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Abstract

Monetary policy has been usually analyzed in the context of small macroeconomic

models where central banks are allowed to exploit a limited amount of information.

Under these frameworks, researchers typically derive the optimality of aggressive

monetary rules, contrasting with the observed policy conservatism and interest rate

smoothing. This paper allows the central bank to exploit a wider information set,

while taking into account the associated model uncertainty, by employing Bayesian

model averaging with Markov chain model composition. In this enriched

environment, we derive the optimality of smoother and more cautious policy rates,

together with clear gains in macroeconomic efficiency.

I Introduction

Monetary policy is usually studied in the context of small macroeconomic

models in which the central bank is implicitly allowed to exploit only a limited

amount of information. Most studies, in fact, assume backward- or forward-

looking models, which follow those proposed by Rudebusch and Svensson

(2002), McCallum and Nelson (1999), Clarida et al. (2000), and Woodford

(2003b), and which are typically characterized by only three economic variables:

inflation, a measure of the output gap, and a short-term interest rate.

But in reality, central bankers need to monitor a wide variety of economic

data and indicators. Monetary policy makers not only focus on current and past

values of the target variables, but they also analyze a large number of

intermediate targets and leading indicators, which are correlated with the actual

target variables, but they are more easily and promptly observable.

Motivated by this observation, this paper tries to incorporate a larger

information set in a simple empirical model of monetary policy. In the recent

literature, Bernanke and Boivin (2003) have provided a first example of a study

of monetary policy in what they label a ‘data-rich’ environment, but mainly with

emphasis on the effects of monetary policy shocks.
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The current paper aims, instead, to study how the expansion of the central

bank’s information set affects the choice of optimal monetary policy, comparing

the results with those typically obtained in more conventional environments. In

particular, we try to verify whether the incorporation of an enlarged information

set, together with the associated model uncertainty, might represent a solution to

an important unresolved issue in the monetary policy literature: the reconcilia-

tion with optimizing behavior of real-world central bank’s conservatism and

interest rate smoothing. In the context of small macroeconomic models, in fact,

it is common to derive the optimality of an excessively aggressive and volatile

monetary policy rule, which is at odds with the historically observed one.

This puzzle has lead to the development of an active stream of research. Sack

and Wieland (2000) survey some of the potential explanations for interest rate

smoothing offered in the literature, which consist of:

1. Forward-looking expectations: As Woodford (2003a) has argued, in the

presence of forward-looking market participants, policy rules characterized

by partial adjustment will be more effective in stabilizing output and

inflation, because a small initial policy move in one direction will be

expected to be followed by additional subsequent moves in the same

direction. This induces a change in future expectations without requiring a

large initial move. Castelnuovo (2006) empirically analyzes this argument.

2. Data uncertainty (real-time data): If macroeconomic variables are measured

with error, the central bank moderates its response to initial data releases in

order to avoid unnecessary fluctuations in the target variables. An example

of monetary policy using real-time data is Orphanides (2001).

3. Parameter uncertainty: If there is uncertainty about the parameters of the

model, an attenuated response to shocks would be optimal, as shown in the

original paper by Brainard (1967). Several recent papers have reinvestigated

this prediction (Sack, 2000 and Soderstrom, 2002 provide empirical examples).

None of these explanations, however, has been found to be entirely

convincing from an empirical point of view.

Rudebusch (2002), on the other hand, views interest rate smoothing as an

illusion, citing as evidence the unpredictability of the term structure, which is not

consistent with the large estimated smoothing coefficient. The papers by

Gerlach-Kristen (2004), English et al. (2003), and Castelnuovo (2003, 2007)

provide further tests of this view.

The current paper explores whether adding a richer information set and

accounting for the associated model uncertainty can justify the optimality of the

observed gradualism and smoothness. In our environment, the central bank takes

into account a variety of other data, in addition to inflation, output gap, and the

federal funds rate. As we focus on the United States, the additional variables included

in the model are some selected leading indicators that are recognized as important in

formulating monetary policy by the Fed and published in the NY Fed’s website.1

1These selected indicators are published at http://www.ny.frb.org/education/bythe.html, and
described in more detail in the next section and in Appendix A.
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As the available information is very large and diverse, the policy maker has to

face a considerable degree of model uncertainty and she needs to recognize

which indicators are more successful and reliable predictors of current and

future inflation and real activity.

Therefore, to take the pervasive model uncertainty that arises in this

environment into account, we employ a technique known as Bayesian model

averaging (BMA) with Markov chain Monte Carlo model composition (MC3).2

The procedure, which will be described in detail in the next section, implies

the estimation of all the models coming from every possible combination of the

regressors; the derived coefficients are, then, obtained as averages from their

values over the whole set of models, weighted according to the posterior model

probabilities.

This technique may be useful in the study of monetary policy, a field in which

the consideration of model uncertainty is crucial.

Model uncertainty is often introduced using different modeling techniques. A

first attempt in the literature has been to add multiplicative (parameter)

uncertainty, which implies that the only uncertainty about the model comes

from unknown values of the parameters (Brainard, 1967). Another stream of

research (among which, the paper by Onatski and Stock 2002 is an example), has

applied robust control techniques, by assuming that the policy maker plays a

game against a malevolent Nature and tries to minimize the maximum possible

loss, whereas Nature seeks to maximize this loss.

Furthermore, a recent approach to model monetary policy under uncertainty

has been the proposal of ‘thick’ modeling, as in Favero and Milani (2005) and

Castelnuovo and Surico (2004). In their work, the authors recursively estimate

several possible models, generated by different combinations of the included

regressors, and they calculate the associated optimal monetary policies. Under

recursive ‘thin’ modeling, the best model, according to some statistical criterion,

is chosen in every period and the optimal policy is derived. Then, they propose

recursive ‘thick’ modeling, as a means to take into account the information

coming from the whole set of models, which would be instead ignored under thin

modeling. With thick modeling, the optimal policies for each specification are

calculated and the average (or weighted average based on some measure of

model accuracy) is taken as benchmark monetary policy.

The current paper has two important advantages over their work: first, we

examine a much more pervasive degree of model uncertainty, as we consider

monetary policy-making under a wider and more realistic information set, and

we consider uncertainty about which indicators to use, whereas they only

introduce uncertainty about the dynamic structure of the economy (they

consider conventional three-variables models with inflation, output gap, and

nominal interest rates, and they contemplate uncertainty only about the relevant

lags).

2Recently, the papers by Brock et al. (2003) and Cogley and Sargent (2003) have employed
BMA to monetary policy issues. In particular, the techniques used in Brock et al. (2003) are
similar to those in this paper.
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A second advantage lies in the fact that we use a technique more grounded on

statistical theory, like BMA, which is the Bayesian solution to the problem of

model uncertainty. BMA permits us to identify the most robust variables across

different model specifications.

More generally, the paper aims at contributing to the literature by proposing

relatively original estimation techniques to incorporate model uncertainty and

by adding a more realistic and larger information set in the empirical analysis of

monetary policy. The objective is to examine whether those modifications lead to

the optimality of a smoother policy instrument path.

The empirical results provide evidence that the wider information set and

model uncertainty can help in explaining the optimality of monetary policy

conservatism and interest rate smoothing. Moreover, the results stress the

importance of taking model uncertainty into consideration in the modeling of

optimal monetary policy-making, because the posterior model probabilities are

found to be spread among several different models.

II Methodology

We suppose that in every period the central banker estimates equations for the

target variables, i.e. inflation and the output gap. We allow here the central bank

to employ a wide variety of variables and indicators, which can potentially

contain useful information about the future path of target variables.

Owing to the large number of included explanatory variables, we do not

consider a unique model comprising all of them, but, instead, we focus on all the

possible combinations obtained with the different regressors. Thus, if the

specification contains k potential regressors, we end up with 2k � 2 (as we have

two equations) different models: in our case, we have 15 variables per equation,

and we consider four possible lags for each of them; hence, we deal with a set of

260 � 2 possible models Mj.

We may describe the inflation and output equations the policy maker

implicitly uses as follows:

AS½ � pt ¼ bp0it þ bpj Xj;t þ ept ð1Þ

AD½ � yt ¼ by0it þ byjX
0

j;t þ eyt ; ð2Þ

where it is a t-dimensional vector of ones, bp0 and by0 are constants, b
p
j and byj are

vectors of the relevant coefficients for every model j, and the regressors’ matrices

are represented by Xj;t ¼ ½pt�1; pt�2; pt�3; pt�4; yt�1; yt�2; yt�3; yt�4;Zt�1;Zt�2;

Zt�3;Zt�4�; X
0

j;t ¼ ½yt�1; yt�2; yt�3; yt�4; ðit�1 � pt�1Þ; ðit�2 � pt�2Þ; ðit�3 � pt�3Þ;
ðit�4 � pt�4Þ;Zt�1;Zt�2;Zt�3;Zt�4�, with Zt� 1, i5 1, 2, 3, 4, including lags of

some leading indicators used by the Fed.

In the estimation, we use quarterly US data from 1969 to 2001 and work with

demeaned variables, to get rid of the constants. Inflation is calculated as

(log(pt)� log(pt� 4)) � 100, output gap as (log(yt)� log(yn)) � 100, where yn is

CBO potential output, and the federal funds rate is used in levels. The leading

indicators we consider in Z are: CPI inflation, employment, housing starts, the
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inventory/sales ratio, money supply (M2), consumer confidence, National

Association of Purchasing Managers (NAPM) survey of business conditions,

new orders of durable goods, retail sales, shipments of durable goods, the stock

market index, unfilled orders of durable goods, and vehicles sales.3

The model we consider is backward looking and it should be seen as the

reduced form of a more structural model. Although not uncommon in the

related literature, the choice of estimating a backward-looking model over a

relatively long sample (1969–2001) may be problematic, because various papers

have argued that monetary policy has changed over this period. This choice

would be particularly problematic if the paper’s focus was on evaluating the

effects of monetary policy on the economy, because it would incorrectly assume

that the private sector equations were invariant to changes in policy. Here,

however, the focus is on computing the optimal monetary policy given an

estimated backward-looking specification of the economy in order to infer the

necessary penalty on interest rate changes necessary to mimic the behavior of the

federal funds rate. Redoing the exercise in a structural forward-looking model

with ‘deep’ private sector parameters is certainly important, but it is left for

future research.

Inflation in the model depends on its own lagged values and on current and

lagged values of a real activity measure (the output gap in our case), and the

output gap depends on its past values and on lagged real short-term interest rate.

This is a very common specification in monetary policy analysis. But in our

framework, we have allowed for the consideration of several other potential

predictors that enter the vector Zt. As said, we do not consider a single model

with all those variables, but we aim at estimating all the possible models

obtained with the different combinations of the regressors, by using a procedure

that will allow us to retain the information coming from each model.

To deal with the considerable model and parameter uncertainty, characteriz-

ing the wide information environment, we use BMA estimation, which allows

inference averaged over all models. To solve the computational burden, we

employ a technique known as MC3, which derives from the work of Madigan

and York (1995). This technique enables us to account for model uncertainty,

and to identify the most robust predictors across all the possible specifications.

By applying the Markov chain Monte Carlo (MCMC) method, we can derive

the posterior distribution of any quantity of interest through the generation of a

process that moves through model space. Our choice of prior distribution

follows Raftery et al. (1997), i.e. the use of data-dependent ‘weakly informative’

priors. In particular, we use a normal-gamma conjugate class of priors:

b � Nðm; s2VÞ;
ul
s2
� w2u ;

where u, l, the matrix V, and the vector m are hyperparameters to be chosen. The

distribution of b is centered on 0 (m5 [0, 0, . . ., 0]) and the b’s are assumed to be

3See Appendix A for more details on the variables.
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independent a priori. Therefore, this prior implies that we are agnostic on which

regressors are important. The variance–covariance matrix is equal to s2

multiplied by V, which is a diagonal matrix with entries given by
f2

varðX1Þ;
f2

varðX2Þ; . . . ; f2

varðXkÞ

� �
, where Xj, j5 1, . . ., k, stands for the jth regressor,

and f is a hyperparameter to be chosen. The prior variances for the various b’s
are, therefore, chosen to reflect a belief that the precision of the estimates should

increase as var(Xi) increases and to take into account the scale of the X’s. In our

estimation, we select u5 4, l5 0.25, f5 3. Those hyperparameters are chosen

such that ul5 1; u, however, also affects the degrees of freedom of the w
distribution (which will have mean u and variance 2u).4 f reflects how uncertain

our priors about b are: a value of 3 implies a relatively diffuse prior for most

coefficients. A more informative prior would consist on centering the prior for

the first autoregressive coefficient to 0.9, for example, and reducing its prior

variance, while leaving the prior mean for the other coefficient to 0. Such a prior

does not affect the estimates (because the data appear very informative, the prior

has small effects).

Through BMA estimation, the parameters are averaged over all possible

models using the corresponding posterior model probabilities as weights; in

accordance with the literature, exclusion of a regressor means that the

corresponding coefficient is zero.

This procedure is better than just considering a single best model Mn, and

acting as if it were the ‘true’ model, because such a procedure would ignore the

potentially substantial degree of model uncertainty and would lead to

underestimation of uncertainty about the quantities of interest.

The Bayesian solution to this problem is the following: define

M ¼ fM1; . . . ;Mkg, the set of all possible models, and assume D is a quantity

of interest. Then, the posterior distribution of D given the observed data D is

prðDjDÞ ¼
XK

k¼1
prðDjMk;DÞprðMkjDÞ; ð3Þ

which is an average of the posterior distributions under each model, weighted by

the respective posterior model probabilities. This is exactly what is known as

BMA. From equation (3), pr(Mk|D) is given by

prðMkjDÞ ¼
prðDjMkÞprðMkÞPK
j¼1 prðDjMjÞprðMjÞ

; ð4Þ

where prðDjMkÞ ¼
R
prðDjbk;MkÞprðbkjMkÞdbk represents the marginal like-

lihood of model Mk, obtained as the product of the likelihood pr(D|bk,Mk)

and the prior density of bk under model Mk, pr(bk|Mk); bk is the vector of

parameters of model Mk, and pr(Mk) is the prior probability of Mk (note

that all the probabilities are implicitly conditional on the set of all possible

models M).

4We have experimented different values, but the results are substantially unchanged.
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Before implementing any method of estimation, we need to specify a prior

distribution over the competing models Mk (i.e., we need to assign a value to

pr(Mk) in expression (4)). The obvious neutral choice, when there is no a priori

belief, would be to consider all models as equally likely. Otherwise, when we

have prior information about the importance of a regressor, we can use a prior

probability for model Mk:

prðMkÞ ¼
Yp

j¼1
pdkjj 1� pj

� �1�dkj ; ð5Þ

with pjA[0, 1] representing the prior probability of bj 6¼0 and dkj is a variable

assuming value 1 if the variable j is included in modelMk, and value 0 if it is not.

Here, we consider pj 5 0.5, which corresponds to a Uniform distribution

across model space. In this case, the prior probability of including each regressor

is 1/2, independently of which other predictors are already included in the

model.

With an enormous number of models, the posterior distributions could be

very hard to derive (the number of terms in equation (3) could be extremely

large, and also the integral in equation (4) could be really hard to compute). For

this reason, we need to approximate the posterior distribution in equation (3)

using a MCMC approach, which generates a stochastic process which moves

through model space.

The MC3 works as follows. We construct a Markov chain

fMt, t5 1, 2, 3, . . .g with state space M and equilibrium distribution pr(Mj|D),

then we simulate this Markov chain for t5 1, . . .,N, with N the number of

draws.

In the implementation, given that the chain is currently at model Ms, a new

model, sayMi, which belongs to the space of all models with either one regressor

more or one regressor less than Ms, is considered randomly through a Uniform

distribution. The new model is estimated and the chain moves to the newly

proposed model Mi with probability p ¼ min 1; prðMi jDÞ
prðMsjDÞ

n o
, and stays in state Ms

with probability 1� p. In this way, the chain moves across models and stays

more often in models that fit the data better. In particular, once an important

regressor is encountered, it leads to a large increase in fit and, therefore, the

chain moves to the new model with probability 1; also, the next models the chain

will visit will be more likely to contain the newly added regressor. An obvious

example, in the inflation equation, is inflation in t� 1. Lagged inflation is

strongly significant and, in fact, it almost always appears in the models visited by

the chain. Suppose, instead, that we have a regressor that is not significant (e.g.,

the stock price index in t� 4). When the chain moves to a model characterized

by this additional regressor, the improvement in the likelihood would not be

enough to contrast the penalty for the additional parameter (the marginal

likelihoods automatically penalize for model size). Therefore, the chain will stay

in the original model with high probability (the probability of moving to the new

model, equal to
prðMnewjDÞ
prðMold jDÞ, will be low).
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Under certain regularity conditions, it is possible to prove that, for any

function g(Mj) defined on M, the average

G ¼ 1

N

XN
t¼1

gðMðtÞÞ !a:s: EðgðMÞÞ; as N !1; ð6Þ

i.e. it converges almost surely to the population moment (for a proof, see Smith

and Roberts 1993). Setting g(M)5 pr(D|M,D), we can calculate the quantity in

equation (3).

The goal of the procedure is to identify the models with highest posterior

probabilities: only a limited subset of the models is thus effectively used in the

estimation, but, in any case, a subset representing an important mass of

probability. We do not restrict the chain to move in any particular direction. We

find, however, that the models that are rarely visited are those with an extremely

large number of regressors. In particular, models with more than 15–20

regressors per equation appear unlikely, because they are typically rejected by

the chain. In the empirical application, the chain has visited much more often

models with 5–12 regressors. In this particular set of candidate models, the chain

seems to have visited the vast majority of possible combinations of regressors.5

In the estimation, all the regressors are employed and the coefficients’ values

result from the averaging over all possible models using as weights the posterior

model probabilities, which, in turn, are based on the number of visits of the

chain. As previously mentioned, when a regressor is not included in a

specification its coefficient is zero. If a regressor is not a significant predictor

for the dependent variable, it is assigned a coefficient close to zero with a high p-

value.

After accounting for model uncertainty, the posterior mean and variances of

the coefficients will be

EðbjDÞ ¼
X

Mj2M
prðMjjDÞEðbjD;MjÞ; ð7Þ

varðbjDÞ ¼
X
Mj2M

prðMj jDÞvarðbjD;MjÞþ

X
Mj2M

prðMj jDÞðEðbjD;MjÞ � EðbjDÞÞ2:
ð8Þ

As already explained, the posterior mean will be the weighted average of the

posterior means across each model, weighted by the model posterior

probabilities. The posterior variance will be, instead, the sum of two terms:

again a weighted average of all the variances across models plus a novel term

that reflects the variance across models of the expected b. This term accounts for

the variance explicitly due to model uncertainty. Even if the variance is constant

across models, we would have varðbjD;MjÞ<varðbjDÞ as long as there is

5The exercise was done also for the case of only one lag for each explanatory variables. In this
case, for each equation, we had ‘only’ 215 5 32,768 possible models. The chain is able to visit
most of them in this case and the regressors that are significant remain similar.
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variation in E(b) across models. This makes clear that not accounting for model

uncertainty leads to underestimation of uncertainty.

III Estimation

As a first step, we estimate the two equations (1) and (2) used by the central bank

to represent the dynamics of the target variables. Because we have assumed that

the policy maker deals with a great amount of information in addition to the

typical variables, it is important to identify which additional variables are

important indicators of the developments of the economy. BMA is ideal to

derive such information, as it implies the estimation of several possible models

and the derivation of the corresponding posterior model probabilities; therefore,

it permits to identify those regressors that are robust explanatory variables.

In our approach, we estimate the models over the whole sample. The implicit

assumption is that the ‘best’ models remain so during the whole period.

An alternative not considered here would consist of estimating all competing

models, but assuming that the model probabilities change from period to period.

The policy makers would then update their model estimates every period.

We estimate the equations (1) and (2) using BMA. Our MCMC simulation is

based on 51,000 draws, with the initial 1,000 draws omitted as burn-in. The

results are reported in Tables 1 and 2.

The chain has visited 31,859 models for inflation. Among all the models, the one

most supported by the data is characterized by slightly more than a 1%

probability. This suggests enormous uncertainty about the correct model of the

economy. Because the posterior probability is spread among several models, we can

therefore infer the superiority of a method capable of taking model uncertainty into

account vs. the typical choice of relying on a single preferred model.

In Table 1, we report the posterior estimates of the coefficients, which are

obtained by averaging over the whole set of models, with weights equal to the

respective posterior model probabilities, together with the associated t-statistics

and p-values. As already explained, a regressor which is not usually included in

the selected models is assigned a near zero coefficient with a high p-value.

From the results, we can, therefore, notice that, besides lagged inflation, other

variables are significant determinants of inflation: these are CPI inflation, new

orders, and the output gap. The most useful indicators of the state of real

activity are the value of new orders in the previous period, and the commonly

used output gap. The latter, however, has been found to have an impact on

inflation only after four periods.

The same reasonings apply for the demand estimation results, where the most

likely model accounts for 2.4% of the total mass probability. In this case,

successful determinants of the output gap are its lagged value, the real interest

rate, the indicator of consumer confidence, and housing starts. Variations in the

real interest rate have an effect over real activity after two quarters.

The models visited by the chain have been individually estimated by OLS; in

a situation in which the regressors are not the same across the two equations and

the residuals can be correlated, OLS is not the most efficient estimator.
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Table 1

BMA posterior estimates

Variable Coefficient t-statistic t-probability

infl(� 1) 0.90072 25.284134 0

infl(� 2) � 0.028462 � 0.340188 0.734291

infl(� 3) � 0.01729 � 0.349441 0.727351

infl(� 4) � 0.003371 � 0.094077 0.9252

consconf(� 1) � 0.256817 � 1.747004 0.083112

consconf(� 2) � 0.022229 � 0.145921 0.884221

consconf(� 3) � 0.000188 � 0.001445 0.99885

consconf(� 4) � 0.007333 � 0.04296 0.965802

cpiinfl(� 1) 0.073531 2.233223 0.027328

cpiinfl(� 2) 0.012653 0.364784 0.715894

cpiinfl(� 3) 0.000674 0.020192 0.983922

cpiinfl(� 4) � 0.000282 � 0.00957 0.99238

empl(� 1) � 0.001181 � 0.024751 0.980293

empl(� 2) 0.000982 0.025117 0.980002

empl(� 3) 0.004174 0.158311 0.874469

empl(� 4) 0.001432 0.061294 0.951223

housing(� 1) 0.228758 1.291613 0.198893

housing(� 2) � 0.001389 0.001355 0.998921

housing(� 3) 0.013088 0.062499 0.950266

housing(� 4) � 0.003882 � 0.016008 0.987254

invsales(� 1) 0.000022 0.00571 0.995453

invsales(� 2) 0.095952 0.124392 0.901206

invsales(� 3) 0.085339 0.121116 0.903795

invsales(� 4) 0.285341 0.409081 0.683186

m2(� 1) 0.001216 0.056305 0.955189

m2(� 2) � 0.000754 � 0.030573 0.975659

m2(� 3) � 0.00002 � 0.001843 0.998532

m2(� 4) 0.000008 0.000754 0.9994

napm(� 1) 0.001069 0.003022 0.997594

napm(� 2) 0.00613 0.017596 0.985989

napm(� 3) 0.010168 0.031783 0.974696

napm(� 4) 0.00631 0.020248 0.983878

neword(� 1) 0.030139 6.350585 0

neword(� 2) 0.007328 0.764999 0.445726

neword(� 3) � 0.000321 � 0.070042 0.944273

neword(� 4) 0.000682 0.151985 0.879446

outgap(� 1) � 0.036333 � 1.351101 0.179123

outgap(� 2) � 0.001817 � 0.060566 0.951803

outgap(� 3) 0.000711 0.033042 0.973694

outgap(� 4) 0.097277 5.054008 0.000002

retail(� 1) 0.0001 0.006299 0.994984

retail(� 2) � 0.002081 � 0.155212 0.876907

retail(� 3) � 0.001331 � 0.108722 0.913598

retail(� 4) 0.000364 0.031169 0.975185

shipments(� 1) � 0.000151 � 0.007256 0.994222

shipments(� 2) � 0.014203 � 1.323847 0.187989

shipments(� 3) � 0.000039 � 0.007378 0.994125

shipments(� 4) � 0.000056 � 0.004794 0.996182

stock(� 1) � 0.000099 � 0.045489 0.963791

stock(� 2) � 0.000234 � 0.104387 0.917031

FABIO MILANI10

r 2008 The Author
Journal compilation r 2008 Scottish Economic Society



Table 1 (Continued )

Variable Coefficient t-statistic t-probability

stock(� 3) � 0.000007 � 0.003296 0.997375

stock(� 4) 0.000005 0.002234 0.998221

unford(� 1) 0.00531 1.006805 0.315989

unford(� 2) 0.002907 0.572049 0.568324

unford(� 3) � 0.00127 � 0.100061 0.920458

unford(� 4) 0.003913 0.740212 0.460571

vehicles(� 1) � 0.000061 � 0.019881 0.98417

vehicles(� 2) � 0.000181 � 0.06727 0.946475

vehicles(� 3) � 0.000248 � 0.098569 0.92164

vehicles(� 4) 0.000183 0.075855 0.939656

Notes:
The posterior estimates of the coefficients are obtained by averaging over the whole set of models, with
weights given by the respective posterior model probabilities. A regressor which is not usually included in the
selected models is assigned a near zero coefficient with high p-value.
BMA, Bayesian model averaging.

Table 2

BMA posterior estimates

Variable Coefficient t-statistic t-probability

outgap(� 1) 0.660132 14.391195 0

outgap(� 2) 0.010224 0.126782 0.899319

outgap(� 3) 0.001629 0.029052 0.97687

outgap(� 4) 0.000863 0.019407 0.984547

consconf(� 1) 1.766744 4.560447 0.000012

consconf(� 2) 0.007527 0.015301 0.987816

consconf(� 3) 0.006621 0.014715 0.988283

consconf(� 4) 0.003451 0.008739 0.993041

cpiinfl(� 1) � 0.002819 � 0.100191 0.920354

cpiinfl(� 2) � 0.000951 � 0.041875 0.966666

cpiinfl(� 3) � 0.000592 � 0.02999 0.976123

cpiinfl(� 4) � 0.00133 � 0.050583 0.959739

empl(� 1) � 0.001872 � 0.034859 0.972248

empl(� 2) � 0.002375 � 0.046852 0.962707

empl(� 3) � 0.001212 � 0.025841 0.979426

empl(� 4) � 0.000846 � 0.019791 0.984242

housing(� 1) 2.423494 5.683104 0

housing(� 2) � 0.046673 � 0.056749 0.954837

housing(� 3) � 0.011626 � 0.01971 0.984306

housing(� 4) � 0.000101 � 0.000587 0.999533

invsales(� 1) � 0.190449 � 0.106462 0.915388

invsales(� 2) � 0.033334 � 0.024089 0.98082

invsales(� 3) 0.004499 � 0.002561 0.99796

invsales(� 4) � 0.01603 � 0.010195 0.991882

m2(� 1) � 0.038681 � 1.612485 0.109399

m2(� 2) � 0.017002 � 0.665283 0.507105

m2(� 3) � 0.000298 � 0.048419 0.96146

m2(� 4) 0.000564 0.010192 0.991884

napm(� 1) 0.011442 0.016878 0.986561

napm(� 2) � 0.014369 � 0.023563 0.981239

MONETARY POLICY WITH A WIDER INFORMATION SET 11

r 2008 The Author
Journal compilation r 2008 Scottish Economic Society



Therefore, we believe it is necessary to evaluate whether a joint estimation of our

equations can substantially change the results. Our specifications are simulta-

neously estimated by the seemingly unrelated regression (SUR) method, the

efficient estimator in this case; the coefficients are, again, obtained as weighted

averages, across the whole set of models visited by the MCMC procedure with the

posterior model probabilities as weights. The results are shown in Table 3. The

estimates are substantially similar to the equation-by-equation results.

In order to evaluate the convergence of the sampler, we have performed the

simulation starting from different initial conditions: the results are unchanged.6

We have also experimented different lag structures, to verify that our findings

Table 2 (Continued )

Variable Coefficient t-statistic t-probability

napm(� 3) � 0.009396 � 0.016689 0.986711

napm(� 4) � 0.003664 � 0.007216 0.994254

neword(� 1) � 0.000066 � 0.007338 0.994157

neword(� 2) � 0.000134 � 0.016149 0.987141

neword(� 3) � 0.000092 � 0.011525 0.990823

neword(� 4) � 0.000009 � 0.001566 0.998753

retail(� 1) � 0.000578 � 0.020487 0.983688

retail(� 2) � 0.000207 � 0.007904 0.993707

retail(� 3) � 0.000361 � 0.014407 0.988529

retail(� 4) � 0.00066 � 0.02545 0.979737

shipments(� 1) � 0.000166 � 0.013949 0.988893

shipments(� 2) � 0.000125 � 0.011315 0.99099

shipments(� 3) � 0.000038 � 0.004012 0.996805

shipments(� 4) � 0.000016 � 0.001879 0.998503

stock(� 1) 0.003072 0.667899 0.50544

stock(� 2) 0.000617 0.135188 0.892682

stock(� 3) 0.000155 0.034039 0.972901

stock(� 4) 0.000111 0.024429 0.980549

unford(� 1) � 0.000083 � 0.010245 0.991842

unford(� 2) � 0.000124 � 0.015038 0.988026

unford(� 3) � 0.000058 � 0.007699 0.99387

unford(� 4) � 0.000006 � 0.001497 0.998808

vehicles(� 1) � 0.000026 � 0.004229 0.996633

vehicles(� 2) � 0.00001 � 0.001786 0.998578

vehicles(� 3) � 0.000009 � 0.001543 0.998771

vehicles(� 4) 0.000147 0.023446 0.981332

reals(� 1) � 0.018245 � 0.693037 0.489582

reals(� 2) � 0.078001 � 2.416551 0.017125

reals(� 3) 0.018494 0.311226 0.756152

reals(� 4) � 0.006654 � 0.202006 0.840243

Notes:
The posterior estimates of the coefficients are obtained by averaging over the whole set of models, with
weights given by the respective posterior model probabilities. A regressor which is not usually included in the
selected models is assigned a near zero coefficient with high p-value.
BMA, Bayesian model averaging.

6Running the chain several times is an important check to guarantee that the visited models
are indeed those with highest probability.
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are robust across different specifications. Again, the significant variables in the

estimation and the monetary policy outcome, which will be described in the next

section, are similar.

IV Optimal Monetary Policy

Optimal monetary policy: conservatism and interest rate smoothing

After having estimated the equations, we want to derive the optimal monetary

policy the central bank would have followed under this framework. We aim to

examine how the amplification of the policy maker’s information set (together

with the existing model uncertainty) affects the optimal Fed’s reaction function

and how the results compare with those obtained under more traditional

macroeconomic models.

In particular, we focus on the unresolved issue of the strong divergence

between optimal monetary policy as derived from macroeconomic models,

which indicates the optimality of much more variable and aggressive interest

rate paths if a large interest rate smoothing penalty is not allowed in the loss

function, and real world central banks’ practice, which is, instead, characterized

by pronounced policy ‘conservatism’ (attenuation of the feedback coefficients

regarding inflation and output) and ‘interest rate smoothing’ (partial adjustment

to the evolution of the economy, reflected in small deviations from previous

period interest rate value).

We verify whether the allowance of a wider information set determines

significant changes in the optimal monetary policy decisions.

To do this, we solve the stochastic dynamic optimization problem of a central

bank, which seeks to minimize an intertemporal loss function, quadratic in the

deviation of inflation and output gap from their respective targets, and with a

further term denoting a penalty on interest rate excessive variability. The period

loss function is, therefore, given by

Lt ¼ lpp2 þ lyy2 þ lDiðit � it�1Þ2; ð9Þ

where lp represents the weight of inflation stabilization, ly is the weight assigned
to output stabilization, and lDi ¼ ð1� ly � lpÞ is the interest rate variability

penalty. The three weights sum to 1.

The optimization is performed under the constraints given by the dynamics of

the economy. Were we considering only equations (1) and (2) as our constraints,

it would correspond to consider our information variables in Zt as purely

exogenous with respect to policy. However, variables like CPI inflation, new

orders, and others are certainly affected by policy and, therefore, we need take

their endogeneity into account if we want our policy to be optimal. To solve this

issue, we choose to treat all our additional variables as endogenous. To this

scope, we re-estimate the whole system by BMA (exploiting the simultaneity by

using SUR) where we have one equation for each of the 15 variables (the

regressors are the same of those in the output and inflation equations). The
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estimated parameters for the aggregate supply and demand equations are very

similar to those previously obtained and we do not report them.

In standard macro models, the optimal rule is usually given by

i�t ¼ fXt; ð10Þ

where the policy instrument is fixed in every period in response to the evolution

of the state variables.7 The rule generally resembles a traditional Taylor rule,

where the federal funds rate responds to deviations of inflation and output gap,

or, also, a Taylor rule with partial adjustment.

A Taylor rule expressed as a linear function of inflation and the output gap

will be optimal only if these are sufficient statistics of the state of the economy

and they are perfectly observed. These conditions are probably not met in

reality.

The introduction of a larger information set can be approached by assuming

that the central bank makes use of all the available data to produce forecasts of

inflation and output and then calculates an optimal rule with only these target

variables’ forecasts as arguments.

Our approach, instead, consists on letting the central bank directly respond

to all the available series and leading indicators. In fact, when taking a decision,

the monetary policy maker responds to the developments of the indicators she is

monitoring: it seems sensible to evaluate which variables are more successful in

predicting inflation and real activity (we do this by means of BMA) and then

calculate those variables’ optimal feedback coefficients, which are thus based on

the extent they are indeed useful predictors of the movements of the target

variables.

The optimal monetary policy rule becomes

i�t ¼ f pt; pt�1; pt�2; pt�3; yt; yt�1; yt�2; yt�3;Zt;Zt�1;Zt�2;Zt�3;½ it�1; it�2; it�3�;
ð11Þ

where, in addition to the usual Taylor rule terms, the optimal interest

rate is adjusted in relation to the situation of several economic indicators

through the feedback coefficients found in the 1 � 63 vector f. This tries to

mimic the Fed’s response (at least an implicit response) to a variety of different

information.

In our setting, the feedback coefficients in f will be convolutions of the policy

weights, the structural parameters governing the dynamics of the economy, and

the relative model probabilities (through the pr(Mj|D) term). This latter term

makes clear the dependence of policy on the uncertain environment.

To evaluate the effects of the widening of the information set, we compare the

optimal reaction functions and the implied optimal federal funds target rate

paths (calculated by applying the optimal feedback coefficients to the actual

state of the economy in every period), obtained under a traditional backward-

looking representation of the economy as the Rudebusch and Svensson (1999,

7The derivation is, by now, standard and we omit it. The interested reader can find a
thorough derivation in Appendix A in Rudebusch and Svensson (2002), among others.
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2002) model (RS), which takes into consideration only three variables (inflation,

output, and short-term interest rates), and in the context of our large

information framework.

The RS specification is given by two simple equations of the following form:

ptþ1 ¼ b1pt þ b2pt�1 þ b3pt�2 þ b4pt�3 þ b5yt þ etþ1; ð12Þ

ytþ1 ¼ g1yt þ g2yt�1 þ g3ð�{t� �ptÞ þ Ztþ1; ð13Þ

where �{t and �pt denote four-period averages of current and past interest rates

and inflation. We obtain the following estimates:

ptþ1 ¼ 1:424
ð0:09Þ

pt � 0:34
ð0:16Þ

pt�1 � 0:15
ð0:15Þ

8pt�2 þ 0:067
ð0:09Þ

pt�3 þ 0:053
ð0:016Þ

yt

þ etþ1; ð14Þ

ytþ1 ¼ 1:175
ð0:09Þ

yt � 0:267
ð0:09Þ

yt�1 � 0:078
ð0:03Þ

ð�{t� �ptÞ þ Ztþ1: ð15Þ

To check that our results do not depend on the particular choice of the RS

model as a benchmark, we also compare them with a richer backward-looking

specification, which might be seen as more similar to our setting, represented by

a monetary vector autoregression (VAR) augmented by some of our

information variables. We choose the following:

Xt ¼ FðLÞXt�1 þ et; ð16Þ

where Xt ¼ pt; yt; it;Zt½ �, and Zt contains some of the leading indicators we have

found more important in the estimation (Zt 5 fCPI infl, housing starts, new

orders, consumer confidenceg).
We compare the optimal federal funds rate paths obtained under our large

information setting (BMA) and under the two competing frameworks (RS,

VAR) with the actual series historically implemented by the Federal Reserve.

Moreover, we consider four different cases concerning various aversions to

interest rate variability (lDi 5 0, 0.07, 0.2, 0.5), and three possible preference

alternatives: strict inflation targeting, strict output targeting, and equal weight to

inflation and output stabilization. This is necessary due to the difficulty in

identifying central bank preferences.

The results under all these cases and in the various models are reported in

Table 4. If we allow the central bank to deal with an increased and more realistic

amount of information and we take into account the existing model uncertainty,

we can obtain optimal federal funds rate paths quite similar to the actual one, by

considering a small 0.07 penalty on interest rate variability in the loss function

(against a relative weight of 0.93 given to inflation).

We see from the table that just with a very small penalty on policy instrument

volatility (assuming ‘strict’ inflation targeting and lDi 5 0.07), we are able to

obtain optimal federal funds series close to the historically realized one; over the

sample, it is characterized by mean and standard deviation not far from those of

the actual funds rate (mean and standard deviation equal to 7.41 and 3.40,
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Table 4

Optimal and actual federal funds rate paths (BMA, RS, information-augmented VAR)

Federal funds rate paths

lp 5 0.93, ly 5 0, lDi 5 0.07 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.41 7.06 6.81 7.34

SD 3.40 9.83 14.97 3.15

Persistence 0.988 0.95 0.935 0.934

lp 5 0.465, ly 5 0.465, lDi 5 0.07 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.39 7.1 6.73 7.34

SD 2.29 8.03 12.39 3.15

Persistence 0.981 0.93 0.91 0.934

lp 5 0, ly 5 0.93, lDi 5 0.07 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.37 7.15 6.71 7.34

SD 0.97 5.70 15.4 3.15

Persistence 0.969 0.89 0.897 0.934

lp 5 0.8, ly 5 0, lDi 5 0.2 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.39 7.16 6.99 7.34

SD 1.30 6.62 9,19 3.15

Persistence 0.98 0.95 0.928 0.934

lp 5 0.4, ly 5 0.4, lDi 5 0.2 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.39 7.18 6.92 7.34

SD 0.83 5.64 8.43 3.15

Persistence 0.981 0.94 0.907 0.934

lp 5 0, ly 5 0.8, lDi 5 0.2 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.37 7.22 6.89 7.34

SD 0.32 4.26 8.04 3.15

Persistence 0.97 0.92 0.893 0.934

lp 5 0.5, ly 5 0, lDi 5 0.5 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.39 7.22 7.12 7.34

SD 0.37 4.77 5.8 3.15

Persistence 0.981 0.94 0.928 0.934

lp 5 0.25, ly 5 0.25, lDi 5 0.5 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.39 7.23 7.08 7.34

SD 0.23 4.36 5.51 3.15

Persistence 0.981 0.94 0.907 0.934

lp 5 0.0, ly 5 0.5, lDi 5 0.5 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.38 7.24 7.05 7.34

SD 0.08 3.84 5.32 3.15

Persistence 0.969 0.94 0.894 0.934

lp 5 1, ly 5 0, lDi 5 0 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 12.03 0.6 5.82 7.34

SD 469.8 653 63.1 3.15

Persistence 0.983 0.97 0.952 0.934
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compared with the actual 7.34 and 3.15, respectively). It is also evident the

improvement over the consideration of optimal monetary policy under

alternative backward-looking specifications, where we end up with less realistic

interest rate series (too aggressive and volatile, SD5 9.83 for RS and SD5 14.97

for VAR).

Only if we allow for a sensibly stronger preference for smoothing in the

objective function (say lDi 5 0.2 or better lDi 5 0.5), the optimal rules lead to

funds rate’s paths characterized by standard deviations compatible with the

actual one. The series obtained under wider information sets, instead, do not

feature enough variability, compared with the actual one, as the care for

smoothing is too large.

When no weight at all is assigned to interest rate smoothing in the loss

function (i.e. lDi 5 0), the optimal federal funds rate series never come close to

the actual ones.

The results suggest that when a wider information set and model uncertainty

are accounted for, optimal policy rates compatible with the observed

ones are obtained with the presence of a substantially smaller penalty on

interest rate volatility (lDi 5 0.07). This is important, as we can much

more easily justify a low penalty with the desire to avoid extreme and unrealistic

jumps in the federal funds rate, while much bigger weights are not easily

justifiable.

Another characteristic about interest rates that is worth exploring, besides

volatility, is persistence. In the table, we show the estimated AR(1) coefficient of

a regression of the series on a constant and its one-period lagged value. We

notice that all the optimal series are able to replicate the strong persistence,

which characterizes policy rates in reality (optimal rates under wider

information seem to be, generally, a little more persistent).

Figure 1 shows the path of our optimal policy rate (under lp 5 0.93,

lDi 5 0.07), together with the actual series. The tracking of the actual variable is

certainly far from perfect, but the sizes of the funds rates are comparable. The

Table 4 (Continued )

Federal funds rate paths

lp 5 0.5, ly 5 0.5, lDi 5 0 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.62 4.23 6.33 7.34

SD 41.32 74 21.5 3.15

Persistence 0.985 0.92 0.917 0.934

lp 5 0, ly 5 1, lDi 5 0 Optimal FF

(BMA)

Optimal FF

(RS)

Optimal FF

(VAR)

Actual FF

Mean 7.22 5.05 6.43 7.34

SD 16.68 75 16.48 3.15

Persistence 0.971 0.9 0.901 0.934

Notes:
BMA, Bayesian model averaging; RS, Rudebusch and Svensson’s model; VAR, vector autoregression.
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optimal series displays higher rates during the first peak of inflation in 1973–

1974, which would have allowed lower rates in subsequent years and during

Volcker’s disinflation. The corresponding graph for the optimal series under RS

and VAR, on the other hand, is absolutely unrealistic and too volatile. Those are

therefore not very indicative and not reported.

In Tables 5 and 6, we report the optimal feedback coefficients in the

calculated reaction functions, for the case lp 5 0.93, ly 5 0, lDi 5 0.07, for our

model and the RS model, respectively.

It is immediate to notice a strong attenuation of the feedback coefficients in

the wider information framework, if compared with the traditional one, in which

the reaction function indicates a far too aggressive response to the evolution of

the economy. In fact, the sum of the feedback coefficients to inflation (both

GDP deflator and CPI inflation) and output gap amount to 1.17 and 0.42,

respectively, in the wider information case, against 4.12 and 1.99 in the

alternative framework. It seems that the joint consideration of a bigger

information set and the associated model uncertainty leads to a much more

‘conservative’ monetary policy, thus, proposing them as candidate explanations

for the pronounced policy conservatism observed in practice.

Monetary policy efficiency

We now analyze whether the consideration of an expanded information set leads

to an improvement in efficiency for a central bank that sets policy as described.

We suppose that efficiency is measured by the loss function

LOSS ¼ lpvarðptÞ þ lyvarðytÞ þ lDivar i�t � i�t�1
� �

: ð17Þ

By varying lp from 0 to 1� lDi, we can derive the efficiency frontier. We

derive the loss at various points of the efficiency frontier for given interest rate

0

4
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12

16

20

1970 1975 1980 1985

FEDFUND FFOT

1990 1995 2000

Figure 1. Actual (FEDFUND) and optimal (FFOT) federal funds rate paths.
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smoothing penalty preferences (lDi). Our focus is on comparison between loss

(efficiency) under our wide-information policy-making and those realized in the

context of the RS and VAR specifications.

We report loss comparisons for four cases: lDi 5 0, lDi 5 0.07, lDi 5 0.2, and

lDi 5 0.5. The red triangles represent the losses caused by the application of

optimal policy rules under the RS and VAR models, respectively, the blue circles

regard our wider information case.

It seems evident from Figures 2 and 3 that the losses under the traditional

cases are always larger; therefore, the exploitation of a wider information set

leads to clear gains in macroeconomic efficiency.

It is worth noting, however, that previous papers have considered the

properties of mixing different models when computing optimal policies (see

Becker et al., 1986 and Holtham and Hughes Hallett, 1992, for some examples)

and have sometimes found that it leads to poor macroeconomic outcomes. To

provide some evidence here on the welfare consequences of using a large set of

models, I compare the welfare implied by the policy obtained under BMA with

the certainty-equivalent policy that arises from using only the ‘best’ model (the

one with highest posterior probability).8

It can be seen from Figure 4 that the welfare losses are very similar

under the two cases, with small gains for the optimal policy that takes model

uncertainty into account. In this case, therefore, it seems that policy makers

are not much better off in combining a large set of models, but they are not

worse off.

Table 6

Optimal Reaction Function: RS model (case lp 5 0.93, ly 5 0, lDi 5 0.07)

Feedback

coefficients

Infl Infl

(� 1)

Infl

(� 2)

Infl

(� 3)

outgap outgap

(� 1)

FFR

(� 1)

FFR

(� 2)

FFR

(� 3)

6.94 � 2.78 � 0.54 0.5 2.65 � 0.66 0.13 � 0.09 � 0.04

8The best estimated model is the following:

ptþ1 ¼ 0:94
ð0:02Þ

pt � 0:57
ð0:14Þ

consconft þ 0:06
ð0:02Þ

emplt�2 þ 0:03
ð0:005Þ

newordt

þ 0:04
ð0:01Þ

newordt�1 ð18Þ

þ 0:07
ð0:01Þ

yt�3 � 0:06
ð0:01Þ

shipmentst�1 þ 0:02
ð0:005Þ

unfordt�3 þ etþ1; ð19Þ

ytþ1 ¼ 0:64
ð0:04Þ

yt þ 1:98
ð0:36Þ

consconft þ 2:51
ð0:41Þ

hou sin gt � 0:073
ð0:02Þ

M2t � 0:092
ð0:03Þ

ðit�1

� pt�1Þ þ Ztþ1: ð20Þ

The estimates appear not far from those reported in Tables 1 and 2 for the corresponding
coefficients. The coefficients of the optimal policy rule computed under the best model, instead,
are reported in Table 7.
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Interest rate smoothing and the Rudebusch critique

A surprising result is that we do not find any evidence of interest rate smoothing.

In fact, the optimal feedback coefficients on lagged federal funds rates are close

to 0, contrasting with commonly estimated values around 0.9. Our optimal

policy rate series is smooth, but the smoothness does not come from the

optimality of small deviations from past rates. Our results therefore points

toward the illusion version of interest rate smoothing, originally proposed by

Rudebusch (2002). In fact, we have seen that the optimal feedback coefficients to

past policy rates is almost zero. But if we regress the optimal funds rate on its

lagged value and on current output gap and inflation (demeaned variables),

estimating the following standard Taylor rule with partial adjustment:

i�t ¼ ri�t�1 þ ð1� rÞðgppt þ gyytÞ þ nt; ð21Þ

we would obtain the following results:

i�t ¼ 0:571
ð0:052Þ

i�t�1 þ 0:429ð1:562
ð0:048Þ

pt þ 0:183
ð0:060Þ

ytÞ þ nt: ð22Þ

The interest rate smoothing term is not around 0.9, but still from the estimation

there would be the perception of a considerable degree of partial adjustment
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Figure 2. Monetary policy efficiency (BMA vs. RS). BMA, Bayesian model averaging; RS,

Rudebusch and Svensson’s model.
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(0.57), when in fact there was none in the optimal rule. Our findings are therefore

consistent with the illusion argument of Rudebusch (2002).9

The results, however, do not simply reflect the serial correlation of the

information variables. The leading indicators have been rendered stationary (by

considering their growth rates) and usually have small autoregressive

coefficients. An indication that our smooth policy rate series is not just driven

by the serial correlation of the leading indicators is evident from our VAR

findings. The optimal policy rate coming from the VAR augmented with

informational variables is still extremely volatile. If the serial correlation of the

leading indicators was driving the results, we would expect policy from the VAR

to be smooth as well. As seen, this does not happen.

In conclusion, we can affirm that the explicit consideration of leading

indicators, together with model uncertainty, leads to a substantial attenuation of

optimal policy rules and to a smoother interest rate path, thus partially helping

to reconcile macroeconomic theory results with reality.

This could represent a new and original explanation of realized monetary

policy gradualism, in addition to the traditional ones suggested in the literature

and consisting of central bank’s preference for smoothing (owing to the care for
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Figure 3. Monetary policy efficiency (BMA vs. VAR). BMA, Bayesian model averaging; VAR,

vector autoregression.

9See Gerlach-Kristen (2004), English et al. (2003), and Castelnuovo (2003, 2007) for
additional empirical evidence on the debate of optimal interest rate smoothing vs. illusion.
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financial markets stability, etc.), uncertainty (parameter, data, and model

uncertainty), and forward-looking expectations.

Following this view, therefore, the common inability to obtain the optimality

of a gradual monetary policy and of interest rate smoothing could be due to a

misspecification of traditional simple macro models (which do not take into

account the fact that central banks dispose of a much richer information set) and

to the failure to account for the considerable degree of model uncertainty that

permeates this large information environment. Inserting these two character-

Table 7

Optimal reaction function: best model (case lp 5 0.93, ly 5 0, lDi 5 0.07)

Feedback coefficients Infl Infl(� 1) consconf empl(� 2) housing m2

1.51 0.03 � 0.18 0.11 0.9 � 0.02

neword neword(� 1) outgap outgap(� 1) outgap(� 2)

0.11 0.06 0.35 0.12 0.11

outgap(� 3) shipments(� 1) unford(� 3) FFR(� 1) FFR(� 2)

0.11 � 0.1 0.03 � 0.02 0.03
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Figure 4. Optimal policy under model uncertainty (blue circles) vs. best model (red triangles).
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istics leads, in fact, to the optimality of a policy behavior comparable with what

happens in reality, without the need of placing a strong preference for smoothing

in the loss function.

V Conclusions

The optimal monetary policy rules derived from small macroeconomic models

that relate inflation, output gap, and short-term interest rates are typically found

to be much more aggressive and to imply higher volatility of the policy

instrument than what is observed in practice. In order to reconcile these rules

with reality, it becomes necessary to assign a somewhat large weight on an

interest smoothing objective in the central bank’s loss function.

In this paper, we have allowed the central bank to use a wider information

set, taking also into account the associated model uncertainty, which is even

more pervasive in the use of several additional variables.

The consideration of this larger and more realistic information set has been

found to have an important impact on the optimal monetary policy. The results

indicate that it leads to a substantial attenuation of the optimal response of the

policy instrument and to a smoother interest rate path than the one implied by

dynamic optimization under standard models of monetary transmission.

The consideration of a larger information set can be a further explanation, at

least a partial one, of real-world monetary policy conservatism and interest rate

smoothing, in addition to others proposed in the literature, as parameter

uncertainty, data uncertainty, and forward-looking behavior (besides the explicit

introduction of a preference for smoothing in the central bank’s loss function).

In addition, we have seen that allowing the central bank to exploit

information coming from different indicators and economic variables, besides

the traditional target variables, leads to gains in macroeconomic efficiency.

In future research, it would be worth verifying the robustness of the results to

the use of other techniques that allow dealing with a large information

environment, as dynamic common factors for example. Finally, an important

extension would be to include BMA in the context of optimizing New Keynesian

models with forward-looking expectations. We believe that rational expectations

are unlikely to overturn the importance of large information and model

uncertainty for interest rate smoothing. But the entire BMA exercise should be

replicated for the case of rational expectations to check the generality of the

conclusions. I am not aware of any current study that employs a similar BMA

approach in a state-of-the-art DSGE model. This extension is, therefore, left for

future research.

Data Appendix A

The leading indicators we have incorporated in the central bank’s information

set (in addition to inflation, output gap, and federal funds rate) are:

� Consumer Price Index

� Employment
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� Housing Starts

� Inventory/Sales ratio

� Money Supply (M2)

� Consumer Confidence

� NAPM (National Association of Purchasing Managers) survey

� New Orders of Durable Goods

� Retail Sales

� Shipments of Durable Goods

� Stock Market

� Unfilled Orders of Durable Goods

� Vehicles’ Sales

Variables Code Description Source

infl GDPDEF GDP: Implicit price deflator 19965 100,

SA

FRED

outgap GDPC1 Real GDP billions of chained 1996

dollars, SA

FRED

GDPPOT Real potential GDP billions of chained

1996 dollars

FRED

consconf USCNFCONQ US consumer confidence: the conference

board’s index for US SADJ

DATASTREAM

cpiinf. USCP. . . . F US CPI, all urban sample: all items NADJ DATASTREAM

empl USEMPNAGE US employed – nonfarm industries total

(payroll survey) VOLA

DATASTREAM

housing USPVHOUSE US new private housing units started

(annual rate) VOLA

DATASTREAM

invsales USBSINVLB US total business inventories (end period

level) CURA

DATASTREAM

USBSSALEB US total business sales CURA DATASTREAM

m2 USM2. . . . B US money supply m2 CURA DATASTREAM

napm USCNFBUSQ US national ASSN Of purchasing

management index (MFG survey) SADJ

DATASTREAM

neword USNODURBB US new orders for durable goods

industries (DISC.) CURA

DATASTREAM

retail USRETTOTB US total value of retail sales CURA DATASTREAM

shipments USSHDURGB US shipments of durable goods (DISC.)

CURA

DATASTREAM

stock US500STK US standard & poor’s index of 500

common stocks (monthly average)

DATASTREAM

unford USUODURBB US unfilled orders for durable goods

(DISC.) CURA

DATASTREAM

vehicles USPCARRSF US new passenger cars-retail sales: total

vehicles NADJ

DATASTREAM

fedfunds USFEDFUN US federal funds rate DATASTREAM

reals – Federal funds rate – inflation –

Inflation has been calculated as (log(pt)� log(pt� 4)) � 100, output gap as (log(yt)� log(yn)) � 100. For all
the non-stationary series, we have considered their annual growth rates.
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All the data are quarterly, from February 1969 to January 2001, and taken

from FRED, the database of the Federal Reserve Bank of Saint Louis, or

DATASTREAM.
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