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Abstract

What are the effects of beliefs, sentiment, and uncertainty, over the business

cycle?

To answer this question, we develop a behavioral New Keynesian macroeconomic

model, in which we relax the assumption of rational expectations. Agents are,

instead, boundedly rational: they have a finite-planning horizon, and they learn

about the economy over time. Moreover, we allow agents to have a potentially

asymmetric loss function in forecasting, which creates a direct channel for expected

variances to affect the economy. In forming expectations, agents may be subject to

shifts in optimism and pessimism (sentiment) and their beliefs may be influenced

by their perceptions about future uncertainty.

We estimate the behavioral model using Bayesian methods and exploit a large

number of subjective expectation series (both point and density forecasts) at dif-

ferent horizons from the Survey of Professional Forecasters.

We find that sentiment shocks are the key source of business cycle fluctuations.

Shifts in perceived uncertainty can also affect real activity and inflation through a

confidence channel, as they play an important role in belief formation. Overall, the

results shed light on the importance of behavioral forces over the business cycles,

and on the contribution and interaction of first-moment - sentiment - shocks versus

second-moment - perceived uncertainty - shocks.
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1 Motivation

A growing literature in macroeconomics is making progress in modeling the often ne-

glected impact of psychological factors on the real economy, and it suggests that exoge-

nous variations in sentiment may play an important role toward generating business cycle

fluctuations (see Angeletos et al. (2018), Benhabib et al. (2015), Milani (2011, 2017)).

In these studies, however, expectations remain purely a function of first moments. On

the other hand, another strand of the literature emphasizes the role of uncertainty and

singles out shocks to second moments as important sources of business cycle fluctuations

(see Bloom (2009), Basu and Bundick (2017), and Bloom et al. (2018)). These studies

typically model uncertainty as the time-varying volatility of exogenous disturbances.

In this paper, we aim to investigate the importance of both first and second moment

shocks in the context of an estimated microfounded model. Our approach to model senti-

ment follows Milani (2011, 2017), but here we allow for agents’ optimism and pessimism

regarding the direction of the economy at longer horizons to matter as well. We pro-

vide, instead, an alternative approach compared to the existing literature to study the

role of uncertainty in guiding business cycles. We model uncertainty as the subjective

expectation of future second moments that can be extracted from economic agents’ prob-

ability density forecasts. We call this the measure of agents’ perceived uncertainty. We

use micro-level data on probability density forecasts for real GDP growth rate and in-

flation, to construct our time-varying measures of perceived uncertainty, which captures

the uncertainty underlying forecasts made by participants of the Survey of Professional

Forecasters. A point of distinction from existing studies, therefore, lies in the interpre-

tation of uncertainty. Our view of uncertainty aligns to the confidence channel guiding

expectations and sentiments.

Next, we develop a highly ‘behavioral’ New Keynesian macroeconomic model, in which

we start by relaxing the assumption of rational expectations. Economic agents form

expectations from a near-rational model with constant-gain learning. The conventional

New Keynesian model is extended to allow for a potential impact of uncertainty shocks

on the real economy and for shifts in sentiment, i.e. changes in aggregate optimism

or pessimism in the formation of expectations that are unjustified based on observed

fundamentals. Excess optimism or pessimism may refer to the direction of the economy

in the very short-term (one-quarter-ahead), or for longer terms (one-year-ahead).

Traditionally in behavioral macro models, agents learn about the parameters govern-
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ing the ‘actual laws of motion (ALM)’ of the economy by making forecasts, observing

data, and updating beliefs. How do agents decide on what guides these expectations?

Existing studies typically assume that agents minimize a symmetric loss function such

that the expected value at any point of time is simply the conditional mean. Next, the

agents forecast the expected value using the equations that describe the ‘perceived law

of motion (PLM)’ of the economy. In this paper we make two changes to the standard

framework that governs the learning mechanism. First, instead of assuming that agents

minimize a symmetric loss function, we assume that the loss function leading to the for-

mulation of optimal forecasts is potentially asymmetric. The motivation for using this

asymmetric loss function is econometric as well as intuitive.

From an econometric perspective, if we assume that variables are conditionally normal,

then Christoffersen and Diebold (1997) demonstrate that the optimal forecast consists of

two components - one corresponding to the conditional mean and the other corresponding

to the conditional variance. Moreover, a priori there is no reason to assume symmetry in

the loss function that guides forecasts. By deviating from the benchmark and estimating

the parameters that characterize the degree and extent of asymmetry we flexibly evaluate

the importance of second-moments in expectation formation and pin down the importance

of the ‘confidence channel’ towards guiding business cycle activity.

While this improved precision is desirable from an econometric perspective, the pres-

ence of the conditional variance in the forecast forges a direct channel for forecast-

uncertainty to impact the dynamics of the model. Since the PLM is now a function of

the conditional variances (and in our case perceived uncertainty), the ALM consequently

depends explicitly on agents’ forecasts for the second moments along with the usual de-

pendence on the first moments. We are therefore able to study the effects of changes in

uncertainty without considering a higher order solution to the equilibrium conditions of

the model. By allowing uncertainty to enter through the expectations channel we can

work with first order approximations of the equilibrium conditions describing the model

economy. We estimate the model using data on expectations and measures of perceived

uncertainty and allow for full flexibility on the values of the parameters guiding the degree

and the extent of asymmetry.

The second deviation from the benchmark New Keynesian model with learning is to

allow agents in the model to have a finite planning horizon. By incorporating a limited

planning horizon (in place of the more common infinite planning horizon), we account
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for the fact that agents now need to consider expectations L periods ahead explicitly

in their optimization decision. We implement this form of bounded rationality by using

the finite horizon learning approach developed in Branch et al. (2012). Including a finite

planning horizon allows us to quantitatively evaluate the relative importance of shorter-

and longer-term sentiment (and uncertainty) shocks on macroeconomic variables.

The behavioral model is estimated using a Bayesian approach and exploiting data

on realized macroeconomic variables (GDP growth, Inflation, Interest Rate), data on

expectations for the same variables at multiple horizons from the Survey of Professional

Forecasters, and data on measures of perceived uncertainty regarding output growth and

inflation that we construct using forecaster-level probabilistic forecasts.

Results. The findings from the estimation provide evidence in favor of asymmetry in

the loss-function, at least for inflation forecasts. This creates a direct channel for changes

in perceived uncertainty to impact the laws of motion governing the evolution of macroe-

conomic variables. Furthermore, the estimated beliefs are also significantly affected by

real-time perceptions about uncertainty: output expectations are negatively affected by

subjective output uncertainty, while beliefs about the level of inflation positively comove

with perceived inflation uncertainty.

On studying the impulse responses of macroeconomic variables to changes in year-

ahead perceived uncertainty, we find that this channel can generate a significant impact.

An unforeseen change in perceived uncertainty about longer-term output generates a

decline in current GDP, inflation, and interest rate. In this way the impact of shocks to

changes in the second moment guiding output expectations are comparable to the effects

of aggregate uncertainty examined from a stochastic volatility point of view. The channel

of transmission, however, relies on both the direct effect of a shock to confidence as well as

on how beliefs endogenously respond to this change in confidence. A shock to longer-term

perceived uncertainty about inflation, on the other hand, generates recessionary effects

on GDP, and it leads to higher inflation and interest rates.

When evaluating the relative importance of shocks towards explaining business cycle

fluctuations, we find that first-moment, sentiment, shocks are the dominant driver of

fluctuations for both GDP growth and inflation. Short-term optimism and pessimism

inject volatility in the economy, but longer-term sentiment, being highly persistent, is

responsible for a large share of low frequency output fluctuations.

A novel result that stems from this framework is the interaction between shocks to
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first moments and shocks to second moments. By modeling beliefs to be a function of en-

dogenous variables as well as structural shocks, our framework can generate endogenous

changes in confidence about future outcomes. We demonstrate this by examining the ef-

fect of a shock to aggregate demand. A positive shock to aggregate demand endogenously

changes the uncertainty underlying expected output in the longer-term. The effects on

GDP, inflation, and interest rate, are similar to the effects of changes in upside uncer-

tainty. A positive demand shock endogenously changes confidence about future outcomes

as it generates dispersion in beliefs about future realization of GDP growth rate. This

change in confidence manifests as an increase in the likelihood of positive tail-events in

the model.

Related Literature. The paper is related to three major strands of studies. First, it

is connected to the literature examining the effects of shocks to second moments in guiding

business cycle fluctuations. Bloom (2009) makes a seminal contribution in studying

the effects of uncertainty. Basu and Bundick (2017), and Bloom et al. (2018), among

others, quantify the effects of uncertainty in the context of DSGE models, where the

sources of uncertainty are derived from the time-varying volatility of exogenous processes.

In our paper, we use the micro-level forecaster data to explicitly isolate the expected

standard deviation associated with point forecasts, and analyze the effects of changes

in this constructed measure of perceived uncertainty within a microfounded behavioral

macroeconomic model of learning. Therefore, we offer an alternative perspective and an

alternative empirical measure to study the role of uncertainty.

The paper adds to the expanding literature on bounded rationality and learning in

macroeconomics (e.g., Evans and Honkapohja (2001), Sargent (1993)). It exploits a

wide range of direct data on expectations to inform the estimation of the best-fitting

learning process over the sample. Moreover, it shows that, in addition to the role of

learning, there are two components of expectations - changes in the first moment/shocks

to sentiment and changes in the second moment/shocks to perceived uncertainty, that

are key to understand business cycles. In this way, the paper adds to the previous studies

that document the empirical importance of learning in macroeconomic models, such as

Milani (2007). The paper also contributes to the recent efforts to model ‘sentiment’ in

general equilibrium models, either with learning or rational expectations (e.g., Milani

(2017, 2011), Angeletos et al. (2018), Benhabib et al. (2015)).

Finally, from a technical perspective the paper adds to the literature dealing with the

4



estimation of DSGE models using full information Bayesian techniques. Specifically, the

paper relates to the studies using survey expectations across different forecast horizons to

estimate microfounded models (e.g., Del Negro and Eusepi (2011), Ormeño and Molnár

(2015), Milani and Rajbhandari (2012), Cole and Milani (2019)).

2 Calculating Measures of Perceived Uncertainty for

Inflation and Output

One of the main motivations for this paper is to examine the impact of perceived

uncertainty by agents on learning dynamics and its impact on macroeconomic aggregates

of interest. Unlike most of the literature, which models uncertainty as the stochastic

volatility of shocks, we extract perceptions of uncertainty from the Subjective Probability

Density forecasts about inflation and the GDP growth rate that are available from the

Survey of Professional Forecasters (SPF). Therefore, our perceived uncertainty measure is

the economic agents’ expectations about the future variance of macroeconomic variables.

Each quarter, individual forecasters assign probabilities over bins that summarize pos-

sible realizations of the underlying macroeconomic variable for the current, as well as the

following, year. Therefore, the model equivalent measure of inflation and output uncer-

tainty can be calculated by aggregating the information across forecasters and estimating

the uncertainty associated with forecasts at each horizon.

It is important to note some key features of this forecaster level information. The

number of bins that summarize the set of possible realizations for inflation and GDP

outlook changes across different sub periods between 1968 and the present. The next-

year forecasts are available for GDP growth rate and inflation from 1981 onwards. The

surveys between 1968 Q4 and 1981 Q2 records projection for current year estimates only.

Finally, the survey records the outlook for nominal GNP between 1968 Q4 and 1981 Q2

and real GNP in subsequent periods.1 The inflation outlook is calculated by using the

implicit deflator for nominal GDP.2

1We refer to variable PRGDP in the micro dataset provided in
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/historical-data/individual-forecasts

2We refer to variable PRPGDP in the micro dataset provided in
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters/historical-data/individual-forecasts

5



There are many ways to carry out this aggregation of forecaster-level information to

arrive at a measure of uncertainty in outlook that matches the specification described in

the theoretical description. The simplest method is to begin by constructing nonpara-

metric measures of uncertainty as follows:

µi,t+h|t =
n∑
j=1

pi,,t+h|t(ui,t+h|t + li,t+h|t)/2

where µi,t+h|t indicates the average outlook for a variable at time t and for horizon h for

forecaster i. The terms ui,t+h|t and li,t+h|t denote the upper and lower limits of the jth

interval, whereas n indicates the number of bins that define the set of expected outcomes.

The perceived uncertainty by each forecaster i, for a variable at time t a for horizon h, is

denoted by σi,t+h|t and given by

σi,t+h|t =

√√√√ n∑
j=1

pi,t+h|t

[
(ui,t+h|t + li,t+h|t)/2− µi,t+h|t

]2

− w2
t /12

where wt is the width of the central interval and the term −w2
t /12 represents the Shep-

pard’s correction for the second moment. The individual means across forecasters at each

horizon h and each point of time t can be used to construct the aggregate nonparametric

measure of average expectation of the relevant variable µt+h|t such that:

µt+h|t =
∑
i

µi,t+h|t/Nt

where Nt denotes the total number of forecasters at each point of time t. Likewise, the

aggregate measure of uncertainty can be obtained by averaging the standard deviations

across forecasters at point of time t

σt+h|t =
∑
i

σi,t+h|t/Nt.

While the nonparametric measures are easy to implement, calculating an aggregate mea-

sure of uncertainty by considering a simple average across the sample of forecasters at

each point of time has drawbacks. This is because some survey respondents tend to round

and concentrate their probabilistic responses by utilizing a small fraction of bins relative
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to the total number of bins, subsequently leading to errors in the aggregated measure.

The errors are amplified when the bin widths are larger, and the forecast horizon is short.

Given these tendencies, responses that fall in just a few bins introduce errors in the es-

timation especially when the uncertainty is relatively small. This could be mitigated by

adopting a parametric approach towards estimating the aggregate level of uncertainty.

We do so by following the approach proposed by D’Amico and Orphanides (2008) and

D’Amico and Orphanides (2014). For each individual probabilistic response at time t and

horizon h, we fit a normal CDF to the empirical CDFs by choosing the mean and vari-

ance such that it minimizes the distance between the empirical CDF and the probabilities

implied by the normal CDF. That is,

Xi,t+h|t ∼ N(µi,t+h|t, σ
2
i,t+h|t)

µ̂t+h|t =
∑
i

µi,t+h|t/Nt and σ̂t+h|t =
∑
i

σi,t+h|t/Nt.

This approach, however, yields an accurate estimate only if the responses for each fore-

caster are spread across three bins or more. For responses that are concentrated in fewer

than three bins, the normal distribution fails to provide an accurate measure of the un-

certainty underlying the forecasters beliefs. This is mitigated by adopting the solution

described in D’Amico and Orphanides (2008, 2014). Whenever the set of responses for any

horizon at any time comprises of a forecaster with probabilistic responses concentrated

in two or fewer bins, the relevant measure of uncertainty for that period and horizon is

constructed by directly modeling the distribution of the individual uncertainties. This is

carried out by treating the uncertainties of forecasters that assign a positive probability

only to one or two bins as small, but unobserved. To demonstrate, suppose the individual

uncertainty for horizon h at time t originates from a distribution (assumed Gamma) of

individual responses νi,t+h|t:

νi,t+h|t ∼ Γ(ν, θt+h|t)

where νi,t+h|t = σ2
i,t+h|t. Specifically, given a threshold C, individual variances that exceed

the threshold νi,t+h|t(cT ), for all cT > C, where c1, c2, ...cNc denotes the right end-points of

intervals over which the range of uncertainty values have been discretized for each hori-

zon, are considered. Given this characterization, denote F (νi,t+h|t(c1)), ..F (νi,t+h|t(cT ))

the relevant empirical CDFs defined at these endpoints of the individual nonparametric
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variances that exceed a certain threshold. Therefore, we incorporate information about

the mass of the CDF at the threshold and treat anything below as unobserved. Next, we

estimate the parameters of the gamma distribution such that:

θ̂t+h|t = argmin
θt+h|t

Nc∑
τ=1

[Γ((νi,t+h|t(cτ )), θt+h|t)− F (νi,t+h|t(cτ ))]
2

with θt+h|t = [αt+h|t, βt+h|t], and where αt+h|t and βt+h|t denote the shape and scale of the

gamma distribution. The relevant measure of aggregate uncertainty for horizon h and

time t is then calculated as follows:

σ̂t+h|t = (β̂
1/2
t+h|t)

Γ(α̂t+h|t + 1/2)

Γ(α̂t+h|t)
.

Given that the density forecasts are fixed-event, rather than fixed-horizon, forecasts, we

can proceed in two ways. First, we can use all the forecasts at different horizons (a t+ 4

forecast is available in quarter 1, a t+3 forecast is available in quarter 2, and so forth) and

use them in an estimation with mixed-frequency data and missing observations (where

forecasts at each horizon are available only once per year). Second, we can follow D’Amico

and Orphanides (2014) and others, in computing an approximate t+4 uncertainty series.

In this way, the approximate year-ahead uncertainty is equal to the available t+4 forecast

in Q1, t + 3 forecast in Q2, t + 6 forecast in Q3, and t + 5 forecast in Q4. The slightly

different horizons can still introduce seasonality in our series, hence, we seasonally adjust

our perceived uncertainty measure before using it in the estimation. We have estimated

the model using both the mixed-frequency and the approximate t + 4 uncertainty series

as observable, but we report the results for the latter approach as benchmark.

The different measures of aggregate perceived uncertainty for GDP growth rate and

the GDP deflator are shown in Figure 1, along with the other observables that will be

used in the Bayesian estimation. We next proceed to outline the micro foundations in

which we examine the effects of shocks to sentiment and perceived uncertainty.

3 Behavioral Model

We assume a version of the New Keynesian model extended to include several behav-

ioral features. First, we relax rational expectations and introduce learning with finite-
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planning horizons following the specification presented by Branch, Evans, and McGough

(2012), and also used in Goy et al. (2020).3 Second, we allow for sentiment shocks at

different horizons; sentiment is modeled as in Milani (2011, 2017). Finally, we allow for

perceived uncertainty to affect the economy through two channels: a structural channel,

by assuming that forecasters adopt an asymmetric loss function, which makes forecasts

depend optimally on higher moments, and an expectational channel, through which un-

certainty affects the formation of agents’ beliefs in real time.

The aggregate dynamics of our behavioral New Keynesian model is given by the

following specification:

xt = Ẽtxt+L −
1

σ
Ẽt

L−1∑
j=0

[it+j − πt+j+1] + bt (1)

πt = βLẼtπt+L + Ẽt

L−1∑
j=0

βjκxt+j + ut (2)

it = ρit−1 + χππt−1 + χxxt−1 + εmpt (3)

where xt denotes the output gap, πt denotes inflation, it denotes the nominal interest

rate, and bt , ut, ε
mp
t , denote demand, supply, and monetary policy shocks, respectively.

Eq. (1) is the log-linearized Euler equation that arises from households’ consump-

tion decisions; the parameter σ denotes the elasticity of intertemporal substitution of

consumption. Eq. (2) is the New Keynesian Phillips curve that arises from firms’ profit

maximization under Calvo price-setting; the parameter β denotes the household’s dis-

count factor and κ denotes the slope of the Phillips curve. The conventional Euler equa-

tion and the Phillips curve are iterated L periods ahead such that the model is consistent

with the finite horizon learning environment described in Branch et al. (2012). Agents

exhibit bounded rationality in the model: expectations up to L periods ahead matter for

optimal decisions in the current period, i.e., agents hold a finite planning horizon. Such

specification provides us with a microfounded framework that allows us to incorporate

3Finite planning horizons have been proposed recently in the literature also as a way to avoid puzzling
results in the New Keynesian model, such as the ‘forward guidance puzzle’. Woodford (2019) analyzes
finite horizons in an alternative framework, which retains the assumption of rational expectations. The
models used in Lustenhouwer (2020) and in Lustenhouwer and Mavromatis (2017) extend Woodford’s
finite-planning horizon approach to study the benefits of fiscal stimulus in a liquidity trap and the effects
of fiscal consolidations, respectively. In their frameworks, agents plan ahead only L periods into the
future. They make optimal decisions within their finite-horizon plan, while they are boundedly rational
in their computation of continuation values for horizons at L+ 1 and beyond.
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both short-term and longer-term expectations in the estimation and to isolate the rela-

tive strengths of these two channels on business cycles. In the finite-horizon model, the

output gap depends on L-period-ahead expectations of the same variable, and on cur-

rent and future expected inflation and interest rates. Similarly, inflation depends on the

expected inflation rate L periods into the future, as well as on demand conditions, both

contemporaneously and in the next L− 1 quarters. In the model, Ẽt indicates subjective

(possibly non-rational) expectations, the formation of which will be explained in the next

section.

Monetary policy is described by Eq. (3), which is a Taylor rule that allows for an

interest-rate smoothing term with coefficient ρ, and where χπ and χx represent the feed-

back coefficients to inflation and the output gap.4 The policy rule is “operational” in

the sense of McCallum (1993), since it responds to lagged variables, which are observable

by the policymaker in real time. Shocks to monetary policy are assumed to be i.i.d.,

εmpt ∼ iidN(0, σ2
mp). The demand and supply disturbances bt and ut evolve, instead, as

AR(1) processes:

bt = ρbbt−1 + εbt , εbt ∼ iidN(0, σ2
b ) (4)

ut = ρuut−1 + εut , εut ∼ iidN(0, σ2
u). (5)

4 Expectation Formation and the Asymmetric Loss

Function

Asymmetric loss function. Typically, in models where the assumption of rational

expectations is relaxed, agents learn about the parameters describing the Actual Law of

Motion (ALM) in the economy by formulating forecasts and updating their beliefs about

parameters. A common assumption in forecasting is that agents use a symmetric, Mean

Squared Error, loss function to calculate optimal forecasts.

L(xt+h − x̂t+h) = (xt+h − x̂t+h)2.

4We omit the term (1− ρ) in front of inflation and output gap in the estimation.
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A symmetric loss functions weighs positive and negative forecast errors equally and the

optimal forecast obtained is simply the conditional mean.

∂L(.)

∂x̂t+h
= 2(xt+h − x̂t+h) = 0 =⇒ Et(xt+h − x̂t+h) = 0 =⇒ x̂t+h = Etxt+h (6)

In this paper, we deviate from this approach by allowing agents to derive the optimal

forecast using a possibly asymmetric loss function (the degree of asymmetry will be

estimated along with the other parameters). The motivation for using an asymmetric

loss function is twofold.

First, there is no reason, a priori, to believe that agents in the economy weigh positive

and negative errors in the same way. A recent literature acknowledges the importance of

allowing for asymmetric loss functions to evaluate forecasts. Elliott, Komunjer, and Tim-

mermann (2008) suggest a flexible loss function and estimate the corresponding param-

eters using internal forecasts by the Federal Reserve. They find that the Fed’s forecasts

can be rationalized as optimal only under an asymmetric loss function. They find that

the Fed considers negative forecast errors for output growth as substantially more costly

than positive errors: overprediction of output, in fact, may induce the central bank to

inaction and, hence, worsens the state of the economy.

Second, from an econometric perspective, Christoffersen and Diebold (1997) show

that when the underlying variables are conditionally Gaussian, the optimal forecast will

depend not only on the conditional expectation - the first moment, but, also, it will de-

pend on the conditional variance - the second moment, characterizing the distribution

underlying forecast errors. To accommodate for these features, we assume a more gen-

eral loss function. We use a lin-ex (Linear Exponential) loss function to accommodate

potential asymmetries in forming forecasts:

L(xt+h − x̂t+h) = b
[

exp{a(xt+h − x̂t+h)} − a(xt+h − x̂t+h)− 1
]
.

The optimal forecast under such a loss function (as shown below) will imply that the

optimal forecast now depends not only on the conditional mean, but on the conditional
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variance as well:

∂L(.)

∂x̂t+h
= bEt

[
exp{a(xt+h−x̂t+h)}(−a)−1(−a)

]
= 0 =⇒ Et

[
exp{a(xt+h−x̂t+h)}−1

]
= 0

=⇒ exp ax̂t+h = Et exp axt+h

Using the property that xt+h|t follows a normal distribution, it can be shown that:

x̂t+h = Êtxt+h +
a

2
Êtσ

2
t+h. (7)

The optimal forecast is thus a linear function of the conditional mean as well as the

conditional variance, with the importance of the variance term depending on the degree

of asymmetry given by a. The optimal amount of bias in the forecast is a function

of the degree of asymmetry, and depends on second-order terms with a < 0 implying

(xf,tt+h − xt+h) > 0 is more costly than (xf,tt+h − xt+h) < 0 and a > 0 implying (xf,tt+h −
xt+h) < 0 is more costly than (xf,tt+h − xt+h) > 0. For a → 0 the system will revert

to the case where the loss function weighs positive and negative forecast errors in a

symmetric manner. By estimating the parameter a, which guides the direction and

extent of asymmetry in forecasts, we potentially allow for the underlying loss function to

be symmetric/asymmetric. The equilibrium conditions of the model (1)-(3), along with

the evolution of exogenous shocks (4)-(5), are thus augmented with the expressions for

optimal forecasts, at different horizons:

Ẽtxt+h = Êtxt+h|t +
ax
2
Êtσ

2
xt+h|t

(8)

Ẽtπt+h = Êtπt+h|t +
aπ
2
Êtσ

2
πt+h|t

(9)

Now, short and longer-term expectations depend on agents’ mean forecasts Êtxt+h|t and

Êtπt+h|t, which will be formed from the agents’ near-rational learning model, but also on

the expected variance of the same variables, i.e., their ex-ante perceived uncertainty.5

All that is left to specify is the expectation formation mechanism that guides how

agents calculate Êtxt+h|t, Êtπt+h|t, Êtσ
2
xt+h|t

and Êtσ
2
πt+h|t

.6

5The idea of an asymmetric loss function has also been used in Branch (2014) in the context of
‘nowcasting’ output and inflation in the Taylor rule.

6We don’t include an asymmetric loss function related to forecasts about future interest rates, since
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Expectations, Learning, and Uncertainty. Agents need to form expectations about

future real activity, inflation, and nominal interest rates, at different horizons. Under

near-rational expectations, they ignore the reduced-form coefficients in the model solution

(for example, by not knowing structural parameters as the degree of price rigidity, or

policy coefficients, they cannot successfully recover the rational expectations solution).

Therefore, they don’t know the magnitudes of key relationships, such as the sensitivity of

output to policy rates, the sensitivity of inflation to demand conditions, the persistence

of variables, and so forth. They learn them using observed historical data. They form

expectations from a perceived model, the Perceived Law of Motion (PLM), which typically

includes the same state variables that would appear in the solution of the system under

rational expectations (here augmented to allow agents to take their perceived uncertainty

into account). The PLM for the macro variables Y1,t = [xt, πt, it] is given by

Y1,t =


xt

πt

it

 = A1
3×1

+ B1
3×3


xt−1

πt−1

it−1

 + C1
3×2

bt−1

ut−1

 + D1
3×2

Êtσ2
xt+h

Êtσ
2
πt+h

 + ε1,t (10)

Therefore, agents learn about the steady-state of endogenous variables (through A1), the

dynamic relationships among variables (in B1); they are allowed to respond to past disturbances,

and they may be influenced by their subjective perceptions about uncertainty.

Moreover, agents need to learn about the dynamics of uncertainty as well, to form their

expectations that enter expressions (8)-(9). The PLM for their estimated uncertainty Y2,t =

[σ̂2
xt+h

, σ̂2
πt+h

] is given by

Y2,t =

σ̂2
xt+h

σ̂2
πt+h

 = A2
2×1

+ B2
2×3


xt−1

πt−1

it−1

 + C2,t
2×2

bt−1

ut−1

 + ε2,t (11)

Therefore, agents learn about uncertainty in real-time based on realized macroeconomic con-

ditions and on recent disturbances. In this way, and unlike a large part of the literature on

probability density forecasts were not available from the SPF for this variable.
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uncertainty in macroeconomics, we allow for perceived uncertainty to be partially endogenous,

by responding to past economic developments.

The specification for the PLMs described above takes into account the fact that [Êtσ
2
xt+h

,

Êtσ
2
πt+h

] are computed based on information up to t− 1. Therefore, agents in the model mimic

this feature of real world forecasters, who have access to real-time t−1 data when forming their

expectations in t. However, changes in measures of perceived uncertainty can have real effects

on the current state of the macroeconomy. The structure of the PLM is such that agents are

allowed to dynamically use the information across different horizons to update their beliefs. An

interesting feature of the PLM is that it creates a direct link between first and second moments

in the model. So essentially, changes in sentiments or structural shocks can affect uncertainty,

and uncertainty can affect expectations.

Agents update their beliefs, collected in φ̂t = [At, Bt, Ct, Dt], with At = [A1,t;A2,t], Bt =

[B1,t;B2,t], Ct = [C1,t;C2,t], Dt = [D1,t; 0], as follows

φ̂t = φ̂t−1 + gR−1
t Xt(Yt − φ̂′t−1Xt)

′

Rt = Rt−1 + g(XtX
′
t −Rt−1)

where Yt = [Y1,t;Y2,t], and Xt collects all the regressors in (10) and (11). The parameter g is

the constant gain learning parameter that describes the extent to which agents incorporate new

information in updating beliefs. In the estimation, we allow g = [gmean, gunc]
′, therefore agents

may have separate constant gain parameters for updating beliefs about first and second-moments

respectively. The second equation represents, instead, the updating of the precision matrix Rt,

corresponding to the beliefs φ̂t. Given the setup of the PLM, L-step ahead expectations evolve

as follows:

Êt


xt+L

πt+L

it+L

 = Â1,t−1+B̂1,t−1Êt


xt+L−1

πt+L−1

it+L−1

+Ĉ1,t−1

ρL+1
b 0

0 ρL+1
u


bt−1

ut−1

+D̂1,t−1

Êtσ2
xt+L+h

Êtσ
2
πt+L+h

+


ex,Lt

eπ,Lt

ei,Lt


(12)
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and

Êt

σ2
xt+L

σ2
πt+L

 = Â2,t−1 + B̂2,t−1Y1,t−1 + Ĉ2,t−1

ρL+1
b 0

0 ρL+1
u


bt−1

ut−1

 +

µx,Lt
µπ,Lt

 , (13)

and similarly for different horizons.7 Data on observed expectations are used to pin down

expectations on the left-hand side. Such expectations are assumed to be formed from the near-

rational learning model described above. Agents use their updated beliefs and most recent

macroeconomic realizations to obtain a point forecast.

There are, however, two deviations from this typical formulation. First, agents recognize

that the volatility of fluctuations may be varying over time. This can occur for different reasons:

first, the volatilities of the exogenous disturbances are changing over time in a form that is

unknown to them. This means that some of the structural coefficients may change - different

monetary policies may lead to different levels of volatility in the economy. Finally, learning

dynamics may imply endogenous changes in volatility in the economy, which are not obvious

to recognize by economic agents that learn using past realized data. Therefore, agents form

beliefs about uncertainty and recognize that uncertainty can interact with other variables in

the economy. We estimate the model using data on expectations across horizons along with

the data on measures of perceived uncertainty that we construct to estimate the parameters

guiding the shocks to sentiments - both the first and second moments, to understand the relative

contribution of each channel.

As a second deviation from standard learning frameworks that are used in theoretical studies

(e.g., Evans and Honkapohja (2001)), agents’ expectations may deviate from the point forecasts

that arise from the learning model. They do so because of excesses of unjustified optimism

or pessimism, as modeled in Milani (2011) and Milani (2017). These waves of optimism and

pessimism, or sentiment, shocks are captured by the terms ex,ht , eπ,ht , ei,ht , and may refer to

output, inflation, or interest rate expectations, and to each horizon h, h = 1, ..., 4. The same

reasoning is used to decompose observed uncertainty into two parts: an endogenous reaction

to the state of the economy and an exogenous perceived uncertainty shock, denoted by µxt for

7In (12), even if uncertainty at t+L+h enters the expression, we use the expected uncertainty in t+L,
with L = 4, in the estimation, since we only use the approximate year-ahead uncertainty as observable.

15



output gap uncertainty and µπt for inflation uncertainty.

Combining the ALM and the expectations channel. We substitute the perceived

laws of motion that describe expectation formation in equations (1)-(3) and obtain the Actual

Laws of Motion for the model economy:

ξt = A0(φ̂t−1, θ) + F (φ̂t−1, θ)ξt−1 +Gωt (14)

where ξt is the vector of state variables and θ is the vector of parameters. The vector ωt

summarizes the set of disturbances included in the model. The model includes a diverse menu

of disturbances. In this way, we remain agnostic on the main sources of fluctuations in the

economy and let the data select the main drivers of business cycles. The set includes fundamental

disturbances (shocks to preferences bt, cost-push shocks ut, and shocks to monetary policy εmpt ),

first-moment expectational disturbances to aggregate optimism/pessimism, and second-moment

(perceived) uncertainty disturbances. We include shocks to sentiment and perceived uncertainty

across different horizons ranging from the immediate short run: t+1 to the relatively longer-term

horizon: t+ 4. Shocks to sentiment capture waves of optimism/pessimism, while the confidence

channel of uncertainty is captured through the effect of shocks to perceived uncertainty on

beliefs.

5 Bayesian Estimation

We estimate the behavioral model using a full-information Bayesian approach. The model

is estimated to match the following set of observables. Three realized variables: Real GDP

growth rate, Inflation, short-term nominal interest rate (3-month Treasury bill rate).8 We use

real-time second-vintage releases for these variables, to match the information set available by

economic agents in real time. We then use twelve observed survey expectation series (mean

across forecasters): Expected growth rates of real GDP at horizons from t+ 1 to t+ 4, expected

inflation from t+ 1 to t+ 4, and expected nominal interest rates (same definition as the realized

8We use the 3-month rate, because SPF forecasts are available for this variable, but not for the Federal
Funds rate.

16



variable, 3-month Treasury bill rate) from t+1 to t+4. Finally, we add two perceived uncertainty

series: approximate t + 4 uncertainty (expected variance) for output growth and approximate

t + 4 uncertainty for inflation.9 We use the series computed using D’Amico and Orphanides’

approach; the correlation with the alternative non-parametric series are 0.99 and 0.98 and,

hence, all results remain identical. Given our available uncertainty data, we use an horizon

L = 4 in the model. The data on expectations for the first moments are readily available from

the Survey of Professional Forecasters. For the data on measures of perceived uncertainty, we

use the series that were calculated as described in Section 2, starting from probability density

forecasts made available through the SPF. We estimate the model based on data from 1981:I to

2008 IV.10 All variables are at quarterly frequency. All observable data are shown in Figure 1.

We summarize the information on prior distributions along with the posterior estimate

results in Tables 1, 2, and 3. We assume Gamma prior distributions for the parameters denoting

the sensitivity of output to interest rates (σ) and of inflation to output (κ). We also use Gamma

distributions for the monetary policy response coefficients to output gap and inflation. We center

the priors for the asymmetry parameters in the forecasting loss function to zero, and assume

a Normal distribution. The gain coefficients follow a Beta prior with mean 0.05 and standard

deviation 0.01. All autoregressive parameters for the disturbances follow a Beta(0.5,0.1) prior,

while the standard deviation parameters follow an Inverse Gamma distribution with mean equal

to 0.5.

We use a block Metropolis-Hastings algorithm to generate draws from the posterior dis-

tribution. We divide the parameters in three blocks, to improve the mixing properties of our

chain: a block with structural parameters, a block with AR parameters for the disturbances,

and a block with the standard deviations of the shocks.11

9We have also estimated the model using t+1 to t+4 data for uncertainty and adding them to a state-
space model with mixed-frequency observables and missing data. We report results for t+ 4 uncertainty
only as our benchmark, since we found uncertainty at shorter horizons to be relatively unimportant.

10We stop the sample before the zero-lower-bound period.
11We have experimented with different blocks, for example separating sentiment and uncertainty pa-

rameters, as well as increasing the number of blocks.
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6 Results

Posterior Estimates. Tables 1, 2, and 3 report the posterior estimates. We estimate

posterior means equal to 0.118 for σ and to 0.015 κ. The inclusion of various expectations at

different horizons in the Euler equation and in the Phillips curve, under finite-horizon planning,

likely works to attenuate the elasticities of output and inflation with respect to their driving

variables. The monetary policy parameters are estimated in conventional ranges: ρ = 0.931,

χπ = 0.13 (implying that χπ in a typical (1− ρ)χπ expression would equal 1.88), and χx = 0.03

(implying (1− ρ)−1χx = 0.43).

The constant-gain parameter is estimated at 0.016 for learning about macroeconomic vari-

ables; its value is not far from the estimate in Milani (2007). Agents adopt a lower gain when

learning about economic uncertainty (with the gain estimated at 0.01).

The evidence related to asymmetry in expectation formation is mixed. The results suggest

that asymmetry is not a robust feature for GDP growth, as the posterior mean for ax is close to

0. There is, instead, evidence for asymmetry in the forecasting loss function for inflation. We

estimate a posterior mean equal to -0.082 for aπ; moreover, the 68% and 90% credible sets fall

entirely below zero.

The negative value for aπ implies an explicit role for the changes in the uncertainty-

confidence channel to impact expectations through the actual laws of motion in the economy.

Had we estimated both values of ax and aπ equal to zero, we would have reverted to the standard

finite-horizon learning framework where optimal forecasts arise from minimizing a symmetric

loss function.

Shocks to sentiment and uncertainty. The next feature we want to point out is the

differences in the persistence of shocks to the first and second moments guiding expectations.

Disturbances accounting for waves of optimism and pessimism are very persistent. In partic-

ular, optimism/pessimism about the longer term direction of the economy (at a one-year-ahead

horizon, for example), introduce significant low frequency movement into the macroeconomy.

Sentiment about one quarter-ahead output is less persistent (ρx1 = 0.72), but more volatile

(σx1 = 0.689 versus σx4 = 0.167 for the t+ 4 shock).

Perceived uncertainty disturbances display lower persistence than sentiment, with autore-
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Parameters Prior Distribu-
tion

Posterior
Mean

Credible Set (90%) Credible Set (68%)

σ Γ(0.1, 0.075) 0.118 [0.024,0.208] [0.045,0.184]
γ Γ(0.63, 0.05) 0.698 [0.682,0.713] [0.689,0.708]
κ B(0.025, 0.01) 0.015 [0.011,0.019] [0.012,0.017]
ρ B(0.6, 0.05) 0.931 [0.842,0.996] [0.876,0.999]
χπ Γ(1, 0.5) 0.130 [0.052,0.227] [0.078,0.192]
χx Γ(0.25, 0.1) 0.030 [0.017,0.045] [0.022,0.039]
gmean B(0.05, 0.01) 0.016 [0.013,0.019] [0.014,0.018]
guncertainty B(0.05, 0.01) 0.010 [0.008,0.011] [0.009,0.011]
ax N(0, 0.1) 0.008 [-0.153,0.167] [-0.096,0.102]
aπ N(0, 0.1) -0.082 [-0.157,-0.012] [-0.123,-0.041]

Table 1: Reporting the estimates from an estimation using 500,000 draws. A burn-in of 40% has been used.

gressive coefficients ranging from 0.17 to 0.38. They are, however, more volatile than most

sentiment shocks, with standard deviations estimated at 0.23 and 0.29.

Parameters Prior Distribu-
tion

Posterior
Mean

Posterior Distribu-
tion (90%)

Posterior Distribu-
tion (68%)

ρb B(0.5, 0.1) 0.847 [0.693,0.987] [0.767,0.926]
ρu B(0.5, 0.1) 0.152 [0.012,0.352] [0.05,0.259]
ρx1 B(0.5, 0.1) 0.785 [0.675,0.879] [0.722,0.837]
ρx2 B(0.5, 0.1) 0.844 [0.736,0.953] [0.776,0.917]
ρx3 B(0.5, 0.1) 0.912 [0.761,1] [0.85,0.998]
ρx4 B(0.5, 0.1) 0.999 [0.999,0.999] [0.999,0.999]
ρπ1 B(0.5, 0.1) 0.721 [0.571,0.855] [0.616,0.834]
ρπ2 B(0.5, 0.1) 0.815 [0.708,0.946] [0.746,0.873]
ρπ3 B(0.5, 0.1) 0.733 [0.622,0.867] [0.654,0.804]
ρπ4 B(0.5, 0.1) 0.758 [0.668,0.848] [0.699,0.806]
ρi1 B(0.5, 0.1) 0.314 [0.08,0.504] [0.154,0.445]
ρi2 B(0.5, 0.1) 0.579 [0.452,0.67] [0.516,0.641]
ρi3 B(0.5, 0.1) 0.871 [0.773,0.957] [0.817,0.924]
ρσx4 B(0.5, 0.1) 0.171 [0.003,0.351] [0.07,0.288]

ρσπ4 B(0.5, 0.1) 0.380 [0.237,0.505] [0.286,0.476]

Table 2: Reporting estimated values of the autoregressive coefficients

Short and Longer-Term Sentiment. This paper departs from the previous literature

by allowing for sentiment to affect different variables and at different horizons from t + 1 to

t+ 4.

Shocks to optimism/pessimism have a large effect on the economy. Figures 2 and 3 show the
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Parameters Prior Distribu-
tion

Posterior
Mean

Posterior Distribu-
tion (90%)

Posterior Distribu-
tion (68%)

σb Γ−1(0.5, 1) 0.490 [0.434,0.546] [0.454,0.522]
σu Γ−1(0.5, 1) 0.285 [0.256,0.32] [0.266,0.304]
σi Γ−1(0.5, 1) 0.330 [0.289,0.381] [0.306,0.357]
σx1 Γ−1(0.5, 1) 0.689 [0.615,0.779] [0.643,0.743]
σx2 Γ−1(0.5, 1) 0.273 [0.246,0.303] [0.255,0.291]
σx3 Γ−1(0.5, 1) 0.210 [0.186,0.238] [0.194,0.223]
σx4 Γ−1(0.5, 1) 0.167 [0.148,0.188] [0.156,0.180]
σπ1 Γ−1(0.5, 1) 0.146 [0.129,0.164] [0.135,0.157]
σπ2 Γ−1(0.5, 1) 0.087 [0.076,0.098] [0.08,0.093]
σπ3 Γ−1(0.5, 1) 0.095 [0.085,0.107] [0.089,0.102]
σπ4 Γ−1(0.5, 1) 0.084 [0.074,0.093] [0.078,0.090]
σi1 Γ−1(0.5, 1) 0.143 [0.128,0.161] [0.132,0.153]
σi2 Γ−1(0.5, 1) 0.052 [0.046,0.058] [0.048,0.055]
σi3 Γ−1(0.5, 1) 0.030 [0.027,0.034] [0.028,0.032]
σi4 Γ−1(0.5, 1) 0.036 [0.031,0.041] [0.033,0.038]
σσ

x4 Γ−1(0.5, 1) 0.287 [0.256,0.321] [0.267,0.306]
σσ

π
4 Γ−1(0.5, 1) 0.230 [0.203,0.255] [0.215,0.245]

Table 3: Reporting estimated values of the standard deviations of shocks

impulse responses of output gap and inflation to short-term and medium-term sentiment, along

with their responses to fundamental demand and supply shocks. The output gap responds

in similar ways to a preference and a quarter-ahead optimism shock. These two shocks are

the main sources of fluctuations in the very short run. The longer-term optimism shock has

lower volatility, but it induces low frequency movement in output, which permeates medium-

term business cycles. Structural cost-push shocks dominates quarter-to-quarter fluctuations

in inflation; their effects are strongest on impact, but they dissipate rather quickly. Again,

fluctuations in the medium term are driven by the state of longer-term (inflationary in this

case) sentiment.

Transmission of Shocks to Uncertainty. We present the responses of endogenous vari-

ables to changes in perceived uncertainty about longer run GDP growth rate and inflation in

Figures 4 and Figure 5 respectively. Shocks to perceived uncertainty about four-quarter-ahead

GDP growth rate are recessionary triggering a decline in the output gap. Inflation is not very

responsive to changes in confidence about four-quarter-ahead GDP growth rate. Shocks to

perceived uncertainty about four-quarter-ahead inflation uncertainty, on the other hand, raise
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inflation as well as generate a slow down in activity. To understand the role of the different

behavioral elements in the model, we analyse the channels of transmission.

An unforeseen change in the confidence (uncertainty) governing the forecasts will have a

direct effect on the equilibrium conditions through the parameters governing the extent of

asymmetry - ax and aπ. If we had estimated the loss function independent of beliefs in the

model, the effects of perceived uncertainty on forecasts would be captured in entirety through

the parameters ax and aπ respectively. However, the perceived law of motion is specified such

that beliefs about future output growth, inflation and the nominal interest rate are contempo-

raneously affected by the shocks/changes to perceived uncertainty. To isolate the indirect effect

operating through beliefs, we revisit the PLM. For the sake of exposition we focus on beliefs

about t+ 1|t.

Êt



xt+1

πt+1

it+1

σ2
x,t+4

σ2
π,t+4


=



φ1,1
t+1|t

φ2,1
t+1|t

φ3,1
t+1|t

φ4,1
t+1|t

φ5,1
t+1|t


+



φ1,2
t+1|t φ1,3
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1,4
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The estimated values of φ1,7
t+1|t, φ

1,8
t+1|t, φ

2,7
t+1|t, φ

2,8
t+1|t capture the responsiveness of beliefs to changes

in confidence about GDP growth rate and inflation. The total effect of a shock to perceived

uncertainty will transmit both through the parameters guiding the extent of asymmetry as well

as through the beliefs. For output gap, the effect of an unforeseen change in µx2,t+h can be

decomposed as follows:

ˆxt+h|t = Etxt+h|t +
ax
2
Etσ

x
t+h|t

2

ˆxt+h|t = φ1,7
t+h|tEtσ

x
t+h|t

2 +
ax
2
Etσ

x
t+h|t

2 = [φ1,7
t+h|t +

ax
2

]Etσ
x
t+h|t

2
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Likewise for inflation the effect of an unforeseen change in µπ2,t+h can be decomposed as follows:

ˆπt+h|t = Etπt+h|t +
aπ
2
Etσ

π
t+h|t

2

ˆπt+h|t = φ2,8
t+h|tEtσ

π
t+h|t

2 +
aπ
2
Etσ

π
t+h|t

2 = [φ2,8
t+h|t +

aπ
2

]Etσ
π
t+h|t

2.

The term φ1,7
t+h|t captures the effects perceived uncertainty about output on expected output

gap at horizon h and φ1,8
t+h|t captures the effects perceived uncertainty about inflation on ex-

pected output at horizon h. Likewise, φ2,7
t+h|t captures the effects perceived uncertainty about

GDP growth rate on expected inflation at horizon h and φ2,8
t+h|t captures the effects perceived

uncertainty about inflation on expected inflation at horizon h. We report the estimated beliefs

in Table 4.

Table 4: Estimated beliefs: Average - [90% Credible Interval].

φ1,7
t+4|t -0.1489 [-0.1590 , -0.1373]

φ2,7
t+4|t 0.0039 [0.0027 , 0.0053]

φ2,8
t+4|t 0.1243 [ 0.1192 , 0.1298]

φ1,8
t+4|t -0.0289 [ -0.0357 , -0.0215]

ax 0.0077 [ -0.1534 , 0.1672]
aπ -0.0820 [ -0.1567 , -0.0119]

The relative sizes of ax/2 (aπ/2) and φ1,7
t+h|t (φ2,8

t+h|t) from Table 4 show that indirect effect

dominates in understanding the real effects of changes in perceived uncertainty. What this

means is a change in second moment transmits itself endogenously through a change in expec-

tations or the first moment. Thus, forging a direct link between the level confidence and the

resulting sentiment in the economy. This result is similar to the literature studying the effects

of aggregate uncertainty whereby the effects are magnified when interacted with a change in

the first moment (see Bloom (2009)).

This interaction can be seen when we examine the impulse responses of output gap, inflation

and the nominal interest rate to a shock to perceived uncertainty about GDP growth and

inflation at a horizon of t+4 (Figure 4 and Figure 5).

For output gap, an increase in longer-term perceived uncertainty leads to a downward re-
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vision of beliefs (see φ1,7
t+4|t and φ2,7

t+4|t in Table 4). The direct effect of ax is weakly positive

(average effect on impact 0.004); however, after considering the impact on beliefs, the net-effect

of changes in perceived uncertainty generates recessionary effects with decline in GDP growth

rate, inflation and nominal interest rate. For inflation, the direct and the indirect effects work in

the opposite direction (Figure 5). The direct effect is captured by a negative aπ and a positive

indirect effect through the beliefs (see φ2,7
t+4|t and φ2,8

t+4|t in Table 4).

To quantify the effect of beliefs in the transmission of shocks to the confidence channel gov-

erning expectations, we carry out a counterfactual exercise. We do this by calculating impulse

responses of GDP growth rate, inflation and the nominal interest rate, by shutting down the in-

direct channel operating through beliefs. That is we set φ1,7
t+4|t, φ

1,8
t+4|t, φ

2,7
t+4|t, φ

2,8
t+4|t, φ

3,7
t+4|t, φ

3,8
t+4|t

to zero. As seen from Figure 6, beliefs play a quantitatively important role in transmitting

changes in the confidence channel to macro variables of interest.

Interaction between first and second moments. One of the novel features of the

framework is that changes in the first moment can endogenously trigger changes the second-

moment through the restrictions imposed by the perceived laws of motion in the economy. In

Figure 7 we demonstrate the effects of a 1% shock to aggregate demand. A positive shock to

demand operates through the PLM and generates a positive change in the perceived standard

deviation of output growth at a horizon of 4 quarters.

Rossi and Sekhposyan (2015) differentiate between shocks to upside and downside uncer-

tainty and find that dispersion in the right tail leads to an increase in economic activity. Our

results suggest the same, but with a mechanism working through the PLM. Although we do not

distinguish between upside (confidence channel reflecting the possibility of higher GDP growth

rate in the near future) and downside uncertainty (confidence channel reflecting the possibility

of lower GDP growth rate in the near future), our results suggest that positive shocks to de-

mand lead to an increase in upside uncertainty. Similar to Rossi and Sekhposyan (2015) this is

accompanied by positive changes in GDP growth rate.

Psychological Sources of Business Cycles. To understand the relative importance of

different shocks in explaining business cycle fluctuations, we carry out a forecast error vari-
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ance decomposition exercise at horizons of 1, 4, and 40 quarters. Shocks to sentiment are the

dominant predictor of business cycles across horizons, explaining more than half of fluctuations

in GDP growth rate. Within the sentiment component, the t + 1 optimism/pessimism shock

is predominant at short horizons, and the t + 4 output sentiment becomes more important at

longer horizons.

Shocks to uncertainty on their own explain a relatively small part. However, an important

point to note is that expectations now endogenously depend on changes in perceived uncertainty.

Therefore, the endogenous effects of changes of the second moment may manifest through this

channel. For inflation, the contribution of sentiment is even larger at the year horizon, while

Horizon Fundamentals Sentiment Uncertainty
GDP growth rate
1 40.2 59.7 0.097
4 46.5 53.5 0.001
40 36.8 63.2 0.038
Inflation
1 90.1 9.6 0.2392
4 21.4 78.6 0.0089
40 55.9 43.8 0.33

Table 5: Here shocks to fundamentals represent the total effect of shocks to aggregate demand (bt), cost-push shocks
(ut) and shocks to monetary policy (εit). Shocks to sentiment represent the total effect of shocks to Etxt+1, , ..., Etxt+4 ,
Etπt+1, , ..., Etπt+4 and , Etit+1, , ..., Etit+4. Shocks to perceived uncertainty represent the total effect of shocks to σxt+4

2

and and Etσπt+4
2 respectively.

cost-push shocks explain most of the high-frequency dynamics within one quarter. Sentiment

explains between 40% and 70% of inflation variability, for horizons above a year. The direct

effects of shocks to perceived uncertainty for inflation are comparable to what we find for GDP

growth rate.

7 Conclusion

In this paper we introduce a novel channel that guides how agents form expectations for

key macroeconomic variables. We use forecaster-level information to construct measures of

aggregate uncertainty as perceived by economic agents in real time. We subsequently estimate

a modified behavioral new Keynesian model, which deviates from the assumption of rational

expectations. In this environment, agents are boundedly rational and have finite-horizon plans;
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they form expectations for the quarters, up to a year, ahead, and their optimal forecasts may

be derived using a potentially asymmetric loss-function. We estimate the model using full

information Bayesian techniques. We find evidence favoring an asymmetric loss function for

inflation, but not for output. Furthermore, the estimates for the perceived law of motion

suggests significant effects of changes in uncertainty on the forecasts for GDP growth, inflation

and the nominal interest rates.

The empirical results highlight the role of shocks to sentiment, i.e., exogenous shifts in

excess optimism and pessimism, both at short and longer horizons, as major drivers of business

cycles. Our results also stress the importance of feedbacks between first and second moments

for understanding fluctuations.

We recognize that our results are obtained in a specific model with finite-horizon learning

modeled as in Branch et al. (2012) and Goy et al. (2020). In this framework, longer-term expec-

tations may play a larger role than one-period-ahead expectations. We leave for future research

to investigate the robustness of our findings to alternative settings. For example, the effect of

sentiment and uncertainty shocks can be investigated using the finite-planning framework pro-

posed by Woodford (2019), and, particularly, following the approach in Lustenhouwer (2020)

and Lustenhouwer and Mavromatis (2017), which maintain the L-period-ahead specification,

rather than rewriting it in a recursive formulation where only (t+ 1)-forecasts matter. Agents

in the model would actively consider their budget constraint in their planning decisions and

learn about their end-of-horizon wealth in a boundedly rational way.

References

George-Marios Angeletos, Fabrice Collard, and Harris Dellas. Quantifying confidence. Econo-

metrica, 86(5):1689–1726, 2018.

Susanto Basu and Brent Bundick. Uncertainty shocks in a model of effective demand. Econo-

metrica, 85(3):937–958, 2017.

Jess Benhabib, Pengfei Wang, and Yi Wen. Sentiments and aggregate demand fluctuations.

Econometrica, 83(2):549–585, 2015.

25



Nicholas Bloom. The impact of uncertainty shocks. Econometrica, 77(3):623–685, 2009.

Nicholas Bloom, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J Terry.

Really uncertain business cycles. Econometrica, 86(3):1031–1065, 2018.

William Branch, George W. Evans, and Bruce McGough. Finite horizon learning. Macroeco-

nomics at the Service of Public Policy ed. T.J. Sargent and J. Vilmunen, Oxford University

Press, 2012.

William A. Branch. Nowcasting and the taylor rule. Journal of Money, Credit and Banking, 46

(5):1035–1055, 2014.

Peter F. Christoffersen and Francis X. Diebold. Optimal prediction under asymmetric loss.

Econometric Theory, 6(13):808–817, 1997.

Stephen J. Cole and Fabio Milani. The misspecification of expectations in New Keynesian

models: a DSGE-VAR approach. Macroeconomic Dynamics, 23(3):974–1007, 2019.

Stefania D’Amico and Athanasios Orphanides. Uncertainty and disagreement in economic fore-

casting. Finance and Economics Discussion Series 2008-56, Board of Governors of the Federal

Reserve System (US), November 2008.

Stefania D’Amico and Athanasios Orphanides. Inflation Uncertainty and Disagreement in Bond

Risk Premia. Working Paper Series WP-2014-24, Federal Reserve Bank of Chicago, January

2014.

Marco Del Negro and Stefano Eusepi. Fitting observed inflation expectations. Journal of

Economic Dynamics and Control, 35(12):2105–2131, 2011.

Graham Elliott, Ivana Komunjer, and Allan Timmermann. Biases in macroeconomic forecasts:

Irrationality or asymmetric loss? Journal of the European Economic Association, 6(1):122–

157, 2008.

George W. Evans and Seppo Honkapohja. Learning and expectations in macroeconomics.

Princeton University Press, Princeton, NJ, 2001.

26



Gavin Goy, Cars Hommes, and Kostas Mavromatis. Forward guidance and the role of central

bank credibility under heterogeneous beliefs. Journal of Economic Behavior & Organization,

2020.

Joep Lustenhouwer. Fiscal stimulus in expectations-driven liquidity traps. Journal of Economic

Behavior & Organization, 177:661–687, 2020.

Joep Lustenhouwer and Kostas Mavromatis. Fiscal consolidations and finite planning horizons.

BERG Working Paper Series 130, Bamberg University, 2017.

Bennett T. McCallum. Discretion versus policy rules in practice, two critical points: A comment.

Carnegie-Rochester Conference Series on Public Policy, 39:215–220, 1993.

Fabio Milani. Expectations, learning and macroeconomic persistence. Journal of Monetary

Economics, 54(7):2065–2082, 2007.

Fabio Milani. Expectation shocks and learning as drivers of the business cycle. Economic

Journal, 121(52):379–401, 2011.

Fabio Milani. Sentiment and the U.S. business cycle. Journal of Economic Dynamics and

Control, 82:289–311, 2017.

Fabio Milani and Ashish Rajbhandari. Observed Expectations, News Shocks, and the Business

Cycle. Working Paper 121305, UC Irvine, December 2012.

Arturo Ormeño and Krisztina Molnár. Using survey data of inflation expectations in the esti-

mation of learning and rational expectations models. Journal of Money, Credit and Banking,

47:673–699, 2015.

Barbara Rossi and Tatevik Sekhposyan. Macroeconomic uncertainty indices based on nowcast

and forecast error distributions. American Economic Review: Papers & Proceedings, 105(5):

650–655, 2015.

Thomas J. Sargent. Bounded rationality in macroeconomics. Oxford University Press: Oxford,

U.K, 1993.

27



Michael Woodford. Monetary policy analysis when planning horizons are finite. NBER Macroe-

conomics Annual, 33:1–50, 2019.

28



1980 1985 1990 1995 2000 2005 2010

-2

0

2

∆x
t

1980 1985 1990 1995 2000 2005 2010

0

1

2

3

π
t

1980 1985 1990 1995 2000 2005 2010

0

2

4

i
t

1980 1985 1990 1995 2000 2005 2010

-2

0

2

E
t
x

t+1,...,t+4

t+1 t+2 t+3 t+4

1980 1985 1990 1995 2000 2005 2010

0

1

2

3

E
t
π

t+1,...,t+4

1980 1985 1990 1995 2000 2005 2010

0

2

4

E
t
i
t+1,...,t+4

1980 1985 1990 1995 2000 2005 2010

0

1

2

E
t
σ

x
t+4

2

DA-O

Non-Param

1980 1985 1990 1995 2000 2005 2010

0

1

2

E
t
σ
π

t+4

2

DA-O

Non-Param

Figure 1: Data Series used as observable in the estimation.

29



Figure 2: Impulse responses of Output Gap (∆x), Inflation (π) and the nominal interest rate (i) 1% shock to output
sentiment (optimism) at t + 1 (row 1), 1% shock to inflation sentiment (optimism) at t + 1 (row 2), 1% shock to output
sentiment (optimism) at t+4 (row 3) and 1% shock to inflation sentiment (optimism) at t+4 (row 4). Shaded areas denote
68% credible interval. 30



Figure 3: Impulse Responses of Output Gap (∆x), Inflation (π) and the nominal interest rate (i) to 1% demand (prefer-
ence) shock (row 1), 1% cost-push shock (row 2). Shaded areas denote 68% credible interval.
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Figure 4: Impulse Responses of Perceived Uncertainty about xt+4, πt+4, Expectations of xt+4, πt+4, Output Gap (∆x),
Inflation (π) and the nominal interest rate (i) for a 1% shock to perceived uncertainty about xt+4. Shaded area denotes
68 % credible interval.
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Figure 5: Impulse Responses of Perceived Uncertainty about xt+4, πt+4, Expectations of xt+4, πt+4, Output Gap (∆x),
Inflation (π) and the nominal interest rate (i) for a 1% shock to perceived uncertainty about πt+4. Shaded area denotes
68 % credible interval.
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Figure 6: Counterfactual analysis - Row 1 - Black line with circles- Impulse Responses of Output Gap (∆x), Inflation
(π) and the nominal interest rate (i) to perceived uncertainty about xt+4. Row 1 - Crossed Red line - impulse responses
calculated by setting beliefs to 0. Shaded area denotes 68 % credible interval.
Row 2 - Black line with circles- Impulse Responses of Output Gap (∆x), Inflation (π) and the nominal interest rate (i) to
perceived uncertainty about πt+4. Row 1 - Crossed Red line - impulse responses calculated by setting beliefs to 0. Shaded
area denotes 68 % credible interval.
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Figure 7: Impulse Responses of Perceived Uncertainty about xt+4, πt+4, Expectations of xt+4, πt+4, Output Gap (∆x),
Inflation (π) and the nominal interest rate (i) for a 1% shock to demand (preference) bt. Shaded area denotes 68 % credible
interval.
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