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A Rapid Adapting and Continual Learning Spiking
Neural Network Path Planning Algorithm for

Mobile Robots
Harrison Espino , Robert Bain, and Jeffrey L. Krichmar , Senior Member, IEEE

Abstract—Mapping traversal costs in an environment and plan-
ning paths based on this map are important for autonomous nav-
igation. We present a neurorobotic navigation system that utilizes
a Spiking Neural Network (SNN) Wavefront Planner and E-prop
learning to concurrently map and plan paths in a large and complex
environment. We incorporate a novel method for mapping which,
when combined with the Spiking Wavefront Planner (SWP), allows
for adaptive planning by selectively considering any combination
of costs. The system is tested on a mobile robot platform in an
outdoor environment with obstacles and varying terrain. Results
indicate that the system is capable of discerning features in the
environment using three measures of cost, (1) energy expenditure
by the wheels, (2) time spent in the presence of obstacles, and
(3) terrain slope. In just twelve hours of online training, E-prop
learns and incorporates traversal costs into the path planning
maps by updating the delays in the SWP. On simulated paths,
the SWP plans significantly shorter and lower cost paths than A*
and RRT*. The SWP is compatible with neuromorphic hardware
and could be used for applications requiring low size, weight, and
power.

Index Terms—Autonomous vehicle navigation, motion and path
planning, neurorobotics.

I. INTRODUCTION

F INDING one’s way around in an ever-changing world is an
important part of everyday life. Similarly, robots and other

autonomous systems require this capability. Researchers and
industry have made considerable progress developing navigation
systems. However, critical open issues have been identified such
as: 1) Generating maps using data from multiple sensors, 2)
Continual learning without offline retraining, and 3) Flexibility
in the face of a changing environment and different navigational
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objectives, such as conserving battery usage or avoiding foot
traffic [1], [2], [3]. In the proposed work, we address these issues
by developing a novel approach that takes different traversal
costs into account when navigating.

We present a spiking neural network navigation system that
simultaneously constructs environmental cost maps and uses
those maps to plan efficient paths. The system is tested on a
ground robot in rugged, varied outdoor terrains with cost maps
for obstacles, slope, and for the robot’s effort based on the
motor’s current draw. We show that the robot rapidly learns
to plan paths that avoid impassable trees and benches with an
obstacle cost map, and plans smoother or flatter paths with the
current or slope cost map.

Our utilization of spiking neurons makes implementation
on highly parallel hardware, like neuromorphic hardware, pos-
sible in the future. Compared to conventional architectures,
neuromorphic networks provide greater energy efficiency and
hardware size advantages [4], [5]. The SWP [6] and E-prop [7]
have been implemented on neuromorphic hardware. The present
work demonstrates the applicability of these elements for robotic
navigation.

SWP was introduced in [8], and compared to A* in simplified
pre-mapped environments, where the costs were uniform values
for sidewalks, grass, and obstacles. E-Prop was added to SWP to
update connection delays in simple, grid world simulations with
uniform, noise-free costs [9]. An open question is whether the
SWP has advantages where costs are discovered by a physical
robot’s sensors.

The main contributions of this work are as follows:
1) We show that our navigation system can simultaneously

map complex, real-world environments in real time and
plan paths over multiple measures of cost, which are
measured with noisy sensor readings onboard a physical
robot. This map is continuously learned online through
experience. The robot uses this map to plan trajectories
depending on what costs are considered.

2) In trials with a ground robot, we show that the robot can
learn a cost map in a few hundred training steps and several
hours of runtime. We also show that the robot can adapt
to changes in the environment in just a few trials without
taking the system offline.

3) By exhaustively simulating all paths through our learned
costmap, we find that the SWP is the best candidate for
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Fig. 1. Overview of our navigation system. 1. Neurons in the SWP represent locations in space. To plan a path, a spike is induced at the robot’s start location
and propagates until it reaches the goal location. 2. The robot navigates to the goal using the planned path. Internal measurements and environmental sensors track
costs when traversing between neuron waypoints. 3. Using the learned costs, the planner is updated using E-prop. The figure shows each neuron’s eligibility trace,
which determines the update magnitude based on how recently the neuron spiked.

minimizing cost and path length between itself, A*, RRT*,
and a shortest Euclidean distance planner.

4) The present spiking neuron implementation could be im-
plemented on neuromorphic hardware to reduce the size,
weight, and power of a navigation system.

Fig. 1 provides an overview of the path planning system. The
equations in the figure are described in Sections III-A and III-B.

II. RELATED WORKS

A. Path Planning

Traditional solutions to path planning often approach the
problem by traversing through a graph of costs, or through direct
sampling of the state space. Here, we briefly review popular
algorithms from both.

A* traverses a graph by considering nodes according to a
priority queue sorted by an immediate cost value and a heuristic.
Given an admissible heuristic, A* has been proven to provide
cost optimal paths [10]. A* has been utilized for robot navigation
as well as applications such as puzzle solving and resource
allocation. In unknown environments, the D* algorithm (short-
ened from Dynamic A*) aims to reach a goal while continually
re-planning when new information about the environment is
discovered [11].

Sampling-based algorithms form a viable path by exploring
the space of permissible states. Rapidly exploring random tree
(RRT) is one such algorithm designed to efficiently construct
a space filling tree until a sequence of valid states between

a start and goal state is found [12]. It is often employed in
high-dimensional trajectory planning problems in which quickly
generating a feasible path is more important than generating an
optimal one [13].

Many variants of RRT have been created to address problems
such as optimality or environmental changes. For the former,
RRT* is a variant of RRT which aims to optimize for some
cost using a tree rewiring step [14]. RRTX further builds on this
concept for dynamic environments [15].

B. SLAM

Mapping of an environment is often accomplished through
the process of simultaneous localization and mapping (SLAM).
This is a thoroughly explored problem in robotics in which
the environmental features and the robot’s position in the en-
vironment are unknown, and both must be estimated through
sensory and self-motion data. Classical solutions to this problem
such as extended Kalman filter SLAM (EKF-SLAM) iteratively
estimate a posterior probability distribution for the robot pose
and landmark positions [16]. Other methods use the data as con-
straints to a graphical network representing the posterior [17],
or rely on tracking changes in visual input [18]. In a more
biologically-inspired approach, RAT-SLAM integrates visual
place recognition and robot position to represent the robot and
environment through a grid of “pose cells” [19].

In these cases, the map consists of geometric environmental
features or salient visual features that serve the purpose of
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aiding localization. Not present are the aspects of steepness,
unevenness, or other measures of traversal difficulty meant
to aid in navigation. Methods such as [20] or [21] use deep
learning approaches such as inverse reinforcement learning or
semantic segmentation to generate a costmap of such features
for the surrounding environment. Semantic segmentation uses
offline training with a dataset of semantically labeled images.
Inverse reinforcement learning requires human demonstration
with which to infer a reward function.

Solutions to SLAM also assume that the robot’s trajectory is
decided externally through manual controls or a separate path
planning policy. The emerging field of active SLAM combines
path planning with SLAM, with the objective of choosing a tra-
jectory which accurately and quickly maps an environment [22].
The goal of path planning in this paradigm is to formulate a path
which minimizes the uncertainty of the SLAM algorithm. How-
ever, for some applications, it may be necessary to dynamically
consider other goals depending on the context. For instance, an
autonomous robot may need to manage battery usage at certain
times by planning paths which minimize power consumption.
Thus, a navigation system which affords such versatility is
needed.

C. Deep Learning Methods

Deep learning solutions to trajectory planning include imita-
tion learning and reinforcement learning for end to end naviga-
tion. Imitation learning methods such as [23], [24], [25] use
human annotated data to mimic expert demonstrations. Due
to their reliance on pre-collected data, they do not allow for
continuous or autonomous data. Reinforcement learning (RL)
methods closely mimic humans learning from interaction with
their environments, and have found great success navigating
through complex environments. However, they require extensive
offline training and expensive onboard computation to run in
real-time [26], [27], [28], [29]. As such, there is a need for
an online and continuously learning sample-efficient navigation
system.

III. BACKGROUND

A. Spiking Wavefront Planner

Here we briefly describe the SWP model. For more details,
see [8], [9].

The spiking wavefront propagation algorithm assumes a grid
representation of space, where connections between units repre-
sent the ability to travel from one grid location to a neighboring
location. Each unit in the grid is represented by simplified
integrate and fire neurons. Rather than weights between neurons,
the connections between neurons represent a propagation delay,
such that a spike signal takes D time steps before being received
by a downstream neuron. The activity of neuron i at time t+ 1
is represented by (1):

vi(t+ 1) = ui(t) + Ii(t+ 1), (1)

in which ui(t) is the recovery variable, Ii(t) is the input current,
and t refers to time when simulating neuron dynamics.

The recovery variable ui(t) is described by (2):

ui(t) =

{
β if vi(t) = 1
min(ui(t− 1) + 1, 0) otherwise

, (2)

such that immediately after a membrane potential spike, the re-
covery variable starts as a negative valueβ and linearly increases
toward a baseline value of 0. For our experiments, β is set to -10.
We found this to be sufficiently large enough to prevent a spike
from reactivating previously visited nodes.

The input current I at time t+ 1 is given by (3):

Ii(t+ 1) =
N∑

j=1

{
1 if dij(t) = 1
0 otherwise

, (3)

such that dij(t) postpones the integration of input, I , from
neighboring neuron j to neuron i. This delay is given by (4):

dij(t+ 1) =

{
Dij if vj(t) ≥ 1
max(dij(t)− 1, 0) otherwise

. (4)

The value of Dij(t) is the propagation delay between neurons i
and j, and denotes the expected cost of traveling from location i
to j. This is initialized to 1 for all values. Cost is an open parame-
ter, which could depend on a number of variables. In the present
letter, multiple measures of cost are measured simultaneously,
which is explained in more detail in Section V-A.

B. E-Prop

The E-Prop learning rule was developed to learn sequences
in recurrent spiking neural networks by using an eligibility trace
to implement backpropagation through time to minimize a loss
function [30]. The present work used E-Prop to learn a map of the
environment, which is represented by a recurrent spiking neural
network, based on the sensed cost of traversal. For path planning
purposes, the active neurons after a wave propagation are eligible
for updates. An eligibility trace based on time elapsed since the
wave reaches the goal destination dictates the eligibility. E-Prop
is applied to the delay Dij between neuron i and j along the
traversed path.

Dij(T + 1) = Dij(T ) + δ(ei(t)(mxy −Dij(T )), (5)

where δ is the learning rate, set to 0.5, ei(t) is the eligibility
trace for neuron i, andmxy represents the cost observed from the
robot’s sensors at location (x, y), which corresponds to neuron
i. In this case, T represents time incremented each time a path
is completed. This rule is applied for each of the neighboring
neurons, j, of neuron i. The loss in (5) is mxy - Dij .

The eligibility trace for neuron i is given by (6):

ei(t+ 1) =

{
1 if vj(t) ≥ 1

ei(t)− ei(t)
τ otherwise

, (6)

where τ is the rate of decay for the eligibility trace, set to 25.
An example of the eligibility trace from a planned path can be
seen in the right panel of Fig. 1.

To determine a path from the robot’s current location to a
destination, a signal is sent originating from the neuron corre-
sponding to the robot’s current location. This signal propagates
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Fig. 2. Clearpath Jackal robot.

based on the delays D to the origin neuron’s neighbors. This
is repeated for each of these neurons and their neighbors until
a signal reaches the neuron corresponding to the destination.
The origin of this signal is recursively traced backwards until
the neuron representing the current location is reached. This
sequence of neurons represents the path of least cost given the
robot’s information about the environment.

IV. EXPERIMENTAL SETUP

A. Robot Platform and Environment

The robot platform used in the experiments was the Jackal
Unmanned Ground Vehicle from Clearpath Robotics (Fig. 2).
The Jackal is capable of navigating through difficult, uneven
terrain. To localize the robot in its environment and determine the
distance to waypoints we used a NovaTel GPS unit. To determine
the robot’s heading and bearing, we used the Lord Microstrain
3DMGX5 inertial measurement unit.

We tested our navigation system in Aldrich park: A hilly park
located at the center of of the University of California, Irvine. A
top down view of the environment can be seen in Fig. 3. A 17
× 17 grid, 5.1 meters apart were used as waypoints (see Fig. 4).
This distance was chosen based on the precision of the GPS unit
of 1.2 meters. Terrain in the environment was hilly and varied
between thick grass, paved road, and dirt road. The environment
contained a number of trees which served as obstacles for the
robot in addition to foot traffic along the road. The robot explored
this environment for 350 trials over 4 days and approximately 12
hours of total runtime. Some sections of the grid were removed
from consideration, as they were completely intraversable due
to large root structures that could not be detected by the LiDAR.
The system was initially tested in a field near the UCI campus
with similar results, but we found Aldrich Park to have more
challenging features.

B. Evaluation and Comparisons

Using the learned costmap, we compared the SWP to the
RRT* [14], A* [10], and D* Lite [11] path planning algorithms.

Fig. 3. Top down view of the Aldrich park environment. Imagery ©Google.

Fig. 4. Costmap for all costs added and normalized after learning. Nodes are
colored according to the mean of the delays D from other nodes. Example paths
minimizing current drawn, obstacles encountered, and steepness are colored
green, red, and blue, respectively.

For RRT*, the extension of the tree was constrained to be only in
the direction of waypoints. This was necessary, as the costmap
only contains delays for movement in the cardinal and ordinal
directions. For A* and D* Lite, we used the common heuristic
of shortest Euclidean distance.

We tested paths generated by these algorithms as well as
the SWP on 25 randomly selected paths whose start and end
waypoints were at least 3 waypoints apart to ensure meaningful
choices in path planning. During traversal, we collected mea-
sures corresponding to the learned costs.

To evaluate the effectiveness of the SWP in navigating our
cost maps, we also exhaustively simulated all potential start and
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end locations with a minimum separation of 3 waypoints. This
was similarly done for A*, RRT*, D* Lite, and a naive planner
which generated a path with the shortest Euclidean distance.

V. METHODS

A. Cost Measures

We considered three measures of cost:
1) Current Cost: The amount of current from the battery to

the left and right wheels. This was determined internally
using the status messages automatically published by the
Jackal. For each incoming current reading, we considered
the minimum value between the left and right side. This
was to prevent spikes in current caused by turning from
influencing the cost, which may happen due to trajectory
recalculation and not from features in the environment.

2) Obstacle Cost: The presence of obstacles during traversal.
To recognize obstacles we used the SICK LMS111 2D
LiDAR, which has an aperture angle of 270 degrees and an
angular resolution of 0.5 degrees. Objects were considered
obstacles if the LiDAR detected a number of consecutive
data points below a threshold of 2 meters. The cost before
normalization was calculated as the fraction of time spent
with obstacles in the field of view en route to the waypoint.
The Jackal avoided an obstacle by turning away from
it until the obstacle was out of view. In the case that a
collision was still eminent (such as if part of the obstacle
was too high or low for the LiDAR), manual controls were
used to direct the Jackal past the obstacle. This was a rare
occurrence, and was only necessary due to benches in the
environment lying above the field of view.

3) Slope Cost: The slope of the ground was based on the
pitch and roll readings from the IMU. Because flat ground
is measured as 0 radians of rotation about both axes, this
cost (before normalization) was calculated as the sum of
the rotation about the pitch and roll axes.

Additionally, a cost representing completely intraversable
locations was included, which incurred cost only when the robot
was unable to reach a waypoint in the allotted time. In this
case, a maximum cost of 10 was assigned to the delays into
this waypoint to discourage its use in future paths.

In order to convert costs to values suitable for training the
SWP, sensor data needed to be converted into integers repre-
senting learnable delay values. We chose 10 as the maximum
delay value to maintain a fast network response during wave
propagation. To obtain normalization constants for each mea-
sure, the Jackal was driven between waypoints prior to training.
Minimum and maximum values were calculated as two standard
deviations below and above the mean. Outliers during training
were clamped prior to normalization.

Each of these costs are maintained individually for a given
neuron’s delay values. To combine costs into a single map, the
delay values for each chosen cost are added together. This value
is then normalized between 1 and 10 again across all neurons to
maintain a fast network response.

B. Environment Mapping

A single trial with the robot proceeded as follows. First, an end
point was randomly determined using a Levy Flight distribution.
This distribution is commonly used to model foraging patterns
in animals [31]. The Levy Flight distribution will tend to focus
search in a local area while occasionally jumping to a distant
area. This was a better exploration strategy than a more random
search pattern, such as Brownian motion.

Next, the SWP planned a path from the robot’s current location
to the end point by setting the activity vi of the starting neuron
to 1 and simulating the neuron behavior as in (1) through (4).
The delay values dij for each neuron used a costmap combining
all measures of cost. The eligibility trace generated by the SWP
was used to update the delays with E-prop as in (5). The robot
then navigated between waypoints determined by the generated
path.

To reach a waypoint, the robot oriented to the direction of the
waypoint by rotating until the robot’s heading (orientation with
respect to a global reference frame) matched the desired bearing
(orientation with respect to the waypoint). When the heading was
suitably close, the robot would proceed towards the waypoint. If
at any point during traversal the difference between the bearing
and the heading exceeded π

12 , the robot would stop to rotate to
the correct orientation before proceeding. We found this value
to be a suitable level of precision for our IMU.

The trial was complete once all waypoints were reached, or
the robot was unable to reach a waypoint after 45 seconds. In the
latter case, the robot would return to the previous waypoint. After
each trial, the delays of the costmap were saved. The saved delays
were used in simulated experiments to analyze possible paths
taken by the robot under different path planning algorithms.

VI. RESULTS

A. Environment Mapping

The costs determined from the robot’s exploration of Aldrich
park are shown in Fig. 4. Nodes are colored according to the
mean of delays D from other nodes using all costs combined.
Candidate paths minimizing current drawn, obstacles encoun-
tered, and steepness, as well as the path taken when these costs
are combined, are shown in the figure.

Using the current cost criteria, we found similar values be-
tween the grass, dirt road, and pavement, indicating they were
similarly traversable in terms of energy consumption. Areas
with slightly elevated current cost included waypoints around
trees and at intersections between terrain. We speculate this is
because the transition from grass to pavement or to dirt road
caused increased unevenness, and consequently, stress on the
motors. The current minimizing path took a relatively straight
path visiting a minimal amount of waypoints (green line in
Fig. 4).

The obstacle cost criteria produced sparser costs, with higher
costs at tree and bench locations. Foot traffic along the sidewalk
also resulted in higher obstacle costs. Occasionally, due to the
unevenness from the road or from sloped areas, the robot was
also at an angle steep enough to briefly detect the ground as an
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Fig. 5. Mean squared error between the delaysD of the model at each training
step, during a single 12-hour online learning run, and the final learned costs of
the model.

obstacle. In the obstacle minimizing path (red line in Fig. 4), the
robot avoided a row of trees by taking a slightly longer route.

Because of a steep hill, there was a higher slope cost in the
bottom right quadrant of the cost map. When planning a path
through this hill, the robot traversed up the hill, moved along a
flat ridge for most of its route, and then down the hill to reach
the goal (blue line in Fig. 4). Incorporating all three measures of
cost into path planning resulted in a path that attempted to avoid
the sloped area before traversing along grass that is lower cost
than the dirt road where there tends to be obstacles (cyan line in
Fig. 4).

B. Continual Learning and Adaptation

Continual learning is realized through E-prop’s ability to
generate an increasingly accurate map of the environmental
costs as the robot explores its environment. Fig. 5 compares the
delays of the SWP after each executed path with that of the final
learned model during a single 12-hour run with online learning.
Mean squared error of each comparison steadily declined, which
suggests that each training step is improving upon the last.

Continual learning facilitated rapid adaptation in the face of
environmental changes. To demonstrate adaptation, we placed
an obstacle in the robot’s path. After one or two experiences
in this new situation, the robot updated its cost map with this
information. Fig. 6 shows the new paths taken by the robot after
the first and second model update.

The initial path (shown in red) travels along waypoints on the
road, however the presence of the obstacle incurs high obstacle
cost, as evidenced by high weight changes at the obstacle lo-
cation. After a single update, the second path (shown in blue)
avoids the obstacle but travels through a sloped hill area to do
so, incurring a higher slope cost. This can be seen from the high
weight changes when traversing up or down the hill. With one
final update, the final path (shown in green) then travels away
from the road along flat grass to reach the goal, avoiding both
the placed obstacle and the hill.

C. Comparisons With Existing Path Planning Algorithms

In tests with the physical robot in paths in the environment
(Table I), the SWP planned significantly shorter paths and mini-
mized obstacle costs better than RRT*. Both planners performed
similarly on other costs. A* was most comparable to the SWP,
as neither path length nor measures of cost were significantly

Fig. 6. Top image shows example paths demonstrating adaptation after mul-
tiple experiences in a changing environment. Red, green, and blue lines outline
the planned path after zero, one, and two updates to the model, respectively.
The location of placed obstacles are marked with a yellow star. Bottom images
show changes to the model delays after the first (left) and second update (right).
Colored edges indicate the extent of the delay change between the two neurons.

TABLE I
COMPARISON BETWEEN RRT*, A*, AND SWP ON PATHS TAKEN BY ROBOT

different between the two algorithms. The lack of significance in
many of these metrics could be due to not enough sample routes,
which we address by simulating more paths (see Table II), and
showing that our SWP has significant advantages as routes get
longer (Fig. 7).

To overcome the small sample size, we simulated all possible
paths of length greater than 3 (n=57086) on the learned costmap
itself. The results of this are shown in Table II. The SWP signifi-
cantly outperformed RRT*, A*, and D* Lite on minimizing cost.
Additionally, paths generated by the Spiking Wavefront Planner
were significantly shorter than its comparisons. D* Lite and A*
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TABLE II
COMPARISON BETWEEN RRT*, A*, A NAIVE PLANNER, D* LITE, AND SWP

ON SIMULATED PATHS

Fig. 7. Difference in performance for each method as the length of simulated
paths is increased. Y-axis is the mean cost of the paths. X-axis is the minimum
path length considered. Shaded areas represent 99% confidence interval.

TABLE III
COMPARISON BETWEEN THE SWP AND D* LITE ON SIMULATED PATHS WITH A

CHANGED ENVIRONMENT

performed similarly, likely due to the similarity in planning using
a heuristic and priority queue. The paths were longer than the
naive planner, however this was expected as the naive planner
travels the shortest euclidean distance regardless of cost.

Fig. 7 illustrates how the comparison between algorithms
changes over increasingly longer path lengths. The SWP per-
formed the best, and RRT* performed the worst in terms of
cost. As the paths got longer, the disparity between algorithm
performance became more pronounced.

To evaluate our model against dynamic planners such as D*
Lite, we simulate paths through our costmap where the robot can
observe costs one step ahead. We randomly selected start and
end points where both the SWP and D* Lite initially planned the
same path (n= 10000). Environmental change is simulated mid-
way by elevating a random cost measure between two waypoints
by 3.0. When observed by our model, E-prop is run to determine
a new path from the current location to the goal. Results in
Table III show that D* Lite paths were shorter and minimized
obstacle costs, whereas the SWP minimized slope and current.
The D* Lite comparison was tested in simulation because cost
measures, such as current measured by power consumption and
slope measured by IMU, can only be determined by physically
traversing between waypoints. This means that sensing the costs

Fig. 8. Time elapsed for path planning algorithms as a function of simulated
path length. Y-axis is the mean cost of the paths. X-axis is the path length
considered. Line and shaded area represent the mean and standard deviation
from 5 runs of 1000 randomly selected paths.

of waypoints ahead of time, a necessary component of replan-
ning for D* and RRTX methods, was not possible.

A time-complexity analysis of our model and its comparisons
are shown in Fig. 8. The analysis was conducted on a Dell XPS
15 9510 laptop, with an Intel Core i7-11800H processor and
16 GB of DDR4 RAM. A* and D* Lite outperform both the
SWP and RRT* across all lengths, and grows at a much slower
rate. The SWP performs better than RRT*, which suffers from
high variance due to its random nature. As discussed earlier,
the SWP has the potential for highly parallel implementations
on conventional hardware and on neuromorphic computers,
which would dramatically reduce computation time and power
consumption.

VII. CONCLUSION AND FUTURE WORK

The SWP with E-Prop learning can rapidly learn traversal
costs for navigation and can adapt to change without lengthy
offline retraining. It demonstrated shorter and more cost effective
paths than other path planning algorithms. The cost maps learned
through E-prop may be utilized with a number of existing path
planning algorithms, including A*, D*, and RRT*. Although
A* may perform similarly with a tailored heuristic, this requires
careful consideration of how to estimate the future measure of
cost at a given location. Moreover, a different heuristic may be
necessary for each cost or combination of costs. As evidenced
by the growing disparity of performance in Fig. 7, an improper
heuristic may result in worse performance as longer paths are
required. By contrast, the SWP can be universally applied to a
costmap regardless of what combination of costs are considered.

Our navigation system is not without its limitations. Currently,
costs are obtained through experience only and cannot general-
ize between waypoints or environments, or observed ahead of
time. Depending on the learning rate, it may take multiple passes
between the same two waypoints to properly learn an accurate
cost. It has also been shown here and in previous work that the
SWP is computationally slower than A* [8].

These limitations serve as avenues for future research. Our
current implementation does not use vision, however computer
vision techniques for self-labeling such as those found in [26],
[29] could be used to estimate the cost of current and nearby
trajectories during traversal. It has also been shown that in-
corporating biologically-inspired memory replay can improve
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exploration speed and adaptation to changes in the environ-
ment [32].

While our model was tested on traditional hardware, the
spiking nature of our model enables the possibility of implemen-
tation on neuromorphic hardware. Architectures, such as Intel’s
Loihi [33] and the DYNAP-SE neuromorphic processor [34],
support synaptic delays and the updating of synaptic weights
given local learning rules, which are key elements for our
model. This demonstrates a clear path towards neuromorphic
implementation in the future.

In summary, this letter demonstrates our efficient naviga-
tion system for off-road navigation that learns continuously
from interaction with its environment in real-time, without
the need for multiple rounds of training and deployment or
expensive hardware. The system learns multiple measures of
cost in parallel, and can plan paths that minimize such costs
or any combination of them when traversing the environment.
Through our real world and simulation results, we determined
that these paths are shorter and more cost effective than A*
and RRT*. The simplicity of the software stack supports future
development, perhaps using context from a camera, memory
replay [32], more robust obstacle detection and avoidance, and
neuromodulation [35] to control combining costmaps.
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