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Abstract. This paper investigates potential nonlinearities in the gain function, which,

under adaptive learning, regulates the updating of agents’ beliefs in response to recent

forecast errors.

I use data on professional survey forecasts to estimate nonparametric functional-coefficient

regression models.

The estimation results reveal nonlinearities in the relationships between expectations

and forecast errors, which are indicative of nonlinear gain functions. Gains increase when

forecast errors are historically large, and respond asymmetrically to past overpredictions

and underpredictions. The findings suggest incorporating nonlinearities in the modeling of

learning gains, instead of relying on the constant-gain assumption.
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1. Introduction

Expectations play a central role in macroeconomics, as they affect decisions by households,

firms, and policymakers. For decades, macroeconomic models almost universally relied on

the rational expectations hypothesis (REH). But, over time, a growing body of literature

has documented and incorporated departures from rational expectations, with the adaptive

learning approach (e.g., Evans and Honkapohja, 2001) emerging as a leading alternative to

the REH.

Under adaptive learning, agents are often assumed to revise beliefs according to a constant-

gain algorithm.1 Beliefs are revised in the direction of the most recent forecast error, but

with an identical learning coefficient each period.

The constant gain assumption may represent a possible limitation of conventional learning

models. The learning rate could be a nonlinear function of third variables, rather than a

scalar. For example, agents might forecast based on loss functions that diverge from the

MSE loss: they may neglect small forecast errors and weigh heavily larger forecast errors;

moreover, they may weigh over- and under-predictions asymmetrically. Such loss functions

are bound to introduce nonlinearities in the gain function.

This paper uses data on survey expectations about inflation, output, and interest rates,

along with the corresponding forecast errors, to assess the importance of nonlinearities in the

formation of expectations and in the agents’ learning gain. To maintain intuition, I assume

a simple learning model, with agents that learn about long-run values of variables (i.e.,

intercepts in their perceived law of motion), to capture the relationships between expectations

and forecast errors, and how they are driven by the learning gain.

In the empirical analysis, I first provide nonparametric evidence using Kernel regressions.

Then, I exploit more structure by recognizing that gain functions are likely to depend on past

forecast errors and I estimate the relationships between changes in survey expectations and

forecast errors using a functional-coefficient regression model based on Cai et al. (2000). The

approach can be seen as semiparametric, since it imposes more restrictions on the coefficients

than a purely nonparametric alternative.

The results support the presence of nonlinearities. In particular for inflation, the gain

coefficient is lower when forecast errors are closer to zero and increases for larger, whether

1The assumption is common in empirical work: Milani (2007, 2011, 2017), Slobodyan and Wouters (2012a,b),
and Eusepi et al. (2025).
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positive or negative, forecast errors. More uncertainty characterizes the results for output

forecasts, but gains still generally increase with the size of forecast errors. The relationship

between interest rate expectations and forecast errors is close to linear, and gains roughly

constant, except in cases of extreme forecast errors.

The results suggest a revision of learning models to incorporate endogenously changing,

nonlinear, gain functions.

2. Expectation Formation and Belief Updating

I assume a simple expectation formation model, according to which agents attempt to

learn about intercepts, or long-run values, for inflation, output, and interest rates. These are

the variables that agents would need to forecast in a textbook New Keynesian model (e.g.,

Woodford, 2003). Despite its simplicity, learning about long-run means has been shown

to be crucial for matching data on survey forecasts (e.g., Farmer et al., 2024, Patton and

Timmermann, 2010), and a similar approach has been recently used in Eusepi et al. (2025),

among others.

Agents adopt a Perceived Law of Motion (PLM): πt

∆yt

it

 = Zt = µt + ϵt (1)

and form expectations (here for t+ 1) as:

ÊtZt+1 = µ̂t, (2)

where ÊtZt+1 = [Êtπt+1, Êt∆yt+1, Êtit+1]
′ and µ̂t = [µ̂π

t , µ̂
∆y
t , µ̂i

t]
′. Beliefs are updated over

time following a constant-gain learning algorithm:

µ̂t = µ̂t−1 + ḡ · fet (3)

where ḡ denotes the constant-gain coefficient and fet = Zt− Êt−1Zt = Zt− µ̂t−1 denotes the

most recent forecast error.2

2Under learning, there can be a second equation reflecting the updating of the precision matrix Rt or, for
stochastic-gradient learning: Rt = I.
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Under this learning model, the change in expectations between two periods is related to

the most recent forecast errors as

ÊtZt+1 − Êt−1Zt = µ̂t − µ̂t−1 = ḡ · fet. (4)

Therefore, we should expect a clear connection between changes in expectations and recent

forecast errors. With a constant gain, the relationship is linear. In the empirical analysis,

the paper will investigate potential nonlinearities in this relation, which would be suggestive

of a nonlinear gain function g(·) instead.

3. Data

Data on expectations are obtained from the Survey of Professional Forecasters. I use

forecasts for GDP Deflator Inflation, Real GDP Growth, and 3-month T-bill interest rates

formed for quarter t (“nowcasts”) and t+1.3 Inflation and GDP forecasts are available from

1968:Q4 to 2025, whereas forecasts for interest rates are available from 1982:Q4 to 2025.

I compute the relevant forecast errors at each horizon, using the first vintage of release for

realized variables.

4. Functional Coefficient Model

4.1. Nonparametric Evidence. I start by presenting preliminary evidence on possible

nonlinearities between expectations and forecast errors using a nonparametric approach. Let

m(x) = E(Yt|Xt = x) denote the conditional expectation of Yt given Xt = x and consider a

Taylor expansion for x around x0:

m(x) = m(x0) +m′(x0)(x− x0) + ...+
m(p)(x0)

p!
(x− x0)

p +O{(x− x0)
p+1}. (5)

Around x0, m(x) can then be modeled statistically as

m(x) ≈
p∑

j=0

βj(x− x0)
j, (6)

3I keep the focus on short-term forecasts in this paper; I’ve also analyzed forecasts at horizons 2 to 4, but
their relationships with forecast errors are more tenuous. I’ve also used different measures of interest-rate
expectations, extracted from T-bills at different maturities using the expectations hypothesis of the term
structure, and the results are very similar.
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where each βj = m(j)(x0)/j! represents a local parameter. I use a local polynomial Kernel

regression estimator, which minimizes the weighted sum of squared residuals

m(x) =
T∑
t=1

(
Yt −

p∑
j=0

βj(Xt − x0)
j

)2

K

(
Xt − x0

h

)
(7)

where K denotes the Kernel function, and h the bandwidth. In the analysis, I use a local

linear approximation (i.e., p = 1).4

Figure 1 shows the estimated relationships using nonparametric Kernel regressions between

changes in expectations ÊtZt+h − Êt−1Zt−1+h and the most recent forecast errors fet.

The top panels show the Kernel estimates for the nowcasts and for one-period-ahead-

expectations for inflation. Inflation nowcasts are relatively insensitive to forecast errors.

Only very positive or very negative forecast errors cause changes in expectations. One-

quarter-ahead inflation expectations, instead, react more significantly to forecast errors.

The slope of the relationship remains roughly constant for forecast errors around zero, but

it steepens when those are large and positive and, particularly, when they are large and

negative.

The third and fourth panels present the Kernel regression estimates for output growth

expectations. Again, nowcasts are largely unresponsive, except when forecast errors are

largest. The relationship between one-period-ahead expectations and forecast errors has a

gentle slope in correspondence of most forecast errors, but there are clear shifts for very large

magnitudes, causing more substantial movements in expectations.

The bottom panels show the results for expectations about the 3-month T-bill rate. The

relationship between one-quarter-ahead changes in expectations and forecast errors is close to

linear; the slope again changes only for larger forecast errors: it steepens for negative errors,

but it flattens for positive ones. Same-quarter forecasts display a smaller, but positive, slope

(with minimal forecast errors).

4.2. Functional Coefficient Regressions. The Kernel estimates in Figure 1 are suggestive

of potential nonlinearities in the relations between expectations and forecast errors. In our

learning model, nonlinearities would emerge due to deviations of the gain coefficient from

the conventional constant-gain assumption. The gain may, in fact, be endogenous and its

value shift depending on the magnitude and direction of the most recent forecast errors.

4With p = 0, we would have instead the Nadaraya-Watson estimator.
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The relationship between changes in expectations and forecast errors in (4) can then be

re-expressed as

∆ÊtZt+1 = µ̂t − µ̂t−1 = g(fet−1)fet, (8)

where the function g(·) now allows for a nonlinear dependence of the gain on past forecast

errors. In the learning model, agents enter period t with their updated beliefs from the

previous period t − 1 and with an updated gain coefficient that can vary based on the

previous period’s forecast errors. They would observe the new forecast errors, revise their

beliefs, and form their expectations accordingly.

To investigate the nonlinearity in the expectational data, I use a functional-coefficient

regression (FCR) model, based on Cai et al. (2000). Compared to a fully-nonparametric

approach, functional coefficient modeling allows similar flexibility in fitting the data while

avoiding the curse of dimensionality. The additional structure it imposes on the coefficients

helps their interpretation. At the same time, the FCR approach remains less restrictive

than a parametric nonlinear regression, which requires researchers to specify the form of the

nonlinearity a priori, among infinitely many possibilities.

The FCR model can be written as

Yt = a0(ut) + a1(ut)X1,t + ...+ ak(ut)Xk,t + εt, (9)

which shows how the coefficients a(·) vary based on the values of a “threshold” variable ut.

The unknown coefficients in (9) are estimated using local linear regressions. In a neigh-

borhood of u0, the function a(·) can be approximated using a first-order Taylor expansion:

aj(u) ≈ aj(u0) + a′j(u0)(u− u0) = aj + bj(u− u0). (10)

Then, a local linear regression is run using observations {Ui, Xi, Yi}ni=1, where n = T −p and

Xi = (Xi1, ..., Xip)
T , to minimize

n∑
i=1

[
Yi −

p∑
j=1

(aj + bj(Ui − u0))Xij

]2
K

(
Ui − u0

h

)
, (11)
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with respect to aj, bj. The local linear regression estimator is given by âj(u0) = âj, j =

1, ..., n, and it can be expressed in Kernel form as

âj(u0) =
n∑

k=1

Kn,j(Uk − u0, Xk)Yk, (12)

with

Kn,j(u, x) = eTj,2p(X̃
TWX̃)−1

(
x

ux

)
K(

u

h
), (13)

eTj,2p a selection vector, X̃ =
(
XT

i , X
T
i (Ui − u0)

)
, and W =

{
K
(
U1−u0

h

)
, ..., K

(
Un−u0

h

)}
.

Following Fan and Yao (2003), I start with a pilot bandwidth, chosen using the Modified

Multi-Cross-Validation approach proposed by Cai et al. (2000),5 and then, in each case,

select the optimal final bandwidth to minimize the Mean Integrated Square Error (MISE),

which accounts for both the squared bias and variance at each evaluation point.6 In all cases,

I employ an Epanechikov Kernel function.7

Cai et. al (2000) demonstrate that the FCR procedure can successfully recover com-

mon nonlinear functions (such as TAR and EXPAR models) when they are imposed using

simulated data under known DGPs.

In the case of our adaptive learning model, the specific FCR equation corresponding to

(9) is given by

∆ÊtZt+1 = a0(fet−1) + a1(fet−1)fet + εt, (14)

which captures the nonlinearity of the gain function and the gain’s dependence on recent

forecast errors (with fet−1 serving as the threshold variable ut).

Figure 2 shows the results of the FC regressions, focusing on one-period-ahead expecta-

tions, the most relevant case. The panels show the coefficients a1(fet−1), which specifically

5The procedure requires a choice of m and Q, such that n > mQ, where n is the number of observations,
and where the approach consists of using Q subseries of length n− qm, q = 1, ..., Q to estimate the unknown
coefficient functions and obtain prediction errors. The pilot bandwidth is then chosen as the one minimizing
the average prediction error. I use m = 0.1 ∗ n, and Q=4, as suggested in Fan and Yao (2003).
6As explained in Fan and Gijbels (1996), the order of the pilot polynomial needs to exceed the estimation
order by an even integer (2 in this case).
7The optimal bandwidths selected in the estimation are 0.918 for inflation, 0.391 for output, and 0.198 for
interest rates.
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capture how the sensitivity of changes in expectations to new forecast errors varies as a func-

tion of previous forecast errors. The coefficient corresponds to the gain value in (4) or (8): a

flat line would suggest a constant gain, whereas more complicated shapes in the functional

coefficient would indicate nonlinearities in the gain function.

The estimation results point to non-linearities in the data. The FCR estimates suggest

gains that typically increase in the magnitude of forecast errors.

In the case of inflation expectations, the functional coefficient (or gain) is at its lowest

(just below 0.1) in correspondence of past forecast error values that are slightly below zero.

More extreme forecast errors lead to larger gain coefficients; gains are at their highest when

forecast errors are large and negative, suggesting that agents revise their expectations more

rapidly when they recently overestimated inflationary pressures.8

The results are more mixed for output expectations. If one disregards results in the tails,

a similar nonlinearity exists in the data. The gain is lower (with values between 0.07 and

0.13) when forecast errors fall around zero, but it increases with larger forecast errors. The

results, however, aren’t as clear-cut, since more uncertainty exists on the tails of the forecast

error distribution, with coefficients reverting to lower values.

For interest rate expectations, the relationship between expectations and forecast errors is

close to linear, and hence the gain function close to constant, for large parts of the forecast

error distribution. Gain values are also much larger. But for extreme forecast errors, non-

linearities reappear, with increasing gains after recent interest rates underpredictions and

smaller gains after overpredictions.

5. Conclusions

Adaptive learning provides one of the most popular alternatives to the REH in macroe-

conomics. Learning models assume agents who revise their beliefs in the direction of recent

forecast errors, typically with a constant-gain coefficient. They imply identical rates of up-

date every period regardless of the magnitude and sign of forecast errors.

Here, I showed, using nonparametric approaches, that nonlinearities in the gain functions

should deserve a bigger role in future research. In particular, learning models should in-

corporate endogenous gains that increase when forecast errors exceed a certain magnitude,

8Gain coefficients are higher here than estimated in DSGE models, since agents learn only about intercepts
and not dynamic coefficients.
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and that are potentially asymmetric between positive and negative forecast errors; such gain

functions would conform more closely to the empirical evidence. Learning with a constant

gain remains, however, a reasonably accurate approximation as long as past forecast errors

fall in the center region of their historical distribution. The findings closely mirror those in

Gáti (2023) for long-run inflation expectations. She estimates an endogenous gain function,

which is also nonlinear and asymmetric, and shows that incorporating the nonlinearity leads

to important differences in the optimal monetary policy responses.9

For brevity, this paper has considered a simplified learning model as a first step. In future

research, the agents’ perceived model can be extended to match the MSV solution under

RE. Other nonlinearities can be studied, including different specifications (e.g., TAR and

STAR models) or different threshold variables.

References

[1] Cai, Z., Fan, J., & Yao, Q. (2000). “Functional-Coefficient Regression Models for Nonlinear Time Series”.

Journal of the American Statistical Association, 95(451), 941-956.

[2] Eusepi, S., Giannoni, M., & Preston, B. (2025). “The Short-Run Policy Constraints of Long-Run Ex-

pectations”. Journal of Political Economy, forthcoming.

[3] Evans, G.W., and S. Honkapohja (2001). Learning and Expectations in Macroeconomics, Princeton, NJ:

Princeton University Press.

[4] Fan, J., and I. Gijbels (1996). Local Polynomial Modelling and its Applications, London: Chapman &

Hall.

[5] Fan, J., & Yao, Q. (2003). Nonlinear time series: nonparametric and parametric methods. New York,

NY: Springer New York.

[6] Farmer, L. E., Nakamura, E., & Steinsson, J. (2024). “Learning about the Long Run”. Journal of

Political Economy, 132(10), 3334-3377.
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Figure 1. Kernel Regressions: Changes in Expectations and Forecast Errors.
The top panels refer to inflation expectations (h = 0, 1), the medium to output
expectations, and the bottom to interest-rate expectations.
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Figure 2. Functional-Coefficient Regression Estimates: Changes in Expec-
tations and Forecast Errors. The first panel refers to inflation, the second to
output growth, the third to interest rates.


