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volatility, which is increasing in the 1970s and falling in the second half
of the sample, with a decline that can roughly match the magnitude of
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in the exogenous shocks, even when these have constant variance by
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1. Introduction

1.1. TV Macroeconomic Volatility. Several studies have documented

large changes in the volatility of macroeconomic fluctuations in the U.S.

over the post-war period. Kim and Nelson (1999), McConnell and Pérez-

Quiròs (2000), Blanchard and Simon (2001), and Stock and Watson (2002),

among several others, have identified a large decline of output growth volatil-

ity in the years post-1984 and before the 2007 financial crisis, compared to

the previous two decades (the large shift in volatility is commonly referred

to as “The Great Moderation”). The reduction in volatility is apparent if

one looks at simple measures as the variances of output growth and inflation

in the 1950-1980 versus the 1980-2007 samples. Slightly more sophisticated

approaches yield a similar message: Figure 1, for example, shows the con-

ditional standard deviations from GARCH models for inflation and output

gap over time. The conditional standard deviations for both series increase

in the 1970s and substantially decline after the early 1980s.

Correctly modeling changes in volatility has been shown to be impor-

tant for understanding macroeconomic fluctuations. Sims and Zha (2006)

find that incorporating regime changes in the volatilities of disturbances

in a Bayesian VAR overturns the evidence of large regime switches in US

monetary policy. Primiceri (2005), instead, estimates a VAR in which he

allows for a continuously changing variance-covariance matrix: he similarly

concludes that the role played by the falling volatility of exogenous shocks

seems more important than monetary policy changes in explaining the recent

behavior of US inflation and unemployment.

With few exceptions, however, estimated DSGE models still habitually

assume that the shocks have maintained constant variance throughout the

whole sample (e.g., Smets and Wouters 2003, 2007, Lubik and Schorfheide

2004, and An and Schorfheide 2007). The papers by Justiniano and Prim-

iceri (2008) and Fernandez-Villaverde and Rubio-Ramirez (2007) were the
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first to relax this assumption. Both papers incorporate stochastic volatility

in optimizing DSGE models. They find that the volatilities of the shocks

have significantly changed over time and that accounting for those variations

is important to improve the models’ fit to the data.

The existence of time-varying volatility in the economy, therefore, can be

now considered an empirical regularity. But what drives the changes in the

volatility of macroeconomic fluctuations?

In Justiniano and Primiceri (2008) and Fernandez-Villaverde and Rubio-

Ramirez (2007), the changes in volatility are modeled as exogenous. But

if these are an important feature of the economy as they appear to be, it

becomes crucial to try to understand their potential causes.

1.2. Paper’s Contribution. This paper takes a step in this direction by

presenting a model in which stochastic volatility arises endogenously in the

economy. I present a stylized New-Keynesian DSGE model in which agents’

learning about the economy has implications for macroeconomic volatility.

Economic agents use simple models to form expectations and need to learn

the relevant model parameters over time.1 Their learning speed is endoge-

nous and depends on previous forecast errors. When the forecast errors are

large, agents become concerned that the economy may be experiencing a

structural break and, therefore, they start assigning a larger weight to new

information. When the forecast errors are, instead, relatively modest, eco-

nomic agents remain confident about their model and turn less responsive

to new information. The endogenous time-varying learning speed has im-

plications for the volatility of the macroeconomic variables that agents are

trying to learn about. In this way, agents’ learning with an endogenous gain

can generate stochastic volatility in the economy.

1See Evans and Honkapohja (2001) for a treatment of several models with adaptive
learning.
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The learning rule with an endogenously switching gain is in the same

spirit as the rule assumed by Marcet and Nicolini (2003), who use a similar

mechanism to study hyperinflations. Here, however, the gain is not fixed at

a particular value, but estimated from time series data.

1.3. Related Literature. This paper is related to the recent works by

Branch and Evans (2007) and Lansing (2009), both of which present frame-

works in which changes in volatility can arise endogenously. In Branch and

Evans (2007), it is model uncertainty that plays the key role role in gen-

erating time-varying volatility in a Lucas-type monetary model.2 Lansing

(2009), instead, presents a New Keynesian Phillips curve with boundedly-

rational expectations, which can give rise to time-varying persistence and

volatility. In a single-equation setting for inflation, he can derive the optimal

variable gain as the fixed point of a nonlinear map that relates the gain to the

autocorrelation of inflation changes. Cho and Kasa (2012) allow agents to

test the specification of their models using econometric tests and study the

dynamics induced by the process of learning with model validation. They

find, for example, that the combination of a variable gain (a constant gain

that is allowed to increase during turbulent times as in response to the oil

price shocks in the 1970s) with model switching can produce changes in the

volatility of target inflation. Other papers have taken steps to endogenize

the gain (Evans and Ramey, 2006, and, more recently, Kostyshyna, 2012,

and Gaus, 2011).

Although this paper proposes an endogenous explanation for changes in

macroeconomic volatility, its main focus is not on investigating the sources

2This paper and the Branch and Evans’ approaches should be seen as complementary.
A more realistic model, in fact, would possibly include agents that endogenously adjust
their gain in response to the previous forecast errors, but that, at the same time, consider
different models and switch among them as the performance of one of them becomes
superior. This is, however, left for future research. Moreover, learning as in this paper
might be seen as a crude way to model economic agents who are concerned about potential
changes in the model of the economy, but without having to specify the different possible
models or the number of regimes.
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of the Great Moderation. Points of contact, however, clearly exist with the

Great Moderation literature. Within that vast literature, this paper is more

closely connected to the work by Bullard and Singh (2012), who find that

agents’ learning about different technology regimes (high and low, corre-

sponding to ‘expansion’ and ‘recession’ states) may have played a role for

the “Great Moderation”: they conclude that 30% of the decline in variance

may be due to learning, rather than pure good luck. The current paper

takes a very different approach, but it shares the emphasis on the evolution

of agents’ learning as a potential source of moderation in economic volatility.

Finally, the paper is more broadly related to the extensive literature on

adaptive learning in monetary policy models (e.g., Evans and Honkapohja

2001) and, in particular, to the papers that exploit learning to explain fea-

tures of macroeconomic data, such as persistence and volatility (Orphanides

andWilliams 2003, 2005a,b, 2006, 2007, Adam 2005, and Milani 2007, 2011).

1.4. Main Results. The simulation results show that time variation in

the gain can potentially generate substantial time-varying volatility in the

inflation and output gap series. The model is then taken to the data to

judge whether changes in the learning process may have been a contributor

to the evolution of macroeconomic volatility in the US. The Bayesian ap-

proach used in the paper facilitates the joint estimation of the learning gain

coefficients together with the structural parameters in the economy. The

estimation reveals that the endogenous gain appears to have switched to

large constant gain values for most of the 1970s and early 1980s as a con-

sequence of larger forecast errors by private agents in those periods. In the

latest two decades, instead, the agents have switched to a decreasing gain.

The estimated gain values in the 1970s are large and can justify a sizeable

increase in volatility in the period. Simulation of the model, in fact, with

the parameters fixed at the posterior mean estimates, implies that under

the estimated evolving gain, the economy would observe higher volatility in
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the 1960s-1970s than later on. The magnitude of the model-implied decline

in volatility roughly matches the size of the Great Moderation.

Moreover, the paper shows that even if the economy was subject to struc-

tural shocks with constant-variance over the whole sample, a failure to in-

corporate agents’ learning in the estimation would lead econometricians to

spuriously find the existence of ARCH/GARCH effects in the model innova-

tions. The paper finally discusses how the evidence of time-varying volatility

in the innovations, as they are measured by the econometrician, may itself

be the result of monetary policy and, mainly, of the interaction between

policy and agents’ learning, and not just a matter of luck.

2. The Model

The economy is described by the following New-Keynesian model3

πt = βÊtπt+1 + κxt + ut (2.1)

xt = Êtxt+1 − σ(it − Êtπt+1) + gt (2.2)

it = ρtit−1 + (1− ρt)(χπ,tπt−1 + χx,txt−1) + εt (2.3)

where πt denotes inflation, xt the output gap, and it the nominal inter-

est rate; ut, gt, and εt denote supply, demand, and monetary policy shocks.

Equation (2.1) represents the forward-looking New Keynesian Phillips curve

that can be derived from the optimizing behavior of monopolistically com-

petitive firms under Calvo price setting or quadratic adjustment costs in

nominal prices. Inflation depends on expected inflation in t + 1 and on

current output gap. The parameter 0 < β < 1 represents the households’

discount factor, while κ denotes the slope of the Phillips curve and is an

inverse function of the Calvo price stickiness parameter. Equation (2.2)

represents the log-linearized intertemporal Euler equation that derives from

the households’ optimal choice of consumption. The output gap depends on

the expected one-period ahead output gap and on the ex-ante real interest

3See Woodford (2003) for a standard derivation.
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rate. The coefficient σ > 0 represents the intertemporal elasticity of sub-

stitution in consumption. Equation (2.3) describes monetary policy. The

central bank follows a Taylor-type rule by adjusting its policy instrument, a

short-term nominal interest rate, in response to deviations in inflation and

the output gap. In light of McCallum’s argument that only information up

to t−1 might be available in real-time, I assume that the central bank cannot

respond to contemporaneous variables, but it responds only to lagged vari-

ables (i.e., the Taylor rule is “operational” using McCallum’s terminology).

The policy coefficients are allowed to vary over time and, in particular, they

differ between the pre- and post-1979 samples:4

ρt =

{
ρpre−79 t < 1979 : Q3
ρpost−79 t ≥ 1979 : Q3

χπ,t =

{
χπ,pre−79 t < 1979 : Q3
χπ,post−79 t ≥ 1979 : Q3

, χx,t =

{
χx,pre−79 t < 1979 : Q3
χx,post−79 t ≥ 1979 : Q3

.

The supply shock ut may arise endogenously in the model by assuming a

time-varying elasticity of substitution among differentiated goods, whereas

gt derives from shocks to preferences, technology, or government spending,

for example (both shocks are assumed to evolve as AR(1) processes).

The majority of the papers that focus on the estimation of DSGE models

assumes that such shocks maintain constant variance over the whole sam-

ple (e.g. Smets and Wouters 2007, An and Schorfheide 2007). But recent

papers have suggested that the changing volatilities of these shocks can be

important to understand macroeconomic fluctuations.

Typical state-of-the-art DSGEmodels cannot endogenously generate time-

varying stochastic volatility, but they need to assume stochastic volatility

as exogenous (Justiniano and Primiceri, 2008 and Fernandez-Villaverde and

Rubio-Ramirez, 2007). This paper contributes to the literature by showing

4I assume that a regime switch in policy occurs in 1979, when Paul Volcker begins
his term as Chairman of the Federal Reserve (August 1979). Duffy and Engle-Warnick
(2005), using nonparametric methods, similarly identify a switch in policy exactly in the
third quarter of 1979. Allowing for unknown changes in policy is beyond the scope of this
paper.
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how stochastic volatility can arise endogenously from agents’ learning about

the economy.

I relax here the assumption of rational expectations. I assume that agents

use a linear economic model to form their expectations. The agents do not

know the model coefficients and need to learn them over time. Therefore,

Êt refers to subjective expectations and may differ from the mathematical

expectations operator conditional on the true model of the economy Et.
5

2.1. Learning. Economic agents need to form expectations about the fu-

ture aggregate inflation rate Êtπt+1 and the future output gap Êtxt+1 to

solve their optimal consumption and price-setting decisions. I assume that

agents use a perceived linear model of the economy and that they need to

learn the relevant reduced-form coefficients. As in Evans and Honkapohja

(2001), they behave as econometricians by estimating the model and updat-

ing their estimates as new data become available. In the benchmark case,

agents use the following ‘Perceived Law of Motion’ (PLM):

Zt = at + btZt−1 + ηt (2.4)

where Zt ≡ [πt, xt, it]
′, and where at and bt are coefficient vectors and ma-

trices of appropriate dimensions. The agents’ PLM, therefore, is a simple

VAR(1) in the endogenous variables πt, xt, and it. Notice that although

the true constants in the model equal zero, agents are not endowed with

this information. In this way, they also need to learn the steady-state of the

variables. The PLM is, therefore, similar to the Minimum State Variable

solution of the system under rational expectations. Agents, however, do

not know the reduced-form model parameters and they cannot observe the

exogenous shocks.6 For each equation in the PLM, agents learn the model

5I have assumed a simple small-scale New-Keynesian model without adding “mechan-
ical” sources of persistence as habit formation in consumption or inflation indexation;
Milani (2006, 2007), in fact, shows that, under learning, those may become redundant as
learning is successful in inducing persistence in the model.

6That is, I assume for now that agents estimate VARs in the endogenous variables,
rather than VARMAs, as this is a more common practice in econometrics. It seems more
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coefficients according to the following updating rules

φ̂t = φ̂t−1 + gt,yR
−1
t−1Xt(Zt − φ̂ ′

t−1Xt)
′ (2.5)

Rt = Rt−1 + gt,y(XtX
′
t −Rt−1) (2.6)

where φ̂t = (at, bt)
′ collects the coefficients, and Xt ≡

{
1, Z ′

t−1

}′
is an appro-

priately stacked matrix of regressors. The first line describes the updating

of the learning rule coefficients, whereas the second describes the updating

of the matrix of second moments of the regressors, denoted by Rt. The

coefficient gt,y denotes the gain, which in the paper will be endogenously de-

termined and time-varying. I allow agents to learn about inflation, output,

and interest rates at different rates, letting the gain gt,y differ for y = πt, xt,

it (as Branch and Evans, 2006, discuss, in fact, if the degree of structural

change can be expected to differ across series, the optimal gains should also

differ).7

The gain endogenously adjusts according to past forecast errors as follows

gt,y =





(
g−1
t−1,y + 1

)−1
if

∑J
j=0(|yt−j−Et−j−1yt−j |)

J
< υyt

gy if
∑J

j=0(|yt−j−Et−j−1yt−j |)

J
≥ υyt ,

(2.7)

where y = πt, xt, it. When the average of the past forecast errors (in

absolute value) is below a certain threshold υyt , the agents use a decreasing

gain. The decreasing gain expression is equivalent to t−1, with the only

exception that, when agents revert from constant gain to decreasing gain,

they do not restart with a fully new sample with t = 1, but they restart from

the previous constant gain value gy (the same assumption is made in Marcet

realistic to assume that agents do not observe the shocks; the results in the paper, however,
do not hinge on this assumption. One can for example estimate the higher-order VAR(2)
to approximate the VARMA(1,1). The paper’s results remain in line with those obtained
for the VAR(1) case. In section 4, however, I will also re-estimate the model under the
assumption that agents fully observe the disturbances in their PLM.

7As more common in the literature, agents are learning as classical econometricians
(constant-gain learning corresponds to a particular case of weighted-least squares). An
alternative would be to assume that agents act as Bayesian econometricians, who update
their priors in light of new sample observations. The latter case has been studied in
Bullard and Suda (2011), who show how extra terms may appear in the economy’s law of
motion.
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and Nicolini, 2003). When the average of previous forecast errors is above

the threshold υt, instead, the agents become concerned that the economy

may be experiencing a structural break. In the proximity of a structural

break, a decreasing gain would be inefficient: the agents therefore switch to

a constant gain, which allows them to better track the break by assigning a

larger weight to new information. When the forecast errors fall again below

the threshold, agents switch back to a decreasing gain, which is reset to the

value it had in the previous period.

The endogenous switching gain is in the spirit of the gain assumed by

Marcet and Nicolini (2003).8 I assume that the threshold υyt is given by the

mean absolute deviation of historical forecast errors, which is recursively

updated.9 Notice that the degrees of freedom from this mechanism are the

gain coefficients gy, the window length J for past forecast errors, as well as

υyt . The gain will be estimated from the data, whereas J will be initially

fixed (later in the paper I will also treat J as a parameter and estimate its

value, in addition to performing other robustness checks).

I assume that economic agents dispose of information only up to t−1 when

forming expectations for next period (this is a common assumption in the

adaptive learning literature). Therefore, economic agents use (2.4) and the

updated parameter estimates in (2.5) and (2.6) to form their expectations

for t+ 1 as

Êt−1Zt+1 = at−1(I + bt−1) + b2t−1Zt−1, (2.8)

8Although agents’ learning with the described endogenous gain is by no means optimal,
it can be expected to provide a fairly good approximation to the optimal forecasting
behavior of agents who are concerned about possible unknown breaks in the economy, but
who do not want to take a stand on the nature or timing of the breaks, or on the existence
or number of regimes, and assuming that the agents, in their loss function, are much more
concerned about very large forecast errors than relatively small ones.

9I have tried estimations in which the agents were assumed to compare past root mean
squared forecast errors with the standard deviation of previous forecast errors, rather than
using forecast errors in absolute value and the mean absolute deviation, and the results
were similar. Other robustness checks regarding the threshold choices are discussed in
Section 4.
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where I denotes a 3× 3 identity matrix. The resulting expectations can be

substituted in the original system (2.1)-(2.3) to obtain the Actual Law of

Motion of the Economy (ALM). The ALM can be written as:

Υt = At−1 +Bt−1Υt−1 + εt (2.9)

where Υt = [Z ′
t, w

′
t]
′, wt = [ut, gt]

′, and where εt contains the innovation

components of the supply, demand, and monetary policy disturbances. The

parameter vector At−1 and matrix Bt−1 are time-varying, and their elements

are functions of both the structural coefficients in (2.1)-(2.3) and of the

learning beliefs entering through (2.8). The ALM can be paired with the

following set of observation equations

Observablest = HΥt, (2.10)

to yield a state-space system that is ready for estimation. The vector of

observables will include measures of inflation, the output gap, and interest

rates; the matrix H selects the corresponding variables from the state vector

Υt. The likelihood of the system (2.9)-(2.10) can be computed using the

Kalman filter. At each iteration t, t = 1, ..., T , of the Kalman filter, the

coefficient matrices are updated through the learning algorithms (2.5)-(2.6).

The literature on adaptive learning has often focused on studying the

convergence of economic systems with less-than-fully-rational beliefs to the

same equilibrium that would be reached under rational expectations. In our

New Keynesian economy, if we restrict agents to use the correctly-specified

MSV solution as their PLM, and learn using a decreasing gain, the conditions

for determinacy and E-stability of the system would be standard (a version

of the “Taylor principle”). Checking E-Stability in an economy with an

endogenous switching gain, as the one assumed here, is a more complicated

issue, which has already been thoroughly investigated in Gaus (2013). In the

baseline case in this paper, however, agents are assumed to lack knowledge

of the exogenous disturbances in their PLMs; therefore, the system with
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learning will not converge to the rational expectations equilibrium, or to a

distribution around it in the case of a constant gain, but it may converge to

a Restricted Perception Equilibrium (e.g., Branch, 2006).

The estimation of the ALM (2.9), however, can be performed regardless

of whether the beliefs lead to convergence to a restricted-perception equi-

librium or not. Later, the model will be estimated under the assumption

that agents use a correctly-specified MSV solution as their PLM, i.e. one

including the exogenous disturbances as regressors, and restricting the pa-

rameter space to guarantee equilibrium determinacy and E-stability. The

implied evolution of the time-varying gain and the main conclusions of the

paper will remain similar in those cases.

3. Endogenous Gain and Endogenous Time-Varying Volatility

The value of the gain coefficient affects the volatility in the economy.

In a simple empirical model of inflation and unemployment dynamics, Or-

phanides and Williams (2005, 2007), for example, have shown that the

volatility of those variables is a positive function of the gain (they consider

only gain values between 0.01 and 0.04). I simulate the model (for now with

constant, exogenously set, gain values) to show that this is also the case

here.10 Figure 2 makes clear that the standard deviations of inflation and

the output gap would increase as a function of the constant gain value.

Changes in the gain over time, therefore, may potentially be an important

determinant of the observed movements in macroeconomic volatility. To

show the potential role of the gain, I turn now to the simulation of the

model under an endogenous gain, which is allowed to switch as described

in (2.7). Therefore, agents adopt a decreasing gain as long as their forecast

errors are ‘small’. They switch to a constant gain when those become larger

10I fix the following values for the parameters: β = 0.99, κ = 0.05, σ = 0.1, ρ = 0.95,
χπ = 1.5, χx = 0.5, ρu = 0.9, ρg = 0.9. Agents use the MSV solution of the system to
form expectations. The economy is simulated for 1,000 periods using a grid of constant
gain values from 0 to 0.15.
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and above νt, the mean absolute deviation of past forecast errors. In the

simulation, I assume gπ = gx = 0.15. The choice of such high gain values

is, for the moment, purely for illustrative purposes and it is meant to make

the effects more striking in the graph (the value will be estimated later in

the paper).11 Figure 3 shows the time-varying endogenous gain together

with the rolling standard deviations of inflation and output gap, obtained

from a typical simulation. As the gain changes over time, the degree of

volatility in the economy also experiences large shifts. The figure displays

sizable time variation in volatility and various episodes characterized by

volatility clustering, although the exogenous shocks had constant variance

by construction. The persistence of the volatility series and the duration

of the clusters obviously depend on the assumed window that agents use

to compute past forecast errors; by varying the window size one could in

principle mimic a wide range of changing volatility series.12 For example,

decreasing J to 500 would imply more frequent changes in volatility and

shorter clusters, as shown in the upper panels of Figure 4. The lower panels,

instead, plot the case when agents only adopt a constant gain (fixed at the

lower value of 0.05).

The next section will take the model to the data. The estimation aims

to infer the evolution of the endogenous gain from time series observations.

The simulation can then be repeated in an artificial economy in which the

learning process is calibrated to resemble the one estimated from U.S. data.

11I simulate the economy for 13,000 periods, allowing agents to use a window of 3,000
observations when computing the mean of past forecast errors, and discarding the first
3,000 periods. The large number of observations is again meant to make the time-varying
volatility more apparent in the graph. The parameters are: β = 0.99, κ = 0.05, σ = 0.1,
ρ = 0.95, χπ = 1.5, χx = 0.5, ρu = 0.5, ρg = 0.5.

12Allowing the gain to change in a more ‘continuous’ fashion, rather than abruptly
jumping from t−1 to g would imply more gradual movements in the volatility series. The
case of a gradually changing gain, possibly along the lines proposed by Colucci and Valori
(2004, 2005), is left for future research.
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4. Bayesian Estimation

I estimate the model using likelihood-based Bayesian methods. The es-

timation follows Milani (2007), who extends the techniques reviewed in An

and Schorfheide (2007) to allow for near-rational expectations and learning.

The vector Θ collects the structural parameters of the model:

Θ = {β, κ, σ, ρt, χπ,t, χx,t, ρu, ρg, σu, σg, σε, gπ, gx, gi} (4.1)

Differently from Milani (2007), the gain coefficient is now endogenous,

being allowed to vary over time depending on the magnitude of the past

forecast errors that agents make (as made clear by expression 2.7). The gain

switches from decreasing (equal to t−1) in ‘stable’ times to constant (gy),

when past forecast errors become large and hence suggestive that a break

might be occurring. The constant gain coefficient to which agents switch is

not fixed to an ad-hoc value, rather its value is jointly estimated with the

rest of the model parameters. I use the Metropolis-Hastings algorithm to

generate 200,000 draws from the posterior distribution.13 As discussed, the

likelihood of the system (2.9)-(2.10) is evaluated after each MH draw using

the Kalman Filter.14 I use quarterly US data for the 1960:I-2006:I sample in

the estimation to fit the series for inflation, output gap, and nominal interest

rates.15 Data from the pre-sample period 1954:III-1959:I were, instead, used

to initialize the learning algorithm.

4.1. Priors. The priors for the model coefficients are reported in Table

1. Most prior choices follow Milani (2007). To minimize the influence of

13I discard a burn-in of 40,000 draws. See appendix in Milani (2007) for more details
on the estimation.

14Since stochastic volatility arises endogenously from the adjustment of expectations
in the model and it is not assumed, instead, in the exogenous shocks, the estimation can
be performed using the Kalman Filter rather than the more computationally-intensive
particle filter employed in Fernandez-Villaverde and Rubio-Ramirez (2007).

15Inflation is defined as the annualized quarterly rate of change of the GDP Implicit
Price Deflator, output gap as the log difference between GDP and Potential GDP (Con-
gressional Budget Office estimate), and the federal funds rate is the measure for the
nominal interest rate. The series are obtained from FRED, the Federal Reserve Bank of
Saint Louis economic database.
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the priors on the main parameters of interest, I assume a Uniform prior

distribution in the [0, 0.3] interval for the constant gain coefficients. I assume

a dogmatic prior for β, which is fixed at 0.99, a Gamma prior for σ and κ, a

Beta prior for the autoregressive coefficients, and Normal prior distributions

for the feedback coefficients to inflation and output gap in the policy rule.

I assume for now J = 4, i.e. agents care about forecast errors over the

previous year (this restriction will be later relaxed) when deciding how much

weight to assign to more recent information. I will point out in describing

the results the situations in which the priors have important effects on the

estimates.

4.2. Empirical Results. Figure 5 shows the evolution of the forecast errors

(in absolute value) about inflation, output gap, and the federal funds rate

over the sample under the estimated learning rules. Inflation and output

were typically harder to predict during the 1970s and until the early 1980s.

The forecast errors for both inflation and output gap were on average lower

in the 1990s. Monetary policy, instead, was harder to forecast in the late

1960s, in most of the 1970s, and during Volcker’s disinflation. Figure 6

shows the episodes in which the rolling means of the absolute forecast errors

exceed the updated values of νyt , which imply switches to learning with a

constant gain.

Table 2 presents the parameter estimates, along with 95% credible sets.

The corresponding prior and posterior distributions for each parameter are

shown in Figure 7. The value of the constant gain to which private agents

switch when their forecast errors jump above threshold is estimated equal

to 0.082 for inflation and to 0.073 for output (a very low gain coefficient is,

instead, found for the interest rate equation). Those values are substantially

larger than the estimates in Milani (2007), but of course here they refer only
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to particular periods in the sample.16 It appears, therefore, that agents, on

average, adopt low gain coefficients, but they switch to considerably higher

gains in periods of instability. Figure 8 plots the evolution of the time-

varying gain coefficients estimated for inflation and the output gap.17 The

learning process for inflation often switches to a constant gain in the 1970s

until the early 1980s and it reverts to a decreasing gain shortly after 1985

and for most of the latest part of the sample. Learning about the output

gap is also characterized by frequent switches to a constant gain from the

1960s until 1985, and by a decreasing gain for most of the recent two decades

(only two switches are identified from 1985 to 2006).

Turning to the other parameters, I estimate σ−1 = 5.92 and κ = 0.022.

The posterior means for the monetary policy rule coefficients indicate a more

aggressive response to inflation and a less active response towards the out-

put gap in the second part of the sample than in the first (χπ goes from 1.37

to 1.53, and χx declines from 0.58 to 0.48). The estimated monetary policy

rules would, therefore, satisfy the Taylor principle in both sub-samples (a

similar result in a model with learning is found in Milani 2006). However, as

shown in Figure 7 and quite typical in estimated DSGE models (e.g., Smets

and Wouters, 2007), the posterior distributions for the inflation feedback

parameters in the policy rule are not far from the assumed prior distribu-

tions, suggesting that the data may not be informative enough along these

dimensions to overturn relatively tight priors (the sensitivity to uninforma-

tive, uniform, priors will be analyzed in the next section). The data appear

informative, instead, about the values of the gain coefficients. Although

16The larger gain for inflation than output is consistent with results in Branch and
Evans (2007) and Milani (2006, 2007).

17I focus in this paper on inflation and output gap. I do not try, instead, to explain the
time-varying volatility in the Taylor rule equation with learning. The estimated higher
volatility of monetary policy shocks in some sub-periods can be more realistically attrib-
uted to misspecification of the Taylor rule in the 1979-1982 years and in few other episodes
in the 1970s than to a time-varying gain story.
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Uniform priors were assumed, the estimation has no trouble identifying the

gains that imply the best fit of the data.

4.3. Robustness.

4.3.1. Different Windows. The results might depend on the particular choice

of the number of observations J (in expression 2.7) that agents are assumed

to use when computing the average of recent forecast errors. To check for

robustness, I repeat the estimation using a longer window, i.e. J = 20 (now

agents compute the mean absolute forecast errors over the past five years).

The estimates are reported in Table 3a. Figure 9 shows the evolution of

the endogenous gain coefficients in this case. The estimated gains equal

0.065 for inflation and 0.064 for output gap. The other estimates are not

substantially different.

The window for the mean forecast errors can also be interpreted as a

parameter that can be estimated from data. Table 3a reports the results

when the estimation is repeated treating J as a free parameter. A gamma

distribution with mean 12 and standard deviation 4.9 is assumed as prior

for J . The estimated posterior mean is 4 (in the estimation, J is rounded

to the closest integer, since agents need to use the previous J periods as

described in 2.7), implying that agents care about forecast errors over the

previous year (the time-varying gains are therefore similar to those shown

in Figure 8). Overall, the results are not too sensitive to the choice of J .

The finding of frequent switches to a constant gain coefficient in the 1970s is

especially robust to the different J ’s. Switches to constant gain in the later

part of the sample, instead, are more sensitive to its choice.

4.3.2. Switching between high and low constant gains. Since agents are un-

sure about the model of the economy and whether this is changing over time,

one might argue that agents may be better off always using constant-gain

learning, rather than reverting to a decreasing gain when their forecasting
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performance is satisfactory. I follow this argument here and assume that

agents always adopt constant-gain learning, only switching from a ‘low’ to

a ‘high’ gain when the conditions in (2.7) are met (the ‘low’ gain is fixed at

0.02, whereas the ‘high’ gain is estimated). The switches to the higher gain

occur in similar periods to those found under the baseline case (Figure 10);

the estimated gains equal 0.096 for inflation and 0.042 for the output gap.

4.3.3. Alternative switching thresholds. In the benchmark estimation, the

gain switches when forecast errors fall above a historical volatility thresh-

old, which is recursively updated. It can be argued that, in this way, the

threshold may be more volatile in the first part of the sample, in which

only few observations are used in its construction, than later on. We check

the robustness of the results to that assumption here, by re-estimating the

model now allowing for the threshold to be updated using a rolling win-

dow including ten years of data. The switches in the gains for output gap

and inflation beliefs are again similar to those in the benchmark estimation,

although switches are clearly more common (Figure 11, panel (i)).18

4.3.4. Estimation Sample including the ‘Great Recession’. We now extend

the sample’s ending date from 2006:Q1 to 2013:Q4 to examine whether the

learning mechanism also worked in the instability of the “Great Recession”.

The model is re-estimated on the expanded sample.19 The evolution of

the endogenous switching gain is shown in Figure 11, panel (ii). The gain

for the output gap switches again to the high constant value in 2008 and

it declines starting from late 2010. The findings, therefore, suggest that

the uncertainty and larger forecast errors at the onset of the crisis affected

18I have also tried an estimation with fixed threshold ν over the full sample. The gain
paths are similar.

19We abstract here from the zero-lower-bound constraint in the estimation in the later
part of the sample. Deviations between the desired interest rate implied by the Taylor
rule and zero are thus simply attributed to the monetary policy shock εt.
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learning dynamics, which, in turn, likely induced higher volatility in the

aggregate economy.

4.3.5. Policy Rule and Policy Coefficient Priors. The estimation is now re-

peated assuming a Taylor rule that responds to contemporaneous, rather

than lagged, variables. The implied posterior estimates are not far from

those shown in Table 2.

In the benchmark estimation, the prior for the inflation feedback coeffi-

cient in the Taylor rule was assumed to be Normally distributed with mean

1.5 and standard deviation 0.25 and the prior for the feedback to the out-

put gap to be Normally distributed with mean 0.25 and standard deviation

0.125. Such priors assign most of the probability mass to values that would

lead the system to satisfy the Taylor principle and that would, therefore,

be consistent with determinacy (in a model with rational expectations) and

E-stability (in the case of decreasing-gain learning and with a PLM that

corresponds to the MSV solution under rational expectations). We now re-

peat the estimation with uninformative priors for the policy coefficients: we

assume a Uniform distribution between 0 and 3 for the inflation feedback

coefficient and a Uniform between 0 and 2 for the output gap coefficient.

Rather than inducing determinacy and E-stability through the priors for

these parameters, we let the data speak freely about their values, but directly

impose the dogmatic prior that the system is consistent with a determinate

and E-stable equilibrium. This is done in the estimation by rejecting every

MCMC draw characterized by parameter combinations that fail to satisfy

determinacy and E-stability conditions.

The posterior estimates, shown in Table 3b, indicate a larger switch in the

inflation feedback coefficient between the pre-1979 and post-1979 samples

(now from a posterior mean of 1.19 to a posterior mean equal to 2.03). The

resulting time-variation in the endogenous gain coefficients for both cases of

a contemporaneous Taylor rule and uninformative policy priors closely track
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each other and remain largely unchanged with respect to the baseline case

(Figure 11, panel (iii) and (iv)).

4.3.6. Observed Disturbances in PLM. The benchmark estimation has as-

sumed what is arguably the most empirically realistic forecasting model:

one in which agents observe endogenous variables such as output, inflation,

and interest rates, but cannot observe exogenous disturbances. For robust-

ness, however, the model is re-estimated using the complete MSV solution,

endowing agents with knowledge of the disturbances at each point in the

sample as well. Their PLM now takes the form

Zt = at + btZt−1 + ctwt + ηt. (4.2)

The implied time-varying gains maintain constant values in the 1960s and

1970s and switch to decreasing gains for most of the post-1980 period (Fig-

ure 11, panel (v)). The estimated values for the constant gain coefficients

equal 0.117 for inflation beliefs, 0.058 for output beliefs, and 0.024 for in-

terest rates. The properties of the disturbances change somewhat, with

autoregressive coefficients increasing to 0.91, for the supply, and to 0.94,

for the demand shock. The results under this scenario, therefore, also do

not overturn the main conclusion that learning gain coefficients were higher

before 1980 than after.

4.3.7. TV Volatilities of structural shocks. The benchmark estimation as-

sumes that structural shocks have constant variance over the whole sample.

It is interesting to consider whether the results are robust to allowing the

volatility of the shocks to vary over time, as already assumed for the mone-

tary policy coefficients. Motivated by the Great Moderation literature, the

standard deviations of the supply and demand shocks are allowed to switch

between the pre-1984 and post-1984 periods (with a break in 1984:Q2). For

the standard deviation of the monetary policy shock, we allow it, instead,
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to be drawn from a distribution that has a different variance in the non-

borrowed-reserve targeting period (1979:Q3-1982:Q4) than in the remaining

samples. Therefore, the standard deviations evolve as follows

σε,t =

{
σε,1979−82 1979 : Q3 ≤ t ≤ 1982 : Q4
σε o/w

σu,t =

{
σu,pre−1984 t < 1984 : Q2
σu,post−1984 t ≥ 1984 : Q2

, σg,t =

{
σg,pre−1984 t < 1984 : Q2
σg,post−1984 t ≥ 1984 : Q2

Table 4 reports the estimation results. There is evidence that the volatility

of the shocks has decreased over time. The posterior mean estimate for σu

and σg decline from 1.02 to 0.73 and from 0.76 to 0.50 after 1984. Figure 11

displays the evolution of the switching gains related to inflation and output

in this context (panel (vi)). The gains switch to high constant gains in the

first half of the sample and do so less often in the second half, as found in

the benchmark estimation.

5. Simulation

I repeat the simulation of the model, but now using the estimated pa-

rameter values (shown in Table 2) from the previous section and fixing the

agents’ learning to resemble the one estimated from US data (i.e, assuming

that the endogenous gain switches as in Figure 8). I simulate an econ-

omy with 185 periods (the same length as the estimated New Keynesian

model) for 10,000 times. The shocks that hit the economy are drawn from

distributions with constant variance over the whole sample.20 We have pre-

viously seen that learning can imply time-varying volatility in the variables

about which agents are forming expectations. But suppose that learning

is neglected in an empirical exercise. Let’s consider the following experi-

ment. Suppose that an econometrician would estimate inflation and output

20I use a ‘projection facility’ in the simulation to ensure that the economy does not
become unstable. As in Orphanides and Williams (2005, 2007), in fact, I assume that
agents recognize that the economy is stable and every time the matrix of autoregressive
coefficients in their VAR has an eigenvalue larger than 1 in absolute value, they do not

update their estimates, keeping φ̂t = φ̂t−1 and Rt = Rt−1. If this is not enough to
guarantee non-explosive dynamics, I reject the specific draw.
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equations on the simulated data, but without taking learning into account.

Would the econometrician find evidence of time-varying volatility, even if

the true data-generating process had shocks with constant variance through

the whole sample?

To answer this question, I regress artificially-generated inflation and out-

put gap series on a constant and their first lag (a similar regression on

actual data gives the plot for conditional standard deviations in Figure 1);

then I take the implied residuals and perform a test on the existence of

ARCH/GARCH effects (at the 5% significance level). Table 5 reports the

percentages of rejections of the null hypothesis of no ARCH/GARCH effects

from simulated data. In the case that the data derive from an economy with

no learning (i.e., imposing gt,y = 0 at all times), the test rejects the null of no

ARCH effects only about 5% of the times. In the case with learning, even

though the variances of the shocks are constant by construction, the test

concludes that ARCH/GARCH effects are a feature of the data in 52% of

the cases for inflation and 78% for output gap (see Table 5 for more results

under different cases).21

These results are suggestive that estimations that abstract from agents’

learning can significantly overestimate the time variation in the volatility of

exogenous shocks.22

5.1. Time-Varying Volatility. The model can generate time-varying volatil-

ity in macroeconomic variables even if the exogenous disturbances have

maintained constant variance over the whole sample. I try to verify whether

21A more sophisticated version of the same experiment would imply estimating the
full DSGE model under Rational Expectations, hence disregarding learning dynamics, to
test for the existence of spurious ARCH effects or stochastic volatility in the exogenous
shocks. This would be, however, extremely computationally cumbersome, as it would
require running a full set of MH draws for each of the 10,000 sets of artificially simulated
series. A similar, more-reduced-form, approach as the one used in this paper was also
followed in Lubik and Surico (2010) in a different application.

22As mentioned in the introduction, a similar point, albeit made in a largely different
context, is reached by Bullard and Singh (2012).
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the model can generate a pattern of volatility that roughly resembles what

is observed in actual data. That is, I aim to verify whether the outcomes

from the simulations imply volatility series that increase in the first part

of the sample (when the endogenous gain switches to constant) and decline

in the second part (when the endogenous gain reverts to decreasing). In

each simulation, I take the residuals from the inflation and output equa-

tions and I look at the point in the sample in correspondence of which the

maximum rolling standard deviation is obtained (using a rolling window of

20 periods). I then estimate the Kernel density of the maxima across all

simulations. Figure 12 displays the results. The standard deviations often

increase near those observations that would correspond to the late 1960s and

1970s, and become typically lower in the second part of the sample. If the

economy was simulated without learning, instead, one would find that the

maxima of the volatility series are uniformly spread across all observations

in the sample.

Therefore, as in the previous section, neglecting learning in empirical

work, if learning is a feature of the data-generating process of the econ-

omy, may lead researchers to spuriously find time variation in the volatility

of residuals from estimated univariate equations (or possibly of exogenous

shocks in DSGE models under RE). The pattern of volatility is in the ball-

park of that estimated on actual data and reported in Figure 1. One would,

in fact, conclude that the volatility of shocks has increased in periods in

which agents’ forecast errors are generally large and in which learning intro-

duces more noise in the economy.

5.2. The Great Moderation. The model estimation has shown that the

gain coefficients were typically larger in the 1960s and 1970s than in the fol-

lowing decades, and this has affected the degree of volatility in the economy.

The volatility of output gap and inflation has fallen in the post-1984 sample.

Is the model with learning able to generate the Great Moderation? For each
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simulation, I compute the ratio of the standard deviations of inflation and

output gap in the second part of the sample (corresponding to 1985-2006

observations) versus the first part (which correspond to 1960-1984). Taking

the median from the simulations, for the baseline model, the ratios between

post-1984 and pre-1984 standard deviations equal 0.39 for inflation (versus

0.35 on actual data) and 0.42 for output gap (versus 0.50 on actual data).

The model with learning, with parameters fixed at their posterior mean

estimates, is, therefore, in principle capable of endogenously generating a

reduction in the volatility of the main macroeconomic variables of a magni-

tude comparable to the Great Moderation (Table 6 shows that the results

remain similar under the other cases).

We can provide some complementary evidence on the ability of the model

to explain portions of macroeconomic volatility through the estimation of the

model as well. In section 4, the estimated model allowed for a switch in the

volatilities of the shocks in 1984 and included the endogenous switching gain.

To gain intuition on the relative contributions of learning and exogenous

luck in driving changes in volatility, the model can be re-estimated now

shutting down the switching gain. The model now assumes a recursive-least-

square learning with a decreasing gain over the full sample. The results in

Table 4 indicate that the volatility of the demand shock has fallen from

1.16 to 0.52, while the volatility for the supply shock has fallen from 1.31

to 1.02. The decline in the standard deviation of the cost-push shock in the

second sample persists in both estimations, with and without the endogenous

switching gain; learning, however, can account for some of the exogenous

volatility both in the pre- and post-1984 samples (the required variances for

the exogenous shocks are reduced from 1.31 to 1.02 and from 1.02 to 0.73

when the endogenous gain channel is re-introduced).
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Learning with a switching gain can also explain a portion of the moder-

ation in output volatility after 1984. Figure 13 shows the posterior distri-

butions of the standard deviation coefficients related to the demand shock.

The figure makes clear that the change in (exogenous) luck needed to fit

the data is much larger, more than double, when the endogenous switching

gain learning is replaced by learning with a decreasing gain. The poste-

rior means for the demand shock standard deviations go from shifting from

1.16 to around 0.5 to shifting from 0.75 to around 0.5, under switching-gain

learning.23

5.3. The Effects of Policy. The literature that studies the main sources

of the Great Moderation has often focused on testing explanations based

on changes in monetary policy versus explanations based on reductions in

the volatility of the exogenous shocks that hit the economy. A decline in

the estimated volatility of shocks is usually taken as evidence in favor of the

bad luck-good luck hypothesis versus the alternative hypothesis of transition

from bad to good policy.

Changes in volatility, however, may not be unrelated to the monetary

policy regime. Chairman Bernanke, in a speech about the Great Moderation

in February 2004, for example, argued

[I am not convinced that the decline in macroeconomic volatility of the past two

decades was primarily the result of good luck.]

[...changes in monetary policy could conceivably affect the size and frequency
of shocks hitting the economy, at least as an econometrician would measure those
shocks]

He continues:

23Here, I have assumed that the standard deviations of the shocks, as well as the
monetary policy coefficients, change at discrete points in the sample. We have used the
size of the estimated switch to obtain intuition about what portion of volatility can be
explained by the endogenous-gain learning process. A more sophisticated approach would
consist of re-estimating the model, but allowing for both learning and stochastic volatility.
That would, however, imply moving to a nonlinear non-Gaussian framework, including
both continuously-changing parameters and volatilities, the estimation of which could be
performed using the particle filter. The estimation of such a model is beyond the scope of
this paper, though.
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[ changes in inflation expectations, which are ultimately the product of the mone-
tary policy regime, can also be confused with truly exogenous shocks in conventional
econometric analyses. ]

Therefore,

[some of the effects of improved monetary policies may have been misidentified as

exogenous changes in economic structure or in the distribution of economic shocks.]

This paper makes time-varying volatility endogenous. In this way, it is

easier to study how the volatility of the shocks (as they are measured by the

econometrician) may itself depend on policy. This section can, therefore,

provide an initial evaluation of the extent to which changes in the volatility

of inferred economic shocks may, as in Bernanke’s claims, simply reflect

better monetary policies.

To examine the interaction between volatility and monetary policy, I sim-

ulate the economy with an endogenous gain as in section 3, but now under a

wide range of policy feedback coefficients to inflation (using a grid from 0 to 5

in 0.5 increments). Figure 14 shows the result under the model parametriza-

tion obtained in Table 2. A more aggressive monetary policy reduces agents’

forecast errors and, therefore, it affects the frequency of switches in their gain

coefficients (from almost 70% of the times when χπ = 0 to less than 30%

when χπ = 5, with an average gain in the sample that goes from above 0.07

to below 0.05), and, through this channel, it affects also changes in volatility

in the economy.24 The more aggressive monetary policy, the less often the

econometrician would spuriously find time-varying volatility in the reduced-

form residuals (from more than 80 to 55% of the times). Changes in the

volatility of estimated shocks, therefore, may not in principle be a matter

of luck after all, but an implication of better policy (notice, however, that

under the estimated coefficients in this paper, large changes in volatility due

to policy changes are unlikely).

24The importance of monetary policy in reducing agents’ forecast errors is also discussed
in Orphanides and Williams (2003).
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This result echoes, although in a different setting and with a different

focus, the argument in a recent paper by Benati and Surico (2009). They

artificially generate data from a New Keynesian model assuming a policy

change from a ‘passive’ to an ‘active’ policy rule and they ask whether a

common VAR estimation would be able to recover the change in policy.

They show that the estimated VAR would lead researchers to inaccurately

conclude that the variances of the shocks have changed, but not the policy

coefficients.

This paper’s results similarly suggest caution: simply finding that the

variances have changed from reduced-form regressions may not necessarily

imply changes in luck, but it might be an effect of policy changes or, as in

this paper, of the interaction between changing policies and private agents’

learning.

6. Conclusions and Future Directions

The paper has presented a New Keynesian model in which agents’ learn-

ing with a switching gain coefficient endogenously generates time-varying

volatility in the economy. The estimation of the model has shown that

there is evidence of large changes in the gain over the post-war US sample.

The changes in the gain can imply important changes in macroeconomic

volatility, which can roughly match the magnitude of the Great Modera-

tion. An econometrician that would abstract from such learning dynamics,

however, would be lead to overestimate the importance of changes in the

volatility of exogenous shocks. Moreover, time variation in volatility may

not be simply a matter of luck, but it may itself be affected by changes in

monetary policy and, in particular, it can stem from the interaction between

policy and learning by private agents.
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An important direction for future research will be to test whether exten-

sions of the model would be able to generate endogenous stochastic volatil-

ity series able to match those estimated in DGSE models by Justiniano

and Primiceri (2008) and Fernandez-Villaverde and Rubio-Ramirez (2007).

More generally, this would allow researchers to test what fraction of the

changes in volatility may be due to learning, rather than to the decline in

the volatility of exogenous disturbances, at a finer level of detail than what

reported in this paper.
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Prior Distribution

Description Param. Range Distr. Mean 95% Int.

Inverse IES σ−1
R
+ G 1 [.12, 2.78]

Slope PC κ R
+ G .25 [.03, .7]

Discount Rate β .99 − .99 −
Interest-Rate Smooth ρpre79 [0, 1] B .8 [.46, .99]
Feedback to Infl. χπ,pre79 R N 1.5 [1.01, 1.99]
Feedback to Output χx,pre79 R N .25 [.01, .49]
Interest-Rate Smooth ρpost79 [0, 1] B .8 [.46, .99]
Feedback to Infl. χπ,post79 R N 1.5 [1.01, 1.99]
Feedback to Output χx,post79 R N .25 [.01, .49]
Autoregr. Cost-push shock ρu [0, 1] B 0.8 [.57, .95]
Autoregr. Demand shock ρg [0, 1] B 0.8 [.57, .95]
Std. MP shock σε R

+ IG 0.5 [.17, 1.34]
Std. gt σg R

+ IG 0.5 [.17, 1.34]
Std. ut σu R

+ IG 0.5 [.17, 1.34]
Constant Gain infl. gπ [0, 0.3] U .15 [.007, .294]
Constant Gain gap gx [0, 0.3] U .15 [.007, .294]
Constant Gain FFR gi [0, 0.3] U .15 [.007, .294]

Table 1 - Prior Distributions. Notes: the table displays prior means and
95% posterior probability intervals for the model parameters. N denotes
Normal distribution, G denotes Gamma distribution, B denotes Beta dis-
tribution, IG denotes Inverse-Gamma distribution, and U denotes Uniform
distribution.
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Posterior Distribution

Description Parameter Mean 95% Post. Prob. Int.
Inverse IES σ−1 5.92 [4.23-8.34]
Slope PC κ 0.022 [0.003-0.06]
Discount Factor β 0.99 -
IRS pre-79 ρpre79 0.938 [0.85-0.99]
Feedback Infl. pre79 χπ,pre−79 1.37 [0.87-1.89]
Feedback Gap pre79 χx,pre−79 0.58 [0.18-1.02]
IRS post-79 ρpost79 0.93 [0.88-0.97]
Feedback Infl. post79 χπ,post−79 1.53 [1.05-2.05]
Feedback Gap post79 χx,post−79 0.48 [0.04-0.92]
Autoregr. Cost-push shock ρu 0.40 [0.28-0.52]
Autoregr. Demand shock ρg 0.84 [0.75-0.92]
Std. Cost-push shock σu 0.89 [0.8-1.00]
Std. Demand shock σg 0.65 [0.58-0.72]
Std. MP shock σε 0.97 [0.87-1.07]
Constant gain (Infl.) gπ 0.082 [0.07-0.09]
Decreasing gain (Infl.) t−1 - -
Constant gain (Gap) gx 0.073 [0.06-0.083]
Decreasing gain (Gap) t−1 - -
Constant gain (FFR) gi 0.001 [0,0.01]
Decreasing gain (FFR) t−1 - -

Table 2 - Posterior Estimates. Note: the table shows posterior mean
estimates and 95% posterior probability intervals obtained for the baseline
case, with forecast window J = 4.
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Posterior Distributions

J = 20 Estim. J = Ĵ High/low CG Rolling νt

Description Parameter Mean 95% PPI Mean 95% PPI Mean 95% PPI Mean 95% PPI

Inverse IES σ−1 6.89 [4.62,10] 6.37 [4.43,9.13] 7.44 [5.22-10.34] 6.50 [4.64-8.82]
Slope PC κ 0.02 [0.003,0.06] 0.02 [0.003,0.054] 0.025 [0.003-0.07] 0.022 [0.003-0.05]
Discount Factor β 0.99 - 0.99 - 0.99 - 0.99 -
IRS pre-79 ρpre79 0.936 [0.86-0.99] 0.94 [0.87-0.99] 0.932 [0.856-0.99] 0.94 [0.80-0.99]
Feedback Infl. pre79 χπ,pre−79 1.31 [0.91-1.76] 1.37 [0.91-1.82] 1.33 [0.86-1.82] 1.33 [0.85-1.90]
Feedback Gap pre79 χx,pre−79 0.61 [0.13-0.98] 0.63 [0.26-1.11] 0.62 [0.22-1] 0.30 [0.07-0.54]
IRS post-79 ρpost79 0.914 [0.86-0.96] 0.93 [0.88-0.97] 0.91 [0.86-0.96] 0.92 [0.87-0.97]
Feedback Infl. post79 χπ,post−79 1.54 [1.09-1.93] 1.57 [1.04-2.04] 1.56 [1.1-2.02] 1.60 [1.18-2.01]
Feedback Gap post79 χx,post−79 0.41 [0.006-0.87] 0.49 [0.04-0.88] 0.44 [-0.04-0.85] 0.25 [0.006-0.48]
Autoregr. Cost-push shock ρu 0.39 [0.26-0.5] 0.402 [0.28-0.52] 0.31 [0.18-0.46] 0.40 [0.28-0.55]
Autoregr. Demand shock ρg 0.83 [0.74-0.91] 0.83 [0.73-0.92] 0.79 [0.7-0.87] 0.84 [0.75-0.91]
Std. Cost-push shock σu 0.97 [0.87-1.07] 0.90 [0.81-0.99] 0.91 [0.82-1.01] 0.91 [0.83-1.01]
Std. Demand shock σg 0.67 [0.61-0.75] 0.64 [0.58-0.71] 0.74 [0.66-0.82] 0.62 [0.55-0.69]
Std. MP shock σε 0.96 [0.87-1.07] 0.97 [0.87-1.07] 0.96 [0.87-1.07] 0.97 [0.87-1.08]
F.E. Window J 20 - 4 [1-5] 4 - 4 -
Constant gain (Infl.) gπ 0.065 [0.055-0.075] 0.078 [0.062-0.097] 0.096 [0.09-0.104] 0.066 [0.054-0.075]
Decreasing gain (Infl.) t−1 - - - - - - - -
Constant gain (Gap) gx 0.064 [0.049-0.072] 0.073 [0.06-0.084] 0.042 [0.036-0.052] 0.072 [0.063-0.080]
Decreasing gain (Gap) t−1 - - - - - - - -
Constant gain (FFR) gi 0.005 [0,0.032] 0.001 [0,0.01] 0.01 - 0.001 [0-0.009]
Decreasing gain (FFR) t−1 - - - - - - - -

Low Constant gain (Infl.) gL
π 0.02 -

Low Constant gain (Gap) gL
x 0.02 -

Table 3a - Posterior Distributions: Robustness checks. Notes: the poste-
rior estimates refer to the following cases: i) estimation with forecast win-

dow fixed at J = 20; ii) estimated forecast window Ĵ ; iii) estimation with
endogenous gain switching between high and low constant gain values; iv)
estimation using rolling thresholds as benchmark to which historical forecast
errors are compared.
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Posterior Distributions

Sample End. 2014 Contemp. Policy Rule Diffuse Policy Priors Dist. in PLM

Description Parameter Mean 95% PPI Mean 95% PPI Mean 95% PPI Mean 95% PPI

Inverse IES σ−1 7.32 [5.06-10.09] 5.70 [4.03-7.82] 6.07 [4.31-8.39] 12.51 [10.07-15.47]
Slope PC κ 0.018 [0.002-0.05] 0.022 [0.002-0.061] 0.025 [0.003-0.07] 0.021 [0.002-0.05]
Discount Factor β 0.99 - 0.99 - 0.99 - 0.99 -
IRS pre-79 ρpre79 0.94 [0.85-0.99] 0.90 [0.79-0.98] 0.94 [0.88-0.99] 0.98 [0.94-0.99]
Feedback Infl. pre79 χπ,pre−79 1.32 [0.85-1.75] 1.32 [0.82-1.87] 1.19 [0.18-2.51] 1.46 [1.00-1.94]
Feedback Gap pre79 χx,pre−79 0.30 [0.05-0.52] 0.36 [0.13-0.57] 0.74 [0.03-1.95] 0.26 [0.06-0.50]
IRS post-79 ρpost79 0.93 [0.88-0.98] 0.90 [0.85-0.94] 0.93 [0.88-0.97] 0.96 [0.92-0.99]
Feedback Infl. post79 χπ,post−79 1.60 [1.16-2.03] 1.63 [1.20-2.17] 2.03 [0.19-2.96] 1.48 [0.95-1.96]
Feedback Gap post79 χx,post−79 0.27 [0.03-0.52] 0.33 [0.10-0.55] 0.60 [0.03-0.64] 0.24 [0.01-0.48]
Autoregr. Cost-push shock ρu 0.34 [0.22-0.46] 0.43 [0.31-0.54] 0.41 [0.29-0.55] 0.91 [0.87-0.95]
Autoregr. Demand shock ρg 0.80 [0.71-0.88] 0.83 [0.75-0.91] 0.84 [0.76-0.92] 0.94 [0.87-0.99]
Std. Cost-push shock σu 0.89 [0.81-1.00] 0.90 [0.81-1.00] 0.89 [0.81-0.99] 1.12 [0.98-1.29]
Std. Demand shock σg 0.68 [0.62-0.74] 0.64 [0.58-0.71] 0.65 [0.58-0.72] 0.41 [0.35-0.47]
Std. MP shock σε 0.92 [0.83-1.00] 0.95 [0.85-1.05] 0.96 [0.86-1.07] 0.97 [0.88-1.08]
F.E. Window J 4 - 4 - 4 - 4 -
Constant gain (Infl.) gπ 0.075 [0.057-0.094] 0.082 [0.078-0.09] 0.083 [0.078-0.091] 0.117 [0.101-0.135]
Decreasing gain (Infl.) t−1 - - - - - - - -
Constant gain (Gap) gx 0.059 [0.048-0.068] 0.077 [0.067-0.086] 0.072 [0.06-0.081] 0.058 [0.052-0.065]
Decreasing gain (Gap) t−1 - - - - - - - -
Constant gain (FFR) gi 0.006 [0-0.035] 0.001 [0,0.004] 0.001 [0-0.003] 0.024 [0.005-0.04]
Decreasing gain (FFR) t−1 - - - - - - - -

Table 3b - Posterior Distributions: Robustness checks. Notes: the poste-
rior estimates refer to the following cases: v) estimation with sample ending
in 2014; vi) model with Taylor rule responding to contemporaneous vari-
ables; vii) estimation with Uniform priors for Taylor rule coefficients and
determinacy/E-stability prior; viii) model with observed disturbances in the
agents’ PLM.
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Posterior Distributions

TV variances, switching gain TV variances, switching gain shut off

Description Parameter Mean 95% PPI Mean 95% PPI

Inverse IES σ−1 6.51 [4.50-9.21] 6.98 [4.65-10.1]
Slope PC κ 0.021 [0.003-0.06] 0.035 [0.005-0.09]
Discount Factor β 0.99 - 0.99 -
IRS pre-79 ρpre79 0.95 [0.87-0.99] 0.94 [0.85-0.99]
Feedback Infl. pre79 χπ,pre−79 1.31 [0.83-1.82] 1.22 [0.70-1.79]
Feedback Gap pre79 χx,pre−79 0.31 [0.05-0.55] 0.33 [0.07-0.57]
IRS post-79 ρpost79 0.93 [0.89-0.97] 0.91 [0.86-0.96]
Feedback Infl. post79 χπ,post−79 1.48 [0.99-1.95] 1.45 [1.05-1.88]
Feedback Gap post79 χx,post−79 0.30 [0.06-0.53] 0.30 [0.06-0.53]
Autoregr. Cost-push shock ρu 0.38 [0.26-0.50] 0.45 [0.32-0.56]
Autoregr. Demand shock ρg 0.81 [0.71-0.91] 0.76 [0.66-0.86]
Std. Cost-push shock pre84 σu,pre−84 1.02 [0.88-1.17] 1.31 [1.14-1.51]
Std. Demand shock pre84 σg,pre−84 0.76 [0.66-0.88] 1.16 [1.00-1.33]
Std. MP shock 1979-82 σε,79−82 2.30 [1.64-3.18] 2.26 [1.57-3.20]
Std. Cost-push shock post84 σu,post−84 0.73 [0.63-0.85] 1.02 [0.88-1.17]
Std. Demand shock post84 σg,post−84 0.50 [0.43-0.58] 0.52 [0.45-0.59]
Std. MP shock 1960-79&1982-06 σε 0.76 [0.68-0.84] 0.75 [0.67-0.83]
Constant gain (Infl.) gπ 0.084 [0.078-0.095] - -
Decreasing gain (Infl.) t−1 - - - -
Constant gain (Gap) gx 0.073 [0.06-0.085] - -
Decreasing gain (Gap) t−1 - - - -
Constant gain (FFR) gi 0.001 [0-0.008] - -
Decreasing gain (FFR) t−1 - - - -

Table 4 - Posterior Distributions: Estimation with shock variances switching in 1984:Q2.
Notes: The first set of estimates in the left columns refers to the model with
switching variances and with the TV endogenous switching gain; the second
set of estimates refers to the same model with switching variances, but with
the possibility of endogenous switches in the gain shut down.
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Endogenous TV Gain No Learning
J = 4 J = 20

ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1) ARCH(1) GARCH(1,1)
Inflation 0.517 0.61 0.48 0.56 0.05 0.06

Output Gap 0.785 0.89 0.85 0.90 0.045 0.05

Table 5 - Test for the existence of ARCH/GARCH effects (5% significance): pro-
portion of rejections of the null hypothesis of no ARCH/GARCH effects.
Notes: To test for evidence of ARCH(q) effects against the hypothesis of no ARCH ef-
fects, the squared residuals from inflation and output gap regressions are regressed on a
constant and q lagged values and the statistic χ2 = TR2 is computed. Under the null
hypothesis of no ARCH effects this statistic has a limiting chi-square distribution with q

degrees of freedom. The test for GARCH(p, q) is equivalent to a test for ARCH(p+ q).
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Endogenous TV Gain No Learning Data
Baseline J = 20 CG

Ratio Std. Infl. 1985−2006
Std. Infl. 1960−1984

0.39 0.42 0.43 1.00 0.35

Ratio (Std. OutputGap 1985−2006)
(Std. Output Gap 1960−1984)

0.42 0.52 0.54 1.00 0.50

Table 6 - The Great Moderation: ratio of standard deviations for inflation and output gap
in the second versus the first part of the simulated samples (median across simulations).
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Figure 1. Conditional Standard Deviation series for Infla-
tion and Output Gap.

Notes: to compute the conditional standard deviation series, I have estimated AR(1)
models for inflation and output gap series (the latter calculated using the deviation of
real GDP from the CBO’s potential GDP series), allowing for a GARCH(1,1)
specification for the residuals.
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Figure 2. Volatility of simulated Inflation and Output Gap
as a function of the constant gain coefficient.

Notes: The economy is simulated for 1,000 periods using a grid of constant gain values
from 0 to 0.15. The calibration is: β = 0.99, κ = 0.05, σ = 0.1, ρ = 0.95, χπ = 1.5,
χx = 0.5, ρu = 0.9, ρg = 0.9.
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Figure 3. Time-Varying Volatility with Time-Varying En-
dogenous Gain Coefficient.

Notes: The economy is simulated for 13,000 periods, with agents using a window of
3,000 observations to compute the mean of past forecast errors. The calibration is as
follows: β = 0.99, κ = 0.05, σ = 0.1, ρ = 0.95, χπ = 1.5, χx = 0.5, ρu = 0.5, ρg = 0.5,
ḡπ = ḡx = 0.15.
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Figure 4. Time-Varying Volatility: Additional Cases.

Upper Plots: Time-Varying Endogenous Gain with J = 500 and g = 0.15.
Lower Plots: Constant Gain with g = 0.05.
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Figure 5. Forecast errors for inflation, output gap, and fed-
eral funds rate (absolute values, baseline estimation).
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Figure 6. Rolling Mean Absolute Forecast errors vs. Up-
dated νt for inflation, output gap, and federal funds rate
series (baseline estimation).
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Figure 7. Prior and Posterior Distributions: all coefficients
in benchmark estimation (the corresponding posterior means
and 95% probability intervals are shown in Table 2).
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Figure 8. Endogenous Time-Varying Gain Coefficients (es-
timated constant gain): Baseline Estimation.
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Figure 9. Endogenous Time-Varying Gain Coefficients (es-
timated constant gain): Estimation with J = 20.
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Figure 10. Endogenous Time-Varying Gain Coefficients:
Estimation with gain coefficients switching between low and
high constant gain values.
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Figure 11. Endogenous Time-Varying Gain Coefficients:
Robustness Checks.

Notes: The figure shows the evolution of the time-varying gain coefficients for inflation
and the output gap over the sample, across different robustness checks. Panel (i) refers
to the case with a rolling, rather than recursive, threshold for the historical forecast
errors; panel (ii) refers to the estimation on the updated sample ending in 2014; panel
(iii) refers to the estimation with the contemporaneous Taylor rule; panel (iv) refers to
the estimation with uninformative priors for the policy rule feedback coefficients and a
determinacy/E-stability prior; panel (v) refers to the case with a PLM that allows agents
to observe structural disturbances; panel (vi) refers to the case of switching variances for
the structural shocks.
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Figure 12. Kernel Density Estimation: sample observation
in correspondence of which the Maximum Rolling Standard
Deviation of residuals in the sample is obtained, across sim-
ulations.
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Figure 13. Posterior distributions: standard deviation co-
efficients for demand shock gt.

Notes: the magenta lines refer to the estimation with the endogenous switching gain; the
blue lines refer to the estimation with the endogenous switching gain shut down and
replaced by learning with a decreasing gain. In each estimation, a solid line denotes the
posterior distribution for the standard deviation before 1984, a dashed line denotes the
posterior distribution for the standard deviation after 1984.
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Figure 14. Effects of Monetary Policy on Volatility (Simu-
lation under estimated parameters).

Graph 1: Fraction of sample periods in which agents’ learning switches to constant gain
as function of policy feedback to inflation χπ; Graph 2: Average gain in the sample as
function of policy feedback to inflation χπ; Graph 3: Percentage of rejections of the null
of no ARCH effects on the residuals as function of policy feedback to inflation χπ.


