 observations. The DM-statistics reported in Taylor and Uhlig

(1990) were calculated using this same set of 11 instruments, thus facilitating a

comparison of our results with the results of the various other solution methods reported

in Taylor and Uhlig (1990). Under the null hypothesis of an accurate approximation, the

DM-stat has an asymptotic)11(2χ distribution with critical values [3.81, 21.92] at the

five percent level, and critical values [3.05, 24.72] at the one percent level of significance.

The TR2 statistic ("tr2stat" in the tables) is computed from a regression of the

productivity shock, ε, on five lags of consumption, capital, and θ (15 lags total), again as

in Taylor and Uhlig (1990). This test statistic is used to assess the martingale difference

property of the productivity shocks, Et-1 εt=0, and thus serves as another measure of the

accuracy of the approximated solution. The following system describes the calculation of

the TR2 statistic

,
)ˆˆ()(

)]ˆˆ)(([
tr2stat

,)(ˆ

,ˆˆ

22

2

’1’

∑ ∑
∑

−−
−−

=

=

=
−

tttt

tttt

tttt

tt

T

xxxb

bx

εεεε
εεεε

ε

ε

 (10)

Here again, T denotes the number of observations in the regression sample, taken to be

2,000, and tx represents the 15x1 vector of lagged values for consumption, capital and θ .

Under the null hypothesis that the productivity shock possesses the martingale property,

this test statistic has an asymptotic)15(2χ distribution. The critical bounds at the 5

percent significance level are [6.26, 27.49].

 17

The R2 statistic ("rsqstat" in the tables) comes from a regression of the first

difference of consumption on lagged consumption and capital, again using the sample of

2,000 observations. This test statistic provides a simple test of the random walk

hypothesis for consumption in the simulated data. An R2 close to zero is taken as support

for the random walk hypothesis.15

3.2 The case where τ=�=1.

Table 1 presents the various test statistics for the case of the known closed form

solution where 1== δτ , .98} ,95{.∈β , and .10} .05, ,01{.∈σ . Panel A of Table 1

reports benchmark values for all summary statistics using the known, exact solution.

Panels B and C do the same for the neural network and polynomial approximations,

respectively.

Consider first, the value of the log10 average relative squared error, e(h), for the

two different approximation methods, which provides a metric for assessing the accuracy

the policy functions in this special case where the policy function is known. Panels B and

C of Table 1 reveal that the accuracy of both approximation methods is best when

01.=σ and that accuracy decreases as σ increases. Indeed, when 10.=σ the

approximation errors of both methods are rather high.

 Notice that the neural network approximation provides the more accurate policy

function when σ=.01. while when σ= .05, the neural network and polynomial

approximations achieve roughly the same approximation accuracy. The polynomial

approximation yields the more accurate policy function for the case where σ=.10.

15 Since there is zero depreciation, the capital stock would follow a random walk in a linearized expansion
around the steady state. Since consumption is a linear function of the capital stock, it too would follow a
random walk. Thus testing for a random walk for consumption is not an unreasonable accuracy check under
zero depreciation.

 18

Figure 1 depicts the values of e(h), for both the neural network (n) and

polynomial (p) approximations, for values of]1,.01[.∈σ . For each approximation

method, values of e(h) are presented for the case where 95.=β and .98.=β For values

of 04.<σ , the network approximation outperforms the polynomial method, but for

relatively high values, 06.>σ , the polynomial method outperforms the network model.

This result should not be surprising, since the exact solution itself is a log-linear

function. The second-order polynomial approximation is thus an over-parameterization

encompassing the true solution, whereas the network is an approximation with an

alternative functional form. When the size of the shocks are relatively small, the network

serves as a very accurate approximation As the shocks rise in value and k, the capital

stock, wanders far away from its deterministic steady state value, the polynomial method,

which encompasses the true values of the state variables, dominates.

As noted above, the parameterized expectation error criterion is based on a

simulation over a sample size of 2000. The log10 average relative squared error statistic,

e(h), by contrast, is based on a one-step simulation with alternative grids or starting

conditions for k and θ. Since the parameterized expectation approach is designed to

minimize the parameterized expectation error, the PE-Error statistic, reported in Table 1,

is the objective which is minimized by the genetic algorithm/gradient-descent method.

We find similar values for this statistic using either neural network or polynomial

approximations.

Under both methods, the approximated paths overestimate the

investment/consumption volatility ratio (i-c ratio) as well as the volatility of consumption

itself (con vol). Nevertheless, there is a very high correlation between the approximated

consumption path and the “true” path as indicated by the correlation coefficient reported

as "corr w exact."

Table 2 reports the six coefficient estimates for the approximation function under

the two specifications, polynomial or neural network expansion, for all of the cases where

 19

1== δτ . The reported coefficients are based on the best expectation error minimization

chosen from 10 different runs of the combined genetic algorithm and gradient-descent

estimation procedure. Each run was begun with a different set of randomly initialized

coefficient vectors. Below the best coefficient values in Table 2 are standard deviations

(in italics) which reveal the extent to which the best coefficient values differ from the

coefficient values obtained from all 10 runs. There are two sets of standard deviations for

each set of coefficient estimates. The first set of standard deviations is based solely on

the final coefficient estimates obtained from ten runs of the genetic algorithm alone (the

’pure’ genetic algorithm). Each run of the genetic algorithm consists of 150 generations.

The second set of standard deviations is based on the ten sets of coefficients obtained at

the completion of the hybrid genetic algorithm/gradient-descent estimation procedure.

Notice that many of the coefficient estimates for both the neural network and

polynomial specifications lie within two standard deviations of the best coefficient

estimates from all 10 runs. This finding indicates that the combination of a "global"

genetic search with "local" gradient-descent methods, for both the network and

polynomial approximations, yields coefficient estimates within a relatively close range of

the "best" set of estimated coefficient values.

Notice too, that the coefficient estimates for both the neural network and

polynomial specifications do change, sometimes dramatically, with changes in the

parameter values of the stochastic growth model, τσβ ,, . While such changes are not

unexpected given the nonlinearity of the model, they may also arise from our use of an

overparameterized specification for the expectations function in this version of the model

where the exact (first-order) solution is known.

The main findings of Tables 1 and 2 are that the neural network specification

often provides at least as accurate an approximation as the second-order polynomial

specification, even when the exact solution is itself a simple first-order polynomial.

Furthermore, multiple, randomly initialized runs of our combination genetic

 20

algorithm/gradient descent search procedure often results in similar coefficient estimates

for the parameterized expectations function.

3.3 The Taylor-Uhlig (1990) Model

Table 3 presents the accuracy and diagnostic test statistics for the two

approximation methods (polynomial and neural network) as applied to the Taylor-Uhlig

(1990) stochastic growth model, under alternative assumptions for τ and σ . Since there

is no depreciation (0=δ) and 1≠τ in the Taylor-Uhlig version of the model, the

dynamic process in this model differs somewhat from the model where 1==τδ and an

exact closed form solution could be obtained.

Table 3 shows that the Marcet PE-Errors are quite small for both models, usually

less than .0001, under different parameter configurations. These PE-errors should be

small as they are the statistics the genetic algorithm/gradient-descent search procedure is

seeking to minimize.

The "accuracy" statistic we use in this version of the model is the DM -statistic. In

Table 3, DM-statistics that violate the critical bounds at the 1 percent significance level

are italicized. We see that the neural network specification violates the accuracy criterion

at the one percent level in three out of twelve cases, and never for versions of the model

where β =.98, whereas the polynomial specification violates this criterion in five cases

out of twelve.

The “rsqstat” values are quite low for both specifications, with the exception of

3=τ and 1.=σ , for the polynomial specification under β =.95 and .98. These results

 21

are thus consistent with “random walk” consumption behavior, under zero depreciation of

the capital stock.

The “tr2stat” values are always within the Chi-square accuracy bounds for both

the polynomial and neural network approximation methods. However there are sharp

divergences across the various cases in the investment/consumption volatility ratios as

well as in the direct measures of consumption volatility itself.

Tables 4 and 5 present the “best” coefficient estimates (those which minimized

the expectations error) over 10 runs of our search algorithm for the two methods of

approximating parameterized expectations. As in Table 2, Tables 4 and 5 present two

sets of standard deviations (in italics) which reveal the extent to which these “best”

coefficient estimates differ from the estimates obtained from all 10 runs of the pure

genetic algorithm (first set of standard deviations), as well as from the coefficients

obtained at the end of the combined genetic algorithm/gradient descent search procedure

(second set of standard deviations). Both the neural network (Table 4) and polynomial

(Table 5) approximations show some degree of consistency, in the sense that our search

algorithm delivers coefficient estimates in a relatively close range of the very best

estimated coefficient values, as revealed by the standard deviations reported in these two

tables.

Tables 6 and 7 summarize the accuracy and diagnostic test statistics from our

neural network and polynomial approximations (Duffy/McNelis-NN and Duffy/McNelis-

PA), and compare these statistics with those obtained from a subset of the other solution

methods presented in Taylor and Uhlig (1990). In particular, we compare our solution

method with the log-Linear Quadratic (log-LQ) and linear quadratic LQ solution methods

 22

of Christiano and McGrattan, the backsolving methods of Ingram and Sims, the

parameterized expectations approach of Den Haan and Marcet, and the quadrature

method of Tauchen, all of which are discussed in the January 1990 edition of the Journal

of Business and Economic Statistics. Table 6 reports statistics for various versions of the

model when �=.02, and Table 7 does the same for the case when �=.10. Inspection of

these two tables indicate that the parameterized expectation approach using neural

network and polynomial approximations and our hybrid estimation method, compare

favorably on many dimensions with these alternative and more commonly used methods.

In those cases where the DM-statistics for our solution methods violate the

accuracy criterion, these statistics are not as high, for example, as those obtained by

Tauchen (1990) using a quadrature method. Even the results reported by Den Haan and

Marcet (1990) violate the DM-statistic critical bounds in three out of the ten parameter

configurations.16

Similarly, for our solution method, the investment-consumption volatility ratio is

only an "outlier" in one case, for the neural network specification, with τ = .5 and 1.=σ .

The TR2 and R2 statistics from our solution method also compare favorably with the

values obtained using these other solution methods.

The average time for the genetic algorithm search and gradient-descent

optimization for one parameter configuration was 13.55 hours, on a SUN Enterprise 4000

with four 250 megahertz processors and 250 megabytes of RAM, with version 5.2 of

16 The Den Haan and Marcet accuracy statistics reported in Den Haan and Marcet (1994) are much better
than those reported Den Haan and Marcet (1990). However, Den Haan and Marcet consider different
parameterizations of the stochastic growth model in these two studies. In particular, in Den Haan and
Marcet (1994), depreciation is not set equal to zero as it is in the Taylor-Uhlig (1990) version of the model
considered by Den Haan and Marcet (1990).

 23

Matlab. The time was generally the same for both the network and polynomial

approximation methods.

While this runtime may seem exorbitantly long in light of the computing times

reported in seconds in Taylor and Uhlig (1990), Table 15, our run times are not directly

comparable. The genetic algorithm evaluates each case or parameter configuration, with

a sample size of 2000, 40 different times in each generation, for 150 generations. An

additional 40 evaluations of the case take place within each generation during the

repeated processes of cross-over and mutation. It is only after this process is completed

that the gradient-descent optimization process begins and continues until convergence is

achieved. The experiment is then repeated an additional ten times to find the best

coefficient values for the parameterized expectation function.

The global search/local gradient-descent optimization process is clearly not going

to be the fastest solution method. It is a lengthy search process requiring multiple

evaluations, but it does offer both accuracy and the added confidence that comes from

conducting a global search.

4. Conclusion

This paper has shown that a neural network approach to the parameterized

expectation solution method may be a useful alternative to polynomial expansions, and

that a sensible way to proceed is to estimate the parameters of a parameterized

expectations model using a combined genetic algorithm/gradient-descent method. For the

special case of the one-sector stochastic growth model where an exact solution is known,

we demonstrate that our modified parameterized expectation solution methods are highly

accurate. Many of the solutions we obtain using our approach for several other versions

 24

of the model in which there is no depreciation and the coefficient of relative risk aversion

is set to 0.5, 1.5, or 3.0, pass an accuracy test proposed by Den Haan and Marcet (1994)

and appear to be quite reasonable in comparison with other solution methods. We

conclude that our hybrid genetic algorithm/gradient-descent parameterized expectations

method should be used at least as a check on other solution methods.

In more complicated models, with even higher degrees of nonlinearity due to

more complex utility functions, or in multi-sector models with higher dimensions, the

parameterized expectations algorithm based on pure gradient-descent (or non-linear least

squares) methods may fail to converge. For this reason, many researchers have turned to

Tauchen-Hussey (1991) quadrature-based methods which rely on discretizing the state-

space. Our method may extend the applicability of the parameterized expectations

algorithm to these more complex higher dimensional cases. We leave such an analysis to

future research.

Acknowledgements

We thank five anonymous referees and participants at the 1997 Society for Economic

Dynamics and 1998 Society for Computational Economics conferences for helpful

comments and suggestions on earlier drafts.

 25

Appendix: Detailed Discussion of our Implementation of the Genetic Algorithm

The genetic algorithm starts with the following objective function and constraint:

Here, iy , denotes the actual value of the right hand side of the Euler equation (2) for

observation xi = {ki-1, θi} and the estimated vector based on the approximation is denoted
by iŷ . We chose to consider n=2,000 for each candidate solution. The genetic algorithm

consists of the following eight steps.17

Step one: Create an initial population p of coefficient vectors at generation 1:

where p is an even number (in our case p=40) and k is the number of coefficients. (in our
case k=6). The initial population of size p x k is created using random draws from a
standard normal distribution. Alternatively, one may impose restrictions on the sign or
size of the parameters, fixing some of them and setting others randomly within a certain
range.

Step two: Select two pairs of coefficient vectors from the population at random with
replacement. Evaluate the fitness of these four coefficient vectors according to the
objective function given above. Vectors that come closer to minimizing the sum of
squared errors receive higher fitness values. Next, conduct a simple fitness tournament
between the two pairs of vectors: the winner of each tournament is the vector with the
best fitness (lowest sum of squared errors). These two winners, (i,j), are retained for
"breeding purposes" These two winning coefficient vectors are depicted below:

17 This algorithm is similar to the one used by Bullard and Duffy (1999).

)ˆ (ˆ

)ˆ(2

1

γxgy

yyMin i

n

i
i

=

−∑
=

pkikkk

γ

γ

γ

γ

γ

γ

γ

γ

γ
γ

γ
γ

γ
γ

γ
γ

ˆ

.

.

1ˆ

,...,

ˆ

.

.

1ˆ

2
ˆ

.

.

1ˆ

1
ˆ

.

.

1ˆ

.

ˆ

ˆ

.

ˆ

ˆ

.

ˆ

ˆ

.

ˆ

ˆ

3

2

3

2

3

2

3

2

 26

Coefficient vectors i and j are referred to as the "parent" vectors, P(i) and P(j).

Step three: Allow crossover to be performed on each pair of parent coefficient vectors, i
and j, with some fixed probability ϕ>0 (we set ϕ=.95) If crossover is to be performed,
we use one of three different crossover operations, with each method having an equal
(1/3) probability of being chosen. These three crossover operators are:

1. Shuffle crossover. For each pair of vectors, k random draws are made from a

binomial distribution. If the kth draw is a 1, coefficients ki ,γ̂ , kj ,γ̂ are swapped;

otherwise no change is made.

2. Arithmetic crossover. For each pair of vectors, a random number is chosen, λ���,��.

This number is used to create two new parameter vectors that are linear combinations
of the two parent vectors, with elements: .ˆˆ)1(,ˆ)1(ˆ ,,,, kjkikjki γλγλγλγλ +−−+

3. Single-point crossover. For each pair of vectors, an integer I is randomly chosen

from the set [1, k-1]. The two vectors are then cut at integer I and the coefficients to
the right of this cut point, 1,ˆ +Iiγ , 1,ˆ +Ijγ , are swapped.

In binary-coded genetic algorithms, single-point crossover is the standard crossover

method. There is no consensus in the genetic algorithm literature on which crossover
method is best for real-valued encodings. Our decision to adopt these three different
approaches follows from the analysis and recommendations of Michalewicz (1996) and
Herrera, Lozano and Verdegay (1998).

Following application of the crossover operation, each pair of parent vectors is
associated with two children coefficient vectors, which we denote by C1(i) and C2(j). If
crossover has been applied to the pair of parents, the children vectors will generally differ
from the parent vectors.

Step four: With some small and probability, 0>µ , that decreases over time, each
element (coefficient) of the two "children vectors" is subjected to a mutation. The

jkik

γ

γ
γ
γ

γ

γ
γ
γ

ˆ

.

.

.

ˆ

ˆ

ˆ

ˆ

.

.

.

ˆ

ˆ

ˆ

3

2

1

3

2

1

 27

probability that each element is subjected to mutation in generation G=1,2,...150 was
given by GG /33.15. +=µ .

If mutation is to be performed on a vector element (coefficient), we used the following
non-uniform mutation operation, due to Michalewicz (1996). Begin by randomly drawing
two real numbers, r1 and r2 from the [0,1] interval and one random number, s, from a
standard normal distribution. The mutated value of the coefficient γ̂ , is then given by:

[]
[]

<−−

>−+
=

−

−

5. if 1ˆ

5. if 1ˆ

1
)/1(

2

1
)/1(

2

rrs

rrs

b

b

Tt

Tt

γ

γ
γ�

where t is the generation number, T is the maximum number of generations, and b is a
parameter that governs the degree to which the mutation operator is non-uniform. We set
b=2, and T=150. Notice that the probability of creating a new coefficient via mutation
that is far from the current coefficient value diminishes as .Tt → This mutation
operation is non-uniform since, over time, the algorithm is sampling increasingly more
intensively in a neighborhood of the existing coefficient values. This more localized
search allows for some fine tuning of the coefficient vector in the latter stages of the
search, when the vectors should be approaching an optimum.

Step five: Election tournaments. Following the mutation operation, the four members of
the “family” (P1, P2, C1, and C2) engage in a fitness tournament. The children are
evaluated by the same fitness criterion used to evaluate the parents. The two vectors with
the best fitness (lowest sum of squared errors) whether parents or children, survive and
pass to the next generation, while the two with the worst fitness are extinguished.

Step six: Repeat the above process, with parent vectors i and j returning to the population
pool for possible selection again, until the next generated is populated with p coefficient
vectors.

Step seven: Elitism. Once the next generation is populated, introduce elitism. Evaluate
all the members of the new generation and the current generation according to the fitness
criterion. If the best member of the “older generation” dominates the best member of the
“new generation,” then the member of the older generation displaces the worst member of
the new generation, and is thus eligible for selection in the coming generation.

Step eight: Continue the process for a maximum of T generations. We set T=150.
Evaluate convergence by the behavior of the best member of each generation, according
to the fitness criterion.

Following T=150 generations, we used the best-of-generation-150 vector (the vector with
the highest fitness value) to initialize a quasi-Newton, gradient-descent algorithm, which
we allowed to run for up to 3,000 iterations.

 28

References

Arifovic, J., 1994, Genetic algorithm learning and the cobweb model, Journal of
Economic Dynamics and Control 18, 3-28.

Barron, A.R., 1993, Universal approximation bounds for superpositions of a sigmoidal
function, IEEE Transactions on Information Theory 39, 930-945.

Beaumont, P.M. and P.T. Bradshaw, 1995, A distributed parallel genetic algorithm for
solving optimal growth models, Computational Economics 8, 159-179.

Beaumont, P.M. and P.T. Bradshaw, 1996, A distributed parallel genetic algorithm: An
application from economic dynamics, in: M. Gilli, ed., Computational Economic
Systems: Models, Methods and Econometrics, (Kluwer, Boston).

Bishop, C. M., 1995, Neural networks for pattern recognition (Oxford University Press,
New York).

Bullard, J. and J. Duffy, 1999, Learning and excess volatility, working paper, University
of Pittsburgh.

Chyi, Y.L., 1997, Solving the stochastic growth model by a neural network learning
approach, working paper, National Tsing Hua University.

Christiano, L.J. and J.D.M. Fisher, 1997, Algorithms for solving dynamic models with
occasionally binding constraints, NBER technical working paper no. 218.

Davis, L., 1991, ed., Handbook of genetic algorithms, (Van Nostrand Reinhold, New
York).

Den Haan, W.J. and A. Marcet, 1990, Solving the stochastic growth model by
parameterizing expectations, Journal of Business and Economic Statistics 8, 31-34.

Den Haan, W.J. and A. Marcet, 1994, Accuracy in simulations, Review of Economic
Studies 61, 3-17.

Dorsey, R E. and W. J. Mayer, 1995, Genetic algorithms for estimation problems with
multiple optima, nondifferentiability, and other irregular features, Journal of Business and
Economic Statistics 13, 53-66.

Hassoun, M. H., 1995, Fundamentals of artificial neural networks, (MIT Press,
Cambridge, MA).

Herrera, F., M. Lozano and J.L. Verdegay, 1998, Tackling real-coded genetic algorithms:
Operators and tools for behavioral analysis, Artificial Intelligence Review 12, 265-319.

 29

Holland, J., 1975, Adaptation in natural and artificial systems, (University of Michigan
Press, Ann Arbor), Reprinted in 1992, (MIT Press, Cambridge, MA).

Hornik K., M. Stinchcombe, and H. White, 1989, Multi-layer feedforward networks are
universal approximators, Neural Networks 2, 359-366.

Judd, K.L., 1992, Projection methods for solving aggregate growth models, Journal of
Economic Theory 58, 410-452.

Judd, K.L., 1998, Numerical Methods in Economics, (MIT Press, Cambridge, MA).

Marcet, A., 1988, Solving nonlinear models by parameterizing expectations, working
paper, Carnegie-Mellon University.

Michalewicz, Z., 1996, Genetic algorithms + data structures = evolution programs, third
edition, (Springer-Verlag, New York).

Mitchell, M., 1996, An introduction to genetic algorithms, (MIT Press, Cambridge, MA).

Rudolph, G., 1994, Convergence analysis of canonical genetic algorithms, IEEE
Transactions on Neural Networks 5, 96-101.

Sargent, T.J., 1987, Dynamic macroeconomic theory, (Harvard University Press,
Cambridge, MA).

Sargent, T. J., 1993, Bounded rationality in macroeconomics, (Oxford University Press,
New York).

Schmertmann, C.P., 1996, Functional search in economics using genetic programming,
Computational Economics 9, 275-298.

Tauchen, G., 1990, Solving the stochastic growth model by using quadrature methods and
value-function iterations, Journal of Business and Economic Statistics, 8, 49-51.

Tauchen, G. and R.M. Hussey, 1991, Quadrature-based methods for obtaining
approximate solutions to non-linear asset-pricing models, Econometrica 59, 371-396.

Taylor, J.B. and H. Uhlig, 1990, Solving nonlinear stochastic growth models: A
comparison of alternative solution methods, Journal of Business and Economic Statistics
8, 1-17.

 30

Table 1: Accuracy/Diagnostic Statistics for the Model with tau=delta=1

A: Benchmark Values for Exact Solution
Beta = .95 Beta = .98
Sigma: Sigma:

0.01 0.05 0.1 0.01 0.05 0.1
i-c ratio 0.733337 0.733837 0.731722 i-c ratio 0.799104 0.803937 0.801619
con vol 0.006551 0.030116 0.065364 con vol 0.005721 0.03014 0.065416

B: Solutions for Network Approximation
Beta = .95 Beta = .98
Sigma Sigma

0.01 0.05 0.1 0.01 0.05 0.1
e(h) -1.36 -0.2626 1.07 e(h) -1.52 -0.236 1.12
PE-Error 1.68E-05 5.48E-05 0.001207 PE-Error 3.82E-07 4.85E-05 0.000986
i-c ratio 1.027208 1.240308 1.285603 i-c ratio 0.982809 0.984299 1.064046
con vol 0.005929 0.027166 0.058701 con vol 0.00549 0.028952 0.062435
corr w exact 0.99933 0.999856 0.999002 corr w exact 0.999988 0.999894 0.998919

C: Solutions for Polynomial Approximation
Beta = .95 Beta = .98
Sigma Sigma

0.01 0.05 0.1 0.01 0.05 0.1
e(h) -0.4419 -0.3842 0.219 e(h) -0.4814 -0.3943 0.2327
PE-Error 1.75E-06 7.12E-05 0.000337 PE-Error 0.000126 9.09E-06 0.000338
i-c ratio 1.155243 1.248969 1.255044 i-c ratio 0.940838 0.987292 1.009726
con vol 0.005167 0.027151 0.058835 con vol 0.029052 0.028934 0.062663
corr w exact 0.999925 0.999825 0.999626 corr w exact 0.999725 0.999979 0.999618

 31

Table 2: Coefficients of Parameterized Expecations Models (where tau=delta=1)

A. Neural Network Coefficients and Standard Deviations
(Standard Deviations In Italics, first row based on ga estimates only)

Neuron 1 Neuron 1 Neuron 2
beta sigma constant coefficient k(-1) theta k(-1) theta

0.95 0.01 16.47942 0.314399 -2.125809 -1.3295 -6.754121 -11.62937
0.546141 1.011653 9.836234 1.36487 1.760005 0.959442
61.44795 13.31865 8.510216 1.56951 2579.176 33.28563

0.95 0.05 21.41425 1.206309 -2.826033 -2.10821 -5.417566 -0.605893
2.002061 0.4385 1.872858 0.43036 4.886588 4.245783
0.996521 0.514417 0.117762 0.06025 377.8443 8.81035

0.95 0.1 21.02004 1.070417 -3.412623 -1.89004 1.492699 -1.71325
6.367557 0.619806 8.899572 0.47685 2.423918 4.68467
9.698343 0.64191 8.111838 0.7752 5.076085 5.384808

0.98 0.01 17.97724 0.959983 -2.833295 -1.72594 -9.910302 -2.879743
1.096616 0.234255 2.51229 1.05172 1.956257 0.848457

44.5208 0.47445 3.846435 1.01295 36.68764 84.80875

0.98 0.05 20.8292 0.156844 -3.180089 -1.9474 37.11811 45.87679
3.389278 1.106713 4.127126 0.82269 2.123386 4.905593
8.288293 1.004706 1.392792 0.94018 18.65472 20.91533

0.98 0.1 20.10909 1.097249 -2.291695 -2.10609 -17.07265 1.103343
8.543583 0.981625 9.966193 1.25356 4.406638 1.323581
10.92276 0.963152 9.64929 1.5527 7.463489 1.395279

B. Polynomial Coefficents and Standard Deviations
(Standard Deviations In Italics, first row based on ga estimates only)

First-Degree Second-Degree Cross-term
beta sigma constant ln[k(-1)] ln(theta) ln[k(-1)] ln(theta) ln[k(-1)]ln(theta)

0.95 0.01 2.309697 0.371658 -1.024036 0.398282 1.527809 1.102599
0.449369 0.642534 1.049247 0.23754 0.247976 0.672973
0.475185 0.593813 1.052024 0.18854 0.274704 0.668843

0.95 0.05 0.920698 -1.378149 0.16365 -0.15213 0.768553 1.848136
0.233104 0.367547 0.448049 0.14038 0.129095 0.290893

0.09266 0.118462 0.341076 0.0379 0.11136 0.220378

0.95 0.1 1.503821 -0.638071 -1.314541 0.084317 1.197503 0.920243
0.462893 0.623441 0.247738 0.20829 0.111709 0.150018
0.085839 0.112673 0.113394 0.03662 0.042927 0.073704

0.98 0.01 1.077391 -1.070474 -1.830974 -0.0699 1.516881 0.498521
0.31096 0.37079 0.96403 0.11985 0.451634 0.613267

0.256371 0.323214 0.91837 0.10193 0.456472 0.569926

0.98 0.05 1.720697 -0.241182 -1.397958 0.196083 1.310748 0.764183
0.533738 0.615788 0.715167 0.18087 0.296382 0.454537
0.354023 0.445132 0.4544 0.1396 0.211436 0.282935

0.98 0.1 1.455901 -0.574595 -1.272582 0.093091 1.176286 0.865596
0.519941 0.612588 0.393163 0.1793 0.122457 0.239435
0.426629 0.540713 0.543239 0.1697 0.200536 0.344748

T able 3: Accuracy/D iagnostic Statistics for the Param eterized Expectations M odels
(where delta=0)

N etwork M ode l
beta = .95
s igm a:

0.02 0.02 0.02 0.1 0.1 0.1
tau (C R R A):

0.5 1 .5 3 0.5 1.5 3
Statistic
PE-Error 9.83E-05 3.21E-05 1.9E-06 0.000119 2.79E-05 9.15E-07
D -M Stat 35.46018 7.97538 2.335482 8.00893 1.22818 7.429544
rsqstat 0.020193 0.029879 0.054394 0.076863 0.128776 0.036034
tr2stat 13.6868 11.88655 11.45928 11.4024 11.23764 14.80248
inv/con ratio 9.750116 9.917064 13.27814 107.537 99.13206 55.11607
con vol 0.035924 0.028555 0.021616 0.022159 0.020743 0.044958

N etwork M ode l
beta = .98
s igm a:

0.02 0.02 0.02 0.1 0.1 0.1
tau (C R R A):

0.5 1 .5 3 0.5 1.5 3
Statistic
PE-Error 1.38E-05 5.6E-06 3.78E-08 1.45E-05 1.89E-06 3.42E-08
D -M Stat 22.43548 13.65853 8.927994 5.550985 8.088755 7.88883
rsqstat 0.006525 0.015741 0.019844 0.009762 0.019465 0.029758
tr2stat 12.16412 8.339538 14.07553 12.62323 13.53097 15.02458
i-c ratio 6.528208 8.682697 8.562627 36.01803 42.55496 57.47086
con vol 0.054664 0.042604 0.0341 0.051255 0.041692 0.03595

Polynom ial M odel
beta = .95
s igm a:

0.02 0.02 0.02 0.1 0.1 0.1
tau (C R R A):

0.5 1 .5 3 0.5 1.5 3
Statistic
PE-Error 0.000335 4.46E-05 2.08E-06 0.00038 0.000167 0.000157
D -M Stat 34.38042 36.12398 25.9647 10.11301 4.549293 24.67081
rsqstat 0.068241 0.070493 0.036268 0.006872 0.049973 0.480993
tr2stat 12.63014 14.09339 15.42446 13.83102 10.54619 13.60119
i-c ratio 5.771259 3.242505 1.93993 17.69706 1.206709 1.035333
con vol 0.056003 0.092003 0.09234 0.248086 1.105078 2.697219

Polynom ial M odel
beta = .98
s igm a:

0.02 0.02 0.02 0.1 0.1 0.1
tau (C R R A):

0.5 1 .5 3 0.5 1.5 3
Statistic
PE-Error 5.54E-05 9.37E-07 1.29E-07 5.3E-05 2.2E-05 3.8E-06
D -M Stat 30.76413 21.22715 30.99575 10.59343 21.60272 8.016683
rsqstat 0.347499 0.328332 0.038217 0.008772 0.010891 0.027975
tr2stat 9.768334 11.95525 14.26685 16.12978 14.15977 15.24162
i-c ratio 5.73774 46.5541 3.355877 19.56364 2.446527 16.92518
con vol 0.054554 0.016577 0.092944 0.218839 0.706217 0.261653

 33

Table 4: Neural Network Coefficients and Standard Deviations (model with delta=0)
(Standard deviations in italics, first row based on ga estimates only)

Neuron 1 Neuron 1 Neuron 2
beta sigma tau constant coefficient k(-1) theta k(-1) theta

0.95 0.02 0.5 1.138065 -0.897447 0.00078 0.267371 -0.040393 3.334775
0.392197 6.42026 1.249794 3.013832 0.256437 1.802603
0.435895 6.478718 1.24806 3.218217 0.259761 1.502091

0.95 0.02 1.5 -0.937592 10.52024 -0.030908 0.600233 2.691383 -0.86945
0.732156 7.3524 0.069582 2.85507 1.198284 2.543489
0.731495 7.354348 0.066889 2.855128 1.196732 2.543477

0.95 0.02 3 0.005185 4.282718 -0.045222 -0.198397 -0.120871 5.346404
0.499293 8.397003 1.123835 2.228781 0.031853 2.287282
0.499286 8.397011 1.123836 2.228781 0.031853 2.287282

0.95 0.1 0.5 -0.589684 0.92521 3.494438 -1.747494 -0.003883 0.169742
0.400764 6.137187 1.56633 0.72619 1.001637 1.126065

0.36479 6.143289 1.566407 0.732627 1.000979 1.163954

0.95 0.1 1.5 0.487773 -0.44134 0.054426 -1.615615 -0.01257 -0.0902
0.979004 10.33687 1.741867 0.724911 1.86919 1.260007
0.978497 10.33675 1.741795 0.724915 1.86783 1.259879

0.95 0.1 3 0.003629 19.79459 -0.061912 -0.149368 -0.097932 2.381323
0.105928 9.06452 0.985442 2.682097 0.894234 0.987719

0.10598 9.064527 0.985437 2.682097 0.894229 0.987719

0.98 0.02 0.5 0.294377 4.856039 -0.006184 0.089262 -0.001252 -0.743309
0.023587 3.156921 1.342268 0.917426 0.002353 0.764437
0.023577 3.156921 1.341903 0.917426 0.002069 0.764435

0.98 0.02 1.5 -0.857313 -0.098258 0.013748 -4.528765 2.669067 1.947095
0.422881 4.234846 1.169247 1.860844 1.607114 0.991459
0.422861 4.234854 1.169241 1.860844 1.607111 0.991459

0.98 0.02 3 0.002687 4.748672 -0.024321 -0.052801 -0.133511 7.582655
0.39384 2.979929 0.687991 2.068783 0.480554 3.332521
0.39384 2.97994 0.687991 2.068783 0.480554 3.332521

0.98 0.1 0.5 0.315984 5.920693 -0.004606 -0.026632 -1.471257 0.033729
0.44757 4.329235 1.596258 0.731452 0.755224 0.773969

0.447553 4.329235 1.596258 0.731452 0.755217 0.773969

0.98 0.1 1.5 0.039613 4.123392 -0.012619 -0.095063 -0.010242 0.114006
0.2644 4.212807 1.708914 3.011417 0.034417 2.776134

0.264392 4.212824 1.708912 3.011416 0.034431 2.776134

0.98 0.1 3 -0.99755 4.330734 -0.026375 -0.072781 0.684483 -0.108325
0.726231 8.348796 0.081674 5.260965 1.214151 0.703686
0.726232 8.348804 0.081673 5.260965 1.214151 0.703686

 34

Table 5: Polynomial Coefficients and Standard Deviations (model with delta=0)
(Standard deviations in italics, first row based on ga estimates only)

First-Degree Second-Degree Cross-term
beta sigma tau constant ln[k(-1)] ln(theta) ln[k(-1)] ln(theta) ln[k(-1)]ln(theta)

0.95 0.02 0.5 1.049333 0.169402 0.862621 -0.12054 -0.026686 -0.036381286
0.566708 0.568728 0.676591 0.10204 0.018142 0.081210085
0.566705 0.568739 0.676597 0.101987 0.018142 0.08138375

0.95 0.02 1.5 0.47191 0.841224 0.00468 -0.004435 0.001858 -0.177642703
1.292867 1.116388 1.006154 0.194771 0.011638 0.186773802
1.292868 1.116388 1.006154 0.194765 0.011638 0.186790414

0.95 0.02 3 0.649016 0.046461 2.167939 -0.486089 0.014307 -0.042049177
0.95692 0.353137 1.555847 0.347877 1.38929 0.055872158

0.956929 0.353129 1.555845 0.347879 1.384274 0.055890782

0.95 0.1 0.5 -0.812806 1.071377 0.256924 -0.038341 -0.003047 -0.131405318
0.581749 0.249445 0.389951 0.057267 0.001099 0.027636859
0.581745 0.249416 0.389957 0.05715 0.001063 0.027700824

0.95 0.1 1.5 -0.771198 0.459113 1.313694 -0.178094 -0.013663 -0.047291292
0.85218 0.292137 0.581201 0.058952 0.054098 0.036016623

0.843823 0.28336 0.577748 0.08333 0.007123 0.031801595

0.95 0.1 3 0.449585 -0.029935 0.651348 -0.062844 -0.016365 -0.001049174
0.969351 0.807533 1.270668 0.151778 0.114722 0.077112426
1.054116 0.801129 0.727554 0.10201 0.1139 0.076565707

0.98 0.02 0.5 0.988052 0.460422 -0.199462 0.027416 0.003972 -0.076378012
0.904092 0.447772 0.750289 0.111879 0.005829 0.06810283
0.904092 0.447773 0.750289 0.111876 0.005829 0.068094498

0.98 0.02 1.5 0.397277 -0.008409 -0.051041 0.007418 0.001856 -0.006468998
0.500495 0.523949 0.88182 0.150735 0.004225 0.079859365
0.500495 0.523949 0.881819 0.150736 0.004225 0.079872828

0.98 0.02 3 0.315705 0.020236 0.115688 -0.022289 8.11E-05 -0.014866692
2.384722 1.011237 1.168887 0.122304 0.581603 0.104644636
2.384807 1.010995 1.168771 0.122497 0.587446 0.104713587

0.98 0.1 0.5 -0.543917 0.918745 0.160874 -0.02284 -0.001889 -0.11037633
0.764203 0.327475 0.072465 0.010313 0.00113 0.045111908
0.764202 0.32747 0.072465 0.0103 0.001124 0.045120704

0.98 0.1 1.5 1.043739 0.720442 -0.891994 0.146776 -0.011026 -0.146950375
0.928105 0.385209 1.204833 0.182197 0.017014 0.063599101
0.928382 0.38439 1.206208 0.17308 0.016771 0.05856538

0.98 0.1 3 0.496401 -0.129347 0.108197 -0.011933 0.011442 0.008598994
1.483095 0.482269 1.73272 0.179923 0.057963 0.032327403
1.488434 0.484959 1.756383 0.183092 0.0595 0.032631159

 35

Table 6: Comparison with Alternative Methods under Low Variance Assumption: sigma = .02

Panel A: beta = .95 Panel B: beta = .95 Panel C: beta = .95
tau = .5 tau = 1.5 tau = 3

D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio
Duffy/McNelis-NN 35.46 13.69 0.02 9.75 7.98 11.89 0.03 9.92 2.34 11.46 0.05 13.28
Duffy/McNelis-PA 34.38 12.63 0.07 5.77 36.12 14.09 0.07 3.24 25.96 15.42 0.04 1.94
Christiano-Loq LQ 17.00 10.00 0.43 29.00 10.00 10.00 0.05 11.00 18.00 19.00 0.02 8.00
Ingram 10.00 17.00 0.44 30.00 11.00 165.00 0.06 12.00 12.00 394.00 0.03 20.00
Den Haan/Marcet 18.00 15.00 0.42 30.00 18.00 14.00 0.06 13.00 12.00 13.00 0.03 10.00
McGratten 96.00 19.00 0.34 24.00 22.00 19.00 0.04 9.00 17.00 19.00 0.02 7.00
Sims 12.00 24.00 0.44 31.00 12.00 24.00 0.07 13.00 12.00 22.00 0.04 11.00
Tauchen 704.00 11.00 0.50 3.00 558.00 9.00 0.38 2.00 502.00 14.00 0.33 2.00

Panel D: beta = .98 Panel E: beta = .98 Panel F: beta = .98
tau =0.5 tau=1.5 tau = 3

D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio
Duffy/McNelis-NN 22.44 12.16 0.01 6.53 13.66 8.34 0.02 8.68 8.93 14.08 0.02 8.56
Duffy/McNelis-PA 30.76 9.77 0.35 5.74 21.23 11.96 0.33 46.55 31.00 14.27 0.04 3.36
Christiano-Loq LQ 28.00 20.00 0.24 132.00 16.00 25.00 0.03 59.00 12.00 16.00 0.01 45.00
Ingram 8.00 15.00 0.33 162.00 11.00 203.00 0.04 66.00 12.00 381.00 0.02 98.00
Den Haan/Marcet 30.00 15.00 0.35 178.00 7.00 14.00 0.04 78.00 9.00 14.00 0.02 74.00
McGratten 62.00 19.00 0.21 112.00 26.00 17.00 0.02 44.00 21.00 16.00 0.01 38.00
Sims 11.00 19.00 0.36 171.00 12.00 16.00 0.04 66.00 10.00 14.00 0.02 59.00
Tauchen 322.00 16.00 0.34 2.00 234.00 13.00 0.27 2.00 215.00 10.00 0.27 2.00

 36

Table 7: Comparison with Alternative Methods under High Variance Assumption:
sigma=.10

Panel A: beta = .95 Panel B:beta = .95
tau = .5 tau = 1.5

D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio
Duffy/McNelis-NN 8.01 11.40 0.08 107.54 1.23 11.24 0.13 99.13
Duffy/McNelis-PA 10.11 13.83 0.01 17.70 4.55 10.55 0.05 1.21
Christiano-Loq LQ 56.00 31.00 0.36 24.00 32.00 16.00 0.04 9.00
Ingram 11.00 46.00 0.35 29.00 8.00 123.00 0.18 170.00
Den Haan/Marcet 27.00 12.00 0.40 28.00 22.00 11.00 0.04 9.00
McGratten 84.00 21.00 0.13 6.00 55.00 20.00 0.04 3.00
Sims 11.00 27.00 0.41 30.00 14.00 26.00 0.06 12.00
Tauchen 584.00 8.00 0.50 3.00 396.00 9.00 0.38 2.00

Panel C:beta = .98 Panel D:beta = .98
tau =0.5 tau=1.5

D-M Stat TR-Stat R-SQ I/C Ratio D-M Stat TR-Stat R-SQ I/C Ratio
Duffy/McNelis-NN 5.55 12.62 0.01 36.02 8.09 13.53 0.02 42.55
Duffy/McNelis-PA 10.59 16.13 0.01 19.56 21.60 14.16 0.01 2.45
Christiano-Loq LQ 34.00 12.00 0.12 45.00 44.00 25.00 0.04 36.00
Ingram 11.00 75.00 0.26 155.00 10.00 172.00 0.10 490.00
Den Haan/Marcet 22.00 11.00 0.33 168.00 25.00 12.00 0.03 55.00
McGratten 69.00 18.00 0.07 17.00 22.00 14.00 0.04 10.00
Sims 12.00 22.00 0.32 165.00 12.00 19.00 0.04 64.00
Tauchen 284.00 19.00 0.34 2.00 153.00 12.00 0.27 2.00

 37

Figure 1:
e(h) Statistic for Network (n) and Polynomial (p)

Methods for Two Values of Beta

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12

Std. Deviation of epsilon (sigma)

e(
h

)

e(n-.95) e(n-.98) e(p-.95) e(p-.98)

