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Abstract

Lewis signaling games illustrate how language might evolve from
random behavior. The probability of evolving an optimal signaling
language is, in part, a function of what learning strategy the agents
use. Here we investigate three learning strategies, each of which allows
agents to forget old experience. In each case, we find that forgetting
increases the probability of evolving an optimal language. It does
this by making it less likely that past partial success will continue
to reinforce suboptimal practice. The learning strategies considered
here show how forgetting past experience can promote learning in the
context of games with suboptimal equilibria.
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The Role of Forgetting in the Evolution and Learning of
Language

Blessed are the forgetful: for they overcome their mistakes
– Friedrich Nietzsche Jenseits von Gut und Böse

We often decry our own forgetfulness, wishing that we could remember
more of the past in order to successfully guide our actions today. It is tacitly
believed by many that forgetfulness is a human frailty, which should be re-
duced wherever possible. The present study may cast doubt on this widely
held belief.

In this paper, we present a model of language evolution, where forgetful-
ness plays an important role. In this model, a learning rule which remembers
the entire past, basic Herrnstein reinforcement learning, fairs much worse
than three other learning rules that discard varying amounts of past expe-
rience. These results show how forgetting can be a virtue in the context of
games with suboptimal equilibria.

We begin, in Section 1, by describing a game theoretic model for the
evolution of language from random signaling – the Lewis signaling game.
Unsurprisingly, the probability of evolving an optimal signaling language in
such a game depends on the learning strategy used. In Section 2, we describe
the successes and failures of basic Herrnstein reinforcement learning in evolv-
ing an optimal language. In the next three sections we present three different
learning rules, all of which outperform basic Herrnstein reinforcement learn-
ing in developing near-optimal languages. All three of these learning rules
feature a type of forgetting that helps to achieve optimality.

1 Signaling Games

David Lewis (1969) describes a class of games which can provide a model
for the emergence of signaling systems. These games have since been used
to investigate the evolution of language (cf. Barrett, 2006, 2007, 2008; Grim
et al., 2004; Harms, 2004; Huttegger, 2007a,b; Huttegger et al., 2007; Nowak
and Krakauer, 1999; Pawlowitsch, 2007; Skyrms, 1996, 2006; Zollman, 2005).
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Lewis signaling games provide a general model of language that can be
extended not just to the evolution of human languages but also to the evo-
lution of simple signals in other living organisms (cf. Skyrms, 2006). These
games model two individuals, the sender and the receiver, who have common
interest. The sender is aware of some state of the world and has at her dis-
posal several terms which she can send the receiver. The receiver must then
take some action, which will determine if he and the sender are rewarded.
The correct action depends on the state, of which the receiver is ignorant.
In the simplest model there are equal numbers of states, terms, and acts and
each state has one and only one appropriate act.

In this model there are a limited number of strategies that achieve the
maximum payoff for the sender and receiver. In these strategies the sender
uses a different term in each state and the receiver chooses the appropriate
act based on the term. Lewis calls these strategies signaling systems.

That signaling systems are Nash equilibria in such games is insufficient
to guarantee the evolution of signaling systems. If the sender sends the
same term regardless of the state it does not much matter what the receiver
does, and vice versa. Consequently, there are many Nash equilibria in such
signaling games that fail to achieve the highest possible payoff. As a result,
the question of how signaling emerges even in simple signaling games requires
a careful answer.

Attempts to provide this answer have focused on two strategies. One
strategy is to identify features of the signaling system equilibria which would
motivate intelligent players to settle on those and not the others.1 Alterna-
tively, one might use an evolutionary approach, asking which of the equilibria
are the likely end points of evolutionary or learning dynamics.

Skyrms (1996, 2006) is one the first to have investigated these games
using the tools of evolutionary game theory.2 Skyrms (1996) investigated the
two-state, two-term, two-act Lewis signaling game both using the replicator
dynamics for the evolution of a population of individuals who performed
as both senders and receivers. In his (2006), Skyrms investigates the same
game using Herrnstein reinforcement learning (described in Section 2) for the
evolution of the dispositions of a single sender-receiver pair. In both cases,
he found that, when the states are equiprobable, every run of a computer
simulation converges to a signaling system. More recently, an analytical proof

1This was the strategy suggested by Lewis (1969) and Crawford and Sobel (1982).
2Earlier investigations include (Wärneryd, 1993; Blume et al., 1993).
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Figure 1: An illustration of a pooling equilibrium

of this result for the two-state, two-term population model with replicator
dynamics has been supplied (Huttegger, 2007a).

Based on these successful results, it was conjectured that perfect signal-
ing would also evolve when there were more states, terms, and acts, and
also when the states were not equiprobable. However, it has since been dis-
covered that this is not the case. Signaling systems are not guaranteed to
evolve for population models using replicator dynamics (Huttegger et al.,
2007; Pawlowitsch, 2007) or for individual learning models using Herrnstein
reinforcement learning (Barrett, 2006). In each case, the systems sometimes
converge to suboptimal equilibria.

The failure to evolve perfect signaling when there are more than two
states, terms, and acts is a result of a type of equilibria known as partial
pooling equilibria. One such equilibrium is illustrated in Figure 1. Here the
sender uses term 1 in states 1 and 2 and randomizes between terms 2 and
3 in state 3. The receiver randomizes between act 1 and 2 when he receives
term 1 and deterministically takes act 3 when he receives terms 2 and 3. To
see that this strategy set constitutes a Nash equilibrium, we must consider
the possible deviations. Suppose that the states are equiprobable and x and
y equal 0.5. In the state described in Figure 1 the payoff to both players is
2/3. In state 3, both players always coordinate and in states 1 and 2 they
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coordinate half of the time. Since each state occurs with probability 1/3, the
average payoff is 2/3.

Suppose the sender were to switch to a strategy which used a different
term in each state, for instance, 1-1, 2-2, 3-3. The sender and receiver con-
tinue to perfectly coordinate in state 3, coordinate half of the time in state 1,
but they always fail in state 2. As a result, the average payoff to both players
is 1/2 (lower than it is in the pooling equilibrium). Similar arguments can
be made for alternative sender strategies and alternative receiver strategies.

2 Herrnstein Reinforcement Learning

One model of learning which has been used often in evolutionary game theory
is Herrnstein reinforcement learning (cf. Roth and Erev, 1995). The underly-
ing motivation is Richard Herrnstein’s matching law (Herrnstein, 1970), that
players will play a strategy in proportion to the accumulated payoffs for that
action. Formally, this is achieved by postulating propensities that determine
the probability of an agent’s action on each round and that are updated ac-
cording to success or failure in signaling attempts. The Herrnstein learning
model is characterized by (1) the updating rule, which determines how the
propensities evolve, (2) the response rule, which determines how the propen-
sities influence behavior, and (3) the initial propensities, which determine
the starting point of the process.

1. The Updating Rule. Let qi(t) be and agent’s propensity for strategy
i at time t. In Herrnstein reinforcement, the propensity evolve according to
the following updating rule:

qi(t + 1) =

{

qi(t) + π(t) if action i was taken
qi(t) otherwise

(1)

Where π(t) represents the payoff received by our agent on round t.
The propensities determine the probability of a given action on each round

via a response rule.
2. The Response Rule. Let pi(t) represent the probability that our

agent takes action i on round t. Herrnstein reinforcement uses the following
linear response rule:

pi(t) =
qi(t)

∑

j qj(t)
(2)
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These two rules implement Herrnstein’s suggestion that individuals will
choose a behavior in proportion to the accumulated payoffs they have re-
ceived by engaging in that behavior as compared to other available behaviors.
Finally, we must specify the initial propensities.

3. The Initial Propensities. Each strategy is given equal initial
weight, qi(0) = 1 for all i.3

There are two general approaches to implementing a particular learning
model in the context of signaling games. On a strategy-based implementa-
tion, players reinforce propensities for complete contingency plans for each
possible state of the world or each term on each play of the game. On
an act-based model, players reinforce propensities associated with particular
conditional actions, either sending a particular term given a state or acting
in a particular way given the reception of a term. In such an implementa-
tion, each conditional propensity to send a term or to act may be updated
independently of each other conditional propensity.

We will use an act-based implementation of Herrnstein reinforcement
learning. One can think of this as a simple urn process. On each round
of the game, the state of the world is randomly determined, the sender is
informed of the state of the world and then consults the urn corresponding
to the current state and draws a ball at random, where each ball in the urn
has the same probability of being drawn. A ball represents a term, and the
term represented by the drawn ball is sent to the receiver. The receiver then
consults his urn corresponding to the sent term and draws a ball at random,
which represents the act. The receiver then takes the selected act, and if it
matches the current state of the world, both players are rewarded. If the
players are rewarded both return their drawn ball to the respective urn and
add another ball to the urn with the same label as the drawn ball; other-
wise, the sender and receiver simply return their drawn ball to the respective
urn without modification. (On the basic urn learning strategy, there is no
penalty to the agents for the act failing to match the state.) The game is

3Note that the initial propensities specified in Rule 3 are equal to the magnitude of the
reinforcements specified in Rule 1. Even in the context of simple Herrnstein reinforcement
learning, one observes quite different behavior if this is not the case. If the initial propensi-
ties are significantly less than the magnitude of the reinforcements, then this significantly
lowers the probability of converging to a suboptimal equilibrium in signaling games. This
effect is apparently due to rapid initial exploration of possible strategies by the agents. If
so, it represents a significant consideration in the analysis of learning strategies but is also
relatively independent of the effects of forgetting.
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then repeated with the updated urns.
While the basic 2-state/2-term signaling game with urn learning is rel-

atively simple, it seems to present a difficult context for the evolution of
a successful language. The space of possible states is symmetric with no
special saliencies and the learning dynamic is simple reinforcement learning
with no penalty for failure. The argument that is sometimes made is that if
a successful term language can evolve in this context, then it is all the more
plausible that a successful language might similarly evolve in contexts where
there are special saliencies or more sophisticated learning strategies.4

Recently Argiento et al. (2007) have proven that in 2-state, 2-term, 2-act
signaling games with equiprobable states, Herrnstein reinforcement learning
will converge to a signaling system. Skyrms (2006) has also shown, with
simulation, that perfect signaling evolves is a system with two senders and one
receiver when the senders observe different, prearranged two-cell partitions
of a four-state space.

It is easy to get a sense of how this works in the 2-state/2-term Lewis
signaling game with simple reinforcement learning. Adding balls to the term
and act urns when an act is successful changes the relative proportion of balls
in each urn, which changes the conditional probabilities of the sender’s terms
(conditional on the state) and the receiver’s acts (conditional on the term).
The change in the proportion of balls of each type in each urn increases
the likelihood that the sender and receiver will draw a type of ball that
will lead to successful coordinated action. Here the sender and receiver are
simultaneously evolving and learning a meaningful language. That they have
done so is reflected in their track-record of successful action.

The situation, however, is more complicated for signaling games with
more states or terms or if the distribution of states is biased (see Barrett,
2006; Huttegger, 2007a). In such modified games, partial pooling equilibria
may develop and prevent convergence to perfect signaling. Table 1 shows the
run failure rates for Lewis signaling games with more than two states and

4While an even distribution of states may seem to contribute to a difficult environment
for language evolution, it is harder for perfect signaling to evolve under simple reinforce-
ment learning when the probability distribution over states of the world is not uniform.
The agents might get a good enough success rate by always choosing the more likely state
to reinforce the use of more than one term for this state; and since there is no punish-
ment for failure on this learning strategy, there is no evolutionary pressure to undo these
reinforced dispositions. This effect is described for the replicator dynamics in (Huttegger,
2007a).
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Model Run Failure Rate

3-state/3-term 0.096
4-state/4-term 0.219
8-state/8-term 0.594

Table 1: Run failure rates for Lewis signaling games with urn learning

terms (see Barrett 2006 for more details). Here there are 103 runs of each
model with 106 plays/run. A run is taken to fail if the signal success rate is
less than 0.8 after 106 plays.

While these results illustrate failures in convergence to perfect signaling,
each system is always observed to do better than chance and hence to evolve
a more or less effective language. In those cases where perfect signaling fails
to evolve in the 3-state/3-term game, the system nevertheless approaches a
signaling success rate of about 2/3.5 Similarly, in the 4-state/4-term game,
when a system does not approach perfect signaling, it approaches a success
rate of about 3/4.6

The behavior of the 8-state/8-term system is more complicated since there
are several partial pooling equilibria corresponding to different signal success
rates. The distribution of signal success rates in the 8-state/8-term game
with 103 runs and 106 plays/run is given in Table 2.

The partial pooling equilibria that limit convergence to perfect signaling
in such games is in part an artifact of simple reinforcement learning. If one
allows for a slightly more sophisticated learning strategy, then one gets better
convergence to perfect signaling. On the 8-state/8-term (+2, -1) signaling
game, success is rewarded by adding to the relevant urns two balls of the type
that led to success and failure is punished by removing from the relevant urns
one ball of the type that led to failure. As illustrated in Table 3, this learning
strategy more than doubles the chance of perfect signaling evolving in the

5Systems that approach a signaling success rate of 2/3 here do not learn to signal
reliably with two out of three terms; rather, such systems approach a partial pooling
equilibrium like the one described above. See Barrett (2006) for more details.

6It is a curious feature of these games that the signal success rate is always observed
to be greater than 1/2. While Simon Huttegger has an argument for why the success rate
should be better than chance signaling, it is unclear, at least to us, why it should always
be better than even. This may be a property related to the sure-fire evolution to perfect
signaling in the context of the original two-state Lewis. If so, it may also depend on the
even distribution of states.
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Signal Success Rate Interval Proportion of Runs

[0.0, 0.50) 0.000
[0.50, 0.625) 0.001
[0.625, 0.75) 0.045
[0.75, 0.875) 0.548
[0.825, 1.0] 0.406

Table 2: Distribution of signal success rates in the 8-state/8-term signaling
game

Signal Success Rate Interval Proportion of Runs

[0.0, 0.50) 0.000
[0.50, 0.625) 0.000
[0.625, 0.75) 0.002
[0.75, 0.875) 0.110
[0.825, 1.0] 0.888

Table 3: Distribution of signal success rates in the 8-state/8-term (+2, -1)
signaling game

8-state/8-term game.
The overall effectiveness of learning here is improved by a punishment that

lowers the agents’ propensities when they fail to coordinate. The essential
difference between this learning model and Herrnstein reinforcement learning,
then, is that here there is a mechanism by which agents might forget past
reinforcements that might otherwise have driven them toward suboptimal
pooling equilibria. This provides a positive role for forgetting in learning and
motivates our investigation of three other learning strategies which also allow
for reductions in past reinforcement weights, but do so in another fashion.

Each of the following learning rules is a modification of the basic idea
of Herrnstein reinforcement, that past success and failure determines future
action, but each includes some method for the reduction of past propensities.7

These models show how forgetting the past can aid in learning by avoiding

7These three rules were each chosen because they have some purchase in the experimen-
tal or modeling literature surrounding game theory. While they do not exhaust the space
of possible learning rules, they represent three very different approaches to an underlying
reinforcement process.
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suboptimal equilibria.

3 The ARP Model

3.1 The Model

The Adjustable Reference Point with Truncation (ARP) learning model is a
generalization of reinforcement learning designed to capture that fact that
perceived reward is a function of one’s experience and that learning in the
context of perceived loss can be faster than in the context of perceived gain
(Bereby-Meyer and Erev, 1998). The model allows that one may become
accustomed to a level of payoff in such a way that one values the same payoff
less over time and begins to perceive even positive payoffs as punishments if
they are below the accustomed level.

This evolving perception of rewards is seen in both animal and human
data. A classic example by Tinklepaugh (1928) illustrates the effect of past
payoffs on future perceptions of rewards. Tinklepaugh taught monkeys a
simple discrimination task. One group was reinforced with bananas and
another with lettuce, and both groups learned quickly. But when a monkey
that was usually paid in bananas got lettuce instead, the accuracy exhibited
on the discrimination task dropped significantly suggesting that the monkey
perceived the lettuce as a punishment rather than as a reward given its past
experience with banana payoffs. The ARP model is designed to account for
such reference point effects.

Like Herrnstein Reinforcement, the ARP model can be characterized by
specifying the updating rule, the response rule, and the initial propensities.

1. The Updating Rule. The agent’s propensities evolve over plays of
the game by the rule

qi(t + 1) = max[v, (1 − φ)qi(t) + Ek(i, Rt(πi))] (3)

Here v > 0 is a truncation parameter that ensures positive propensities,
and φ is a forgetting parameter that slowly reduces the significance of past
experience. The reward function

Rt(πi) = πi − ρ(t) (4)

translates the payoff πi into a reward given the agent’s expectations from
experience. The function ρ(t) is the reference point against which the agent
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judges the current payoff. The reference point is updated by the rule

ρ(t + 1) =

{

(1 − w+)ρ(t) + (w+)πi if πi ≥ ρ(t)
(1 − w−)ρ(t) + (w−)πi otherwise

(5)

where w+ and w− are the weights associated with positive and negative
reinforcement respectively. The experience function

Ek(i, Rt(πk)) =

{

Rt(πk)(1 − ǫ) if j = k

Rt(πk)ǫ otherwise
(6)

expresses how the experience of playing k and getting the reward Rt(πi)
affects the agent’s propensity to play strategy i, and ǫ is the associated
parameter.

2. The Response Rule. The probability pi(t) that i will be played at
time t is again given by the linear response rule.

pi(t) =
qi(t)

∑

j qj(t)
(7)

where the sum is over all pure strategies.
3. The Initial Propensities. At time t = 1, before the first play of the

game, the agent’s propensity to play pure strategy i is given by the number
qi(1). In the ARP model Bereby-Meyer and Erev (1998) use the sum of initial
propensities divided by the average reinforcement on a random action S(1)
to characterize initial propensities. We here will vary the initial propensities
in order to judge the robustness of our results over this modification.

3.2 An Act-Based Implementation of the ARP Learn-
ing Model

The ARP learning dynamics may be used to update conditional propensities
to signal and act in the context of a Lewis signaling game. On this imple-
mentation qs

k represents the sender’s propensity to send term k on state s,
qk
a represents the receiver’s propensity to do action a on term k, and the

conditional propensities are updated using the ARP dynamics; the sender’s
propensities qs

k for the actual state s are updated after each play treating each
k as a possible pure strategy, and the receiver’s propensities qk

a for the actual
term k are updated after each play treating each a as a possible pure strategy.
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Experience
Parameter

Forgetting
Parameter

Initial
Propensities

Mean Signal
Success Rate

Exception
Rate (0.8)

0.2 0.001 27 0.822 0.035
0.1 0.001 27 0.966 0.000
0.0 0.001 27 0.995 0.003

Table 4: Affect of varying the experience parameter in the ARP learning
model

The probabilistic response rule only sums over propensities that corresponds
to the current state for the sender and over the propensities that correspond
to the current term for the receiver. The payoff for a successful signal is 1.0
and 0.0 for failure.

The APR model has seven free parameters. While the values of these
parameters for human subjects would certainly depend on the particular
game being played, we will start by assuming an even state distribution and
with the values estimated by Erev and Roth (1998) for the first six model
parameters, ǫ = 0.2, v = 0.0001, φ = 0.001, ρ(1) = 0, w+ = 0.01, and
w− = 0.02, and set the initial sender and receiver conditional propensities qk

for each act to 27.0. We will then vary the experience parameter, the initial
propensities, and the forgetting parameter in turn to see how each affects the
evolution of an effective language in the context of the 3-state/3-term Lewis
signaling game. There are 103 runs and 106 plays/run in each trial.

In the ARP model the experience parameter affects how propensities for
strategies that were not played are updated – the larger the value of this
parameter the greater the effect. Table 4 shows how changing the experience
parameter affects the mean signal success rate and the exception rate (the
cutoff for an efficient language here is set at a signal success rate of 0.8).
The lower the experience parameter, the higher the mean signal success rate.
The exception rate is also generally lower for lower experience parameters.
The moral is that one does best in learning to signal in this context if one
only updates the propensities corresponding to the strategy that was actually
played on each play of the game and not others. We will set the experience
parameter ARP model to 0.0 in order to consider the conditions under which
one has the best chance of learning to signal. Note, however, that suboptimal
equilibria are still observed in the ARP model with an even state distribution
and with the experience parameter set to zero.

12



Experience
Parameter

Forgetting
Parameter

Initial
Propensities

Mean Signal
Success Rate

Exception
Rate (0.9)

0.0 0.001 27 0.995 0.006
0.0 0.001 9 0.994 0.006
0.0 0.001 3 0.995 0.011
0.0 0.001 1 0.996 0.006

Table 5: Affect of varying the initial propensities in the APR learning model

Different initial propensities do not affect the behavior of the ARP learn-
ing model much. As suggested by the data in Table 5, both the mean signal
success rate and the exception rate (here set to 0.9 mean signal success rate)
are roughly constant for different initial propensities. So the ARP model is
relatively stable under different initial propensities for 106 plays/run.

Since the ARP model explains how it is possible for an effective language
to evolve most of the time with an even state distribution in a 3-state/3-
term signaling game, let’s consider uneven state distributions. It is here
where forgetting can play a significant role in helping agents avoid suboptimal
equilibria.

Suppose that the random state distribution is (0.8, 0.1, 0.1) over the
three states in the 3-state/3-term signaling game, and consider varying the
forgetting parameter. First, note that with the uneven state distribution and
a low forgetting parameter, the exception rate is extremely high for the ARP
model with more than 36% of runs failing to evolve an efficient language.
Raising the forgetting parameter discounts the effect of past experience on
current propensities, and it thus allows agents to evolve an efficient language
even in the context of a very uneven state distribution. As suggested by
the data of Table 6, there is a trade off: the more forgetful the agents,
the less likely they are to get stuck in suboptimal equilibria, but also the
lower the maximum signal success rate on a run. Forgetful agents forget the
evidence that might send them to a suboptimal equilibrium, but in this case
they also forget the evidence that would allow them to converge to perfect
signaling, and hence evolve an imperfect language where the terms have only
approximate meanings.

Agents may, however, do quite well here. With a forgetting parameter of
0.01, a very efficient language (with a mean signal success rate of better than
98%) is always observed to evolve in the 3-state/3-term Lewis signaling game
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Experience
Parameter

Forgetting
Parameter

Initial
Propensities

Mean Signal
Success Rate
(Max)

Exception
Rate (0.93)

0.0 0.001 27 0.944 (0.997) 0.364
0.0 0.01 27 0.986 (0.987) 0.000
0.0 0.1 27 0.964 (0.965) 0.000
0.0 0.3 27 0.937 (0.938) 0.000

Table 6: Affect of varying the forgetting parameter in the APR learning
model

with an uneven state distribution. So the evolved meanings of the terms of
the agents’ language are sharply approximate, and, in this sense, similar to
the terms of human natural languages.

The ARP learning model was designed to capture the psychology of how
human agents learn. Here we see how the very human trait of forgetfulness
can facilitate the successful evolution and learning of a term language.

4 Smoothed Reinforcement Learning

Forgetting also provides benefits in the context of other learning models.
The smoothed reinforcement learning model results from a modification of
the updating and response rules of Herrnstein reinforcement learning.8

1. The Updating Rule. The weights are updated according to this
rule:

qi(t + 1) =

{

(1 − δ)qi(t) + δπi(t) if action i was taken
qi(t) otherwise

(8)

Instead of summing the current payoff with the previous payoff, in this
learning rule the current payoff is averaged with the prior weights using a
parameter δ. This results in past payoffs becoming less and less relevant to
the current play, effectively being discounted.

2. The Response Rule. Rather than using a simple averaging, the
probability of an action being chosen uses a logistic response rule:

8This model was suggested in conversation (with Brian Skyrms) by Ed Hopkins and is
similar to a version of stochastic fictitious play analyzed in Benäım et al. (2006).
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Figure 2: p1(t) for several λ’s, where q2(t) = 1.5

pi(t) =
eλqi(t)

∑

j eλqj(t)
(9)

3. The Initial Propensities. Like the previous two models we will set
qi(1) = 1 for all i.

We thus have a two parameter model. δ represents the degree of averag-
ing. A high δ (close to 1.0) represents a learner who puts the most stock in
recent events at the cost to previous ones; a low δ represents the opposite.
λ represents the degree of “smoothness” to the function. The higher λ the
more small difference affect the probability.

Consider an act-based implementation of this learning model. Supposing
that there are two strategies, 1 and 2, and that q2(t) = 1.5, Figure 2 shows
p1(t) for varying values of q1(t) and λ. This shows that as λ becomes larger
small difference in past payoffs correspond to greater differences in response
probabilities. Since q2(t) = 1.5, this represents a situation where strategy
2 has been reinforced already. Suppose instead an early situation where no
action has yet been rewarded. In this case, q2(t) = 1.0. The varying values
of q1(t) and λ are represented in Figure 3. Here we see that as λ grows, the

15



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  1.2  1.4  1.6  1.8  2

Pr
ob

ab
ili

ty
 o

f 
st

ra
te

gy
 1

Weight of strategy 1

λ = 5
λ = 10
λ = 15
λ = 20
λ = 25
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response function tends to take any initial success more seriously, responding
by almost deterministically choosing the reinforced action.9

In order to determine the convergence properties of this learning rule,
we will study simulations for several parameters. An instance of successful
signaling results in a payoff of 2.0.10 As in previous models we will treat
each state and term as a distinct learning situation. Tables 7 and 8 show
the results for varying δ’s and λ’s. These results are from 1,000 runs each
of 10,000 generations of a 3-state/3-term signaling game with equiprobable
states. Table 8 represent the proportion of these runs that converge to almost
perfect signaling (pi(t) was greater than 0.99 for both the sender and receiver
for a given term-act).

These simulation result show that for low λ’s none of the tested values
for δ are sufficient to result in convergence to optimal signaling. This oc-
curs because players continue to randomize sufficiently long that all available

9This response mimics the “win-stay” response rule discussed in more detail in the next
section.

10This is necessary because the initial propensities are equal to 1 and averaging requires
that the payoff be greater than 1.
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λ

δ 5.0 10.0 15.0 20.0 25.0

0.001 0.380 0.922 0.973 0.984 0.988
0.01 0.832 0.989 0.996 0.998 0.999
0.1 0.774 0.992 0.999 0.999 0.999
0.99 0.793 0.999 0.999 1.000 1.000

Table 7: Average efficiency

λ

δ 5.0 10.0 15.0 20.0 25.0

0.001 0.000 0.511 0.898 0.943 0.962
0.01 0.000 0.967 0.989 0.993 0.996
0.1 0.000 0.976 0.997 0.999 0.999
0.99 0.000 0.999 1.000 1.000 1.000

Table 8: Converged to Signaling System (> 0.99% efficiency)

strategies are equally reinforced. As a result, no convergence is ever achieved.
For larger λ’s, initial success increases the probability of choosing one strat-
egy over another, which results in disproportionate use of those strategies in
the future. This begins a process that leads to successful convergence.

With these larger values of λ, it appears that larger δ’s are better for
the evolution of efficient languages. The larger δ is the more weight indi-
viduals place on recent payoffs. This again represents a greater degree of
forgetfulness.

In this model we find two features appear to assist in the evolution of
optimal signaling. First, a large λ helps substantially. A large λ intuitively
corresponds to one taking small differences in payoffs more seriously. Second,
a large δ, which corresponds to taking the recent past more seriously than the
distant past also helps. Again, forgetting proves efficacious in the evolution
and learning of a successful language. And here, unlike in the ARP learning
model, perfect signaling may evolve even with very high forgetting (δ = 0.99).

17



5 Win-Stay/Lose-Randomize

We will consider a final learning rule, win-stay/lose-randomize, which is in a
sense maximally forgetful. Here we imagine that individuals only remember
their most recent successes for each state/term. If their last action in a given
state/term was successful they keep that strategy, otherwise they choose a
new strategy for the current state or term at random.11 This represents a
sort of extreme version of smoothed reinforcement, where δ = 1.0 and λ goes
to infinity.

In-keeping with our convention, we will restrict individuals to learning
only in the context of a given state or term. I.e., individuals who fail to
coordinate in a given state/term pair will only randomize their action for
that state or that term and not their contingency plans for other states or
terms. The same result would hold (with a far simpler proof) if we allowed
individuals to randomize over the set of all contingency plans.

In the context of signaling games, win-stay/lose-randomize only has fixed
points where both individuals play complementary signaling systems.12 In
fact, not only are these the only fixed points, but one can also prove that as
the number of plays goes to infinity, the probability that the players achieve
optimal signaling systems approaches 1. This is true regardless of the number
of states, terms, and acts (so long as they are the same) and regardless of
the probability distribution over the states (as long as each state receives
non-zero probability). Informally this occurs because, the players randomly
try things out succeeding and failing until the states and actions proceed in
the right order to result in their perfect coordination. Once there, they never
leave.

11From the description presented in (Wilcox and Jackson, 2002) it appears that the
Portia jumping spider employs the strategy when attempting to fool prey. This strategy
is also similar to another learning rule, win-stay/lose-switch, which was first introduced in
the context of learning in bandit problems (Robbins, 1952). Bandit problems are a class of
learning problems where one is intent on maximizing a payoff in an uncertain environment.
Win stay, lose switch was first applied to game theory by Nowak and Sigmund (1993).
Interestingly, win-stay/lose-switch is a terrible learning rule in signaling games. While the
only fixed points in this learning rule are signaling systems, these states are not accessible
from others in a 2-state/2-term/2-act signaling game. So, only players that begin in a
signaling system will ever reach one. All other initial states follow closed loops, repeating
inefficient strategies forever.

12A fixed point of the learning rule is a strategy set such that if both players play it on
one round they will play it forever thereafter.
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Assume an N -state/N -term signaling game, where the number of states
of the world, number of terms, and number of actions are all the same. We
will represent a sender’s strategy as a function, s : N → N and the receiver’s
strategy as another function, r : N → N . Let S and R represents the set of
all sender and receiver strategies respectively.13 The state of the system at
any given time can be represented as an element in S × R.

Since there is a randomizing component we can represent this system as a
Markov chain. Certain states in this Markov chain are absorbing, that is once
the system enters these states it never leaves. It is straight-forward to see
that signaling systems are the only absorbing states, since there is a potential
loss (and thus a potential switch) in any other state. This is however, not
sufficient to prove that the system will converge to signaling systems in the
long run, it is also necessary to prove that the signaling systems are accessible
from every other state.

Definition 1 Suppose two states, < sa, ra >, < sb, rb >∈ S × R. < sb, rb >

is directly accessible from < sa, ra > if and only if:

1. (Sender failure) If sa(x) 6= sb(x) then ra(sa(x)) 6= x

2. (Receiver failure) If ra(x) 6= rb(x) then ra(sa(x)) 6= x

3. (One change) There is at most one x such that, sa(x) 6= sb(x) and there
is at most one y such that ra(y) 6= rb(y) and

4. (Coordinated change) If there is an x such that sa(x) 6= sb(x) and a y

such that ra(y) 6= rb(y), then y = sa(x).

This definition coincides with there being a non-zero probability of reach-
ing one state from another using win-stay/lose-randomize. By using only a
definition of accessibility, we are remaining neutral with respect to both the
distribution over the states and the distribution over the strategies used by
an agent when he switches strategies. It suffices then to show that (1) a
signaling system is accessible from any state and (2) signaling systems are
the only absorbing states.

Definition 2 Two states a, b ∈ S × R are accessible if and only if there is
a sequence < a, c1, c2, . . . , b > such that each is directly accessible from the
previous state in the sequence.

13
r(·) and s(·) represent full contingency plans for every state and every signal. Thus

our learning rule does not allow for an agent to choose an arbitrary r or s when they fail.
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In order to prove our main result we will divide all states into two classes.
Let P (s) = |{n : s(n) = s(m) for some m 6= n}|, this represents the number
of states that map onto the same term. We will first show the following
result:

Lemma 1 For every state a =< sa, ra > where P (sa) > 0 there is some state
b =< sb, ra > such that b is directly accessible from a and P (sb) < P (sa).

Proof. Since P (sa) > 0 there is at least one n and m 6= n such that
sa(n) = sa(m). Since ra is a function, at least one of the following must be
true: (1) ra(sa(n)) 6= n or (2) ra(sa(m)) 6= m. WLOG assume (1). Because n

and m both map to the same term, there must be one t ∈ {1, 2, ...N} which
is not in the range of sa (an unused term). Let sb(x) = sa(x) for all x 6= n.
Let sb(n) = t (the unused term). It should be clear that P (sb) < P (sa), so
it is sufficient to prove that b =< sb, ra > is accessible from a =< sa, ra >.

By assumption ra(sa(n)) 6= n, and by definition sa(x) = sb(x) for all
x 6= n, so b satisfies sender failure. Since ra is constant across both states,
b trivially satisfies receiver failure and coordinated change. By definition b

satisfies one change. 2

As a result of this lemma, we can show that a state < sb, ra >, where
P (sb) = 0 is accessible from any initial state < sa, ra >.

We will now define a function Q which measures the average success of
the sender/receiver pair. It will count the number of states where the two
fail to coordinate, Q(< s, r >) = |{n : r(s(n)) 6= n}|

Lemma 2 For any state a =< sa, ra > where P (sa) = 0 and Q(a) > 0,
there is a state b =< sa, rb > such that b is directly accessible from a and
Q(b) < Q(a).

Proof. Since Q(a) > 0, there is at least one n such that ra(sa(n)) 6= n.
Choose such an n. Let rb(x) = ra(x) for all x 6= n. Let rb(n) = s−1

a (n)
(since P (sa) = 0, this is unique). It should be clear that Q(b) < Q(a), so it
sufficient to prove that b is accessible from a.

Since sa is constant between a and b, sender failure and coordinated
change are trivially satisfied. By assumption ra(sa(n)) 6= n and rb(x) = ra(x)
for all x 6= n, satisfying receiver failure and one change. 2

Lemmas 1 and 2 together entail that the agents will always approach
perfect signaling. Lemma 1 shows that from any state we can access a state
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where P (s) = 0, and the receiver strategy is unchanged. Lemma 2 shows
that from that state we can access a state where Q(a) = 0, i.e. a signaling
system.14 Since a signaling system is accessible from any state, and signaling
systems are the only absorbing states, the probability that a random state
converges to a signaling system approaches 1 as the number of runs goes to
infinity.15

The upshot is that while win-stay/lose-randomize is in a sense maximally
forgetful, it is also perfectly successful in the evolution and learning of a
language. Here we see how an extreme form of forgetting might altogether
avoid the threat of suboptimal equilibria.

While this represents a substantial success for forgetting, it also entails a
new problem: instability. Since win-stay/lose-switch will switch at any failure
if our model involves errors this learning rule can be remarkably unstable.16

Suppose there is some minute probability that there will be an error of some
sort. When this occurs, the sender and receiver will likely switch. This will
then produce further errors which could take them further away from the
signaling system equilibrium. This sensitivity to errors is not a feature of
the earlier two learning rules which have more substantial memories. So,
while forgetfulness appears to be helpful to learning optimal signaling absent
errors, it might not be uniformly helpful when they are present.

6 Conclusion

The APR learning model, smoothed reinforcement learning, and win-stay/lose
randomize all outperform traditional Herrnstein reinforcement learning in the
evolution of optimal languages in signaling games. Each of these learning
models provide mechanisms whereby agents may forget past evidence that
would otherwise have driven them toward suboptimal equilibria.

In each case, forgetting allows for a persistent randomness which can

14The path detailed in the proof of Lemma 1 and 2 is typically not the most efficient or
the most probable path to a signaling system. However, since we are only here concerned
with limiting behavior, demonstrating that one such path exists is sufficient.

15We could have got this result directly with a learning rule that always allowed for
a positive probability of switching to an absorbing state. Implementing win-stay/lose-
randomize on entire contingency plans is such a learning rule.

16Errors may be errors in perception by the sender, errors in message transmission
from the sender to receiver, or errors in action by the receiver. Formally all of these are
equivalent and have a same result: a failure of coordination.
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help move a sender-receiver pair away from the suboptimal equilibria and
toward optimal ones. In the case of ARP learning, this persistent randomness
prevented the model from ever achieving optimality. The modified response
rule used in smoothed reinforcement learning, however, helped to overcome
the persistent randomness introduced by discarding the past, and to settle
on the optimal equilibrium. This settling effect is taken to an extreme in the
last learning rule, win-stay/lose-randomize. Here individuals are persistently
random until they are optimal in which case, they stick to optimality because
it is an absorbing state. This illustrates a sense in which being maximally
forgetful can be maximally beneficial in achieving perfect signaling.17

The moral is that forgetful learning rules outperform their retentive coun-
terparts in the evolution and learning of language in signaling games. More
generally, some form of forgetfulness may prove to be a virtue whenever there
is the threat of suboptimal equilibria. In this, something that might have
seemed unquestionably detrimental may in fact be beneficial.

17There are other ways to introduce persistent randomness into learning. In the con-
text of reinforcement learning, perhaps the most direct way is to randomly perturb the
memories of each agent on each play of the signaling game to a degree proportional to the
current level of reinforcement. Such models do in fact outperform Herrnstein reinforce-
ment learning in signaling games (Barrett, 2006). They also illustrate a form of forgetting
that provides the direct benefit of persistent randomness.
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