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ABSTRACT

A major stumbling block in multivariate discrete data analysis is the
problem of evaluating the outcome probabilities that enter the likelihood
function. Calculation of these probabilities involves high-dimensional
integration, making simulation methods indispensable in both Bayesian
and frequentist estimation and model choice. We review several existing
probability estimators and then show that a broader perspective on the
simulation problem can be afforded by interpreting the outcome probabi-
lities through Bayes’ theorem, leading to the recognition that estimation
can alternatively be handled by methods for marginal likelihood computa-
tion based on the output of Markov chain Monte Carlo (MCMC)
algorithms. These techniques offer stand-alone approaches to simulated
likelihood estimation but can also be integrated with traditional
estimators. Building on both branches in the literature, we develop new
methods for estimating response probabilities and propose an adaptive
sampler for producing high-quality draws from multivariate truncated
normal distributions. A simulation study illustrates the practical benefits
and costs associated with each approach. The methods are employed to
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estimate the likelihood function of a correlated random effects panel data
model of women’s labor force participation.

1. INTRODUCTION

Limited dependent variable models deal with binary, multivariate, multi-
nomial, ordinal, or censored outcomes that can arise in cross-sectional,
time-series, or longitudinal (panel data) settings. To enable inference in this
class of models, however, one must address a central problem in multi-
variate discrete data analysis, namely, evaluation of the outcome probability
for each observation. Outcome probabilities are required in constructing
the likelihood function and involve multivariate integration constrained to
specific regions that correspond to the observed data. To illustrate the main
ideas in some detail, consider the latent variable representation

zi ¼ X ibþ ei; ei � N ð0;XÞ (1)

where, for i ¼ 1; . . . ; n, zi ¼ ðzi1; . . . ; ziJ Þ
0 is a vector of continuous latent

variables underlying the discrete observations yi ¼ ðyi1; . . . ; yiJ Þ
0, X i is a J �

k matrix of covariates with corresponding k-vector of parameters b, and X
is a J � J covariance matrix in which the variances of any binary or ordinal
variables yij are typically set to 1 for identification reasons. This latent
variable framework is a general probabilistic construct in which different
threshold-crossing mappings from zi to the observed responses yi can
produce various classes of discrete data models such as the multivariate
probit for binary and ordinal data, multinomial probit, panels of binary,
ordinal, or censored (Tobit) outcomes, models with incidental truncation
or endogenous treatment indicators, and Gaussian copula models. For
example, the indicator function mapping yij ¼ 1fzij40g underlies binary
data models, the relationship yij ¼ 1fzij40gzij leads to a Tobit model with
censoring from below at 0, the discretization yij ¼

PS
s¼11fzij4gj;sg for some

strictly increasing sequence of cutpoint parameters fgj;sg
S
s¼1 arises in ordinal

data modeling and copula models for count data, and so on. Variations on
the distributional assumptions can be used to construct mixtures or scale
mixtures of normals models including the Student’s t-link (‘‘robit’’) and
logit models. In economics, the latent zi are interpreted as unobserved utility
differences (relative to a baseline category), and discrete data models are
often referred to as discrete choice models.
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A representative example that will form the basis for discussion in the
remainder of this chapter is the multivariate probit model where the
binary outcomes in yi relate to the latent zi in Eq. (1) through the indicator
functions yij ¼ 1fzij40g for j ¼ 1; . . . ; J. In this context, the object of
interest is the probability of observing yi, conditionally on b and X, which is
given by

Prðyijb;XÞ ¼

Z
BiJ

� � �

Z
Bi1

f NðzijX ib;XÞdzi1 � � � dziJ

¼

Z
1fzi 2 Big f NðzijX ib;XÞdzi ð2Þ

where f NðzijX ib;XÞ is the normal density with mean X ib and covariance
matrix X (which is in correlation form), and the region of integration is
given by Bi ¼ Bi1 � Bi2 � � � � � BiJ with

Bij ¼
ð�1; 0� if yij ¼ 0

ð0;1Þ if yij ¼ 1

(

The log-likelihood function is given by ln f ðyjb;XÞ ¼
Pn

i¼1lnPrðyijb;XÞ,
however, a major stumbling block in evaluating that function is that
the multivariate integrals defining the likelihood contributions in Eq. (2)
typically have no closed-form solution, but need to be evaluated at various
values of b and X for the purposes of estimation (e.g., in maximization
algorithms) and model comparison (e.g., in evaluating likelihood ratio
statistics, information criteria, Bayes factors, and marginal likelihoods).
Standard grid-based numerical approximations (e.g., Gauss–Legendre or
quadrature methods) exist for univariate and bivariate problems, but the
computational costs associated with these approaches rise exponentially
with dimensionality, which makes them prohibitively expensive in higher
dimensions. While in many instances, the computational intensity of
numerical integration can be moderated by sparse-grid approximations as
in Heiss and Winschel (2008), the most widely used approaches for
obtaining Eq. (2) in discrete data analysis have been based on simulation.
Such methods exploit a number of practical advantages that make them
particularly appealing. For example, simulation methods typically rely on
standard distributions which makes them conceptually and computationally
straightforward and efficient, even in high dimensions. Moreover, simula-
tion often resolves the problem of having to specify the location and size
of a grid so that it corresponds to areas of high density. This is especially
useful because knowledge of these features is often absent, especially in
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high-dimensional problems. For these reasons, simulation methods have
become a fundamental tool in multivariate integration in general and in
simulated likelihood estimation in particular.

One popular approach for simulation-based evaluation of the outcome
probabilities in discrete choice models is the Geweke, Hajivassiliou, and
Keane (GHK) method (Geweke, 1991; Börsch-Supan & Hajivassiliou, 1993;
Keane, 1994; Hajivassiliou & McFadden, 1998). Another one is studied
by Stern (1992). These methods have risen to prominence because they are
efficient and offer continuous and differentiable choice probabilities that are
strictly bounded between 0 and 1, making them very suitable for maximum
likelihood estimation and other problems that require gradient or Hessian
evaluation. Other methods, such as the accept–reject (AR) simulator and
its variants, are appealing because of their transparency and simplicity.
Many of these techniques, together with other useful alternatives, have been
carefully reviewed in Hajivassiliou and Ruud (1994), Stern (1997), and Train
(2003).

In this chapter we pursue several objectives. Our first main goal is to show
that the probability of the observed response, given the model parameters,
can be estimated consistently and very efficiently by a set of alternative
techniques that have been applied in a very different context. In particular,
the calculation of integrals which have no closed-form solution has been
a central issue in Bayesian model comparison. The marginal likelihood,
which is given by the integral of the likelihood function with respect to the
prior distribution of the model parameters, is an important ingredient in
producing Bayes factors and posterior odds of competing models. A large
number of Markov chain Monte Carlo (MCMC) methods have been
introduced to calculate marginal likelihoods, Bayes factors, and posterior
odds (e.g., Ritter & Tanner, 1992; Newton & Raftery, 1994; Gelfand & Dey,
1994; Chib, 1995; Meng & Wong, 1996; DiCiccio, Kass, Raftery, &
Wasserman, 1997; Geweke, 1999; Chib & Jeliazkov, 2001, 2005), but these
methods have not yet been employed to estimate response probabilities and
construct likelihood functions for discrete data models even though MCMC
data augmentation techniques have been routinely used to obtain parameter
estimates without computing those probabilities (see, e.g., Koop, 2003;
Greenberg, 2008, and the references therein). A recent comparison of
Bayesian and classical inferences in probit models is offered in Griffiths,
Hill, and O’Donnell (2006). Given the specifics of the current context, in this
chapter, we first focus on MCMC estimation techniques that embody
desirable characteristics such as continuity and differentiability, but mention
that the other approaches can be very useful as well. Second, we design
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several new estimation methods by integrating two branches of the literature
and combining features of the classical and Bayesian methods. This allows
for several enhancements in the resulting ‘‘hybrid’’ approaches that tend to
improve the quality of the simulated latent data sample, the efficiency of the
resulting estimates, and retain simplicity without sacrificing continuity and
differentiability. Our third goal is to provide a comparison and document
the performance of the alternative methods in a detailed simulation study
that highlights the practical costs and benefits associated with each
approach. Finally, we present an application to the problem of estimating
the likelihood ordinate for a correlated random effects panel data model of
women’s labor force participation, which illustrates the applicability of the
proposed techniques.

The rest of this chapter is organized as follows. In Section 2, we review
several traditional simulation methods that have been used to estimate
the response probabilities in simulated likelihood estimation. A number
of alternative MCMC approaches are discussed in Section 3. Building
on existing work, we introduce new approaches for estimating outcome
probabilities that are obtained by integrating features of the Bayesian
and traditional techniques. Section 4 provides evidence on the relative
performance of these simulation methods, while Section 5 applies the
techniques to evaluate the likelihood function of a correlated random effects
panel data model using data on women’s labor force participation.
Concluding remarks are presented in Section 6.

2. EXISTING METHODS

We begin with a brief review of the basic idea behind the AR, or frequency,
method which is perhaps the most straightforward approach for estimating
the probability in Eq. (2). The AR method draws independent identically
distributed (iid) random variables zðgÞi � N ðX ib;XÞ for g ¼ 1; . . . ;G. Draws
that satisfy zðgÞi 2 Bi are accepted, whereas those that do not are rejected.
The probability in Eq. (2) is then calculated as the proportion of accepted
draws

bPrðyijb;XÞ ¼ G�1
XG
g¼1

1fzðgÞi 2 Big (3)

The AR approach is very simple and intuitive and is easy to implement
with a variety of distributions for the random terms. This estimator has been
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applied in discrete choice problems by Lerman and Manski (1981);
additional discussion and applications of AR methods are offered in
Devroye (1986) and Ripley (1987).

However, for a given finite number of draws, the AR approach has
a number of pitfalls especially when used in the context of likelihood
estimation. One is that the estimated probability is not strictly bounded
between 0 and 1, and there is a positive probability of obtaining an estimate
on the boundary, which can cause numerical problems when taking the
logarithm of the estimated probability. The more important problem with
the AR method, however, is the lack of differentiability of the estimated
probability with respect to the parameter vector. Because the AR
probability in Eq. (3) has the form of a step function with respect to the
parameters, the simulated probability is either constant or jumps by a
discrete amount with respect to a small change in the parameter values.
These features of the estimator impede its use in numerical optimization and
complicate the asymptotics of estimators that rely on it.

The difficulties of the AR method can be circumvented by replacing the
indicator function 1fzi 2 Big in Eq. (2) with a smooth and strictly positive
function. One strategy, suggested in McFadden (1989), is to approximate
the orthant probability as

Prðyijb;XÞ �

Z
K

zi
b

� �
f NðzijX ib;XÞdzi (4)

where Kð�Þ is a smooth kernel function, for example the logistic cumulative
distribution function (cdf), and ba0 is a scale factor that determines the
degree of smoothing. It can easily be seen that the function Kðzi=bÞ
approaches 1fzi 2 Big as b ! 0. This approach avoids the problem of
nondifferentiability, however, it comes at the cost of introducing a bias in
the estimate of the probability (Hajivassiliou, McFadden, & Ruud, 1996).
Whereas the bias can be reduced by picking a value of b that is very close to
0, doing so can potentially revive the problem of nondifferentiability if Kð�Þ

begins to approximate the indicator function 1f�g too closely. In practice,
therefore, the choice of b is not straightforward and must be done very
carefully. Other complications, for example, appropriate kernel selection,
could arise with this approach when Bi is bounded from both below and
above as in ordinal probit and copula models.

Another strategy for overcoming the difficulties of estimating Eq. (2) was
developed by Stern (1992) and relies on a particular decomposition of the
correlation structure in Eq. (1). The basic idea underlying the Stern method
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is to decompose the error component ei in Eq. (1) into the sum of two
terms – one that is correlated and another one that contains orthogonal
errors. In particular, the Stern simulator is based on rewriting the model as

zi ¼ vi þ wi

where vi � N ðX ib;X� KÞ and wi � N ð0;KÞ with K ¼ lI . Note that the
mean X ib can be incorporated either in vi or wi, or in the limits of
integration (these representations are equivalent). Moreover, as a matter of
simulation efficiency, Stern (1992) suggests that l should be chosen as large
as possible subject to leaving ðX� KÞ positive definite. This is done by
setting l close to the smallest eigenvalue of X.

With this decomposition, the likelihood contribution in Eq. (2) can be
rewritten as

Prðyijb;XÞ ¼

Z
Bi

f NðzijX ib;XÞdzi

¼

Z
Ci

Z þ1

�1

f Nðwij0;KÞf NðvijX ib;X� KÞdvidwi

where the change of variable implies that Ci ¼ Ci1 � � � � � CiJ with Cij ¼
ð�1;�vijÞ if yij ¼ 0 and Cij ¼ ½�vij ;1Þ if yij ¼ 1. Because the independent
elements of wi have a Gaussian density, which is symmetric, this probability
can be expressed as

Prðyijb;XÞ ¼

Z YJ
j¼1

F
ð�1Þ1�yij vijffiffiffi

l
p

� �" #
f NðvijX ib;X� KÞdvi

where Fð�Þ denotes the standard normal cdf. Estimation of this integral then
proceeds by

bPrðyijb;XÞ ¼
1

G

XG
g¼1

YJ
j¼1

F
ð�1Þ1�yij v

ðgÞ
ijffiffiffi

l
p

 !( )

where vðgÞi � N ðvijX ib;X� KÞ for g ¼ 1; . . . ;G.
Another popular method is the GHK algorithm which builds upon

simulation techniques for multivariate truncated normal distributions that
were pioneered by Geweke (1991) and has been successfully implemented in
a variety of problems in cross-sectional, time series, and panel data settings.
The GHK algorithm has been extensively studied in Börsch-Supan and
Hajivassiliou (1993), Hajivassiliou and Ruud (1994), Keane (1994),
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Hajivassiliou et al. (1996), and Hajivassiliou and McFadden (1998) and has
been carefully reviewed in Train (2003).

The insight behind the GHK algorithm is that one can design a tractable
importance density that could facilitate simulation-based estimation by
writing the model as

zi ¼ X ibþ Lgi; gi � N ð0; IÞ (5)

where L is a lower triangular Cholesky factor of X with elements lij
such that LL0 ¼ X. Because the entries in gi are independent and L is
lower triangular, a recursive relation between the elements of zi can
be established to produce the importance density used in the GHK
algorithm

hðzijyi;b;XÞ ¼ hðzi1jyi1;b;XÞhðzi2jzi1;yi2;b;XÞ � � �hðziJ jzi1; . . . ; zi;J�1;yiJ ;b;XÞ

¼
YJ
j¼1

hðzijjfzikgkoj ;yij ;b;XÞ ð6Þ

and the terms in the product are restricted to the set Bi by letting

hðzijjfzikgkoj ;yij ;b;XÞ ¼ f TNBij
zijjx

0
ijbþ

Xj�1

k¼1

ljkZik; l
2
jj

 !

¼ 1fzij 2 Bijg f N zijjx
0
ijbþ

Xj�1

k¼1

ljkZik; l
2
jj

 !
=cij

where cij ¼ Fðð�1Þð1�yij Þðx0ijbþ
Pj�1

k¼1ljkZikÞ=ljjÞ is the normalizing constant of
the truncated normal density f TNBij

ðzijjx
0
ijbþ

Pj�1
k¼1ljkZik; l

2
jjÞ. As a result,

taking the product in Eq. (6) produces

hðzijyi;b;XÞ ¼

QJ
j¼11fzij 2 Bijgf N zijjx

0
ijbþ

Pj�1
k¼1ljkZik; l

2
jj

� �
QJ

j¼1cij

¼
1fzi 2 Big f NðzijX ib;XÞQJ

j¼1cij
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upon which one could write Eq. (1) as

Prðyijb;XÞ ¼

Z
Bi

f NðzijX ib;XÞdzi

¼

Z
Bi

f NðzijX ib;XÞ

hðzijyi;b;XÞ
hðzijyi;b;XÞdzi

¼

Z
Bi

f NðzijX ib;XÞ

f NðzijX ib;XÞ=
QJ

j¼1cij
hðzijyi;b;XÞdzi

¼

Z
Bi

YJ
j¼1

cij

( )
hðzijyi;b;XÞdzi

(7)

Therefore, Prðyijb;XÞ can be estimated as

bPrðyijb;XÞ ¼
1

G

XG
g¼1

YJ
j¼1

c
ðgÞ
ij

with draws zðgÞi obtained recursively as z
ðgÞ
ij � hðzijjfz

ðgÞ
ik gkoj ;yij ;b;XÞ for

j ¼ 1; . . . ;J � 1, and g ¼ 1; . . . ;G, using techniques such as the inverse cdf
method (see, e.g., Devroye, 1986) or simulation-based techniques such as
those proposed in Robert (1995).

Both the Stern and GHK methods provide continuous and differentiable
multivariate probability estimates. They also typically produce smaller
estimation variability than the AR method because the simulated
probabilities are strictly bounded between 0 and 1, whereas each draw in
the AR method gives either 0 or 1. However, all three methods suffer from a
common problem that can often produce difficulties. In particular, in all
three approaches, the simulation draws come from proposal distributions
that differ from the truncated normal distribution of interest, TN Bi

ðX ib;XÞ.
When this disparity is large, the efficiency of all methods can be adversely
affected. For example, it is easy to recognize that the AR method provides
a sample from the unrestricted normal distribution N ðX ib;XÞ, the Stern
method generates draws from the normal distribution N ðX ib;X� KÞ, while
GHK simulation relies on the recursive importance density in Eq. (6) in
which draws depend only on the restrictions implied by yij but ignore the
restrictions implied by subsequent fyikgk4j. These mismatches between
the proposal and target densities may adversely affect the efficiency of the
AR, GHK, and Stern methods. We next introduce a class of simulated
likelihood methods which are, in fact, based on draws from the truncated
density of interest.
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3. MCMC METHODS

The calculation of multivariate integrals that generally have no analytical
solution has been an important research area in Bayesian statistics.
In particular, a key quantity of interest in Bayesian model comparison is
the marginal likelihood, which is obtained by integrating the likelihood
function with respect to the prior distribution of the parameters (for a
discussion, see Kass & Raftery, 1995, and the references therein). It is one of
the basic goals of this chapter to link the simulated likelihood literature with
that on Bayesian model choice in order to introduce MCMC methods as
new and viable approaches to simulated likelihood estimation in discrete
data analysis. Another goal is to develop new MCMC methods that are
specifically tailored to simulated likelihood estimation. Our third goal is to
provide an efficient simulation method for sampling zi � TN Bi

ðX ib;XÞ,
which is particularly important in this class of models but also has broad
ramifications beyond simulated likelihood estimation. These goals are
pursued in the remainder of this section.

3.1. The CRB Method

To see the common fundamentals between outcome probability estimation
and Bayesian model choice, and to establish the framework for the estima-
tion methods that will be discussed subsequently, we begin by rewriting
the expression for Prðyijb;XÞ. In particular, note that we can write the
probability in Eq. (2) as

Prðyijb;XÞ ¼

Z
1fzi 2 Big f NðzijX ib;XÞdzi ¼

1fzi 2 Big f NðzijX ib;XÞ

f TNðzijX ib;XÞ
(8)

which can be interpreted in terms of Bayes formula based on the recognition
that the indicator function 1fzi 2 Big actually gives PrðyijziÞ and hence
can be treated as a ‘‘likelihood,’’ f NðzijX ib;XÞ can be treated as a ‘‘prior’’
because it does not respect the truncation implied by yi, and f TNðzijX ib;XÞ

can be viewed as a ‘‘posterior’’ that accounts for the truncation constraints
reflected in yi. Thus, we can see that Prðyijb;XÞ can actually be viewed as a
‘‘marginal likelihood,’’ that is, the normalizing constant of the ‘‘posterior’’
f TNðzijX ib;XÞ. Even though the interpretation of Prðyijb;XÞ as the
normalizing constant of a truncated normal distribution is directly visible
from Eq. (2), its reinterpretation in terms of the quantities in Eq. (8) is useful
for developing empirical strategies for its estimation. In fact, the equivalent
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of Eq. (8) was used in Chib (1995) in developing his method for marginal
likelihood estimation. This identity is particularly useful because, as
discussed in Chib (1995), it holds for any value of zi 2 Bi, and therefore
the calculation is reduced to finding the estimate of the ordinate
f TNðz

�
i jX ib;XÞ at a single point z�i 2 Bi. In our implementation, an estimate

of the log-probability is obtained as

ln bPrðyijb;XÞ ¼ ln f Nðz
�
i jX ib;XÞ � lndf TNðz�i jX ib;XÞ (9)

where we take z�i to be the sample mean of the MCMC draws zðgÞi � TN Bi

ðX ib;XÞ, g ¼ 1; . . . ;G, and make use of the fact that the numerator
quantities 1fz�i 2 Big and f Nðz

�
i jX ib;XÞ in Eq. (8) are directly available.

Draws zðgÞi � TNBi
ðX ib;XÞ can be produced by employing the Gibbs

sampling algorithm of Geweke (1991) in which a new value for zi is
generated by iteratively simulating each element zij from its full-conditional
density zij � f ðzijjfzikgkaj ; yij ;b;XÞ ¼ TNBij

ðmij ; s
2
ijÞ for j ¼ 1; . . . ; J, where mij

and s2ij are the conditional mean and variance of zij given fzikgkaj , which
are obtained by the usual updating formulas for a Gaussian density. Note
that unlike the aforementioned importance sampling methods, a Gibbs
sampler constructed in this way produces draws from the exact truncated
normal distribution of interest and those draws will be used to estimate
f TNðz

�
i jX ib;XÞ, thereby leading to an estimate of Prðyijb;XÞ.

To estimate the ordinate f ðz�i jyi; b;XÞ ¼ f TNðz
�
i jX ib;XÞ, the joint density

is decomposed by the law of total probability as

f ðz�i jyi; b;XÞ ¼
YJ
j¼1

f ðz�ijjyi; fz
�
ikgkoj ;b;XÞ

In the context of Gibbs sampling, when the full-conditional densities are
fully known, Chib (1995) proposed finding the ordinates f ðz�ijjyi; fz

�
ikgkoj ;

b;XÞ for 1ojoJ by Rao-Blackwellization (Tanner & Wong, 1987; Gelfand
& Smith, 1990) in which the terms in the decomposition are represented by

f ðz�ijjyi; fz
�
ikgkoj ;b;XÞ ¼

Z
f ðz�ijjyi; fz

�
ikgkoj ; fzikgk4j ;b;XÞ

� f ðfzikgk4jjyi; fz
�
ikgkoj ;b;XÞdfzikgk4j

and estimated as

bf ðz�ijjyi; fz�ikgkoj ; b;XÞ ¼ G�1
XG
g¼1

f ðz�ijjyi; fz
�
ikgkoj ; fz

ðgÞ
ik gk4j ;b;XÞ
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where the draws fz
ðgÞ
ik gk4j come from a reduced run in which the latent

variables fz�ikgkoj are fixed and sampling is over fz
ðgÞ
ik gk�j � f ðfzikgk�jj

yi; fz
�
ikgkoj ; b;XÞ. Excluding z

ðgÞ
ij from fz

ðgÞ
ik gk�j yields draws fzikgk4j �

f ðfzikgk4jjyi; fz
�
ikgkoj ;b;XÞ that are required in the average. The ordinate

f ðz�i1jyi;b;XÞ is estimated with draws from the main MCMC run, while the
ordinate f ðz�iJ jyi; fz

�
ikgkoJ ;b;XÞ is available directly, and hence the method

requires ðJ � 2Þ reduced MCMC runs. An advantage of this approach is
that it breaks a large-dimensional problem into a set of smaller and more
manageable steps and, at the cost of additional MCMC simulation, typically
leads to very efficient estimates in many practical problems.

In the remainder of this chapter, we will refer to Chib’s method with
Rao-Blackwellization as the CRB method. This method provides a direct
application of existing MCMC techniques (Chib, 1995) to simulated
likelihood estimation and forms an important benchmark case against
which other MCMC methods can be compared. Moreover, the CRB
method provides continuous and differentiable probability estimates in the
context of estimating Eq. (2), which distinguishes it from the other MCMC
methods referenced in Section 1. It will also form a basis for the new
estimators that will be developed in the remainder of this section.

3.2. The CRT Method

Our first extension aims to address a potential drawback of Rao-
Blackwellization, namely the cost of the additional reduced MCMC
runs that it requires. For this reason, we examine a different way of
obtaining df TNðz�i jX ib;XÞ that is required in Eq. (8) or (9). An approach
to density estimation which is based on the Gibbs transition kernel and
does not entail reduced runs is discussed in Ritter and Tanner (1992).
In particular, the Gibbs transition kernel for moving from zi to z�i is given by
the product of well-known univariate truncated normal full-conditional
densities

Kðzi; z
�
i jyi;b;XÞ ¼

YJ
j¼1

f ðz�ijjyi; fz
�
ikgkoj ; fz

ðgÞ
ik gk4j ;b;XÞ (10)

Because the full-conditional densities are the fundamental building blocks
of the Gibbs sampler, the additional coding involved in evaluating Eq. (10)
is minimized. By virtue of the fact that the Gibbs sampler satisfies
Markov chain invariance (see, e.g., Tierney, 1994; Chib & Greenberg, 1996),
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we have that

f TNBi
ðz�i jX ib;XÞ ¼

Z
Kðzi; z

�
i jyi;b;XÞ f TNBi

ðzijX ib;XÞdzi (11)

which was exploited for density estimation in Ritter and Tanner (1992).
Therefore, an estimate of the denominator in Eq. (8) can be obtained
by invoking Eq. (11) and averaging the transition kernel Kðzi; z�i jyi; b;XÞ

with respect to draws from the truncated normal distribution
zðgÞi � TNBi

ðX ib;XÞ, that is

df TNBi
ðz�i jX ib;XÞ ¼

1

G

XG
g¼1

KðzðgÞi ; z�i jyi; b;XÞ (12)

As in the CRB method, the random draws zðgÞi required in the average are
generated by a Gibbs sampler that iteratively simulates each element zij from
its full-conditional distribution zij � f ðzijjfzikgkaj ;b;XÞ for j ¼ 1; . . . ; J.

Because this method combines the marginal likelihood estimation
approach of Chib (1995) with the density ordinate estimation approach of
Ritter and Tanner (1992), it will be referred to as the CRT method in the
remainder of this chapter. Several remarks about the CRT method and its
relationship to CRB can be made. First, because the CRT and CRB
methods are continuous and differentiable, they are applicable in maximum
likelihood estimation and other problems that require differentiation.
Second, in contrast to CRB, CRT does not require reduced run simulation
as all ordinates are estimated with draws from the main MCMC run.
However, CRT may require storage for the latent variables fzðgÞi g, because
the point z�i , typically taken to be the mean of f TNBi

ðzijX ib;XÞ, may not be
available during the main MCMC run, thus preventing concurrent
evaluation of KðzðgÞi ; z�i jyi; b;XÞ. If storage is a problem, then estimation
can involve some limited amount of precomputation such as a short MCMC
run to determine z�i for subsequent evaluation of the Gibbs kernel. Note,
however, that such a problem rarely presents itself in Bayesian studies where
z�i may be readily available from MCMC runs conducted during the
estimation of b and X. Third, note that in bivariate problems CRB will be
more efficient than CRT because it does not involve any reduced runs
and only requires estimation of f ðz�i1jyi; b;XÞ, whereas f ðz�i2jyi; z

�
i1;b;XÞ is

directly available. Finally, the main ideas stemming from the CRB and CRT
approaches – that response probability evaluation can be reduced to finding
a density ordinate and that the Gibbs kernel can be employed in estimating
this density ordinate – will form a foundation for the methods that we
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discuss next. The key distinction between the alternatives that we consider
has to do with the way in which the sample of latent data fzðgÞi g is generated.

3.3. The ARK Method

Our second extension deals with the AR estimator. As discussed in Section
2, the AR approach can be appealing because of its simplicity and ease of
implementation, but can be problematic because of its nondifferentiability
and discontinuity and the potential for numerical instability when estimating
probabilities near 0 or 1. In this section, we show that the integration of
MCMC theory into AR sampling can produce a method that circumvents
many of the drawbacks of standard AR estimation. An important advantage
of the proposed method relative to the estimator in Eq. (4) is that continuity
and differentiability are introduced without sacrificing simulation consis-
tency or requiring additional tuning parameters. Because the approach
combines the AR simulator with the kernel of the Gibbs sampler, we will
refer to it as the ARK method.

The derivation of the ARK method is fairly uncomplicated. It proceeds
by simply rewriting the invariance condition in Eq. (11) as

f TNBi
ðz�i jX ib;XÞ ¼

Z
Kðzi; z

�
i jyi;b;XÞ f TNBi

ðzijX ib; XÞdzi

¼

Z
Kðzi; z

�
i jyi;b;XÞ1fzi 2 Big f NðzijX ib;XÞdzi ð13Þ

which suggests a straightforward way of producing an estimatedf TNBi
ðz�i jX ib;XÞ that can be used to obtain bPrðyijb;XÞ by Eq. (8) or (9).

Specifically, from Eq. (13) it follows that f TNBi
ðz�i jX ib;XÞ can be estimated

by drawing zi � N ðX ib;XÞ, accepting only draws that satisfy zi 2 Bi, and
using those draws to average Kðzi; z�i jyi; b;XÞ as in Eq. (12).

At this point, it may be helpful to review the main pros and cons of ARK
estimation in some detail. First, the ARK method retains the simplicity of
AR sampling, while simultaneously offering continuous, differentiable, and
simulation consistent estimates of Prðyijb;XÞ based on the Gibbs kernel
(even though simulation of fz

ðgÞ
i g does not involve Gibbs sampling as in CRB

or CRT). Second, because ARK subsumes the traditional AR estimator,
the AR estimate will also typically be available as a by-product of ARK
estimation. Third, although both ARK and CRT average the kernel in
Eq. (12) using latent data zi � TNBi

ðX ib;XÞ, the fact that the latent data are
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obtained by either AR or Gibbs sampling can have important implications
for the relative efficiency or ARK versus CRT. To see this, consider Fig. 1.
The figure shows that with low correlations, the Gibbs sampler can
traverse the parameter space relatively quickly, without inducing much
serial dependence in the sampled fzðgÞi g. When the elements of zi are
highly correlated, however, iterative sampling of the full-conditional
distributions produces relatively small Gibbs steps that lead to slow mixing
of the Markov chain. In contrast, ARK provides an independent sample of
draws whose mixing is unaffected by the extent of correlation between the
elements of zi.

One should keep in mind, however, that this advantage of the ARK
approach comes at the cost of a well-known problem with AR samplers that
too many rejections may occur if Prðzi 2 Bijb;XÞ is relatively low, thereby
adversely affecting simulation efficiency. In some cases, this problem may be
remedied by estimating Prðzi 2 Bc

i jb;XÞ because when the probability of Bi

is small, that of its complement Bc
i must be relatively large. However, we
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of Correlation.
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caution that in doing so, one must be careful to ensure that a number of
technical requirements are met. In particular, while the set Bi is convex,
its complement Bc

i need not be. As a result, some choices of z�i 2 Bc
i may

potentially introduce nondifferentiability in the estimate of Prðzi 2 Bc
i jb;XÞ

because the kernel Kðzi; z�i jyi; b;XÞ may not be strictly positive for all fzig.
Even worse, for some settings of b and X the nonconvexity of Bc

i may lead
to near reducibility of the Markov chain on Bc

i , rendering convergence and
kernel estimation altogether problematic. Therefore, ARK estimation of
Prðzi 2 Bc

i jb;XÞ should only be attempted after careful consideration of the
aforementioned issues.

3.4. The ASK Method

In this section, we discuss an approach which aims to improve the quality
of the sample of fzig that is used in estimation by addressing some of the
simulation difficulties discussed in Section 3.3. Another look at Fig. 1
suggests that improving the mixing properties of the Gibbs sampler in
problems with high correlation would be key to reducing the serial
dependence in the MCMC sample zi � TNBi

ðX ib;XÞ which, in turn, can
reduce the sampling variability of the average in Eq. (12). Moreover, the
discussion in Section 3.3 also indicates that Gibbs sampling has important
advantages over AR sampling because every Gibbs draw satisfies zi 2 Bi,
whereas meeting this requirement may lead to large rejection rates in AR
simulation.

In developing the method, we link a variety of approaches and introduce
a new adaptive MCMC algorithm for simulating zi � TN Bi

ðX ib;XÞ which
improves the quality of the MCMC sample. We build upon Chib (1995)
to relate estimation of Prðzi 2 Bijb;XÞ to that of f TNBi

ðz�i jX ib;XÞ, rely on
ideas from Ritter and Tanner (1992) to obtain the latter quantity, and use
full-conditional truncated normal sampling (see Geweke, 1991), but with
the key difference that our proposed Gibbs algorithm improves mixing by
adaptively sampling either the latent fzig or a particular transformation of
those variables. Specifically, we use the Mahalanobis transformation to map
fzig into a priori independent standard normal variables fgig such as those
used in Eq. (5) to develop the recursive conditioning importance density
of the GHK estimator. Due to the particular combination of inputs that
appear in this method, in the remainder of this chapter, we shall refer to it as
the adaptive sampling kernel (ASK) method.
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The ASK approach proceeds along the following lines. We write the
model as zi ¼ X ibþ Lgi, where gi � N ð0; IÞ and L is a lower triangular
Cholesky factor such that LL0 ¼ X. Then, solving for gi, we obtain
gi ¼ L�1ðzi � X ibÞ, which is the Mahalanobis transformation of zi. Even
though the elements of gi are a priori independent, it is important to note
that conditioning on yi introduces dependence through the constraints
on each Zij in the full-conditional distributions f ðZijjfZikgkaj ; yi;b;XÞ,
j ¼ 1; . . . ; J. To see this, note that the constraints on Zij are obtained
from those on zi by solving the system zi ¼ X ibþ Lgi, and that Zij enters all
equations for which the elements in the jth column of L are not zero (L is
lower triangular by construction, but it can possibly contain zero elements
below the main diagonal). Let Eijk denote the feasible region for Zij implied
by the kth equation, and let Eij ¼ \J

k¼jEijk and Ei ¼ fgi : Zij 2 Eij ;8jg.
Readers may recall that some constraints arising from yi are ignored in the
GHK method in order to obtain a tractable importance density. However,
all constraints must be incorporated in the sequence of Gibbs steps

½ZijjfZikgkaj ; yi;b;X� � TN Eij ð0; 1Þ; j ¼ 1; . . . ; J

leading to the Gibbs kernel

Kðgi; g
y

i jyi; b;XÞ ¼
YJ
j¼1

f ðZyijjyi; fZ
y

ikgkoj ; fZ
ðgÞ
ik gk4j ; b;XÞ (14)

so that MCMC simulation produces gi � TN Ei
ð0; IÞ that correspond to

zi � TNBi
ðX ib;XÞ.

Some intuition about the mechanics of the ASK approach can be gleaned
from Fig. 2, which relates the sets Bi and Ei implied by observing yi ¼ 12.
The Mahalanobis transformation demeans, orthogonalizes, and rescales the
draws zi to produce gi, but these operations also map Bi into Ei by shifting
the vertex of the feasible set and rotating its boundaries (the axes) depending
on the sign of the covariance elements in X. Note that because Zij enters
the equations for fzikgk�j, updating Zij corresponds to simultaneously
updating multiple elements of zi; conversely, updating zij affects all elements
fZikgk	j that enter the jth equation. The key feature of the transformation
that will be exploited here is that it offers a trade-off between correlation
(in the case of zi) and dependence in the constraints (for the elements of gi)
and implies that important benefits can be obtained by adaptively sampling
the elements of zi or those of the Mahalanobis transformation gi.

To understand the trade-offs between Gibbs simulation of Zij �
f ðZijjfZikgkaj ; yi;b;XÞ as a way of obtaining gi � TN Ei

ð0; IÞ and the resultant
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zi ¼ X ibþ Lgi, and Gibbs sampling of zij � f ðzijjfzikgkaj ;b;XÞ which yields
zi � TNBi

ðX ib;XÞ directly, consider a setting where X contains high
correlations but the constraints implied by yi are relatively mildly binding.
In this case, it will be beneficial to simulate gi because f TNEi

ðgij0; IÞ !
f Nðgij0; IÞ as Prðgi 2 EiÞ ! 1 and drawing gi produces a sample that will be
close to iid. In contrast, a traditional Gibbs sampler defined on the elements
of zi will exhibit high serial correlation between successive MCMC draws
because such a sampler must traverse large portions of the support by taking
small steps (recall the discussion of Fig. 1). Note also that as the correlations
in X increase toward 1 for similar components of yi or decrease toward �1
for dissimilar components of yi, the feasible sets tend to be binding on one

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

z1

z 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

η1
η 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

z1

z 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

η1

η 2

Fig. 2. Correspondence Between zi 2 Bi and the Mahalanobis Transform gi 2 Ei

for yi ¼ 12. The Mahalanobis Transform Orthogonalizes and Standardizes zi to

Produce gi, but Causes Dependence to be Reflected in the Boundaries of Ei.

IVAN JELIAZKOV AND ESTHER HEE LEE20



Zij but not the other, and the MCMC sampler is well behaved. In other
cases, it may be better to sample zi directly without transforming to gi, for
example, when the constraints Eij ¼ \J

k¼jEijk on Zij are such that they slow
down the mixing of other fZikgkaj. Some of these scenarios, together with
measures of sampling inefficiency (to be discussed shortly) for each
Gibbs kernel (Kzð�Þ and KZð�Þ) are presented in Fig. 3. In yet other cases,
for example, when correlations are low or the probabilities to be estimated
are small, the two sampling approaches will typically exhibit similar mixing
and either approach will work well. However, in order to produce an
MCMC sample that is as close to iid as possible, we have to be able to
adaptively determine whether to simulate gi (and convert to zi) or sample zi
directly. Our proposed approach for doing so is presented next.
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Algorithm 1. Adaptive Gibbs Sampler for Multivariate Truncated
Normal Simulation

1. Initialize pg 2 ð0; 1Þ and let pz ¼ 1� pg;
2. Given the current zi and the corresponding gi in the Markov chain, with

probability pg sample gi using the Gibbs kernel KZð�Þ in Eq. (14) and
convert to zi by Eq. (5), or, with probability pz sample zi directly using
the Gibbs kernel Kzð�Þ in Eq. (10);

3. After a burn-in period, accumulate the sample fzig while keeping track of
the draws obtained by KZð�Þ and Kzð�Þ;

4. Periodically update pg using a rule PZ : R
ð2JÞ

! ½0; 1� that maps the
autocorrelations from the two kernels to the closed interval [0,1]; PZ is an
increasing function in the autocorrelations of the draws produced by Kzð�Þ

and a decreasing function of those produced by KZð�Þ.

We now discuss Algorithm 1 in greater detail. From a theoretical point
of view, the algorithm is quite transparent: it is very simple to show that the
mixture of kernels, each of which converges to the target distribution,
also converges to that distribution. Specifically, one only has to observe
that invariance is satisfied for each kernel (see, e.g., Chib & Greenberg,
1996) and therefore for any weighted average (mixture) of those kernels.
An interesting observation, based on our experience with step 1, is that
good mixing in the initial stages of sampling does not require that the better
mixing sampler be favored by the initial choice of pg and pz. In fact,
a ‘‘neutral’’ probability choice pg ¼ pz ¼ 0:5 typically leads to a mixed
sampler whose performance is more than proportionately closer to that of
the more efficient transition kernel. The goal of steps 3 and 4 is to ensure
that if one kernel dominates the other on every margin (i.e., sampling is
more efficient for every element of zi), the mixed chain settles on that
more efficient kernel; otherwise, the aim is to produce an adaptive Markov
chain that strikes a balance between the two kernels in a way that reduces
overall inefficiency. There are many possible ways in which pg and pz can be
determined depending on one’s aversion (as captured by some loss function)
to slow mixing for each element of zi. In our examples, we considered the
following PZ:

pg ¼

1 if rz 
 rZ

0 if rZ 
 rz

w0rz
w0rz þ w0rZ

otherwise

8>>><>>>:
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where w is a vector of (loss function) weights, rz and rZ are J-vectors
of inefficiency measures for each element of zi under the two MCMC
sampling kernels, and ‘‘
’’ denotes element-by-element inequality. Let rjl �
corrðz

ðgÞ
ij ; z

ðg�lÞ
ij Þ be the lth autocorrelation for the sampled draws of zij . Note

that in computing rjl for each of the two kernels in Algorithm 1, one should
ensure that the draws z

ðgÞ
ij come from the kernel of interest, even though the

draws z
ðg�lÞ
ij could have been generated by either kernel. As a quick and

inexpensive (but fairly accurate) measure of the inefficiency factors 1þP1

l¼1rjl of the two samplers, we use the draws generated by Kzð�Þ to compute
rz½j� ¼ ð1� rj1Þ

�1 and similarly base the computation of rZ½j� ¼ ð1� rj1Þ
�1

on draws generated by KZð�Þ. These expressions require calculation of only
the first-order autocorrelations and minimize computational and book-
keeping requirements but approximate the inefficiency factors rather well.
Note also that in determining the mixing probabilities, the vector w could
contain equal weights if the goal is to improve overall MCMC mixing.
However, the weights can easily be adjusted when it may be desirable
to weigh the mixing of a particular subset of zi more heavily, such as in
problems when a subset of zi must be integrated out. A final remark is that it
will typically suffice to update pg only a few times in the course of sampling
and that the sampling probability tends to stabilize very rapidly, almost
immediately in the case of algorithms that exhibit widely diverging MCMC
mixing properties.

The definition of the ASK simulator is completed by noting that once
a sample of draws fzðgÞi g is available, then estimation proceeds by Eqs. (12)
and (9). We emphasize that while by construction it is true that

Prðyijb;XÞ ¼

Z
Bi

f NðzijX ib;XÞdzi

¼

Z
Ei
f Nðgij0; IÞdgi

we do not use the second representation in estimation (and only rely on it in
simulation) because after the Mahalanobis transformation the dependence
in the constraints, seen in Fig. 2, implies that some values of gi will possibly
lead to Kðgi; g

�
i jyi; b;XÞ ¼ 0 which may lead to nondifferentiability of the

resulting probability estimate. This, however, is not a problem when the
draws fg

ðgÞ
i g are converted to fzðgÞi g and the kernel Kðzi; z�i jyi;b;XÞ is used in

estimation.
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3.5. Summary and Additional Considerations

In this section, we have presented a variety of MCMC methods for
estimating response probabilities in discrete data models. We have shown
that simulated likelihood estimation can proceed by adapting methods
from the Bayesian literature on marginal likelihood estimation and have
developed a set of new techniques designed to address features that are
specific to simulated likelihood evaluation. The methods are applicable in
binary, ordinal, censored, count, and other settings and can be easily
extended to handle mixtures and scale-mixtures of normal distributions that
include the Student’s t-link and logit models, among others (see, e.g.,
Andrews & Mallows, 1974; Poirier, 1978; Albert & Chib, 1993; Geweke,
1993), and to models with heteroskedasticity (Gu, Fiebig, Cripps, & Kohn,
2009). Moreover, even though for most of the approaches presented
here we have discussed Gibbs kernel versions of estimating the posterior
ordinate (as in Ritter & Tanner, 1992), we emphasize that it is possible
to use Rao-Blackwellization as in Section 3.1, which can be desirable in
high-dimensional problems or in settings where natural groupings of the
latent variables may be present.

An important goal of this chapter is to consider approaches for obtaining
MCMC samples fzig that result in better mixing of the Markov chain
and improved efficiency of estimation. The improvements in simulation
made possible by Algorithm 1 have ramifications not only for estimation
of response probabilities, but also for problems in which high-quality
samples from a truncated normal distribution are needed. For example,
Chib’s approach, which was discussed in Section 3.1, can be combined with
the output of Algorithm 1 to further improve its efficiency. Many of the
methods discussed here can also be combined with recently developed
simulation techniques such as slice sampling (Neal, 2003; Damien &Walker,
2001) and antithetic draws such as those produced by reflection samplers
and Halton sequences (see, e.g., Tierney, 1994; Train, 2003; Bhat, 2001,
2003). In this chapter, we focused on algorithms that provide continuous
and differentiable probability estimates but have also cited a number of
important MCMC approaches that lead to nondifferentiable estimates.
It is useful to keep in mind that many of these latter methods can still be
applied in optimization algorithms that do not require differentiation – for
example, in simulated annealing (Goffe, Ferrier, & Rogers, 1994) and
particle swarming (Kennedy & Eberhart, 2001), although such algorithms
involve computationally intensive stochastic search that typically requires
numerous evaluations of the objective function.
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Finally, we remark that although our discussion has centered on discrete
data models, the techniques developed in this chapter are directly applicable
to the computation of p-values for multivariate directional hypothesis tests.

4. COMPARISON OF SIMULATORS

We carried out a simulation study to examine the performance of the
techniques proposed in Section 3 and compare them to the methods
discussed in Section 2. In particular, we report estimates of the probability

Prðyjl;XÞ ¼

Z
B
f Nðzjl;XÞdz

under several settings of l and X. Because the problem of estimating any
orthant probability can always be represented as an equivalent problem of
estimating the probability of another orthant by simple rotation of the
space, without loss of generality, we let y be a J-dimensional vector of ones,
and hence B is the positive orthant. We vary the dimension of integration
from J ¼ 3 to J ¼ 12 in increments of 3. In each case, we consider three
settings of l and four settings of X. Specifically, when J ¼ 3, we let lA ¼

ð0; 0:5; 1Þ0 be the value of l that makes y ‘‘likely’’, lB ¼ ð�0:5; 0; 0:5Þ0 as the
‘‘intermediate’’ value of l, and lC ¼ ð�1;�0:5; 0Þ0 as the ‘‘least likely’’
value. For J ¼ 6 the ‘‘likely,’’ ‘‘intermediate,’’ and ‘‘least likely’’ values are
obtained by setting l ¼ ðl0A;l

0
AÞ

0 or l ¼ ðl0B; l
0
BÞ

0 or l ¼ ðl0C;l
0
CÞ

0, respec-
tively. The means are similarly constructed for higher values of J. We use a
covariance matrix X of the type X½k; j� ¼ rjk�jj, that is,

X ¼

1 r r2 � � � rJ�1

r 1 r � � � rJ�2

r2 r 1 ..
.

..

. . .
. . .

.
r2

1 r

rJ�1 rJ�2 � � � r2 r 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
where r 2 f�0:7;�0:3; 0:3; 0:7g, which allows for high and low positive
and negative correlations in the examples. Finally, the reported results for
all simulators are based on simulation runs of length 10,000; for the three
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simulators requiring MCMC draws (CRB, CRT, and ASK), the main run is
preceded by a burn-in of 1,000 cycles.

Tables 1–4 present results for different settings of l and X for J ¼ 3,
J ¼ 6, J ¼ 9, J ¼ 12, respectively. We find that for low values of J and
settings of l that make y ‘‘likely,’’ all methods produce point estimates
that agree closely. However, the variability differs widely across estimators
and different settings of J, r, and l (note that the entries in parentheses
have to be divided by 100 to obtain the actual numerical standard errors
(NSE) of the estimates). Among the traditional estimators, we see that
GHK outperforms AR and Stern, regardless of the values of J, r, and l.
AR performs worst and can also fail in high-dimensional problems or in
other settings where the outcome is ‘‘unlikely’’ and no draws are accepted.
These findings for the traditional estimators are consistent with

Table 1. Log-Probability Estimates (J¼ 3) with Numerical Standard
Errors (� 10�2) in Parentheses.

r AR STERN GHK CRB CRT ASK ARK

l¼lA �0.7 �1.574 �1.557 �1.556 �1.557 �1.557 �1.558 �1.560

(1.956) (0.896) (0.386) (0.086) (0.082) (0.085) (0.171)

�0.3 �1.396 �1.393 �1.392 �1.393 �1.393 �1.393 �1.394

(1.743) (0.414) (0.123) (0.018) (0.017) (0.017) (0.033)

0.3 �1.069 �1.059 �1.067 �1.065 �1.066 �1.065 �1.066

(1.382) (0.729) (0.080) (0.033) (0.033) (0.033) (0.051)

0.7 �0.835 �0.840 �0.836 �0.838 �0.836 �0.841 �0.834

(1.143) (0.895) (0.094) (0.265) (0.318) (0.239) (0.395)

l¼lB �0.7 �3.523 �3.498 �3.498 �3.502 �3.502 �3.502 �3.503

(5.736) (1.212) (0.543) (0.029) (0.026) (0.026) (0.176)

�0.3 �2.658 �2.664 �2.663 �2.665 �2.665 �2.665 �2.666

(3.642) (0.518) (0.170) (0.009) (0.009) (0.009) (0.040)

0.3 �1.862 �1.853 �1.867 �1.865 �1.865 �1.865 �1.865

(2.332) (1.151) (0.113) (0.023) (0.024) (0.023) (0.057)

0.7 �1.427 �1.406 �1.424 �1.423 �1.423 �1.424 �1.423

(1.780) (1.341) (0.134) (0.203) (0.253) (0.200) (0.427)

l¼lC �0.7 �7.824 �7.208 �7.208 �7.213 �7.213 �7.213 �7.220

(49.990) (1.463) (0.676) (0.008) (0.008) (0.008) (1.881)

�0.3 �4.656 �4.645 �4.645 �4.648 �4.648 �4.648 �4.648

(10.211) (0.607) (0.212) (0.004) (0.004) (0.004) (0.097)

0.3 �3.006 �2.979 �3.002 �3.000 �3.000 �3.000 �3.000

(4.382) (1.851) (0.148) (0.017) (0.017) (0.017) (0.065)

0.7 �2.248 �2.213 �2.237 �2.234 �2.235 �2.233 �2.230

(2.910) (2.105) (0.179) (0.175) (0.199) (0.172) (0.532)
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earlier studies (e.g., Börsch-Supan & Hajivassiliou, 1993; Hajivassiliou
et al., 1996).

The interesting finding from Tables 1–4 in this study is that the MCMC-
based estimation methods perform very well. In fact, CRB, CRT, and ASK
outperform GHK most of the time, although the methods are roughly on
par in ‘‘likely’’ cases characterized by high values of r. However, in cases
with unlikely outcomes, the MCMC-based methods typically produce NSE
that are much lower than those of GHK. Although it could be argued that
some of the efficiency of CRB comes at the cost of additional reduced runs,
neither CRT nor ASK require reduced runs and are still typically more
efficient than GHK. These results present a strong case in favor of the
proposed MCMC-based approaches. Even ARK, which similarly to AR
could also fail when no draws are accepted, seem to provide very efficient

Table 2. Log-Probability Estimates (J¼ 6) with Numerical Standard
Errors (� 10�2) in Parentheses.

r AR STERN GHK CRB CRT ASK ARK

l¼ 12�lA �0.7 �3.032 �3.097 �3.066 �3.074 �3.074 �3.076 �3.071

(4.444) (1.700) (0.643) (0.112) (0.121) (0.129) (0.576)

�0.3 �2.859 �2.831 �2.823 �2.828 �2.828 �2.828 �2.829

(4.056) (0.729) (0.235) (0.026) (0.027) (0.027) (0.128)

0.3 �2.039 �2.030 �2.041 �2.037 �2.037 �2.038 �2.036

(2.586) (1.237) (0.221) (0.049) (0.055) (0.053) (0.146)

0.7 �1.350 �1.355 �1.376 �1.371 �1.386 �1.372 �1.360

(1.691) (1.315) (0.433) (0.408) (0.539) (0.449) (0.818)

l¼ 12�lB �0.7 �7.131 �7.211 �7.164 �7.174 �7.175 �7.175 �7.195

(35.341) (2.846) (0.912) (0.035) (0.037) (0.036) (2.917)

�0.3 �5.473 �5.480 �5.469 �5.475 �5.475 �5.475 �5.473

(15.398) (0.969) (0.311) (0.013) (0.014) (0.014) (0.453)

0.3 �3.527 �3.518 �3.534 �3.527 �3.528 �3.528 �3.529

(5.746) (2.238) (0.297) (0.037) (0.041) (0.040) (0.183)

0.7 �2.294 �2.246 �2.283 �2.277 �2.280 �2.278 �2.271

(2.985) (2.178) (0.555) (0.351) (0.464) (0.379) (1.090)

l¼ 12�lC �0.7 – �15.476 �15.444 �15.458 �15.458 �15.458 –

– (4.408) (1.140) (0.010) (0.010) (0.010) –

�0.3 – �9.669 �9.656 �9.663 �9.663 �9.663 –

– (1.227) (0.374) (0.006) (0.006) (0.007) –

0.3 �5.497 �5.620 �5.629 �5.621 �5.621 �5.621 �5.624

(15.585) (4.486) (0.374) (0.027) (0.030) (0.028) (0.450)

0.7 �3.537 �3.518 �3.514 �3.498 �3.502 �3.503 �3.501

(5.776) (3.925) (0.730) (0.288) (0.366) (0.342) (1.745)
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estimates that are close to those of the other estimators (provided at least
some draws are accepted).

In comparing the MCMC approaches to each other, we see that the ASK
estimates, as expected, are at least as efficient as those from CRT, but
that in many settings all three methods (ASK, CRT, and CRB) perform
similarly. This suggests that ASK (which nests CRT as a special case) may
be preferable to CRB in those cases because of its lower computational
demands. The advantages of adaptive sampling by Algorithm 1 become
more pronounced the higher the correlation r.

An important point to note, in light of the results presented in this section
and in anticipation of the application in Section 5, is that precise estimation
of the log-likelihood is essential for inference. For example, it is crucial

Table 3. Log-Probability Estimates (J¼ 9) with Numerical Standard
Errors (� 10�2) in Parentheses.

r AR STERN GHK CRB CRT ASK ARK

l¼ 13�lA �0.7 �4.585 �4.599 �4.610 �4.590 �4.588 �4.589 �4.566

(9.851) (2.578) (0.864) (0.155) (0.142) (0.156) (1.719)

�0.3 �4.200 �4.258 �4.269 �4.263 �4.263 �4.263 �4.260

(8.103) (0.957) (0.318) (0.035) (0.034) (0.032) (0.350)

0.3 �2.966 �3.001 �3.005 �3.008 �3.008 �3.009 �3.005

(4.292) (1.789) (0.326) (0.062) (0.071) (0.069) (0.318)

0.7 �1.885 �1.880 �1.890 �1.893 �1.901 �1.905 �1.906

(2.363) (1.784) (0.611) (0.563) (0.738) (0.519) (1.394)

l¼ 13�lB �0.7 – �10.877 �10.878 �10.846 �10.845 �10.846 –

– (5.093) (1.277) (0.046) (0.043) (0.040) –

�0.3 �7.824 �8.281 �8.293 �8.285 �8.285 �8.285 �8.449

(49.990) (1.312) (0.421) (0.017) (0.017) (0.016) (4.721)

0.3 �5.116 �5.157 �5.186 �5.190 �5.190 �5.190 �5.188

(12.871) (3.919) (0.440) (0.047) (0.053) (0.050) (0.657)

0.7 �3.128 �3.100 �3.107 �3.107 �3.113 �3.113 �3.090

(4.672) (3.294) (0.910) (0.457) (0.609) (0.520) (2.229)

l¼ 13�lC �0.7 – �23.764 �23.743 �23.702 �23.702 �23.702 –

– (8.661) (1.615) (0.012) (0.012) (0.011) –

�0.3 – �14.675 �14.689 �14.678 �14.678 �14.678 –

– (1.725) (0.505) (0.008) (0.008) (0.008) –

0.3 �8.112 �8.141 �8.236 �8.241 �8.242 �8.242 �8.100

(57.726) (9.785) (0.557) (0.035) (0.039) (0.037) (15.765)

0.7 �4.804 �4.743 �4.733 �4.741 �4.743 �4.738 �4.740

(10.998) (6.980) (1.264) (0.375) (0.518) (0.473) (4.517)
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for computing likelihood ratio statistics, information criteria, marginal
likelihoods, and Bayes factors for model comparisons and hypothesis
testing. Estimation efficiency is also key to mitigating simulation biases (due
to Jensen’s inequality and the nonlinearity of the logarithmic transforma-
tion) in the maximum simulated likelihood estimation of parameters,
standard errors, and confidence intervals (see, e.g., McFadden & Train,
2000, Section 3 and Train, 2003, Chapter 10).

To summarize, the results suggest that the MCMC simulated likelihood
estimation methods perform very well and dominate other estimation
methods over a large set of possible scenarios. Their performance improves
with the ability of the Markov chain to mix well, making Algoirthm 1 an
important component of the estimation process.

Table 4. Log-Probability Estimates (J¼ 12) with Numerical Standard
Errors (� 10�2) in Parentheses.

r AR STERN GHK CRB CRT ASK ARK

l¼ 14�lA �0.7 �5.914 �6.096 �6.084 �6.102 �6.101 �6.103 �6.129

(19.219) (3.775) (1.207) (0.170) (0.162) (0.180) (3.428)

�0.3 �5.599 �5.699 �5.696 �5.697 �5.697 �5.697 �5.685

(16.409) (1.220) (0.412) (0.040) (0.037) (0.038) (1.898)

0.3 �3.868 �3.961 �3.979 �3.979 �3.979 �3.978 �3.987

(6.844) (2.332) (0.389) (0.074) (0.078) (0.083) (0.481)

0.7 �2.429 �2.397 �2.410 �2.410 �2.417 �2.404 �2.365

(3.217) (2.326) (0.836) (0.628) (0.909) (0.747) (2.305)

l¼ 14�lB �0.7 – �14.504 �14.484 �14.516 �14.516 �14.516 –

– (8.462) (1.864) (0.049) (0.046) (0.047) –

�0.3 – �11.091 �11.092 �11.094 �11.094 �11.094 –

– (1.734) (0.547) (0.020) (0.019) (0.019) –

0.3 �6.725 �6.858 �6.850 �6.852 �6.851 �6.851 �6.818

(28.850) (5.393) (0.524) (0.055) (0.058) (0.062) (5.829)

0.7 �3.821 �3.923 �3.914 �3.933 �3.944 �3.937 �3.943

(6.683) (4.651) (1.213) (0.540) (0.709) (0.762) (3.553)

l¼ 14�lC �0.7 – �31.980 �31.901 �31.945 �31.945 �31.945 –

– (13.751) (2.411) (0.013) (0.012) (0.013) –

�0.3 – �19.684 �19.690 �19.693 �19.693 �19.693 –

– (2.327) (0.656) (0.009) (0.009) (0.009) –

0.3 – �11.090 �10.860 �10.862 �10.862 �10.861 –

– (12.964) (0.667) (0.041) (0.043) (0.046) –

0.7 �5.776 �6.044 �5.959 �5.972 �5.974 �5.961 �6.003

(17.933) (11.969) (1.718) (0.428) (0.642) (0.588) (7.573)
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4.1. Computational Caveats and Directions for Further Study

In this chapter, we have compared a number of new and existing estimators
for a fixed Monte Carlo simulation size. Such comparisons are easy to
perform and interpret in practically any simulation study. However, an
important goal for future research would be to optimize the code, perform
formal operation counts, and study the computational intensity of each
estimation algorithm. This would enable comparisons based on a fixed
computational budget (running time), which are less straightforward and
more difficult to generalize because they depend on various nuances of the
specific application. In this section, we highlight some of the subtleties that
must be kept in mind.

For instance, although AR and ARK are simple and fast, the computa-
tional cost to achieve a certain estimation precision is entirely dependent
on the context. Importance sampling and MCMC simulators such as GHK,
CRT, CRB, and ASK, on the other hand, involve more coding and more
costly iterations, but they are also more reliable and statistically efficient,
especially in estimating small orthant probabilities. Based on rough opera-
tion counts, GHK, CRT, and ASK involve comparable computations and
simulations, while the efficiency of CRB depends on the number of reduced
runs that is required.

The complications of optimizing these methods for speed, while retaining
their transparency and reliability, go well beyond simply removing redundant
computations (e.g., inversions, multiplications, conditional moment calcula-
tions) and making efficient use of storage. Although these steps are essential
in producing efficient algorithms, another difficulty arises because random
number generators may have to rely on a mix of techniques in order to be
reliable and general. For example, to simulate truncated normal draws close
to the mean, one can use the inverse cdf method. However, it is well known
that the inverse cdf method can fail in the tails. Fortunately, in those
circumstances the algorithms proposed in Robert (1995) are very efficient
and reliable. Because in a given application, the estimation algorithms may
use a different mix of these simulation approaches, the computational times
across algorithms may not be directly comparable.

Another caveat arises due to the specifics of algorithms that rely on
MCMC samplers and has to do with determining an appropriate way to
account for the dual use (a benefit) and the need for burn-in sampling
(a cost) of MCMC simulation. Specifically, in many instances MCMC
draws have dual use in addition to evaluation of the likelihood function
(e.g., for computing marginal effects, point elasticities, etc.) or are already
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available from an earlier step in the MCMC estimation (so likelihood
estimation requires no simulation but only the computation and averaging
of certain conditional densities and transition kernels). Similarly, the costs
of burn-in simulation would typically not be an issue in Bayesian studies
where a Markov chain would have already been running during the
estimation stage, but could be an additional cost in hill-climbing algorithms.
Of course, for well-mixing Markov chains convergence and burn-in costs
are trivial but should otherwise be properly accounted into the cost of
MCMC simulation.

These special considerations are compounded by having to examine the
estimators in the context of different dimensionality, mean, and covariance
matrix combinations, making a thorough computational examination of the
methods an important and necessary next step in this area of research. Gauss
programs for the new estimators are available on the authors’ websites.

5. APPLICATION TO A MODEL

FOR BINARY PANEL DATA

This section offers an application of the techniques to the problem of
likelihood ordinate estimation in models for binary panel data. In
particular, we consider data from Chib and Jeliazkov (2006) that deals
with the intertemporal labor force participation decisions of 1545 married
women in the age range of 17–66. The data set, obtained from the Panel
Study of Income Dynamics, contains a panel of women’s working status
indicators (1 = working during the year, 0 = not working) over a 7-year
period (1979–1985), together with a set of seven covariates given in Table 5.
The sample consists of continuously married couples where the husband is a
labor force participant (reporting both positive earnings and hours worked)
in each of the sample years. Similar data have been analyzed by Chib and
Greenberg (1998), Avery, Hansen, and Hotz (1983), and Hyslop (1999)
using a variety of techniques.

We considered two competing specifications that differ in their dynamics.
For i ¼ 1; . . . ; n and t ¼ 1; . . . ;T , the first specification, model M1, is
given by

yit ¼ 1f ~x0itdþ w0
itbi þ gðsitÞ þ f1yi;t�1 þ f2yi;t�2 þ eit40g; eit � N ð0; 1Þ

and captures state dependence through two lags of the dependent variable
but does not involve serial correlation in the errors. The second
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specification, model M2, involves only a single lag of the dependent
variable, but allows for AR(1) serial correlation in the errors:

yit ¼ 1f ~x0itdþ w0
itbi þ gðsitÞ þ f1yi;t�1 þ eit40g;

eit ¼ rei;t�1 þ nit; nit � N ð0; 1Þ

Both M1 and M2 include mutually exclusive sets of covariates ~xit and wit,
where the effects of the former, d, are modeled as common across women,
and the effects of the latter, bi, are individual specific (random); the models
also include a covariate sit whose effect is modeled through an unknown
function gð�Þ which is estimated nonparametrically. In both specifi-
cations yit ¼ WORKit, ~x0it ¼ ðRACEi;EDUit; lnðINCitÞÞ, sit ¼ AGEit,
w0
it ¼ ð1;CH2it;CH5itÞ, and heterogeneity is modeled in a correlated random

effects framework which allows bi to be correlated with observables through

bi ¼ Aicþ bi; bi � N3ð0;DÞ (15)

We let all three random effects depend on the initial conditions, and the
effects of CH2 and CH5 also depend on average husbands’ earnings through

Ai ¼

�yi0
1 �yi0 lnðINCiÞ

1 �yi0 lnðINCiÞ

0B@
1CA

where neither ~xit nor the first row of Ai involves a constant term because the
unknown function gð�Þ is unrestricted and absorbs the overall intercept.

Table 5. Variables in the Women’s Labor Force Participation
Application.

Variable Explanation Mean SD

WORK Wife’s labor force status (1¼working, 0¼not working) 0.7097 0.4539

INT An intercept term (a column of ones)

AGE The woman’s age in years 36.0262 9.7737

RACE 1 if black, 0 otherwise 0.1974 0.3981

EDU Attained education (in years) at time of survey 12.4858 2.1105

CH2 Number of children aged 0–2 in that year 0.2655 0.4981

CH5 Number of children aged 3–5 in that year 0.3120 0.5329

INC Total annual labor income of head of householda 31.7931 22.6417

aMeasured as nominal earnings (in thousands) adjusted by the consumer price index (base year

1987).
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Upon substituting Eq. (15) into each of the two models, stacking the
observations over time for each woman, and grouping the common and
individual-specific terms, we can write models M1 and M2, similarly to
Eq. (1), in the latent variable form

zi ¼ X ibþ gi þ ei (16)

where zi ¼ ðzi1; . . . ; ziT Þ
0, X i ¼ ð ~X i : W iAi : LiÞ, ~X i ¼ ð ~xi1; . . . ; ~xiT Þ

0,
W i ¼ ðwi1; . . . ;wiT Þ

0, Li contains the requisite lags of yit, b ¼ ðd0; c0;/0
Þ
0,

and gi ¼ ðgðsi1Þ; . . . ; gðsiTi
ÞÞ
0. The errors ei ¼ ðei1; . . . ; eiT Þ

0 follow the
distribution ei � N ð0;XiÞ, where Xi ¼ RþW iDW 0

i and R is the Toeplitz
matrix implied by the autoregressive process, that is, R ¼ IT for model M1

and R½j; k� ¼ rjj�kj=ð1� r2Þ for model M2. Because M1 requires two lags
of the dependent variable, both models are estimated conditionally on the
initial two observations in the data.

Our focus in this section is on the problem of estimating the log-likelihood
ordinate conditionally on the model parameters. For details on the
estimation of the parameters in the two models, interested readers are
referred to Chib and Jeliazkov (2006). As the model construction shows,
both the cluster means and covariance matrices depend on cluster-specific
characteristics, and hence the panel data setup with multidimensional
heterogeneity is quite useful for examining the performance of the
estimators in a variety of possible circumstances that occur in the data.

Estimates of the log-likelihood function obtained by various methods are
presented in Table 6. The log-likelihood and NSE estimates were obtained

Table 6. Log-Likelihood Estimates in the Women’s Labor Force
Participation Application.

Estimator Model M1 Model M2

Log-Likelihood NSE Log-Likelihood NSE

Traditional estimators

Stern �2501.435 (0.291) �2537.926 (0.573)

GHK �2501.434 (0.100) �2537.631 (0.137)

AR �2502.005 (2.355) �2540.702 (2.440)

MCMC-based estimators

CRB �2501.425 (0.027) �2537.593 (0.061)

CRT �2501.403 (0.039) �2537.572 (0.081)

ASK �2501.411 (0.036) �2537.563 (0.073)

ARK �2501.498 (0.090) �2537.898 (0.202)
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from runs of length 10,000 draws for each likelihood contribution (there
are n ¼ 1545 likelihood contributions, one for each woman in the sample).
The NSEs of the log-likelihood contribution estimates are presented in
Figs. 4 and 5. The results in Table 6 and Figs. 4 and 5 show that in this
application, the new MCMC methods are more efficient than existing
approaches. While the argument can be made that the higher efficiency of
CRB is due to its reliance on additional reduced runs, the results also reveal
that the remaining MCMC methods are also generally more efficient even
though they do not require any reduced run simulations. We can also see
that the improvement in MCMC sampling due to Algorithm 1 used in the
ASK method leads to lower standard errors relative to CRT. A much more
striking improvement in efficiency, however, can be seen in a comparison
between the AR and ARK methods. What makes the comparison impressive
is that both methods are based on the same simulated draws (with the AR
estimate being obtained as a by-product of ARK estimation), yet ARK is
orders of magnitude more efficient.
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Fig. 4. Numerical Standard Error (NSE) Estimates for Model M1.
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Comparison of the estimates for models M1 and M2 shows that allowing
for autocorrelated errors (the estimated value of r is �0:29), at the cost
of excluding a second lag of yit from the mean, has a detrimental effect
on the efficiency of all estimators. While the relative efficiency rankings of
estimators are largely preserved as we move from M1 to M2 (with the
exception of GHK and ARK), traditional methods appear to exhibit more
high-variability outliers, whereas MCMC-based methods show a general
increase in variability of estimation across all clusters (the plots for ARK,
similarly to those of AR, show both features).

This section has considered the application of several simulated
likelihood estimation techniques to a hierarchical semiparametric models
for binary panel data with state dependence, serially correlated errors,
and multidimensional heterogeneity correlated with the covariates and
initial conditions. Using data on women’s labor force participation, we
have illustrated that the proposed MCMC-based estimation methods are
practical and can lead to improved efficiency of estimation in a variety of
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Fig. 5. Numerical Standard Error (NSE) Estimates for Model M2.
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environments occurring in a real-world data set. Comparisons of these and
other simulated likelihood estimators in other model settings is an important
item for future research.

6. CONCLUSIONS

This chapter considers the problem of evaluating the likelihood functions
in a broad class of multivariate discrete data models. We have reviewed
traditional simulation methods that produce continuous and differentiable
estimates of the response probability and can be used in hill-climbing
algorithms in maximum likelihood estimation. We have also shown that the
problem can be handled by MCMC-based methods designed for marginal
likelihood computation in Bayesian econometrics. New computationally
efficient and conceptually straightforward MCMC algorithms have been
developed for (i) estimating response probabilities and likelihood functions
and (ii) simulating draws from multivariate truncated normal distributions.
The former of these contributions aims to provide simple, efficient, and
sound solutions from Markov chain theory to outstanding problems in
simulated likelihood estimation; the latter is motivated by the need to provide
high-quality samples from the target multivariate truncated normal density.
A simulation study has shown that the methods perform well, while an
application to a correlated random effects panel data model of women’s
labor force participation shows that they are practical and easy to implement.

In addition to their simplicity and efficiency, an important advantage of
the methods considered here is that they are modular and can be mixed and
matched as components of composite estimation algorithms in a variety of
multivariate discrete and censored data settings. Important topics for future
work in this area would be to examine the effectiveness of the estimators
in practical applications, to explore extensions and develop additional
hybrid approaches, and to perform detailed computational efficiency studies
in a range of contexts.
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