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Abstract

Airline fuel consumption is costly for the firms and for society as well due to a climate-change
externality. We study how fuel-price changes affect cost-minimizing choices by airlines that
have implications for the extent of this externality. The airline industry’s capital stock can
be easily inventoried as a set of long-lived, durable aircraft. This portfolio approach allows us
to study the utilization and composition of the capital stock at a highly disaggregated level.
Changes in airline operations directed toward conserving fuel can be an important path toward
lower emissions.
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1. Introduction

Jet fuel is a major expense for commercial airlines. In 2019, the U.S civilian fleet consumed

12.2 billion gallons for domestic flights, representing a total expenditure of $24.3 billion.1 Since

this expense accounts for approximately 25% of operating costs, airlines have strong incentives

to manage their fuel usage. However, carriers do not internalize a crucial externality generated

by combustion of jet fuel: the contribution of the resulting greenhouse gas emissions (mainly

CO2) to global warming and climate change. These emissions are directly proportional to

an aircraft’s fuel consumption. While airlines contribute only a bit more than 2% of GHG

emissions in the US (representing 8% of transportation emissions),2 their prominence in the

public eye draws attention to this contribution and its harm. Moreover, as the usage of electric

automobiles grows, reducing total emissions from the transportation sector, the contribution

of aviation will become more prominent.

Biofuels offer a possible path toward lower airline emissions, but their high cost makes

this solution currently impractical. However, the Biden administration, as part of its broader

efforts to decarbonize the transportation sector, is subsidizing the development of sustainable

aviation fuels (SAF). Conceivably, SAF will become economical for airline use by mid-century.

Pricing of emissions is an alternative. While this approach is unlikely to be adopted in the

US, it is followed on a large scale in Europe, where intra-EU flights are subject to the EU’s

Emissions Trading System. Independently, ICAO (a unit of the United Nations) launched a

worldwide carbon-offset program for airlines called CORSIA, where airlines purchase offsets for

† This paper builds on the earlier work of Kahn and Nickelsburg (2016) through use of an additional five
years of data and new analysis. We thank Kangoh Lee, Joshua Graff Zivin and several referees for helpful
comments, but the usual disclaimer applies.

1 https://www.transtats.bts.gov/fuel.asp
2 See https://www3.epa.gov/otaq/documents/aviation/420f15023.pdf.
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emissions above a 2020 baseline value.3 The program is voluntary until 2026 but mandatory

thereafter.

While awaiting the emergence of affordable SAF, improvements in aircraft fuel efficiency

offer the most effective current path to lower airline emissions. For example, the Airbus A320,

which began service in the late 1980s, emits 46% less CO2 than a Boeing 727-200, a model

that retired from service long ago. The Airbus A320neo, an updated version of the A320

introduced recently, has more fuel-efficient engines and generates 18% less emissions than the

earlier model. The Boeing 737 MAX offers a similar fuel-efficiency improvement over previous

737 models, and several newer widebody aircraft yield analogous gains (see below for more

detailed information).

Since aircraft themselves thus appear to be the best sources of near-term improvements in

airline emissions, it is important to understand how carriers adjust aircraft utilization and the

composition of their fleets in response to fuel price dynamics. Their privately optimal choices

show how airline emission externalities can shrink even in the absence of Pigouvian taxation.

By estimating the scope of these effects, we can then better gauge how airlines would respond

to policy measures such as an increase in fuel taxes. We return to this question in the paper’s

concluding section.

While all corporations are major producers of greenhouse gas emissions, data constraints

usually limit our ability to explore at a detailed level the possible channels for industrial

pollution reduction. The US Census of Manufacturers surveys firms on their annual energy

consumption, but the survey instrument does not allow researchers to explore choices at the

intensive or extensive margins that together determine aggregate energy consumption.4 In

contrast, available data allow the airline industry’s capital stock to be easily inventoried as

a discrete set of long-lived, durable aircraft. This portfolio approach allows us to study the

composition and utilization of the capital stock at a highly disaggregated level.

3 CORSIA stands for Carbon Offsetting and Reduction Scheme for International Aviation. Although struc-
tured differently, this plan is equivalent to requiring the purchase of allowances under an ETS-style system.
See http://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx

4 Data at the six digit NAICS/year level can be used to calculate energy efficiency gains over time and to com-
pare energy efficiency across industries. See https://www.nber.org/research/data/nber-ces-manufactur-

ing-industry-database.
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Changes in airline operations directed toward conserving fuel can be an important path

toward lower emissions, and this channel is a main focus of the present paper. Previous

evidence of such conservation effects is given by Brueckner and Abreu (2017, 2020) and Fukui

and Miyoshi (2017), who show that airline fuel usage falls as the fuel price rises. Brueckner and

Abreu (2017) find this effect at the airline level, holding miles flown and fleet characteristics

(and thus fuel efficiency) constant, while Brueckner and Abreu (2020) find the same effect at

the aircraft-model level. Both results, along with those of Fukui and Miyoshi (2017), provide

indirect evidence of conservation efforts.5 These efforts, which are not measured directly, can

include lower flight speeds, taxiing on one engine, carrying less (heavy) reserve fuel, installation

of fuel-saving winglets, and favoring the more fuel-efficient aircraft in the airline’s fleet.6

One purpose of the current paper is to provide direct, rather than indirect, evidence of

airline fuel conservation in response to higher fuel prices, using data from the 1991-2019 period.

Central to our exercise is the recognition that the cost impact of a higher fuel price will depend

on the fuel efficiency of individual aircraft. Accordingly, for each year, we compute gallons used

per seat-mile (gallons PSM) for each airline/aircraft-type combination, and then multiply this

value by the current real fuel price per gallon. The result is the fuel cost per seat-mile (fuel

cost PSM) by aircraft type and airline. This measure is used as an explanatory variable in

several regressions that focus on particular aspects of airline operations, providing evidence of

fuel-conservation efforts.

Fast freeway drivers know that they can conserve fuel by driving slower, a gain that is

larger when the car’s overall fuel efficiency is low. Our first regression investigates a related

factor in airline operations. It asks whether aircraft with higher fuel cost PSM are flown at

lower speeds to conserve fuel.7 Since the regression’s explanatory variable, fuel cost PSM,

5 While research on fuel economy impacts for airlines is scarce, a bigger literature focuses on the private
automobile fleet and the public bus fleet. See Knittel (2012) and Li, Kahn and Nickelsburg (2015).

6 Fageda and Texeido (2022) investigate the effects of the EU’s Emissions Trading System on airline emissions.
Using a difference-in-difference approach, they show that emissions fell after 2013 on intra-EU routes, which
had then become subject to the ETS, relative to emissions on routes with one endpoint outside the EU, which
were exempt. They find that most of the decrease came from a reduction in intra-EU traffic in response to the
pricing of emissions.

7 Aircraft fuel consumption as a function of speed takes a parabolic form, as seen in Aktürk, Atamtürk and
Gürel (2014) and Matsuno and Andreeva-Mori (2020), with consumption rising beyond the Maximum Range
Cruise speed (MRC). See also Boeing (2017) as well as Moskwa (2008) for media coverage of aircraft speeds.
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depends on both fuel efficiency (gallons PSM) and the current fuel price, both these elements

contribute to the expected effect on speed. The results show the expected negative relationship

between speed and lagged fuel cost PSM, providing evidence that airlines limit flight speeds

as a way of conserving fuel.8

Because gallons PSM will itself partly depend on speed, a “semilag” of fuel cost PSM is

used in the regression to avoid reverse causality from speed to the gallons PSM component

of fuel cost PSM. This variable is generated by multiplying the current fuel price by the one-

year lag of gallons PSM, the endogenous component of fuel cost PSM. In addition, since the

regression uses aircraft-type, airline, and year fixed effects, the estimated negative effect holds

the aircraft type constant, being generated by variation in fuel cost PSM across years and

airlines within aircraft types. A recent paper by de Almeida and Oliviera (2023) carries out a

related empirical inquiry using Brazilian data.9

Since a lower flying speed will reduce the number of flights an aircraft can operate each

period, a high fuel cost PSM is expected, via lower speeds, to reduce aircraft utilization.

Utilization could also be reduced by operating an aircraft fewer hours per period in response

to a high fuel cost PSM. In other words, aircraft with high costs would spend more time on

the ground than their more fuel-efficient counterparts. To test for utilization effects through

these two channels, the second regression relates annual available seat-miles for an aircraft

type to its semi-lagged fuel cost PSM, finding the expected negative relationship. Thus, when

fuel cost PSM is high due to some combination of low fuel efficiency and high fuel prices,

airlines conserve fuel usage through lower aircraft utilization. Like the first regression, this one

uses aircraft-type, airline, and year fixed effects, so that the negative utilization effect again

holds aircraft type constant. Both the speed and utilization regressions are motivated by a

8 This finding matches anecdotal evidence provided by a colleague at the National University of Singapore,
whose friend is a pilot for MYAirline and previously AirAsia, both low-cost carriers. The friend told him that
“it is routine for the airline to monitor fuel prices and instruct pilots to fly at lower cruise speeds when prices
are high, to reduce the amount of fuel used...”

9 Their study focuses on the determinants of aircraft speed. The regressions measure speed in two alternate
ways: the planned speed given in the aircraft’s flight plan, and the actual speed computed as the ratio of flight
time to distance. While both speeds are higher when the aircraft is a new fuel-efficient type (mirroring our
results), the fuel price only has the expected negative effect on the actual speed, not on the planned speed
(which is more likely to reflect airline conservation decisions).
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theoretical model presented in section 2 of the paper.

In addition to presenting these results on fuel conservation, the paper explores another

channel by which fuel prices can reduce emissions: replacement of older, fuel-inefficient aircraft

with new planes. We use two approaches in analyzing fleet replacement. First, we attempt

to measure the effect of fuel prices on the ages and fuel efficiencies of aircraft in an airline’s

fleet, analysis that extends earlier work by Goolsbee (2008) on the retirement of the Boeing

707. Replacement is alternately captured by (i) the annual change in an airline fleet’s average

gallons PSM and (ii) the annual change in an airline fleet’s average aircraft age. As older

aircraft are replaced by newer, more fuel-efficient planes, both changes are negative. The

regressions relate these variables to the annual change in the real fuel price as well as the

lagged change. Note that, in contrast to the speed and utilization regressions and the ones

described next, these regressions are carried out at the airline/year level rather than at the

aircraft-type/airline/year level.

The second approach focuses on the rate of drawdown of older aircraft types, as well as

the rate of buildup of new types. In the drawdown regression, the dependent variable is the

percentage annual drop in the count of an older aircraft type in an airline’s fleet when the count

is falling. One explanatory variable is “relative gallons,” equal to gallons PSM for that type

divided by average gallons PSM in the airline’s fleet. The other main explanatory variables are

the fuel price and the interaction of the fuel price and relative gallons. The buildup regression

is the mirror image of the drawdown regression, focusing on aircraft types whose count is rising.

The paper’s final contribution is a presentation of descriptive evidence tracking the fates

of aircraft once they are retired from major airline fleets. These fates include transfer to other

airlines around the world or scrappage, which often provides a source of parts for aircraft

remaining in a fleet. While banning the production of polluting aircraft is obviously not an

option, in contrast to plans in California and the UK to ban production of non-electric vehicles

(Holland, Mansur and Yates (2021)), retirement and scrappage of old inefficient planes can help

limit aviation’s climate impact. Policies for accelerating the aircraft scrappage documented in

our analysis are worthy of future study.

The data for the flight speed and fleet utilization and regressions are derived from the T2
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database of the US Bureau of Transportation Statistics, which shows annual fuel usage, flight

hours, and flight distances by aircraft type and airline.10 For the replacement regressions, these

data are supplemented by annual, hand-collected data on aircraft counts and average ages by

type for each airline, drawn from non-government sources described below (this time-intensive

data effort is itself a major contribution of the paper). The sample consists of data on 17

major airlines over the 1991-2019 period.

The plan of the paper is as follows. Section 2 presents a theoretical model, while section

3 discusses the data sources and variable definitions. Section 4 presents descriptive statistics,

and section 5 presents the regression results. Section 6 discusses the fates of retired aircraft,

and section 7 offers conclusions.

2. Theoretical model

This section presents a theoretical model that motivates the empirical analysis of aircraft

speed and utilization. The model does not treat aircraft replacement, our second empirical

focus. Suppose that an airline wishes to operate F total flights per period using two aircraft

types, with type 1 being more fuel efficient than type 2. The airline owns N1 aircraft of type 1

and N2 aircraft of type 2, and both types have the same number of seats. Distance is the same

for all flights. The flight speeds of the two aircraft types are denoted v1 and v2, and they are

choice variables of the airline.11 The fuel cost for type-i aircraft is denoted ci(vi), with c′
i
> 0

and c′′
i

> 0, indicating that costs rise at an increasing rate as speed increases. Suppose that

the functions c1 and c2 differ only by a multiplicative factor, so that ci(vi) = βic(v), i = 1, 2,

where c′, c′′ > 0 and β1 < β2 (type 1 is more fuel efficient).

A lower flight speed reduces the number of flights that an aircraft can operate per period.

Let T denote the length of a period, which is best viewed as a month or a year. With

T measured in hours and D denoting the common flight distance, flights per period for an

10 See https://www.transtats.bts.gov/Fields.asp?gnoyr VQ=FIH. These data are available quarterly, but
a quarterly focus seems unnecessary (and perhaps generates uninformative noise) since the data cover almost
a 20-year period.
11 Speed differs across the cruise, takeoff and landing portions of a flight, with these variables representing

average speeds.
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aircraft equals

f(v) = T ÷ hours/flight = T ÷
miles/flight

miles/hour
= T ÷ (D/v) = (T/D)v ≡ αv, (1)

where α = T/D. Thus, flights per period is proportional to aircraft speed. Using all this

information, total fuel cost for an airline equals N1f(v1)β1c(v1) + N2f(v2)β2c(v2), or the sum

across aircraft types of the number aircraft × flights per aircraft × fuel cost per flight (with

the f terms given by (1)).

Revenue per flight is denoted R, and it is assumed to be independent of speed. While

a dramatic speed reduction would noticeably lengthen flight duration, reducing consumer

willingness-to-pay, the effect of smaller fuel-conserving reductions are likely to be imperceptible

to consumers, justifying the fixed-R assumption. The airline’s total revenue is then fixed at

RF , where F is again the fixed flight total. Ignoring non-fuel costs, the Lagrangean expression

for the airline’s profit maximization problem is

RF − [N1f(v1)β1c(v1) + N2f(v2)β2c(v2)] + λ[N1f(v1) + N2f(v2) − F ], (2)

where the second expression is total fuel cost and where λ is Lagrange multiplier, which

multiplies the expression embodying the total flight constraint (which is set at zero).

The first-order conditions for choice of v1 and v2 are

Ni[f
′(vi)βic(vi) + f(vi)βic

′(vi) − λf ′(vi)] = 0, i = 1, 2. (3)

Substituting for f and f ′ = α, (3) becomes

αβic(vi) + αviβic
′(vi) = λα, i = 1, 2. (4)

Dividing through by α, and then dividing the equation for i = 1 by the equation for i = 2, (4)

can be written, after extracting the β’s, as

c(v1) + v1c
′(v1)

c(v2) + v2c′(v2)
=

β2

β1

> 1. (5)
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Since c(v) + vc′(v) is increasing in v given c′, c′′ > 0, satisfaction of (5) requires v1 > v2.

Therefore, the less fuel-efficient aircraft type (type 2) is flown slower than type 1.

Type 2’s lower speed translates into fewer flights per period, with f(v2) = αv2 < αv1.

But it is possible that the airline further reduces utilization of type-2 aircraft by operating

them less intensively otherwise. This channel can be captured by letting Ai ≤ Ni denote the

effective number of aircraft of type i operated by the airline. For example, if type-i planes are

operated for only half of their feasible hours, then Ai would equal Ni/2.

To capture this other utilization channel, the maximization problem in (2) can be recast

by replacing Ni by Ai and adding the constraints Ni ≥ Ai, i = 1, 2, with Lagrange multipliers

ρi ≥ 0, i = 1, 2. A1 and A2 then become choice variables, and their first-order conditions are

f(vi)(λ − βic(vi)) = ρi, i = 1, 2. (6)

To derive the implications of (6), suppose that β1c(v1) < β2c(v2) holds, which says that fuel

cost per flight is lower for type-1 aircraft. When v1 > v2, this relationship is not guaranteed

to hold, but the outcome seems natural given higher type-1 fuel efficiency (β1 < β2). Then,

λ − β1c(v1) > λ − β2c(v2) holds in (6), and this inequality in turn implies that ρi cannot be

zero for both aircraft types, with at least one type then fully utilized. Type 1 (type 2) will

be fully (partially) utilized, when λ − β1c(v1) > 0 and λ − β2c(v2) = 0 hold, implying ρ1 > 0

(A1 = N1) and ρ2 = 0 (A2 < N2). Therefore, beyond a negative utilization effect due to lower

speed, the low-efficiency aircraft type may not be flown as much as possible, spending more

time on the ground than its type-1 counterpart. While it would appear that this outcome is

less likely when the total flight target F is high, it seems possible when there is more slack in

the airline’s optimization problem.

The possibility of corner solutions must be considered in this modified optimization prob-

lem. One uninteresting case is where the stock of efficient type-1 aircraft is large enough to

meet the flight target with no use of type-2 aircraft, in which case A2 = 0. However, a different

corner solution is certain to arise in an unexpected place: flight speed. When β2c(v2)−λ = 0 is

substituted into (4), the speed first-order condition, the condition cannot hold as an equality,
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with the implication that v2 should be as small as possible. This outcome implies the need for

a minimum-speed constraint vi ≥ v, i = 1, 2, which will be binding for type-2 aircraft. With

the model now more complex, v1 > v (yielding v1 > v2) cannot be established unambiguously,

but this outcome again seems natural.

3. Data and Variable Definitions

To compute aircraft speed, fuel efficiency, and utilization, we use data from the T2 data

set of the U.S. Bureau of Transportation Statistics (BTS).12 For each year, airline, and aircraft

type, this source gives fuel usage, revenue aircraft miles flown, revenue aircraft hours airborne,

and available seat-miles, yielding 2,058 observations. Letting fuel price denote annual aver-

age aviation fuel price in constant dollars per gallon,13 the following additional variables are

computed using the BTS information:

speed =
revenue aircraft miles flown

revenue aircraft hours airborne

avl seat miles = available seat miles

gallons seat mile =
fuel usage

avl seat miles

cost seat mile = gallons seat mile × fuel price (7)

Again, we generate each of these variables by aircraft type (a), airline (c, for carrier), and

year (t), although these subscripts in (7) are suppressed for readability. To reduce measurement

error, observations with values of speed and cost seat mile in the top and bottom 1% of their

respective ranges are deleted. Note that the speed variable defined above is ground speed, as

opposed to air speed (head winds make air speed higher than ground speed).

An alternative measure of an aircraft’s operating cost would be cost per passenger mile

(cost pax mile), which is generated by replacing avl seat miles in the third line of (7) with

12 See https://www.transtats.bts.gov/Fields.asp?gnoyr VQ=FIH. These data are available quarterly, but
a quarterly focus seems unnecessary (and perhaps generates uninformative noise) since the data cover almost
a 20-year period.
13 The real fuel price is the average of monthly fuel prices during each year from https://www.eia.gov/dnav/

pet/hist/LeafHandler.ashx?n=PET&s=EMA EPJK PWG NUS DPG&f=M, adjusted by the annual consumer price
index.
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passenger miles (pax miles), which counts occupied seats. The result (gallons pax mile)

is then used in place of gallons seat mile in the fourth line of (7). Since pax miles = L ×

avl seat miles, where L is the load factor (percent of seats filled), it follows that cost pax mile

= (1/L) × cost seat mile. Because of cost pax mile’s explicit dependence on load factor, we

prefer cost seat mile as a cost measure (either way, the regression results are similar). However,

it should be noted that both measures implicitly depend on load factor, because fuel usage in

both numerators will be higher when the aircraft is more fully loaded. Interestingly, taking

both the implicit and explicit dependencies into account, L is likely to affect the two measures

in opposite directions.14

It should be noted that an inherent limitation in our empirical analysis is that the fuel

price faced by an airline may differ from the current price because of fuel hedging, which

protects carriers against unfavorable price movements. While systematic data on hedging by

individual carriers over our entire sample period is not available, Merkert and Swidan (2019)

provide evidence for 2019, which shows that American, Delta and United were unhedged in

this year (although the discussion suggests they were hedged earlier) while Southwest’s fuel

costs were 64% hedged in 2019. Hedging is a short-term activity, not extending far into the

future, and as shown by the Southwest case, airlines tend to only hedge a portion of their fuel

costs. Unmeasured hedging may be partly picked up through our carrier fixed effects, although

variation in hedging over time will not be adequately captured. The upshot is that fuel-cost

hedging is a source of measurement error in our analysis.

Because the online BTS data are incomplete, we use non-government data sources to

capture two additional pieces of information for each aircraft type in an airline’s fleet: for

each year, the count (number of planes) for that type and the average age of the planes of

each type. Hand collection of these data, which was extremely time intensive, relied on three

14 To see this point, suppose that an aircraft’s fuel usage, holding speed constant, can be written as ηSγLν

where S is seat-miles, η is an index of fuel (in)efficiency, and γ and ν are less than 1 (the empirical results
of Brueckner and Abreu (2017, 2020) justify these magnitudes). Using this expression, gallons seat mile =
ηSγLν/S = ηSγ−1Lν . On the other hand, gallons pax mile = ηSγLν/(LS) = ηSγ−1Lν−1, using pax miles =
LS. Therefore, after multiplying by the fuel price and recalling ν < 1, the load factor L has opposing effects
on the two cost measures.
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sources: Planespotters.net, Planelist.net, and Airfleets.net.15 Planespotters provides a list of

aircraft types at each airline, with an introduction-to-service date and, for many of the aircraft,

a removal-from-service date. Planelist.net provides a data check on the Planespotters data.

It also traces each aircraft by manufacturer’s line number through its entire life, including

ownership and usage. The data in Planelist.net were the default in the event of discrepancies

between the Planespotters and Planelist sources. Those discrepancies were only in the usage of

the aircraft after removal from service and in the removal-from-service date. Airfleets.net pro-

vided backup data on the fleet sizes and a final check on the veracity of the data. Compilation

of the aircraft count and average age data is by itself a major contribution of the paper.

Aircraft were entered into a type’s count if they were in the fleet for more than six months

in a year. If entry occurred after June, aircraft were counted as entering the fleet in the

following year. The same rule was used for aircraft exits.16 Moreover, the entry date was

used to determine the effective age of the aircraft rather than relying on the calendar age from

completion of manufacturing. In addition, aircraft acquired through a merger or purchase

of another carrier that were removed from service within a year of the acquisition were not

counted as being part of the acquiring carrier’s fleet. Aircraft that entered service directly

from the manufacturer in the first six months of the year were given an age of 1/2 year for the

first year.

The data on aircraft counts and age by type were used to compute variables for the fleet

replacement regressions. Introducing subscripts, let tot countct =
∑

a
countact denote the total

count of planes across all aircraft types a in airline c’s fleet in year t, where countact is the

count of aircraft type a for the airline. Letting ageact denote the age of the airline’s type-a

aircraft, the average age of aircraft in a carrier’s fleet in year t is given by17

avg agect =

∑
a
countact × ageact

tot countct
(8)

15 These URLs lead directly to the sources, although the name of the Planelist website is Airlinelist.
16 While data exist on the month of acquisition of an aircraft, that month does not necessarily correspond to

the entry (beginning-of-service) date due to pilot training and marketing considerations.
17 Note that ageact is itself an average, since planes of a given type may have been produced in different years.
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In addition, the average gallons PSM of aircraft in an airline’s fleet is given by

avg gallons seat milect =

∑
a
countact × gallons seat mileact

tot countct
(8)

The drawdown and buildup regressions use the percentage changes of the aircraft-type

count, as follows:

drawdownact =

{
countact−1−countact

countact−1
if countact−1 − countact > 0

0 otherwise
(9)

buildupact =

{
countact−countact−1

countact−1
if countact − countact−1 > 0 and countact−1 > 0

0 otherwise
(10)

Note that drawdownact and buildupact are defined to be positive and pertain to types whose

counts are falling and rising, respectively. Observe also that, to avoid dividing by zero,

buildupact is not computed for the initial aircraft of a type added to the fleet. An additional

variable used in the drawdown and buildup regressions is the relative-gallons measure:

rel gallonsact =
gallons seat mileact

avg gallons seat milect

(11)

4. Descriptive statistics

Table 1 provides summary statistics for most of these variables as well as for dummy

variables for the 17 airlines. Note that the sample size for the variables fuel price, avg age

and avg gallons seat mile is smaller because they vary only by airline and year, not by aircraft

type, airline and year. Observe also that the maximum aircraft speed in the sample is just

below 540 miles per hour, a value achieved by United 747-400 aircraft in 2011. This value is

close to the 580 mph cruising speed of the aircraft, an outcome that is possible because its

long flight distances reduce the importance of the slower takeoff and landing phases. With

most aircraft flying shorter distances, these slower phases comprise a greater share of the flight

distance, leading to a lower average speed of 455 mph across the entire sample.
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Table 2 shows the frequencies of the different aircraft types in the sample (the number of

carrier/year appearances) along with average gallons per seat-mile for each type. As can

be seen, vintage Boeing and Douglas narrow-body aircraft (Boeing 727, 737-100/200 and

DC 9-10/30/40/50) have gallons PSM in the 0.023-0.035 range. Later Boeing 737 models

(the -300/-400/-500/-700 variants) have gallons PSM somewhat below that range (0.015-

0.019). McDonnell-Douglas successors to the DC-9 (MD-80/81/82/83/88) also have gal-

lons PSM in this range, as do contemporaneous Airbus narrow body aircraft (A318, A319,

A320-100/200). The newest narrowbody planes from both manufacturers, the Boeing 737-

800/900/Max 800/Max 900 and Airbus 320neo and 321neo models, are notably more fuel

efficient than their predecessors, with gallons PSM in the 0.010-0.013 range. Earlier Boeing

757-200/300 models, like the A321, are relatively large narrowbody aircraft, and they had

somewhat higher gallons PSM, in the 0.013-0.014 range.

Vintage Boeing widebody aircraft (747-100/200/300/SP) along with the more modern

747-400 version had relatively high gallons PSM, in the 0.017-0.025 range. Later Boeing mod-

els (767-200/300/400) and earliest Airbus widebody (A300) were more fuel efficient than the

747s, with values in the 0.014-0.018 range, while values for later widebody models (Boeing

777-200/300 and Airbus 330-100/200/300/333) were not much lower. The latest widebod-

ies from these manufacturers (Boeing 787-800/900/10 and Airbus 330-900 and 350-900) are

considerably more fuel efficient, with gallons PSM in the 0.011-0.015 range. The earlier, less-

successful widebody aircraft (DC-10-10/30/40, MD-11 and Lockheed L1011) were relatively

fuel inefficient, with gallons PSM in the 0.018-0.023 range.

Figures 1 and 2 illustrate the improvement in aircraft fuel efficiency over the 1991-2019

sample period. Figure 1 graphs average gallons per seat-mile for the three airlines that are

currently the largest: American, Delta and United. As can be seen, for each carrier, average

gallons per seat-mile fell from above 0.018 in 1991 to below 0.016 by 1991. Figure 2 provides

more detail for American, showing the distribution of gallons per seat-mile across aircraft types

for the years 1995, 2003, 2011 and 2019. As can be seen, the distributions shift to the left over

time, indicating greater aircraft fuel efficiency.

Figure 3 shows time path of the real fuel price per gallon over the sample period. From a
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low of $0.62 per gallon in 1998, the price rose to $1.55 per gallon in 2012, then fell to $0.86

per gallon in 2016 while rising somewhat thereafter, reaching $0.98 per gallon at the end of

the sample period.

5. Empirical models and regression results

5.1. Speed and available seat-miles regressions

As explained above, the specifications of these regressions are very simple. Letting zact

denote either speed or available seat-miles for aircraft type a operated by carrier c in year t,

lzact = θ lcost seat mileact−1 + δa + µc + ωt + uact, (12)

where the variables are used in log form, indicated by an “l” preceding the variable name, and

where δa, µc, and ωt are aircraft-type, carrier, and year fixed effects (uact is the error term).

Note that the lag of lcost seat mile in (12) is actually a “semilag”, as explained above, with

the variable based on the current fuel price but a lag of gallons seat mile. In other words,

lcost seat mileact−1 equals log(fuel pricet × gallons seat mileact−1). Recall that the lag is

needed because of possible reverse causation running from speed to cost seat mile. This effect

creates negative correlation between lcost seat mile and the regression error term, leading to

downward bias in the variable’s coefficient. In particular, a large value for the error term, which

leads to high speed, will in turn reduce gallons seat mile, creating the negative correlation

between lcost seat mile and the error term. By using lagged gallons seat mile instead of the

current value along with the current fuel price to create a semi-lagged variable, this bias may

be prevented. While another approach to dealing with this bias would rely on an instrumental

variable, a usable instrument was not available.

It is important to note in (12) that aircraft-type fixed effects will help to control for

differences in average speeds across different types of planes. Larger aircraft cruise somewhat

faster, and their longer stage lengths mean a greater share of flight time is spent at these higher

cruise speeds. Within aircraft types, by contrast, variation in speed will arise partly because

of differences in cost seat mile induced by fuel-price variation over the sample years, which is

14



captured by the year fixed effects. It might then seem that all speed variation will be absorbed

by the aircraft-type and year fixed effects, leaving no additional variation to be explained by

lcost seat mile. But recall that gallons seat mile also depends on an aircraft’s load factor.

Therefore, load factors that vary by aircraft type and airline provide an independent force that

affects fuel usage and hence speed throught lcost seat mile.18

Fuel consumption for a given aircraft type might also vary as a result of differences across

airlines in route assignments and thus route distances. For example, one airline might use

its 737-800s both for transcontinental flights as well as shorter flights, while another airline

with 757-200s in its fleet might assign these planes to transcontinental flights while using its

737-800s only for shorter flights. With gallons seat mile lower for longer stage lengths, such

differences might provide an additional source of variation in this variable within aircraft types

across airlines. However, since a given plane is likely fly on routes with a variety of distances

(within its range) over a single day, different aircraft of a given type probably fly routes with

similar average lengths over a year. If so, the preceding argument loses force, and aircraft fixed

effects will capture most of the route-distance variation across plane types.

Similarly, differences in route assignments across airlines could potentially expose planes of

a given type to different weather and wind environments, with differences in the average velocity

of head or tail winds leading to differences in gallons seat mile. While route assignment

decisions might therefore generate an additional force beyond stage length that generates

variation in gallons seat mile within aircraft types across airlines, the discussion above tends

to undercut this possibility, with route variety exposing aircraft of a given type to similar

average weather over a year.

The results of estimating (12) are shown in columns 1–3 of Table 3. Column 1 shows

results from a speed regression using the current value of lcost seat mile lag, which may

lead to a downward-biased coefficient. The coefficient is negative and significant at the 1%

level. Column 2 replaces this variable with its semi-lag, denoted lcost seat mile semilag, and

the coefficient is again significantly negative at the 1% level but smaller in absolute value,

a difference consistent with the predicted direction of bias. Thus, a high cost PSM reduces

18 Attempts to use load factor as an instrument for lcost seat mile were unsuccessful.
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aircraft speed. The lcost seat mile semilag coefficient of −0.125 indicates that a 10% increase

in the semi-lagged cost PSM reduces flight speed by 1.25%. At an average speed of 455 mph,

this reduction equals 5.7 mph.19 Note that, because cost seat mile has a multiplicative form,

this 10% increase could come either from a 10% increase in the fuel price or a 10% increase

in (lagged) gallons PSM, yielding a speed comparison between a given aircraft and a less

fuel-efficient plane.

Column 3 of Table 3 shows that, as predicted, aircraft with a high semi-lagged lcost seat

mile are less utilized, generating fewer available seat-miles per year. The coefficient of −1.477

(again significant at the 1% level) shows a 10% increase in cost reduces avl seat miles by 15%.

In this regression, use of aircraft-type fixed effects controls for innate variation in available seat-

miles across types due to differences in stage lengths and ground times (factors that vary across

long- and short-haul aircraft). Once again, the cost effect is further identified by variation in

cost seat mile within aircraft types across airlines and years (caused by fuel-price, load factor

and route and weather variation).

As seen in the theoretical discussion of section 2, aircraft with a higher cost per seat-mile

may spend more time on the ground than lower-cost planes, not being operated as intensively.

But the model also showed that available seat-miles are mechanically related to speed, given

that a lower speed allows fewer flights per period. Therefore, in addition to an available-seat-

miles regression with the form of (12), we report a regression with log speed as an additional

covariate:

lavl seat miles = θ lcost seat mileact−1 + τ lspeedact + δa + µc + ωt + uact. (13)

Note that it is appropriate for current, rather than lagged speed, to appear in (13). If a

high lcost seat mile affects utilization independently of speed, then that variable’s coefficient

should remain negative and significant.

19 The airline dummy coefficients, which are not reported, show that most carriers fly slower than American,
the default carrier. Exceptions are Alaska, Allegiant, United and Virgin American, whose speeds are not
significantly different than American’s, and Continental, which flies faster. The differences are not great,
however, with the largest difference relative to American equal to 1 mph.
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Column 4 of Table 3 adds speed as a covariate to the utilization regression in column

2. Recall that if a high cost seat mile affects utilization independently of speed, then the

variable’s coefficient should remain negative and significant. This prediction is confirmed,

with the cost coefficient smaller than in column 2 but still significant at the 1% level. The

speed coefficient is, of course, positive, showing that faster flying yields more available seat-

miles. The coefficient magnitude shows that a 1% increase in speed raises available seat-miles

by 4.6%. Once again, aircraft-type fixed effects are crucial in identifying these effects.

The results in Table 3 thus show that a high cost per seat-mile reduces an aircraft’s flying

speed and the available seat-miles it generates. These effects are highly intuitive while also

conforming to the predictions of the theoretical analysis.20

It is worth asking whether other factors that could affect speed and aircraft utilization are

being ignored in our framework, possibly biasing our estimates. For example, a high demand

for air travel would presumably raise available seat-miles through an airline supply response.

Within the model, high demand could raise the fuel price, thus increasing cost seat mile.

While the resulting effect on available seat-miles would be supply-reducing, the increase in

airfares due to stronger demand would encourage more supply. Although failure to capture

the latter effect could lead to omitted variable bias in the utilization regression, the presence

of year fixed effects in our model precludes such an outcome, with these dummy coefficients

taking large values in high-demand years. Therefore, in addition to capturing micro-level

aircraft-utilization impacts that operate through cost seat mile, our framework can capture

macro-level demand impacts via its flexible structure, thereby circumventing possible omitted

variable bias.

While Brueckner and Abreu (2020) show that fuel consumption naturally varies in 1-to-

20 A reviewer suggested using carrier×year fixed effects as a way of addressing the possible mismeasurement
of fuel prices resulting from time-varying, carrier-specific hedging practices. While this approach is imperfect,
adopting it leaves the qualitative results in Table 3 unaffected, with each coefficient increasing slightly in
absolute value while retaining significance. The regressions below based on (14), which are run at the airline-
year level, do not have enough observations for carrier×year fixed effects, but when this approach is used in the
drawdown/buildup regressions based on (15), the results are inferior to those using uninteracted carrier fixed
effects. Conceptually, allowing the estimated drawdown and buildup patterns to vary within airlines by year
appears to reduce the scope for potential impacts of the explanatory variables, possibly making this approach
inappropriate a priori.
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1 fashion with available ton-miles (closely related to available seat-miles), they provide no

evidence on the speed/fuel-consumption linkage. To generate such evidence, we can estimate

their regression (column 3 of their Table 3) on our data while including speed as an additional

covariate. The existing covariates in their Table 3, whose coefficients are all significant with

the expected signs, are log of available ton-miles (positive and naturally close to 1), load factor

(positive), stage length (negative) and the fuel price (negative), along with aircraft-type fixed

effects. When their regression is run on our sample without the speed variable, the results are

close theirs, with discrepancies due to small differences in the samples. But when the log of

speed is included, the stage-length coefficient flips from negative to significantly positive while

the lspeed coefficient is significant with the wrong negative sign. Apparently, inter-connections

between speed, stage length, and ton-miles account for this unexpected result, because when

available ton-miles is dropped from the regression, the lspeed coefficient switches from negative

to significantly positive, indicating that a 1% increase in speed raises fuel use by 6%. However,

because this regression is by no means an ideal specification, we do not report it.21 The upshot

is that showing the link between speed and fuel consumption, which we know exists based on

engineering evidence, is not straightforward in the presence of other related variables.

5.2. Fleet replacement regressions: Changes in age and fuel efficiency

A carrier makes aircraft replacement decisions several years in advance by placing orders

with the manufacturer. In normal times, fulfillment of an order takes just a few years, in

contrast to the present-day existence of large order backlogs at Boeing and Airbus, which may

lead to long waits for delivery of an aircraft. However, airline leasing of aircraft is extensive,

and leasing companies can often provide planes on relatively short notice.

Since fleet replacement swaps old planes for new, more fuel-efficient aircraft, it reduces

both the average age and average fuel efficiency of a carrier’s fleet. Accordingly, our first

approach to analyzing fleet replacement focuses on changes in the average age and fuel effi-

21 This regression replaces the fuel price, whose coefficient inexpicably turns positive with the omission of
available ton-miles, by year fixed effects and adds carrier dummies. In addition to the positive speed effect,
this specification leads, as before, to a positive and significant load-factor coefficient, although the stage-length
coefficient turns positive and loses significance, again showing the difficulty of crafting a successful specification
that includes speed.
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ciency (gallons seat mile) of an airline’s fleet. Let ∆yct denote the change in the log of either

average aircraft age or average fuel efficiency for airline c between years t − 1 and t, and let

lfuel price difft denote the change in the log fuel price between these years. Since fleet re-

placement decisions are made well in advance, we also include a lag of the fuel-price difference,

given by lfuel price diff lagt, equal to the change in the log fuel price between years t−2 and

t − 1. Then the regression equation is

∆yct = κ lfuel price difft + ω lfuel price diff lagt + X ′
ct φ + µc + rct, (14)

where µc is again the airline fixed effect, rct is the error term, and Xct is a column vector of

additional covariates.

As for the elements of X, one is a time trend variable equal to t − 1991, which is used

because year fixed effects are collinear with fuel prices. Two additional variables are the

December unemployment rate for the given year (capturing the state of the economy) and a

merger dummy, set at 1 in the year after completion of a merger (after the merger partner’s

aircraft counts become zero).22 This variable captures a possible change in an airline’s average

fuel efficiency after absorption of the partner’s fleet.

Table 4 shows the results of estimating (14). In column 1, the dependent variable is the first

difference of the log of an airline’s average gallons per seat-mile, denoted lavg gallons seat mile

diff . The regression excludes the current fuel price difference, on the expectation that the

lagged difference may be more important. As can be seen, however, the coefficient of this

variable, though negative as expected, is insignificant. The same conclusion emerges in column

2, where the dependent variable is the first difference of the log of an airline’s average aircraft

age, denoted lavg age diff . The effect of the lagged fuel price difference is again insignificant.

Columns 3 and 4 show the effects of adding the current fuel-price difference to both regres-

sions. As can be seen, the coefficients on the lagged difference remain insignificant, but the

22 The merger dummy equals 1 for American in 2002 and 2015 following the TWA and US Airways mergers,
for US Airways in 2007 following the America West merger, for Delta in 2010 following the Northwest merger,
for United in 2010 following the Continental merger, and for Southwest in 2012 following the AirTran merger.
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coefficients of the current fuel-price difference are negative and significant, although the signif-

icance level in column 4 is slightly below conventional levels, at 6%. Therefore, even though

we might expect fuel-price movements several years previously to affect fleet replacement de-

cisions, the regressions show that only the current fuel-price difference (the change between

years t − 1 and t) has a significant effect. A possible reason why the current as opposed to

lagged fuel-price difference matters is use of leased planes in fleet adjustments, which allows

quicker responses to fuel-price changes than the purchase of new planes.

Overall, the results in Table 4 show that a current fuel-price increase hastens fleet re-

placement by reducing the fuel consumption and average age of an airline’s aircraft. Among

the control variables, both the merger and time-trend coefficients are insignificant in all the

regressions.23 But the coefficient of the unemployment variable is significantly positive in the

age-difference regressions. Thus, fleet replacement as measured by age changes is evidently

slowed (with the changes being less negative) in bad economic times, when the unemployment

rate is high.

5.3. Fleet replacement regressions: Drawdown and buildup

The second approach to analyzing fleet replacement focuses on drawdown and buildup of

aircraft types. Letting qact denote either of the drawdownact or buildupact variables in (9) and

(10), the regression specification is

qact = ξ fuel pricet + ε rel gallonsact + υ fuel pricet×rel gallonsact + X ′
ct
φ + µc + wact,

(15)

where rel gallonsact is defined in (11), the third term is an interaction term between fuel price

and rel gallons, and wact is the error term. Even though we might expect past fuel prices to

influence drawdown and buildup decisions given the need to plan in advance, we find that use

of the current price in these regressions leads to superior results, mirroring the outcomes seen

in Table 4. The reason may again be the influenced of leasing, which allows quicker responses

to current conditions.

23 Adding a squared time trend leaves the qualitative fuel-price effect in column 3 unchanged, while the effect
in column 4 becomes significant at a level close to 10%.

20



Table 5 presents the drawdown and buildup regressions based on (15) with the interaction

term omitted, using the unlogged fuel price.24 Recall that the dependent variable equals the

proportional drop in the aircraft-type count for types whose count is falling (drawdown) or the

proportional increase in the count for types whose count is rising (buildup). Both measures

are thus positive. In the drawdown regression of column 1, the main variables are fuel price

and rel gallons, equal to the aircraft type’s fuel efficiency relative to the fleet average. As can

be seen, the fuel-price coefficient is insignificant while the rel gallons coefficient is positive and

significant at the 1% level. Therefore, an aircraft type is drawn down faster when rel gallons

is higher, indicating much worse fuel efficiency relative to the fleet average. But the fuel price

appears to play no role in the drawdown process, a conclusion that will be further investigated

below. The buildup regression in column 2 shows a mirror-image result, with the significantly

negative rel gallons coefficient indicating that the buildup of an aircraft type is faster when

relative gallons is much lower (fuel efficiency is much better) than the fleet average. The

fuel-price coefficient is again insignificant.

These findings are natural, but the absence of fuel-price effects is unexpected. This con-

clusion is overturned in column 3, where the interaction between rel gallons and fuel price

is added to the regression of column 1. The rel gallons effect, which from (15) equals

ε̂ + ν̂fuel pricet, remains significantly positive (when evaluated at the mean fuel price for

observations with nonzero drawdown). However, the overall fuel-price effect, which equals

ε̂ + ν̂ rel gallonsact, is again insignificant (when evaluated the mean of rel gallons). But the

positive interaction coefficient indicates that the relative-gallons effect is stronger when the

fuel price is higher. This finding, which shows that the drawdown of aircraft with higher

rel gallons is faster the higher is the fuel price, conforms to intuition.

The presence of the interaction term in the buildup regression in column 4 eliminates the

significance of all the main coefficients. But the signs of the level coefficients match those in

column 2, while the negative point estimate of the interaction coefficient tells the same story

as before. In other words, a higher fuel price hastens the buildup of an aircraft type with low

24 Since drawdowns and buildups involve only a handful of aircraft types, it appears inappropriate to include
type fixed effects in the regressions of Table 5. In addition, since the dependent variable in these regressions is
not logged, the unlogged fuel price is used on the right-hand side.
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relative gallons.25

It could be argued that, since the dependent variables are censored at zero in the drawdown

and buildup regressions, they should be estimated by a Tobit routine. A counterargument is

that the constructed nature of the variables, from (9) and (10), makes the censoring artificial

and renders such an approach inappropriate. Regardless of the correct view, Tobit estimation

of (15) preserves many of the qualitative features of the results in Table 5, although the

interaction coefficient in column 3 loses significance while remaining positive.

Therefore, fuel prices appear to affect airline fleet-replacement decisions in ways that make

sense. A faster increase in fuel prices leads to a faster drop in average gallons per mile (a faster

improvement in fuel efficiency) and a faster decrease in the average age of a carrier’s aircraft.

A higher level of the fuel price hastens the drawdown of lower-fuel-efficiency aircraft, while

appearing to hasten the buildup of higher-fuel-efficiency aircraft, although the latter effect is

insignificant.

6. Where do retired aircraft go?

With the drawdown of older aircraft being an important path to higher fuel efficiency for an

airline’s fleet, it is natural to wonder where the retired aircraft go. Very often, retired planes

are used for crew training or to provide inventories of spare parts, with the latter strategy

being particularly profitable if the fleet contains a large number of that type and if the type’s

drawdown occurs over a number of years.26 Alternately, retired aircraft can be sold to a leasing

company or to another other airline for continued service,27 with the buyer trading off higher

fuel costs for lower capital costs.28

Evidence on the dispositions of selected retired aircraft is provided in Table 6. Before

considering the numbers, note that the table entries were constructed using individual aircraft

histories from Planelist.net and Planespotters.net. Although planes often circulated among a

25 For a related analysis pertaining to the automobile market, see Klier and Linn (2010), who show that sales
of new cars depend on both fuel efficiency and fuel cost, being inversely related to the car model’s cost per
mile of driving (a variable analogous to our cost PSM).
26 Alternately, the aircraft could be sold to a parts broker for dismantling.
27 For an empirical analysis of these resale markets, see Gavazza (2011).
28 This trade off is particularly favorable for a cargo airline, which may only fly its aircraft once or twice a

day, limiting fuel costs relative to more-intensive airline use.
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number of different secondary carriers following retirement, aircraft dispositions in the table

were assigned based on the predominant use. For example, non-OECD use was assigned when

the retired aircraft was mainly operated by passenger carriers in (other) OECD countries even

if it was flown by non-OECD airlines for part of its remaining life. The life of the aircraft

was calculated as the difference between the year of removal from service and the year it was

manufactured.29

Turning to Table 6, the first row shows that, at its peak, American Airlines had a large fleet

of 270 MD-82 aircraft, which represented 47% of the total world fleet (see the second panel).

American retired its fleet over a 10-year period, using the bulk of the retired aircraft (81%) for

spare parts or training (some were also donated to museums). Two percent of the aircraft were

operated by other OECD passenger airlines, while 12% were operated by non-OECD passenger

carriers, with 5% operated by cargo or charter airlines. The first row of the lower panel shows

that the ages at removal from service depended on the aircraft’s disposition, with longer usage

by non-OECD passenger airlines and cargo or charter operators.

United and Southwest retired their vintage 737 aircraft over periods of 7 and 10 years,

respectively. United’s peak count of 98 737-300 aircraft accounted for 9% of the world total,

while Southwest’s peak count of 60 737-200 aircraft accounted for 6% the world total. The

upper panel of the table shows that a smaller share of these aircraft were retained for parts

and training than in case of American’s MD-82s. As with American’s planes, these 737s were

removed from service at greater ages when operated by carriers other than OECD passenger

airlines.

Delta’s DC-9-30 aircraft (82 planes, accounting for 14% of the world fleet) were released into

an expanding low-cost-carrier environment in the US, with the bulk ending up at ValuJet and

AirTran before being scrapped. Very few (10%) were retained for parts or training. Regardless

of disposition, these DC-9s were removed from service at greater ages than any of the other

planes shown in the table.

29 A small number of aircraft did not have information indicating the date of removal from service, and they
were dropped from the data.
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7. Conclusion

This paper has documented several important channels by which fuel prices affect fuel

usage in the airline industry. Since concerns about climate change make airline fuel usage,

and thus aircraft emissions, a central public policy issue, the paper’s findings are important.

Our results show that, when fuel cost per seat-mile (which depends on both the fuel price

and aircraft fuel efficiency) is high, an aircraft type tends to be flown at a lower speed and to

generate fewer available seat-miles per year. This negative seat-miles effect is partly due to the

lower speed, but our results suggest that fuel-inefficient planes are also used less intensively,

spending more time on the ground than their more-efficient counterparts.

The paper also documents a connection between fuel prices and the retirement of inefficient

aircraft. A trend of rising fuel prices generates upward and downward trends, respectively, in

the average fuel efficiency and average age of an airline’s fleet. A similar conclusion emerges

for individual aircraft types, with high fuel prices raising the rate at which fuel-inefficient types

are drawn down and eventually eliminated from the fleet.

Since airlines do not fully internalize the environmental damage from their fuel consump-

tion, government intervention in the form of an environmental fuel tax is appropriate. Brueck-

ner and Abreu (2017) computed the required magnitude of such a tax, assuming $40 of envi-

ronmental damage per metric ton of CO2, and they reached a value of $0.39 per gallon of jet

fuel. The results of this paper indicate the channels by which such a tax could affect airline

operations. Because of the resulting rise in the fuel cost per seat-mile, fuel inefficient aircraft

would be flown even slower than they are today and would generate fewer available seat-miles.

These inefficient planes would be retired faster than they are today, and the acquisition of

more efficient aircraft could be hastened. All these effects would put downward pressure on

fuel usage by the airline industry, with consequent environmental benefits.

To derive a quantitative as opposed to qualitative impact, consider the effect on speed of

introducing a $0.39 fuel tax, under the assumption that the pre-tax fuel price is unaffected. The

first step is to note that this tax represents 39% of the average fuel price of $1.005 from Table

1. Next, note that since cost seat mile rises in proportion to the (after-tax) fuel price, the

39% tax-induced price increase raises this cost by 39%. With a 10% increase in cost seat mile
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reducing speed (from above) by 5.7 mph, it follows that a 39% increase will reduce speed by

3.9 × 5.7 mph, or 22.23 mph, a substantial magnitude. However, given that cost seat mile is a

composite of fuel efficiency and the fuel price, using its coefficient to predict the effect of large

fuel-price increases (holding fuel efficiency constant) may give implausible results.30 The 22

mph number is nevertheless suggestive, indicating that tax policy may be able to substantially

affect airline operations and thus fuel usage.

30 Note that if the change in cost PSM were instead due to a 39% increase in gallons PSM, the speed difference
(which now compares planes with substantially different fuel efficiencies) might be more plausible. In the same
way, while the model’s prediction of a 58.5% drop in available seat-miles from a 39% increase in the fuel price
(3.9 times Table 3’s 15% reduction from a 10% cost increase) seems implausible, it might not be unreasonable
if the 39% cost change were due to the same percentage increase in gallons PSM, implying that dramatically
less fuel-efficient planes are much less utilized.
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Table 1: Summary statistics

VARIABLES Obs. Mean Std. Dev. Min Max

fuel price 29 1.001661 .2919667 .6239967 1.550163

gallons seat mile 2,058 .0176311 .004464 .0096263 .0429169

cost seat mile 2,058 .0164822 .004731 .0085528 .0357984

avl seat miles 2,058 1.10e+10 1.18e+10 4553440 9.98e+10

speed 2,058 455.111 46.89648 317.9204 539.8943

avg gallons seat mile 373 .0165887 .0030133 .0111741 .0275682

avg age 373 9.237527 5.956599 0 32.44

American (AA) 2,058 .127794 .3339414 0 1

Alaska (AS) 2,058 .0461613 .2098853 0 1

Jet Blue (B6) 2,058 .0092323 .0956633 0 1

Continental (CO) 2,058 .0932945 .2909153 0 1

Delta (DL) 2,058 .1686103 .3744984 0 1

Frontier (F9) 2,058 .0272109 .162737 0 1

AirTran (FL) 2,058 .0097182 .0981245 0 1

Allegiant (G4) 2,058 .0155491 .1237528 0 1

Hawaiian (HA) 2,058 .0199223 .1397671 0 1

America West (HP) 2,058 .0335277 .1800537 0 1

Spirit (NK) 2,058 .0199223 .1397671 0 1

Northwest (NW) 2,058 .1015549 .3021355 0 1

TWA (TW) 2,058 .0471331 .2119751 0 1

United (UA) 2,058 .1511176 .3582505 0 1

US Airways (US) 2,058 .074344 .2623937 0 1

Virgin America (VX) 2,058 .0102041 .100523 0 1

Southwest (WN) 2,058 .0447036 .2067026 0 1
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Table 2: Aircraft-Type Frequency and Gallons per Seat-Mile

Aircraft type Frequency Gallons PSM

Airbus A-318 10 0.0182

Airbus A300-600/R/CF/RCF 19 0.0163

Airbus A300B/C/F-100/200 5 0.0184

Airbus A310-300 3 0.0186

Airbus A319 122 0.0158

Airbus A320-100/200 145 0.0136

Airbus A320-200neo 2 0.0111

Airbus A321-200neo 2 0.0107

Airbus A330-200 36 0.0144

Airbus A330-300/333 16 0.0139

Airbus A330-900 1 0.0131

Airbus A350-900 1 0.0128

Boeing 717-200 13 0.0223

Boeing 727-100 3 0.0315

Boeing 727-200/231A 62 0.0252

Boeing 737-100/200 89 0.0229

Boeing 737-300 120 0.0171

Boeing 737-400 43 0.0167

Boeing 737-500 60 0.0194

Boeing 737-700/700LR/Max 7 74 0.0147

Boeing 737-800 82 0.0130

Boeing 737-900 31 0.0122

Boeing 737 Max 8 4 0.0109

Boeing 737 Max 9 1 0.0100

Boeing 747-100 26 0.0183

Boeing 747-200/300 34 0.0199

Boeing 747-400 34 0.0173

Boeing 747SP 4 0.0252

Boeing 757-200 164 0.0143

Boeing 757-300 34 0.0131

Boeing 767-200/ER/EM 98 0.0178

Boeing 767-300/300ER 110 0.0154

Continued on next page
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Table 2 continued

Aircraft type Frequency Gallons PSM

Boeing 767-400/ER 38 0.0150

Boeing 777-200ER/200LR/233LR 79 0.0167

Boeing 777-300/300ER/333ER 10 0.0159

Boeing 787-8 Dreamliner 13 0.0146

Boeing 787-9 Dreamliner 3 0.0124

Boeing 787-10 Dreamliner 1 0.0115

Fokker 100 13 0.0259

Lockheed L-1011-1/100/200 17 0.0195

Lockheed L-1011-500 Tristar 10 0.0229

McDonnell Douglas DC-9-10 19 0.0352

McDonnell Douglas DC-9-30 59 0.0261

McDonnell Douglas DC-9-40 27 0.0266

McDonnell Douglas DC-9-50 28 0.0260

McDonnell Douglas DC-9 Super 80/MD81/82/83/88 144 0.0187

McDonnell Douglas DC-9 Super 87 3 0.0254

McDonnell Douglas DC-10-10 36 0.0183

McDonnell Douglas DC-10-30 45 0.0205

McDonnell Douglas DC-10-40 13 0.0209

McDonnell Douglas MD-11 24 0.0192

McDonnell Douglas MD-90 27 0.0158
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Table 3: Speed and Available Seat-Miles Regressions

(1) (2) (3) (4)
VARIABLES lspeed lspeed lavl seat miles lavl seat miles

lcost seat mile -0.159** – – –
(0.00780)

lcost seat mile semilag – -0.125** -1.477** -0.898**
(0.00841) (0.244) (0.255)

lspeed – – – 4.639**
(0.677)

Constant 5.522** 5.436** 16.28** -8.941**
(0.0446) (0.0345) (1.000) (3.810)

Fixed Effects

Aircraft type yes yes yes yes
Airline yes yes yes yes
Year yes yes yes yes

Observations 2,058 1,874 1,874 1,874
R

2 0.940 0.942 0.578 0.588

Standard errors in parentheses

** p<0.01, * p<0.05
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Table 5: Drawdown and Buildup Regressions

(1) (2) (3) (4)
VARIABLES drawdown buildup drawdown buildup

fuel price -0.00773 0.0315 -0.172** 0.223
(0.0147) (0.0518) (0.0581) (0.205)

rel gallons 0.189** -0.323** 0.0446 -0.155
(0.0135) (0.0476) (0.0511) (0.180)

rel gallons × fuel price 0.162** -0.189
(0.0555) (0.196)

unemployment -0.328 -0.802 -0.331 -0.799
(0.201) (0.707) (0.200) (0.707)

trend 0.000803 -0.00297 0.000825 -0.00299
(0.000487) (0.00172) (0.000486) (0.00172)

constant -0.126** 0.464** 0.0203 0.294
(0.0191) (0.0674) (0.0536) (0.189)

Fixed Effects
Airline yes yes yes yes

Observations 2,058 2,058 2,058 2,058
R

2 0.111 0.052 0.115 0.052

Standard errors in parentheses

** p<0.01, * p<0.05
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Table 6: Fate of Retired Aircraft

Airline Aircraft type Peak count Disposition upon leaving fleet

Parts/training OECD pax non-OECD pax Cargo/charter

American MD-82 270 81% 2% 12% 5%

United B737-300 98 56% 5% 39% 0%

Southwest B737-200 60 30% 22% 37% 12%

Delta DC-9-30 82 10% 54% 26% 11%

% World Average life (years)

American MD-82 47% 24.2 25.6 28.5 29.0

United B737-300 9% 21.0 21.2 24.6 n/a

Southwest B737-200 6% 20.8 23.7 28.2 32.6

Delta DC-9-30 14% 27.9 32.7 29.7 40.2
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