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Abstract

This paper evaluates the efficacy of the urban growth boundary (UGB) as a second-best sub-
stitute for a first-best toll regime in a congested city. Numerical results show that, while a
UGB is welfare improving, validating previous theoretical results, the utility gain it generates
is a very small fraction of that achieved under a toll regime. Thus, the paper suggests that a
UGB may not be a useful instrument for attacking the distortions caused by unpriced traffic
congestion.
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1. Introduction

In response to a growing focus on the phenomenon of urban sprawl by the press, policy-

makers, and the general public, economists have begun to apply the tools of urban economics

to analysis of the sprawl issue. The resulting small literature has identified several proximate

causes for the rapid spatial expansion of cities, such as investment in an automobile-oriented

transportation system (see Glaeser and Kahn (2004) and Nechyba and Walsh (2004)). In ad-

dition, the analysis has drawn a distinction between spatial expansion that is warranted on

efficiency grounds and expansion that is excessive, being a result of market failures and other

distortions that impart an upward bias to urban growth (see Brueckner (2000, 2001)). One

such market failure is the failure by developers to account for the potential amenity value

of open space around cities, which can lead to excessive development at the urban fringe.

Similarly, a failure to account for the externality involved in traffic congestion, which makes

the social cost of commuting higher than the private cost, leads to commute trips that are

inefficiently long and cities that are excessively spread out.

A favored policy instrument for dealing with urban sprawl is the “urban growth boundary,”

or UGB, which specifies a city boundary beyond which development may not take place.1 As

argued by Brueckner (2001), a UGB works perfectly as a restraint on inefficient growth in some

circumstances. For example, if the market failure leading to excessive expansion is an over-

looked open-space amenity, then the social optimum can be achieved either by a development

tax equal to vacant land’s amenity value per acre, or by a UGB set at the appropriate dis-

tance from the urban center. However, a UGB cannot fully correct some other sprawl-inducing

market failures, with the congestion externality being a case in point. To fully correct this

distortion, policymakers must instead levy a congestion toll on urban commuters. By raising

1



the cost of intracity travel, this toll shrinks the spatial size of the city while greatly increasing

central population densities. This densification, which is illustrated in the numerical results of

Wheaton (1998), is socially desirable because it limits severe traffic congestion to a relatively

small area around the CBD. By contrast, a UGB does not promote central densification to

the same extent as a toll regime, limiting its efficacy, although it does address one symptom

of market failure by reducing the city’s spatial size.

Despite these limitations, a properly chosen UGB is nevertheless welfare-improving in a

congested monocentric city, as demonstrated in an earlier theoretical literature. This conclusion

can be inferred from the results of Kanemoto (1977) and Arnott (1979), who show that the

shadow value of land is less than the market value at the city’s edge in a laissez-faire equilibrium.

The benefit of a UGB as a second-best instrument is more clearly highlighted in the analysis

of Pines and Sadka (1985), who extend and synthesize the work of Kanemoto and Arnott.

The purpose of the present paper is to provide quantitative, as opposed to qualitative,

evaluation of the UGB as a second-best instrument in a congested city. Using a numerical

urban model, the paper addresses the following question: how large is the welfare gain from

imposition of an optimal UGB compared to the welfare gain from a first-best congestion-toll

regime? Thus, while the earlier theoretical literature proved that a properly chosen UGB raises

welfare, the present paper evaluates the magnitude of the resulting gain.

The research reported in this paper was partly inspired by the earlier study of Anas and

Rhee (2004), who provide a numerical appraisal of tolls and UGBs in a city that is congested

but differs substantially from the standard monocentric model, which was used in the above

analyses. Their city has dispersed, instead of centralized, employment, and intracity travel

consists of both commuting and shopping trips. In addition, consumer location choices are

influenced by random idiosyncratic preferences. The authors’ numerical results show that, in

such a framework, a congestion-toll regime raises welfare while imposition of a UGB is welfare-

reducing. The UGB’s harmful impact differs, of course, from the positive impact that arises

in the standard model, and this difference may reflect Anas and Rhee’s criterion for setting

the UGB or perhaps the atypical nature of their model (see Pines (2006)). In carrying out the

present research, the goal was to provide a counterpoint to this negative finding by highlighting
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and quantifying the positive impact of UGBs in the standard model. However, as seen below,

the present results convey a message that, in the end, is not too different from that of Anas

and Rhee.

Section 2 of the paper presents the analytical framework used in the numerical calculations,

section 3 presents the results of those calculations, and section 4 offers conclusions while

discussing the broader applicability of the findings.

2. Analytical Framework

2a. The setup

The analytical framework relies on the standard model of a congested monocentric city, as

developed in many previous papers. It also incorporates several auxiliary assumptions used in

the model of Pines and Sadka (1985), as explained below.

Consumers are assumed to have Cobb-Douglas preferences over consumption of housing,

denoted q and measured in square feet of floor space, and the nonhousing good c, with the

utility function given by v(c, q) = c1−αqα, where 0 < α < 1. Utility is maximized with respect

to the budget constraint c + pq = y − t(x), where p is the price per square foot of housing, y

is income, and t(x) is commuting cost at distance x from the CBD. Substituting the resulting

demand functions back into the utility function, equating the result to a parametric utility

level u, and solving for p yields p = Ψ(y− t(x))
1
α u− 1

α , where Ψ is a constant. Substituting this

housing price function into the demand function for q yields q = Γ(y − t(x))
(α−1)

α u
1
α , where Γ

is a constant.

Housing output, measured in square feet of floor space per unit of land, is given by θSβ,

where S represents housing capital per unit of land and 0 < β < 1. Housing developers

maximize profit per unit of land, given by pθSβ − S − r, where r is rent per unit of land

and the price of capital is normalized at unity. Solving the relevant first-order condition for

S and substituting p yields S = Λ(y − t(x))κu−κ, where κ = 1/α(1 − β) and Λ is a constant.

Substituting this solution into the profit function, equating the result to zero, and solving for

land rent yields

r = Ω(y − t(x))κu−κ ≡ r(y − t(x), u), (1)
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where Ω is a constant. Finally, noting that population density D equals housing square feet

per unit of land divided by square feet per dwelling, it follows that D = θSβ/q. Substituting

the previous solutions,

D = Φ(y − t(x))κ−1u−κ ≡ D(y − t(x), u), (2)

where Φ is a constant.

The city is assumed to be circular, and a constant fraction 1−ρ of the land at each distance

is available for housing, with the fraction ρ used for a radial road network. Since the fraction of

land devoted to roads appears to decline with x in real cities, the constancy of ρ is unrealistic.

However, this assumption follows Pines and Sadka (1985), Wheaton (1998) and other papers

in the literature. With the residential land available at distance x given by 2πx(1 − ρ), the

number of residents living beyond a distance x from the CBD is given by

n(x) =

∫ x

x
2πs(1 − ρ)D(y − t(s), u)ds, (3)

where x is the distance to the urban boundary.

With congested travel, the cost per mile of commuting at distance x, denoted T (x), depends

on the traffic flow across the ring at x (given by n(x)) relative to the road width at x, equal

to 2πxρ. Adopting the functional form used in much of the prior literature,

T (x) = η + δ

[
n(x)

2πxρ

]γ

, (4)

where all parameters are positive.

Differentiating (4) with respect to n(x), the increase in cost per mile at x when another

commuter is added to the traffic flow equals γδ[n(x)/2πxρ]γ−1(1/2πxρ). Multiplying by n(x),

which gives the number of commuters affected, then yields the total damage from the congestion

externality at x. The congestion toll per mile at x, which charges commuters for this damage,

is thus given by

τ (x) = γδ

[
n(x)

2πxρ

]γ

. (5)
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Commuting cost from distance x, inclusive of the toll, equals the sum of the toll per mile

and direct costs per mile across distances inside of x. Thus, the function t(x) appearing in the

above equations satisfies

t(x) =

∫ x

1
[T (s) + τ (s)]ds. (6)

In a city where no toll is levied, τ (x) in (5) is set to zero. Note in (6) that the CBD extends

out to x = 1, with commuting cost in its interior equal to zero.2

Differentiating (3) and (6) with respect to x yields the following relationships, which play

a central role in the numerical exercise:

n′(x) = −2πx(1− ρ)D(y − t(x), u) (7)

t′(x) = T (x) + τ (x). (8)

Eq. (7) indicates that, as x increases, the population outside of x declines at a rate equal to

the population residing at x. Eq. (8) shows that commuting cost rises with x at a rate equal

to the direct cost per mile at x plus the toll at x. In addition to (7), the function n(x) satisfies

the constraints n(x) = 0 and n(1) = N , where N is the fixed city population.

In order to conduct a straightforward welfare analysis, the city is assumed to be fully

closed, following Pines and Sadka (1985), with an equal share of differential residential land rent

accruing to each urban resident as income.3 In addition, congestion-toll revenue is redistributed

to consumers on an equal per capita basis, possibly reflecting a reduction in other unmodeled

taxes. Therefore, letting ra denote agricultural rent, the income parameter y appearing in the

equations above must satisfy

y = yexog +
1

N

∫ x

1
2πx(1 − ρ)[r(y − t(x), u)− ra]dx +

1

N

∫ x

1
n(x)τ (x)dx

≡ yexog + yrent + ytoll, (9)

where yexog, yrent and ytoll are the components of y from exogenous sources, redistributed

rents, and redistributed toll revenues, respectively. Note that although y appears explicitly in
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the first integral in (9), n(x), T (x) and τ (x) also depend implicitly on this variable. Thus, the

level of y affects both yrent and ytoll, and (9) requires that this level is self-validating in that

the components on the RHS add up to y itself. Accordingly, in the numerical exercise, y is

treated as an unknown to be determined, with yexog set parametrically.

An additional condition that is sometimes relevant requires that rent at the edge of the

city equals the agricultural rent. This condition is written

r(y − t(x), u) = ra. (10)

2b. Finding the equilibrium

In both the laissez-faire and toll-regime cases, the variables y, u and x must assume values

such that eqs. (1)–(6) and (9)–(10) are satisfied along with the above endpoint constraints on

n(x). By contrast, when a UGB is imposed, x is set exogenously, and eq. (10) does not apply

(the congestion toll τ (x) is also set at zero).

It is important to note that, in contrast to urban models without congestion, finding the

equilibrium is not simply a matter of computing the solution to a set of static simultaneous

equations. To see the reason, observe that T (x), commuting cost per mile at x, depends from

(4) on the distribution of the urban population across all locations in the city, which determines

n(x) and thus the traffic flow at x. Since T (x) in turn helps determine t(x) and thus population

density at x via (2), it follows that density at any one location in the city depends on densities

at all other locations. Given this interdependence, the equilibrium must be computed using an

iterative procedure that relies on the key equations (7) and (8), which involve the derivatives

of the n and t functions.4

This procedure works as follows. The city is divided into narrow, discrete rings indexed by

i, each with a width ε , set at a small value. The relationship xi = 1 + ε (i− 1) gives the inner

radius of ring i, so that ring 1 has inner radius 1, corresponding to the edge of the CBD. In

computing the variables of the model, the distance measure x is replaced by the ring subscript

i. Thus, r(y − t(x), u) and D(y − t(x), u) in (1) and (2) are replaced by

ri = Ω(y − ti)
κu−κ; Di = Φ(y − ti)

κ−1u−κ. (11)
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In addition, (4) and (5) are used to write

Ti = η + δ

[
ni

2πxiρ

]γ

; τi = γδ

[
ni

2πxiρ

]γ

. (12)

The variable ni is incremented using recursive relationship

ni+1 = ni + ε n′(xi) = ni − ε 2πxi(1 − ρ)Di, (13)

where the first equality is based on a first-order approximation and the second uses (7) to

substitute for n′(xi). Similarly, ti is incremented using

ti+1 = ti + ε t′(xi) = ti + ε (Ti + τi), (14)

where the second equality uses (8) to substitute for t′(xi). The iterative process starts at i = 1,

with t1 = 0 (indicating no commuting cost from the CBD edge) and n1 = N .

The iterative process is carried out conditional on the values of y and u, but these values

must be consistent with the achievement of equilibrium. To understand this point, note first

that, in the laissez-faire and toll-regime cases, the iterations stop when i reaches a value i∗

such that ni∗ ≥ 0 and ni∗+1 < 0, indicating that the population just fits inside an x value

of xi∗ = 1 + ε (i∗ − 1). Satisfaction of two equilibrium conditions is then checked. First, the

value of ri∗ is compared to ra. Second, the value of yexog + yrent + ytoll from (9), which has

been computed cumulatively in a discrete manner over the sequence of iterations, is compared

to assumed value of y. If the comparison values diverge by more than the desired degree

of accuracy in either case, the values of y and u are adjusted and the iterative process is

repeated.5

In the UGB case, the iterations stop when i reaches a value i∗∗ such that xi∗∗ equals the

specified value of x. The previous comparison involving y is then carried out, and ni∗∗ is

compared to zero. Both y and u are adjusted until the comparison values match with a given

degree of accuracy.
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3. Numerical Results

This section presents several numerical examples, each of which involves a comparison of

three equilibria: the laissez-faire equilibrium, the equilibrium under the toll regime, and the

equilibrium with an optimally chosen UGB. The goal is to gauge the efficacy of a UGB by

comparing the welfare gain it generates to the gain realized under the first-best toll regime.

The first four examples rely on a host of assumptions on parameter values, as follows. The

housing exponent α in the Cobb-Douglas utility function is set at 0.15, and the exponent β

in the housing production function is set at 0.85 (the multiplicative factor θ is set at 0.0001).

Twenty percent of the land in each ring is devoted to roads, so that ρ = 0.2. The intercept

parameter η in the commuting-cost function (4), which is taken to represent the money cost of

travel, is set at $225, reflecting a $0.36 cost per mile (the current Federal allowance), 250 round

trips per year, and 1.25 workers per household (as in Bertaud and Brueckner (2005)). The

values of the other commuting-cost parameters (δ and γ) differ across the numerical examples,

as explained below. Again following Bertaud and Brueckner (2005), agricultural land rent

ra is set at $40,000 per square mile, reflecting a land value of $1210 per acre (average US

agricultural land value in 2000) and a discount rate of 5 percent. The exogenous income value

yexog is set at $40,000, a figure approximately equal to US household income in 2000, and the

city population N is set at 3 million. Finally, the parameter ε , which represents ring width, is

set at 0.001 miles, a small value intended to achieve a high level of accuracy in identifying the

equilibria.

While these parameter values generate a fairly realistic spatial size for the city, the housing

exponent α is arguably too small. To provide sensitivity analysis, examples 1 through 4 are

supplemented with a fifth example where α is raised from 0.15 to 0.35, a more realistic value.

However, to keep the radius the city from expanding dramatically in response to the resulting

increase in housing demand, agricultural land rent is raised by more than a factor of 6, up to

a value of $250,000 per square mile.

In example 1, the congestion exponent γ in (4) is set equal to 1.50, with the multiplicative

factor δ set at 0.000001.6 This example is shown in the topmost section of Table 1, with results

for the laissez-faire equilibrium given in the first row. In this equilibrium, the city radius is
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22.683 miles, and the utility level is 7771.8997. The value of yrent is $853, so that total income

y equals $40,835. Commuting cost at the edge of the city, denoted t in the table, is $7558,

which represents 19 percent of income. Population density D1 at the edge of the CBD is

388,861 persons per square mile, and land rent r1 at this location is $357 million per square

mile.

Results for the toll regime are shown in the next line of Table 1. Under that regime, the

city radius shrinks by about 1.5 miles to 21.158 miles, a decline of about 7 percent. Central

density rises by almost a factor of four, to 1,432,612 persons per square mile, and central land

rent rises by a similar factor. Rental income rises slightly, but income from redistributed tolls

equals $1582, leading to a notably higher y value of $42,449. Commuting cost t at the edge

of the city, which now includes the toll, rises to $8112. In results not shown in the Table, the

toll’s share in commuting cost per mile (equal to τ (x)/[T (x) + τ (x)]) falls from a high of 59

percent at the CBD’s edge to 40 percent at x = 10 and then to 29 percent at x, reflecting a

decline in congestion moving away from the CBD.

The utility gain under the toll regime is 66.1881 relative to the laissez-faire case. Different

approaches can be used to derive the dollar equivalent of this gain, but the following approach

seems most natural. The laissez-faire model is solved holding utility fixed at the first-best level

achieved under the toll regime, with yexog and y adjusted to achieve equilibrium. The resulting

increase in yexog tells how much exogenous income would have to rise in the laissez-faire case

to generate the first-best utility level. For example 1, that income increase is equal to $335, or

0.8 percent of yexog. The magnitude of this dollar welfare gain is discussed further below.7

Before turning to the analysis of the UGB case, consider the laissez-faire and toll-regime

equilibria for the remaining examples. Under example 2, shown in the second part of Table 1,

the congestion exponent γ is reduced to 1.25, with δ raised to 0.00002. Note that while the

decline in γ indicates lower congestion, this change is partly offset by the higher δ. Imposition

of the toll regime shrinks the city radius from 23.293 (a larger value than in the first example) to

21.906 miles. Central density and land rent start out lower than before, but their proportional

increases under the toll regime are similar to those in the first example. The values of t and

ytoll are smaller than in example 1, partly reflecting lower tolls. The toll regime raises utility
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by 31.7010, a smaller increase than in example 1. This utility gain is equivalent to a $158

increase in yexog, a gain of 0.4 percent.

Congestion is reduced further in example 3, where γ = 1.12 and δ = .0001, leading to a

larger city radius and a reduction in central density and rent in the laissez-faire case. Imposition

of the toll regime raises utility by 21.122, a yet-smaller amount that is equivalent to a $107

increase in yexog, while generating now-familiar changes in the remaining variables. In example

4, the last case considered, γ is reduced to 1.00, the value used by Wheaton (1978), while the

value of δ is unchanged. The city’s laissez-faire radius rises again, while central density and

rent are further reduced. The changes under the toll regime again follow previous patterns, but

now the utility gain is miniscule, being equal to 1.0372. This gain is equivalent to an increase

in yexog of only $5.

Consider now the UGB cases. For each example, the congestion toll is set at zero, and

UGB equilibria are computed for a series of x values ranging below the laissez-faire equilibrium

value (x is reduced in steps of 0.1 miles). The x value in the series associated with the highest

utility level is then selected. The typical pattern of utilities resulting from tightening of the

UGB is shown in Figure 1, which pertains to example 3.

Turning to the numerical results, the optimal x value in example 1 is 18.9 miles, a radius

2.25 miles smaller than under the toll regime. Central density increases only slightly under the

optimal UGB, in constrast to the dramatic increase under the toll regime, while t falls and yrent

and hence y show slight increases. As noted above, the UGB’s failure to foster strong central

densification in a congested city limits its efficacy, a conclusion that is dramatically illustrated

by the small utility gain under the UGB relative to the laissez-faire case. This increase is only

0.4409, a magnitude that represents only 0.7 percent of the utility gain under the first-best

toll regime.

A similar pattern appears in examples 2–4. In each case, the optimal UGB lies inside

the toll-regime’s x, as illustrated in Figure 1 for example 3. In addition, central densification

with the UGB is only slight, and the utility increase relative to the laissez-fare case is small.

Interestingly, for all the examples, the utility increase ranges between 0.7 and 0.8 percent of

the gain under the toll regime.

10



To provide further sensitivity analysis, example 5 shows the effect of raising α, the Cobb-

Douglas housing exponent, from 0.15 to 0.35 while increasing ra to $250,000 (γ is set at 1.50).

Despite a higher agricultural rent, the spatial size of the city grows in response to the larger α,

with the laissez-faire x now equal to 32.058 miles. Correspondingly, central density (now 48,302

persons per square mile) is much lower than in example 1. Imposition of the toll regime shrinks

the city radius to 30.1 miles, while again raising central density and land rent substantially.

The toll regime generates a utility increase of 5.5875, which is equivalent to an income gain of

$327, a value close to that in example 1. Imposition of an optimal UGB (at x = 29.3) again

leads to only a slight increase in central density, and it generates a utility gain of 0.1185, equal

to only 2.1% of the gain under the toll regime.

Thus, example 5 reconfirms the patterns seen in examples 1–4, suggesting what seems to

be a robust conclusion: a UGB is a very ineffective substitute for the first-best toll regime,

yielding at best a few percentage points of the utility gain generated by that regime. For a city

described by the monocentric model, the analysis therefore implies that a UGB is virtually

useless as a tool for attacking the distortions induced by unpriced traffic congestion.8

While this finding constitutes the main result of the paper, another noteworthy conclusion

is that the dollar-equivalent welfare gain from the toll regime can be quite small, as seen

above. While the $335 gain under example 1 nonnegligible, the $5 gain in the less-congested

case of example 4 is surprisingly slight. However, it should be noted that trip length is the

only marginal of adjustment available to commuters in the present model, which may impart

a downward bias to the welfare gain. In reality, consumers would adjust on other margins in

response to a toll regime: switching from automobile travel to public transit, shifting travel

times toward off-peak hours, carpooling, and switching to less-crowded untolled routes. The

absence of these adjustments limits the gain from the toll regime, making it negligible in size

in the less-congested examples in Table 1.9

4. Conclusion

This paper has evaluated the efficacy of urban growth boundaries as a second-best remedy

for unpriced traffic congestion. The numerical results suggest that a UGB is a very poor
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substitute for a first-best toll regime, capturing only a tiny fraction of the welfare gain it

generates. The results thus imply that a UGB is virtually useless as a second-best policy

instrument in a congested city.

Since these conclusions emerge from a monocentric model, they could be undermined by

criticisms that question the realism of that model, which often point to its poor representation

of our increasingly polycentric cities. Despite such reservations, the conclusions of the analysis

are likely to be reasonably robust to modifications that preserve the monocentric model’s

fundamental linkage between population density and transportation costs. As seen above,

failure of the UGB to appreciably raise densities near employment centers is the main reason

for its poor performance, and this failure will persist regardless of whether the city has one or

many such centers.

This basic conclusion should also apply in models like that of Anas and Rhee (1994),

which adds many nonstandard features beyond polycentric land use to the standard model.

However, as noted above, poor UGB performance emerges in an extreme form in Anas and

Rhee’s analysis, which shows that a UGB set according to their criteria is actually welfare

reducing. This conclusion, which contradicts monocentric theory, may arise from a number of

sources, as argued by Pines (2006). However, it does coincide with the message of the present

paper, which is that urban planners searching for a second-best remedy for unpriced traffic

congestion should not view the UGB as a useful instrument.
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Table 1
Numerical Results

#1 (γ = 1.50, δ = .000001)

x utility gain y yrent ytoll t D1 r1

laissez faire 22.683 7710.8997 – 40,835.28 835.28 0 7558.55 388,861 3.573×108

toll regime 21.158 7777.0878 66.1881 42,449.13 866.47 1582.67 8886.81 1,432,612 1.368×109

best UGB 18.9 7711.3406 0.4409 (0.7%) 40,841.80 841.80 0 6691.29 390,575 3.589×108

#2 (γ = 1.25, δ = .00002)

x utility gain y yrent ytoll t D1 r1

laissez faire 23.293 7840.0825 – 40,843.10 843.10 0 7009.01 183,377 1.722×108

toll regime 21.906 7871.7835 31.7010 42,085.21 863.83 1221.39 8112.99 575,534 5.450×108

best UGB 20.8 7840.3000 0.2175 (0.7%) 40,847.51 847.51 0 6439.94 188,026 1.728×108

#3 (γ = 1.12, δ = .0001)

x utility gain y yrent ytoll t D1 r1

laissez faire 23.426 7884.9808 – 40,846.56 846.56 0 6818.73 145,911 1.341×108

toll regime 22.122 7906.6760 21.6952 42,897.93 863.47 1034.45 7776.38 389,569 3.672×108

best UGB 21.4 7885.1465 0.1657 (0.8%) 40,850.17 850.17 0 6356.00 146,335 1.345×108

#4 (γ = 1.00, δ = .0001)

x utility gain y yrent ytoll t D1 r1

laissez faire 25.200 8107.8021 – 40,858.34 858.34 0 5868.49 42,820 3.936×107

toll regime 24.826 8108.8393 1.0372 41,169.08 861.45 307.63 6174.65 59,173 5.481×107

best UGB 24.8 8107.8099 0.0078 (0.8%) 40,859.11 859.11 0 5778.20 42,853 3.940×107



#5 (γ = 1.50, δ = .000001, α = 0.35, ra = 250, 000)

x utility gain y yrent ytoll t D1 r1

laissez faire 32.058 623.9792 – 41,639.09 1639.09 0 11324.40 48,302 10.559×107

toll regime 30.113 626.5667 5.5875 45,905.40 1755.68 4149.72 15319.19 237,006 57.119×107

best UGB 29.3 624.0977 0.1185 (2.1%) 41,683.68 1683.68 0 10676.69 49,067 10.738×107



Figure 1: Welfare under a UGB regime (example 3)
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Footnotes

∗I thank David Pines for helpful discussions in the course of this work and am grateful to Alex
Anas and Ken Small for useful comments on an early draft. I also thank Richard Arnott
and two referees for helpful suggestions. These individuals are not responsible, however, for
any shortcomings in the paper.

1See Brueckner (2000, 2001) and Ding, Knaap and Hopkins (1999) for institutional discussion
regarding the use of UGBs.

2This assumption follows Wheaton (1978). While a different value for the CBD boundary
would not have a qualitative effect on the results, the CBD cannot be a point at x = 0
because the adjacent road width is then zero, implying infinite commuting cost per mile
near the CBD under (4).

3It is assumed that transport land is acquired by the city at the agricultural rent, so that the
differential rent it generates equals zero.

4The equilibrium is presumed to be unique, although no proof of this assumption is given.
The numerical calculations never suggested the existence of multiple equilibria.

5The utility level u is adjusted in increments of .0001, and at the equilibrium value in the
laissez-faire and toll-regime cases, changing u causes ri∗ to jump from one side of ra to the
other. The second requirement is that yexog+yrent+ytoll must match y to the second decimal
place, a condition that is achieved by appropriate adjustment of y as u is changed. In the
UGB equilibrium, changing u causes ni∗∗ to jump from one side of zero to the other, while
y is adjusted as above.

6An attempt was made to carry out computations for the larger γ value of 2.0, but the
adjustment methods for u and y failed in this case (see footnote 5), so that the equilibrium
could not be identified.

7It is worth noting that Wheaton’s (1998) calculations yield welfare gains from correcting the
congestion externality that are much larger than the present ones. However, the approaches
in the two papers differ. First, while Wheaton computes the social optimum for his city,
he does not decentralize the optimum via an explicit toll regime. Redistribution of the
toll revenue in the present model should apparently limit any effect from this difference,
although a firm conclusion is hard to draw. Second, land rent in Wheaton’s model flows
to absentee owners rather than being redistributed to urban residents, and this feature
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presents an obstacle to straightforward computation of an aggregate welfare gain. In fact,
Wheaton’s description of his procedure for aggregating the impacts on city residents and
absentee landowners is not clear. Despite these differences in approach, the land-use changes
in moving from the laissez-faire equilibrium to the first-best optimal city are similar in both
papers.

8As discussed by Brueckner (2001), imposition of a UGB when one is not needed reduces
welfare. In the present model, if congestion is eliminated by setting δ equal to zero, and a
UGB reduces the city radius by ten percent below its laissez-faire value (as in Table 1), then
utility falls by 0.4088, a small effect. Brueckner (2001) shows that a much larger welfare loss
can be generated by a more stringent UGB.

9The presence of these additional margins could also improve the performance of the toll-
regime relative to the (already poor) performance of the UGB.
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