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Abstract

In a novel contribution to the literature on airline flight delays, this paper explores the effects
of airline schedule buffers on arrival delays, showing that buffers reduce delays and are thus
beneficial. The exercise relies on the approach followed in our previous work, which allows us
to measure buffer sizes and flight delays by using government data on the flight sequences of
individual aircraft. Our empirical results roughly match the predictions of an analytical model
regarding the expected sizes of the buffer effects.
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1. Introduction

Airline delays and delay propagation have been the focus of a growing literature in trans-

portation engineering and economics. An arrival delay of an inbound flight inconveniences its

own passengers, but lateness may also lead to delay propagation, where the flight’s late arrival

also leads to a late departure of the aircraft’s next flight and then its late arrival. Late arrival

of inbound aircraft is in fact the major cause of subsequent arrival delays, based on government

data cited by Brueckner, Czerny and Gaggero (2021a). One remedy for arrival delays as well as

delay propagation is the use of schedule buffers, which are increments added to aircraft flight

and ground times, so that they exceed minimum feasible times. A larger flight buffer for the

incoming flight reduces the chance that random flight-time shocks lead to its late arrival as well

as a possible subsequent departure delay. A larger ground buffer also reduces the chance of a

late departure and subsequent delay by absorbing the impact of a late-arriving inbound flight

as well as the impact of random ground-time shocks. A larger flight buffer for the subsequent

flight helps to absorb a late departure as well as the effects of unfavorable flight-time shocks.

The goal of the present paper is one that has not been pursued, to our knowledge, so

far in the literature. In particular, we investigate the empirical effectiveness of airline flight

and ground buffers in reducing arrival delays. We ask if buffers are actually beneficial, and

if so, how big are the arrival-delay effects? In particular, we are interested in measuring the

minutes of reduced arrival delay resulting from an extra flight-buffer minute as well as the delay

reduction from an extra ground-buffer minute. Our approach uses the analytical and empirical

frameworks from our previous papers, with the measurement of flight delays as well as the

lengths of flight and ground buffers relying on US government data on the flight sequences

of individual aircraft. These data allow us to compute flight-buffer lengths as the difference

∗ We thank Mark Hansen and Bo Zou for comments, but the usual disclaimer applies.
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between scheduled and minimum feasible flight times, and to compute ground-buffer lengths as

the difference between scheduled and minimum feasible ground times. To measure the desired

effects, we use a regression equation relating a flight’s arrival delay to the size of its flight buffer,

the size of the ground buffer preceding the flight, and the incoming flight’s arrival delay, along

with a host of other control variables. The results show that a minute increase in either the

flight or ground buffer leads to less than a minute’s reduction in arrival delay, but that the

flight buffer has a stronger effect, with the latter result matching the predictions of our model.

Our results thus show that airline schedule buffers are productive, reducing flight delays, so

that an airline’s investment of resources in generating them is worthwhile.

A key aspect of our empirical approach is recognition of the likely endogeneity of both the

flight and ground buffers, which would lead to biased estimates of the buffers’ effects on arrival

delays if not corrected. The problem is that the airline would choose large buffers for flights

whose unobservable characteristics make them prone to arrival delays, making the buffers

positively correlated with the regression error term and leading to upward biased coefficients.

Our correction makes use of instrumental variables, which are equal to the average buffer values

for different flights whose route and airport characteristics are similar to those of the observed

flight.

Our paper connects to a large existing literature, which is surveyed by Li, Mao and Li

(2024). Previous papers that investigate the optimal lengths of schedule buffers include Ah-

madBeygi, Cohn and Lapp (2010), Sohoni, Lee and Klabjan (2011), Deshpande and Arikan

(2012), Arikan, Deshpande and Sohoni (2013), Kafle and Zou (2016), Kang and Hansen (2017),

and Brueckner, Czerny and Gaggero (2021a,b). In the two latter papers (referred below to as

BCG 2021a,b), we use highly stylized economic models rather than realistic engineering-style

frameworks to investigate the optimal buffer choices. Based on their theory, BCG 2021a inves-

tigate the empirical determinants of buffers sizes, and Kafle and Zou (2016), Kang and Hansen

(2017) also carry out empirical exercises related to their models.

A large group of additional papers is purely empirical. Papers that investigate the deter-

minants and delay impacts of scheduled “block” times (gate-to-gate times), which are closely

related to the length of flight buffers, include Hao and Hansen (2014), Kang and Hansen (2017)
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Wang, Zhou, Hansen and Chin (2019), and Fan (2019). Other papers ask how airport and

network characteristics affect delays and delay propagation, and they include AhmadBeygi,

Cohn, Guan and Belobaba (2008), Diana (2009), Fleurquin, Wong and Tsai (2012), Ramasco,

and Eguiluz (2013), Dou, Kastl and Lazarev (2020), Bubalo and Gaggero (2021), Kim and

Park (2021), Li and Jing (2021), and Tan, Jia, Yan, Wang and Bian (2021). Forbes, Lederman

and Yuan (2019) (a paper that, like BCG’s work, is written by economists) investigates the

determinants of “schedule padding” (longer block times), while Forbes, Lederman and Wither

(2019) explore how required posting of on-time performance affected this phenomenon. Finally

Brueckner, Czerny and Gaggero (2022) expose the factors leading to a high contribution of

propagated departure delays to arrival delays.

The plan of the paper is as follows. Section 2 presents the analytical framework used to

derive the estimating equation, drawing on our previous work. Section 3 discusses the data and

the construction of the instruments, while section 4 presents the regression results. Section 5

offers conclusions.

2. Analytical framework for deriving the estimating equation

As a basis for the subsequent empirical investigation, this section of the paper derives an

estimating equation that relates the arrival delay for flight i to the arrival delay for flight i− 1

(the incoming flight) and the ground and flight buffers, using the analytical framework of our

previous papers. The arrival delay for flight i equals

Da,i = t̂a,i − ta,i, (1)

where t̂a,i is the actual arrival time and ta,i is the scheduled arrival time. Note that an early

arrival generates a negative delay. The two arrival times in (1) are given by

t̂a,i = t̂d,i + mi + εf,i, ta,i = td,i + mi + bf,i, (2)

where t̂d,i and td,i are the actual and scheduled departure times, mi is the minimum feasible

flight duration, εf,i is a positive random shock capturing deviation from the minimum duration,
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and bf,i is the flight buffer, the amount added to the minimum flight duration to generate the

scheduled arrival time.

Substituting (2), Da,i in (1) is then given by

Da,i = t̂d,i − td,i + εf,i − bf,i = Dd,i + εf,i − bf,i. (3)

where Dd,i = t̂d,i− td,i gives flight i’s departure delay. Eq. (3) then says that the flight’s arrival

delay equals its departure delay plus the difference between the flight-time shock and the flight

buffer.

The goal of the next steps in this analysis is to derive an expression that allows the

departure delay Dd,i in (3) to be written in terms of other variables. To do so, note that the

actual and scheduled departure times in (3) are given by

t̂d,i = max{̂ta,i−1 + ni + εg,i, td,i}, td,i = ta,i−1 + ni + bg,i, (4)

where t̂a,i−1 and ta,i−1 are the scheduled and actual arrival times for flight i − 1, ni is the

minimum feasible ground time prior to flight i, εg,i is a positive shock that determines actual

ground time above the minimum, and bg,i is the ground buffer prior to flight i, which is added

to ni to get scheduled ground time and thus the scheduled departure time of flight i.1

Note that the first term inside the max expression in (4) gives the earliest time at which

flight i can depart, equal to the arrival time of the incoming flight plus the minimum ground

time plus the ground-time shock. If this expression is less than td,i, flight i could in principle

depart early but does not (departing at td,i), so as to respect the schedule. When this term

exceeds td,i, however, the flight cannot depart on time, and a departure delay occurs. The

magnitude of the departure delay Dd,i in this case equals t̂a,i−1 + ni + εg,i − td,i.

To compute the departure delay Dd,i = t̂d,i − td,i using (4), td,i is subtracted from both

elements of the max expression in (4), yielding

Dd,i = t̂d,i − td,i = max{̂ta,i−1 − ta,i−1 + εg,i − bg,i, 0} = max{Da,i−1 + εg,i − bg,i, 0}, (5)

1 The ground-time shock was mostly absent in BCG’s previous papers, being added only as an extension in
the analysis of the discrete model of BCG (2021b).
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where Da,i−1 = t̂a,i−1 − ta,i−1 is the arrival delay for flight i − 1 (ni cancels). From (5), if

the incoming arrival delay plus the ground-time shock minus the ground buffer exceeds zero,

then the departure delay equals the value of that expression. Otherwise, no departure delay

occurs. Note that an early arrival for the incoming flight (a negative value of Da,i−1) can

help to offset an unfavorable value of εg,i, the ground-time shock, reducing the likelihood of a

departure delay.

Substituting (5) in (3) gives the desired expression for flight i’s arrival delay, which depends

on the incoming arrival delay and both buffers. The expression, which forms the basis for the

following empirical work, is

Da,i = max{Da,i−1 + εg,i − bg,i, 0} + εf,i − bf,i. (6)

Converting (6) into a regression equation yields

Da,i = α + βDa,i−1 + γbg,i + θbf,i + Xiδ + ui, (7)

where Xi is a vector of route, airport and daily weather characteristics that may affect arrival

delays and ui is an error term that captures the influence of the random shocks εg,i and εf,i as

well as other unmeasured factors.

The likely magnitudes of the estimated coefficients β̂, γ̂, and θ̂ from (7) can be predicted

from (6). First, the estimated coefficient θ̂ of bf,i should be close to −1, its coefficient in

(6). In other words, an increase in the flight buffer should reduce flight i’s arrival delay in

one-for-one fashion. However, while an increase in bg,i will decrease Da,i in one-for-one fashion

when the max expression in (6) is larger than zero (when flight i’s departure is delayed), a

higher ground buffer will have no effect when the expression is less than zero, in which case

there is no departure delay. As a result, we would expect the estimated bg,i coefficient, which

captures an average effect, to be smaller than (instead of equal to) 1 in absolute value, with

−1 < γ̂ < 0. Thus, because the size of bf,i always matters while the size of bg,i only matters

in the presence of a departure delay, the flight buffer’s beneficial effect on arrival delay should

be stronger than that of the ground buffer.
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Similarly, since the magnitude of the incoming arrival delay only matters when flight i’s

departure is delayed, the estimated coefficient β̂ of Da,i−1 should satisfy 0 < β̂ < 1, again

being less than 1 in absolute value. Moreover, since the coefficients of Da,i−1 and bg,i in (6) are

symmetric (equal to 1 and −1), it follows that the (positive and negative) estimated coefficients

β̂ and γ̂ should be equal in absolute value.

In estimating (7), the ground and flight buffers must be treated as endogenous. The

reason is that the buffers are likely to be correlated with the regression error term ui. To see

why, observe that a particular flight will experience unobservable factors that influence arrival

delays, which are embodied in ui. For example, these unobservables could include unmeasured

characteristics of the destination airport, such as its location with respect to other (especially

nearby) airports, which may affect in-route delays. The airline is likely to set the ground and

flight buffers taking these unobservables into account, so that the buffers are then correlated

with the error term ui. Since unobservables that tend to make ui and hence Da,i large will

lead the airline to set large values for the buffers, the direction of this correlation is positive.

Such correlation leads to upward bias in the estimated buffer coefficients γ̂ and θ̂, whose likely

negative values are then biased toward zero. An instrumental-variables approach is then needed

to generate consistent estimates, and the choice of instruments is discussed below.

It perhaps could be argued that Da,i−1, the arrival delay of the incoming flight, is also

correlated with the regression error term. For example, unmeasured characteristics of flight i’s

origin airport (the destination airport for the incoming flight i−1) could affect both the arrival

delay for that flight as well as the arrival delay for flight i, which would lead to such correlation.

This correlation could bias the coefficients of both Da,i−1 and the buffers. However, such an

issue, if it exists, seems to be of second-order importance compared to the endogeneity of the

buffers. As a result, we do not seek instruments for Da,i−1.

3. Data and generation of the instrumental variables

The sample used in this paper covers US domestic airline operations for the year 2018 and

is constructed by combining information from two main data sources: the US Department of
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Transportation (DOT) and Weather Underground.2 This section provides details, replicating

as needed the data descriptions in BCG (2021a, 2022).

3.1. DOT data

The US DOT data are from the ‘Marketing Carrier On-Time Performance’ dataset, which

reports information on the sequence of flights operated by individual aircraft, uniquely identi-

fied by the aircraft’s tail number, on a given date. For each flight in the sequence, the dataset

provides information on the carrier operating the flight, the origin and destination airports, the

scheduled and actual departure and arrival times, the taxi-out and taxi-in times, and the air-

borne time (flights to and from foreign destinations are not covered). From this initial dataset,

we remove canceled or diverted flights as well flights from/to US Commonwealth areas and

Territories.

To calculate ground buffers, we first compute td,i − ta,i−1, the scheduled ground time that

separates flight i and flight i − 1 in the sequence of flights operated by the observed aircraft

during the day. Then, we calculate the minimum turnaround time as the shortest actual

ground time observed across all aircraft of a given type using the turnaround airport. For

flight i, the actual ground time is equal to t̂d,i − t̂a,i−1, where the hats denote actual values,

and the minimum value is computed across all aircraft j of the same type with turnarounds

at the same airport. The ground buffer bg,i for flight i is then obtained by subtracting this

minimum feasible ground time from the scheduled ground time td,i − ta,i−1.
3

Similarly, the flight buffer is obtained from the actual flight time, computed as the difference

between flight i’s actual arrival and departure times, t̂a,i − t̂d,i. Among all aircraft of flight

i’s type flying the same route, we pick the smallest value of the actual flight time to obtain

the minimum flight time by route and aircraft type. In analogy to the ground buffer, the

flight buffer bf,i for flight i is then obtained by subtracting this minimum flight time from the

2 See https://www.transtats.bts.gov/Fields.asp?gnoyr VQ=FGK for the former and https://www.

wunderground.com for the latter source of data.
3 Recalling that the Marketing Carrier On-Time Performance dataset does not include international flights,

except those from/to US Commonwealth areas and Territories, we restrict the ground buffer to be not greater
than 200 minutes so as to exclude possible incomplete records that may arise when an aircraft flies to a non-
domestic destination (e.g., Canada or Mexico, returning to the same US airport) between two domestic flights
(the resulting time gap would be incorrectly identified as a ground buffer).
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scheduled flight time, which equals ta,i − td,i.

Note that in order to have confidence in the accuracy of the observed minimum flight and

ground times used in the buffer computations, we require that the number of observations used

to generate them is at least equal to 30. Finally, as in BCG (2021a, 2022), we exclude from

the sample those aircraft that operate more than 8 flights during the day.4

3.2. Generation of the ground- and flight-buffer instruments

The instruments for the ground and flight buffers are the average buffer values for ‘similar’

airports and ‘similar’ routes, respectively. Airport similarity is based passenger volume, using

the DOT’s assignment of each US commercial airport to one of four major categories (large

hub, medium hub, small hub, and nonhub) based on its passenger volume. Route similarity

is gauged with respect to distance. The Marketing Carrier On-Time Performance database

divides routes into eleven distance groups: up to 249 miles, 250-499 miles, 500-749 miles, 750-

999 miles, 1,000-1,249 miles, 1,250-1,499 miles, 1,500-1,749 miles, 1,750-1,999 miles, 2,000-2,249

miles, 2,250-2,499 miles, and above 2,500 miles.

To generate the value of the ground-buffer instrument for flight i, we calculate, for same

airline and flight date, the weighted average of the ground buffers at other airports belonging

to the same passenger-volume category as the origin airport of flight i, with flight i’s buffer

value thus excluded. The result, b̃g,i, is the value of the ground buffer instrument for flight i.

Similarly, b̃f,i, the value of the flight-buffer instrument for flight i, is the weighted average of

the flight buffers for the same airline and date on other routes in the same distance category

as the route flown by flight i, with the buffer for flight i again dropped.5

Since ground (flight) buffers for similar airports (routes) involve different unobservables

than those for flight i, the average values of these buffers will be uncorrelated with the flight

i’s unobservables and thus uncorrelated with the regression error term ui. However, the in-

4 The maximum number of flights operated by a single aircraft observed in the Marketing Carrier On-Time
Performance database is 16. However, since operation of 9 or more flights is seldom observed, representing less
than 0.40% of the initial database, these cases are not likely to meet our criterion of at least 30 observations
in the calculation of the minimum flight and ground times. Moreover, this 8-flight restriction mostly removes
‘ping-pong’ flights, which are flights that, multiple times in a day, operate a very short-haul route linking a
hub to non-hub airports (e.g., Hawaiian flights between Honolulu and the other Hawaiian islands). Although
these flights are generally characterized by short flight and ground buffer, delay propagation is not an issue.

5 The weights used to calculate b̃g and b̃f are given by the daily number of operated flights by the airline.
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struments will be correlated, respectively, with the ground and flight buffers of flight i because

of airport or route similarity. In other words, b̃g and b̃f are likely to fulfill the instrument

requirements of relevance (correlation with the endogenous variable) and exogeneity (lack of

correlation with the error term), thus being valid instruments. The strength of the instruments

is also confirmed empirically by tests shown in the upcoming econometric analysis.

3.3. Weather data and more

The weather data are obtained from Weather Underground, a commercial meteorological

service that provides weather reports at each airport roughly every half-hour or every hour,

depending on the airport. The weather data are used to indicate whether a flight is affected

by different types of bad weather (rain, fog, snow, a low temperature) when it operates. As in

Bubalo and Gaggero (2015, 2021) and BCG (2022), the weather observations match the actual

take-off and landing times of each flight. For instance, if a flight leaves at JFK at 9:15 AM

and arrives at LAX at 12:15 PM, then JFK weather at 9:00 AM and LAX weather at 12:00

PM are the origin and destination weather observations for the flight. To reduce the number

of weather variables, we consolidate the variables for snow and storm conditions, which appear

to capture the most severe weather conditions, into a Snow/Storm variable. Storm conditions

consist of thunderstorms or other storms with high winds.

In addition to the weather indicators, the vector X of variables in (7) includes time-of-

day dummies (morning, afternoon, late afternoon, and evening, with early morning being

the default), route distance, dummy variables indicating whether the origin and destination

airports are hubs, and the number of competing airlines flying on the route. In addition, X

includes congestion measures for the origin and destination airports, equal to the number of

landing/departing flights at the airport in the same hour that the flight is scheduled to take

off or land divided by the number of runways of the airport.

Table 1 shows summary statistics for the sample. Observe that, while the mean arrival

delay is only 2.8 minutes, the mean delay rises to 11.2 when early arrivals are assigned a delay

of zero, reflecting the offsetting effect of early arrivals in computing the first average value.

Note also that on average, inbound flights are early by less than a minute. The average flight

and ground buffers are respectively 30.7 and 37.6 minutes (with the average instrument values
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being similar), and between 30 and 40 percent of flights have either a hub origin or destinations.

4. Results

The first two columns of Table 2 show the regression results based on equations (6) and

(7), with column 1 showing the OLS results and column 2 showing the two-stage least squares

(2SLS) results, which make use of the instruments. The OLS and 2SLS results are qualitatively

similar, but we focus on the preferred 2SLS results in column 2. As expected, both buffer coef-

ficients are negative and significant, while the incoming arrival delay coefficient is significantly

positive. Thus, longer ground and flight buffers reduce arrival delay, while a greater incoming

arrival delay increases the arrival delay of the next flight, other things equal.

Despite this qualitative confirmation of the model’s predictions, the coefficient magnitudes

in the table do not fully align with expectations. First, while (6) implies that the coefficient

of the flight buffer should equal −1, the bf,i coefficient in column 2 equals −0.571, showing

a somewhat smaller effect on flight delays than expected. The model also predicts that the

incoming-delay and ground-buffer coefficients should be smaller in absolute value than the

flight-buffer coefficient, and since the coefficients of Da,i−1 and bg,i are equal to 0.269 and

−0.180 respectively, this prediction is confirmed. While the model also predicts that these two

coefficients should be equal in absolute value, so that their sum equals zero, a significance test

rejects this hypothesis even though the coefficient magnitudes are similar.

Overall, the model’s predictions thus fare reasonably well in light of the empirical results.

The signs of the key coefficients all match predictions. In addition, the flight buffer has a

larger absolute effect on arrival delay than either the incoming arrival delay or the ground

buffer, and the two latter opposing effects are close in absolute value. A further confirmation

of expectations comes from comparing the OLS results to those of 2SLS. Recall that we expect

the OLS buffer coefficients to be upward biased (biased toward zero) as a result of positive

correlation between the buffers and the regression error term. Comparing columns 1 and 2 of

Table 2, this is exactly the outcome we see, with the OLS buffer coefficients smaller in absolute

value than the 2SLS coefficients. This finding increases confidence in the appropriateness of

our analytical framework.
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Table 3 shows the first-stage results underlying the 2SLS regressions of Table 2. With two

endogenous variables (the flight and the ground buffers), two instruments are used, with both

appearing in each of the first-stage equations. As can be seen, each instrument has a bigger

effect on the variable it is meant to predict, with the ground-buffer instrument b̃g,i having

a larger effect than the flight-buffer instrument b̃f,i in the ground-buffer regression (column

1) and vice versa in the flight-buffer regression (column 2). In addition, the instruments are

strong, with the Kleibergen-Paap Wald F statistic for the combination of the two instruments

taking a large value, as seen at the bottom of column 2 in Table 2.

Returning to Table 2, the arrival-delay effects of the X covariates deserve discussion before

turning to the results in columns 3 and 4. Column 2 shows that arrival delay is higher when

route is long, when the origin is a hub, when either the origin or destination is congested, and

when the time of operation is after the early morning (the default category). Moroever, since

the time-of-day coefficients increase monotically over the day, arrival delays rise as the day

progresses, other things equal. In addition, bad weather of any type raises delays, as can be

seen from the coefficients in the bottom third of the table.

The regressions in columns 3 and 4 explore the effect of replacing the arrival delay variable

Da,i with max{Da,i, 0}, which converts negative delays into zeros. In (6), this change converts

the RHS of (6) into max{previous RHS expression, 0}. The predicted effect of this change is

to reduce the effect of the flight buffer, for which a larger value now only matters when the

flight is late, having no effect for early arrivals. This prediction is upheld in Table 2, with the

absolute value of the flight-buffer coefficient in column 4 reduced by half relative to column

2 (the new coefficient is −0.236 compared to −0.571). By comparison, the changes in the

coefficients of Da,i−1 and bg,i are relatively small, which appears consistent with the model.

The main results on the arrival-delay effects of airline schedule buffers can be summarized

as follows. When negative delays are recognized, an extra ground-buffer minute reduces arrival

delay by 0.180 minutes while an extra flight-buffer minute reduces arrival delay by 0.571

minutes. When negative delays are not recognized, as might be appropriate when passengers

only suffer from being late, an extra ground-buffer minute reduces arrival delay by 0.170

minutes while an extra flight-buffer minute reduces arrival delay by 0.236 minutes. Schedule
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buffers are thus productive, so that an airline’s devotion of resources to creating them is

worthwhile.

5. Conclusion

In a novel contribution to the literature on airline flight delays, this paper has explored the

effects of airline schedule buffers on arrival delays, showing that buffers reduce delays and are

thus beneficial. The empirical exercise relies on the approach followed in our previous work,

which allows us to measure buffer sizes and flight delays by using government data on the flight

sequences of individual aircraft. Our empirical results roughly match the predictions of our

analytical model regarding the expected sizes of the buffer effects.

While some previous papers have analyzed the optimal choice of buffer sizes, we cannot

judge the optimality of the observed buffers based on the current empirical results. Doing so

would require additional data on losses from the higher expenses and reduced aircraft utilization

due to buffer-generated increases in scheduled flight times, as well as data on the costs of the

additional gate space necessitated by longer ground buffers (and hence ground times). While

such information would allow the losses from longer buffers to be compared to the gains from

reduced arrival delays (which could be computed from our results), the required data are not

readily available.
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Table 1: Description and main statistics of the variables included in the analysis

Variable Description Mean
(Std. Dev.)

Da,i Arrival delay of flight i, in minutes 2.827
(38.406)

max{Da,i, 0} Arrival delay of flight i with early arrivals set to 0, in minutes 11.203
(34.654)

Da,i−1 Arrival delay of flight i− 1, in minutes -0.129
(29.456)

bg,i Ground buffer for flight i, in minutes 37.643
(25.762)

bf,i Flight buffer for flight i, in minutes 30.667
(11.810)

b̃g,i Mean ground buffer of flight i’s airline across airports of sim-
ilar dimension of the airport of origin of flight i, in minutes

37.343
(11.121)

b̃f,i Mean flight buffer of flight i’s airline across routes of similar
length of route flown by flight i, in minutes

30.754
(8.482)

Distance Route distance, in 100-mile units 7.600
(5.302)

Hub origin Dummy variable = 1 if airport of origin is a hub of the airline 0.380
(0.485)

Hub destination Dummy variable = 1 if airport of destination is a hub of the
airline

0.314
(0.464)

Congestion origin Number of landing and departing domestic flights at the air-
port of origin in the same hour when the flight is scheduled
to depart divided by the number of runways of the airport of
origin

12.348
(7.665)

Congestion destination Number of landing and departing domestic flights at the air-
port of destination in the same hour when the flight is sched-
uled to land divided by the number of runways of the airport
of destination

10.623
(7.565)

Competitors Number of nonstop competitors on the route 1.032
(1.099)

Morning-Evening Set of departure-time dummy variables, Morning (9.00-
11.59), Afternoon (12.00-15.59), Late afternoon (16.00-17.59)
and Evening (18.00-23.59); the omitted category is Early
morning (0.00-8.59)

Rain-Snow/Storm Set of dummy variables for the weather condition at the air-
port of origin or destination. Sun/Cloud is the omitted cat-
egory

Low temperature orig. Dummy variable = 1 if the temperature at the airport of origin
is below 32 degrees Fahrenheit

0.060
(0.238)

Low temperature dest. Dummy variable = 1 if the temperature at the airport of des-
tination is below 32 degrees Fahrenheit

0.061
(0.239)
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Table 2: The effect of buffers on arrival delay

(1) (2) (3) (4)
Estimator OLS 2SLS OLS 2SLS
Dependent variable Da,i Da,i max{Da,i, 0} max{Da,i, 0}
Da,i−1 0.260*** 0.269*** 0.254*** 0.263***

(0.003) (0.004) (0.003) (0.004)
bg,i -0.086*** -0.180*** -0.069*** -0.170***

(0.001) (0.031) (0.001) (0.027)
bf,i -0.252*** -0.571*** -0.055*** -0.236***

(0.003) (0.041) (0.002) (0.036)
Distance 0.197*** 0.667*** 0.086*** 0.357***

(0.007) (0.059) (0.006) (0.052)
Hub origin 1.763*** 3.031*** 0.730*** 2.069***

(0.103) (0.416) (0.090) (0.373)
Hub destination -0.052 0.088 -0.064 -0.116

(0.099) (0.143) (0.088) (0.126)
Congestion origin 0.292*** 0.323*** 0.160*** 0.160***

(0.007) (0.017) (0.006) (0.015)
Congestion destination 0.352*** 0.379*** 0.230*** 0.242***

(0.007) (0.009) (0.006) (0.008)
Competitors 0.004 -0.044 0.022 -0.031

(0.033) (0.038) (0.030) (0.033)
Morning 1.975*** 1.874*** 1.368*** 1.349***

(0.068) (0.078) (0.059) (0.068)
Afternoon 6.036*** 5.811*** 4.593*** 4.494***

(0.073) (0.086) (0.064) (0.076)
Late Afternoon 9.977*** 10.154*** 7.829*** 8.003***

(0.087) (0.104) (0.077) (0.093)
Evening 10.174*** 10.470*** 8.288*** 8.682***

(0.088) (0.174) (0.078) (0.156)
Rain origin 3.428*** 3.454*** 2.511*** 2.524***

(0.090) (0.091) (0.084) (0.084)
Rain destination 5.547*** 5.586*** 4.059*** 4.089***

(0.093) (0.093) (0.086) (0.087)
Fog origin 2.211*** 2.215*** 1.495*** 1.493***

(0.147) (0.147) (0.137) (0.137)
Fog destination 4.741*** 4.831*** 3.804*** 3.867***

(0.164) (0.164) (0.152) (0.152)
Snow/Storm origin 15.270*** 15.329*** 11.688*** 11.708***

(0.163) (0.164) (0.155) (0.155)
Snow/Storm destination 4.995*** 5.190*** 3.376*** 3.496***

(0.161) (0.163) (0.153) (0.154)
Low temperature orig. 2.474*** 2.935*** 2.241*** 2.504***

(0.107) (0.123) (0.098) (0.111)
Low temperature dest. 0.993*** 0.815*** 0.676*** 0.593***

(0.100) (0.106) (0.091) (0.096)
Test Da,i−1 + bg,i = 0, F Stat. 2835.980*** 9.815*** 3743.674*** 13.090***
Kleibergen-Paap χ2 Stat. 463.422*** 463.422***
Kleibergen-Paap Wald F Stat. 270.066*** 270.066***
R2 0.608 0.289 0.602 0.281
Observations 4,176,605 4,175,430 4,176,605 4,175,430

Notes. Estimation with tail number and date fixed-effects, airport of origin fixed effects, airport of destination
fixed effects; constant not reported. Ground buffer bg,i and flight buffer bf,i are treated as endogenous
variables and, in columns (2) and (4), instrumented for using, on the same departure date of flight i, b̃g,i 
and b̃f,i, which are, respectively, the airline’s mean ground buffer across airports of similar dimension of the
airport of origin of flight i, and the airline’s mean flight buffer across routes of similar length of route flown
by flight i. The estimated coefficients marked with ***, ** and * are statistically significant at, respectively
the 1%, 5% and 10% level. The standard errors are clustered by tail number
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Table 3: First-stage estimates

(1) (2)
Estimator OLS OLS
Dependent variable bg bf

Da,i−1 0.071*** 0.009***
(0.001) (0.000)

b̃g,i 0.215*** 0.008***
(0.009) (0.003)

b̃f,i 0.037*** 0.229***
(0.009) (0.006)

Distance 0.043*** 1.095***
(0.016) (0.009)

Hub origin 12.803*** 0.208***
(0.134) (0.062)

Hub destination -2.604*** 1.303***
(0.099) (0.052)

Congestion origin -0.379*** 0.208***
(0.008) (0.002)

Congestion destination -0.073*** 0.108***
(0.006) (0.002)

Competitors -0.595*** 0.077***
(0.032) (0.018)

Morning 0.811*** -0.541***
(0.115) (0.025)

Afternoon 0.594*** -0.868***
(0.122) (0.032)

Late Afternoon 1.541*** 0.111***
(0.132) (0.040)

Evening 4.712*** -0.445***
(0.127) (0.040)

Rain origin -0.032 0.092***
(0.058) (0.018)

Rain destination 0.212*** 0.070***
(0.057) (0.018)

Fog origin -0.134 0.048
(0.096) (0.032)

Fog destination 0.299*** 0.209***
(0.105) (0.034)

Snow/Storm origin -0.174* 0.263***
(0.089) (0.030)

Snow/Storm destination 0.185** 0.556***
(0.090) (0.028)

Low temperature orig. 0.070 1.451***
(0.075) (0.029)

Low temperature dest. 0.359*** -0.680***
(0.077) (0.028)

R2 0.2186 0.624
Observations 4,175,430 4,175,430

Notes. Estimation with tail number and date fixed-effects, airport of origin fixed effects, airport of destination
fixed effects; constant not reported. The estimated coefficients marked with ***, ** and * are statistically
significant at, respectively the 1%, 5% and 10% level. The standard errors are clustered by tail number.
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