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Abstract. Inspired by recent human studies, this paper investigates the
benefits of employing varying navigation strategies in robot teams. We
explore how mixed navigation strategies impact task completion time,
environment exploration, and overall system effectiveness in multi-robot
systems. Experiments were conducted in a simulated rectangular envi-
ronment using Clearpath PR2 robots and evaluated different navigation
strategies observed in humans: 1) Route (RT) knowledge where agents
follow a predefined path, 2) Survey (SW) knowledge where agents take
the shortest path while avoiding obstacles, 3) Mixed strategies with vary-
ing proportions, such as 40% RT and 60% SW (0.4RT 0.6SW) and 60%
RT and 40% SW (0.6RT 0.4SW), and 4) An additional strategy where
agents switch from RT to SW 10% of the time (0.9RT 0.1SW). While
SW strategy is the most time-efficient, RT strategy covers more of the
environment. Mixed strategies offer a balanced trade-off. These findings
highlight the advantages of variability in navigation strategies, suggest-
ing benefits in both biological and robotic populations. Additionally, we
have observed that human participants in a similar study would start on
a route, and then 10% of the time switch to survey. Therefore, we inves-
tigate a 90% Route 10% Survey (0.9RT 0.1SW) strategy for individual
team members. While a pure Survey strategy is the most efficient regard-
ing time taken and a pure Route strategy covers more of the environment,
a mixture of strategies appears to be a beneficial tradeoff between time
taken to complete a mission and area coverage. These results highlight
the advantages of population variability, suggesting potential benefits
in both biological and robotic populations.

Keywords: Navigation · Teams · Route · Survey · Multi-robot
systems

This work was supported by the Air Force Office of Scientific Research (AFOSR)
Contract No. FA9550-19-1- 0306, and by the National Science Foundation (NSF-FO
award ID IIS-2024633.

c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
O. Brock and J. Krichmar (Eds.): SAB 2024, LNAI 14993, pp. 63–77, 2025.
https://doi.org/10.1007/978-3-031-71533-4_5



64 S. A. Mohaddesi et al.

1 Introduction

Multi-robot navigation plays a vital role in advancing robotic technology, provid-
ing a dynamic solution to complex tasks that exceed the capabilities of individual
robots. Its significance lies in enhancing efficiency, collaboration, and adaptabil-
ity across various domains, including manufacturing, search and rescue opera-
tions, and autonomous vehicles. Coordinated movement among multiple robots
enables them to collectively navigate intricate environments, share information,
and optimize routes, addressing challenges that a single robot might find over-
whelming.

Fig. 1. (A) Overall view of our maze in the Webots environment (B) Clearpath’s PR2
robot

Research suggests that people employ different types of knowledge to navi-
gate [2]. Survey knowledge contains metric information that includes distances
and directions between locations. This knowledge enables flexible path planning
resulting in shortcuts or planned trajectories over never-experienced paths. In
contrast, route knowledge consists of sequences of actions associated with places
or decision points. Typically, the routes are fixed paths and inflexible.

Boone and colleagues [1] investigated the knowledge people use during navi-
gation in the Dual Solutions Paradigm. In the DSP, participants follow a fixed
loop around a virtual environment that has several landmarks along the way.
After several laps, they are tested by placing participants at a landmark and
telling them to go to another landmark. If they take the fixed loop, they are
applying route knowledge. If they take a novel shortcut, they are applying survey
knowledge. When told to take the shortest path, the proportion of participants
applying survey knowledge increased. This suggests that many participants had
survey knowledge, but they might find it easier to take a learned route.

In a metadata analysis, Krichmar and He showed that the variation observed
in human navigation is both between and within subjects. This variability might
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be explained by taking the cost of traversing an environment into considera-
tion [8]. They found that when told to find a goal, roughly 60% of participants
used a route strategy and 40% used a survey strategy. However when told to
take the shortest path to a goal, those proportions were reversed (40% route,
60% survey). Furthermore, they found that subjects starting on a route switched
to a survey 10% of the time.

In the present paper, we simulate teams of robots to test whether there
are advantages to using human-inspired strategies for navigating (Fig. 1). Our
present work makes the following contributions:

– Simulating human variation has advantages for robot navigation, and possibly
for planning algorithms in self-driving vehicles and robotic swarms.

– Incorporating a simple navigation strategy inspired by human subjects, rather
than finding an optimal solution, makes multi-agent systems easier to scale.

– A mix of route and survey strategies leads to a tradeoff between time to find
goals and more exploration of an environment that may be advantageous for
biological and robotic populations.

– In human studies, it is technically challenging to monitor multiple participants
navigating at the same time. Simulating a human-sized environment with
navigating robots can overcome this limitation.

To better assess how these findings transfer to the real-world, we used a physical
robot simulation with human sized robots and local sensing. In the following
sections, background and methods are described in further detail.

2 Related Work

Several studies have explored the benefits of varying navigation strategies in
teams of robots, addressing various aspects of multi-agent path planning and
cooperative behavior. Most of the related work falls into two categories: 1) Multi-
Agent Path Finding (MAPF), and 2) Heterogeneous swarm navigation.

2.1 Multi-Agent Path Finding (MAPF)

In MAPF, the goal is to plan collision-free paths for many agents to reduce
mission duration and maximize team productivity. An example is the Conflict
Based Search (CBS) algorithm which addresses the challenge of finding opti-
mal paths in multi-agent scenarios by considering conflicts among agents and
employing efficient exploration techniques [19]. Another example is the branch-
and-cut-and-price (BCP) algorithm that incorporates a shortest path pricing
problem for finding paths for every agent independently and constraints for
resolving conflicts [9,10]. Both BCP and CBS are optimal but because of com-
putational complexity, they don’t scale well to a large number of agents [12]. Sub
1.5 MAPF algorithm on grids, optimizing time with a 1.5x longest-to-shortest
path ratio constraint. This is a sub-optimal solution but it scales better [5].
Other algorithms scale well, by applying simple movement rules but are far from
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optimal [17,21]. MAPF-LNS is a hybrid approach that first creates a fast plan-
ning solution and then optimizes with a heuristic called large neighborhood
search [13]. In the above cases, the solution is applied once for all agents. But
a more realistic situation is a warehouse in which robots need to plan efficient,
collision-free paths for long duration. The Rolling-Horizon Collision Resolution
(RHCR) approach addressed the issue of lifelong multi-agent pathfinding in
large-scale warehouses by applying their MAPF algorithm over different win-
dow periods [13].

This paper acknowledges the inherent limitations often found in human
decision-making processes, in contrast to an emphasis on optimal solutions.
While conflict resolution among robots remains a necessary aspect, it does not
stand as the central objective within this paper’s scope. However, future ver-
sions could take advantage of conflict resolution policies in the work discussed
above. Unlike most MAPF algorithms, a centralized planner is absent in this
work. Instead, each robot independently charts its path, driven by individual
objectives, and limited knowledge of the other robot’s state and intention.

2.2 Heterogeneous Swarm Navigation

Swarm robotics typically assumes that agents can communicate or interact with
others in the vicinity. Heterogeneous teams of agents have been used to solve a
wide range of problems [4,6,20]. In a heterogeneous robotic swarm, certain tasks
can be solved efficiently through cooperation and functional specialization [3].
The agents or robots have different shapes or capabilities (e.g., different sen-
sors or different locomotion). Unlike MAPF, the planning is decentralized. In
a typical navigating swarm, there might be leaders and followers and the task
is to find a goal while circumventing obstacles and preventing collisions [14,18].
Because of the locality requirement, the swarm often resembles a flock of birds.

Although there are similarities to our approach, these swarms by definition
stay together. Furthermore, the majority of the prior work in swarm navigation
assumes a ‘bird’s eye’ view, rather than local sensing that would be required in
many field operations. We are interested in heterogeneous foraging, where the
robots are independent, decentralized and use different strategies.

3 Methods

3.1 Path Planning Algorithms

We simulated the Dual Solutions Paradigm (DSP) developed to study human
behavior with teams of 1, 3, and 5 robots navigating the environment given in
Fig. 2 which had 14 landmarks. To simulate survey knowledge, any path planner
that finds the shortest path between a start and destination would be suffi-
cient [11]. The present paper uses a spiking wavefront propagation algorithm,
which has been described in [7], to calculate the survey paths. The spikewave
algorithm takes into consideration the cost of traversal, which is encoded as a
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B
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C

Fig. 2. (A) A bird’s eye view of the map, The blue line indicates the specified route
(B) Grid map of the environment. Purple cells show impassable terrain locations, goal
locations are indicated in red, and beige cells indicate the floor of the aisles. (C)
Heatmap depicting traversal delay costs measured in seconds for each cell on the map.
The delay increases as cells approach the walls. This map serves as a universal guide
utilized by all robots.

propagation delay. Difficult to traverse regions have long delays and impassable
areas have very long delays (Fig. 2(c)). It is important to note that every path
generated by spikewave is a sequence of straight line segments, meaning that
there are no curves in generated paths. The yaw needed for the robot to face
towards and move forward along the line segment is then determined. In order
to simulate route knowledge, the robots followed a fixed path that took them
past all the goal locations (Fig. 2(a)). Specifically, route knowledge was simulated
with spikewave by giving the robot closely spaced waypoints to ensure it stayed
on the specified route. As described below, the robots could either use route
knowledge, survey knowledge or a mixture of these to find the goal locations.

3.2 Simulation Environment

In this experiment, a 3D simulated environment was created using Webots [15],
an open-source robot simulator. The environment contains a square-shaped
maze, which is made of 4096(64*64) cells each representing a square meter,
as shown in Fig. 1(a). Up to 5 simulated PR2 robots, provided in the Webots
environment, were used to explore the maze (Fig. 1(b)). The PR2 robot is a
mobile robot with advanced sensors and software that can perform various tasks
such as navigation and perception with high accuracy and precision. Its unique
design features a mobile base with two wheels and a caster and a robotic arm
with seven degrees of freedom. The maze size was scaled such that the robot fit
within a cell.

3.3 Experimental Control and Design

The experimental design followed the DSP [1], but with multiple agents simul-
taneously navigating the environment. Based on the team’s size, each robot is
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assigned a task involving a subset of randomly designated goals chosen randomly
from the 14 landmarks (Fig. 2(b)). These goals are distributed among the robot
team to ensure that each goal is visited by at least one robot.

Fig. 3. Example of 3 Robots navigating through the environment, Black spots indicate
the current location of each robot. Bold colored lines show the path each robot has
taken till now, and pale colored lines indicate the path planned. The blue circle is the
conflict spot between the yellow and red robots (Color figure online)

To conduct the simulation, several challenges need to be addressed. The first
was to develop a subroutine that could handle movement between targets. This
controller had to be capable of calculating a route between two targets that were
free of obstructions and could be traversed by the robots. For the route strat-
egy, an unobstructed path was provided to the robot as in the Dual Solution
Paradigm used in human studies [1]. For the survey strategy, the spikewave algo-
rithm uses the map with traversal delays to find the optimal path (Fig. 2(c)) as
in [7]. An obstacle or environment boundary would have a long delay that would
slow the wave propagation, and a traversable path would have a short delay that
results in the wave finding a short, obstacle-free path.

Due to the requirement of simulating physical robots in the present work, sev-
eral challenges needed to be addressed. One challenge is that sometimes agents
come so close to colliding with a wall. The PR2’s base Lidar, with its scanning
range of 270◦C, was used to measure the distance to the wall. If this length is
less than 60cm, a subroutine is triggered to take the robot back to its original
path. The spikewave algorithm then computes a new path to the goal. Another
challenge was that a rule had to be devised and implemented to handle bottle-
neck conflicts and determine which robot has the right of way. Figure 3 is an
example of the paths of 3 robots. For the purposes of this experiment, an ID was
assigned to each robot (varying from 1 to 5). Two robots are in conflict when
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the distance between them is less than 6m. When conflicts arise (Fig. 4(a)), the
robot with the higher ID pauses, allowing the other robot to move a distance of at
least 12m away. This distance was empirically determined to effectively reduce
the potential for subsequent collisions involving the PR2 robots. In cases where
our defined route strategy is applicable, prohibiting rerouting, conflict resolu-
tion favors the robot that holds a positional lead on the route. Finally, since the
problem of navigation strategies is similar to real-life scenarios, a single manage-
ment unit could not be used to handle all conflicts between the robots. Instead,
all decisions to control the disputes had to be either through predetermined
rules or message passing among the agents. When a collision occurs, a signal
is sent to all other robots within 25m of the collision point. The robots that
receive this signal increase the delay of the cells around the collision point on
the delay matrix. The delay is increased by 500 s for a 3× 3 square block around
the collision point. Each agent then runs the spikewave algorithm to reroute to
the temporary goal using the new matrix. This helps robots avoid the collision
point and prevents a third robot from interfering with two conflicting robots
(Fig. 4(b)).

Fig. 4. Types of robot collisions (A) Collision of two robots. (B) Collision of three
robots.

In order to automate these routines we designed a standalone controller with
real-time path planning and online conflict resolution for all the robots. The
pseudo-code that demonstrates how this controller works is provided (see Sup-
plementary Algorithm 1). All agents used the same C++ implementation of this
pseudo-code in their controllers.

To evaluate and compare different navigation strategies, we used these met-
rics:

– Time taken in seconds (s) till all goals have been visited.
– Total number of collisions between robots.
– Overall area occupied by all robots as a percentage of the entire environment
(%).
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– Overall intersection of the occupied area between robots as a percentage of
the entire environment (%).

We ran 5 trials with 1, 3 or 5 robots in the environment using these strategies:

– Route (RT): Familiar route strategy. All the paths to the targets have to be
aligned to a pre-specified route.

– Survey (SW): The shortest, obstacle-free path to the target is calculated using
the spikewave (SW) algorithm.

– Mixed (0.9RT 0.1SW): Agents start on a route and 10% of the time the paths
they switch to the spikewave algorithm at the halfway point.

– Mixed (0.6RT 0.4SW): 40% of the time the paths to the targets are calculated
using the spikewave algorithm and 40% of the time it has to go along the
route.

– Mixed (0.4RT 0.6SW): 60% of the time (i.e., 3 of the 5 trials) the paths to the
targets are calculated using spikewave algorithm and 40% of the time (i.e., 2
out of the 5 trials) it has to go along the route.

The 3 mixed strategies represent variability observed within and between
individuals. The percentages for the mixed strategies were derived from a DSP
meta-analysis [8] that showed when asked to go to a goal participants roughly
used SW 40% and RT 60% and when told to take the shortest path participants
roughly used SW 60% and RT 40%. The (0.9RT 0.1SW) strategy was derived
from the observation that when starting on a route, 10% of the time participants
switch to a survey strategy halfway towards their goal.

4 Results

We present the results obtained from a comprehensive set of simulations that
aimed to compare the performance of 5 distinct navigation strategies, namely
RT, 0.9RT 0.1SW, 0.6RT 0.4SW, 0.4RT 0.6SW, and SW. The experiments were
conducted using different team sizes of 1, 3, and 5 robots, allowing us to inves-
tigate the impact of team size and strategies on navigation performance. To
ensure the reliability of our findings, each combination of strategy and robot
number was subjected to five independent trials. Various metrics were measured
throughout the trials, encompassing the time taken, the number of collisions, the
area covered (occupancy), and team intersection. The metrics obtained from the
trials were then averaged across the five trials for each experimental condition.

Time taken, defined as the duration in seconds from the start of the simu-
lation until the visit of the last remaining goal, served as a crucial performance
indicator. The SW strategy had a significantly shorter time to complete the
task across all tested robot numbers (Fig. 5(A)). Conversely, the RT strategy
exhibited the longest average time. This suggests that robots employing the SW
strategy were able to devise innovative shortcuts, enabling them to complete the
task more swiftly. For the complete statistical comparisons, see Supplementary
Table 1. Additionally, we observed that increasing the number of robots led to
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Fig. 5. Results of experiments for 1, 3, and 5 robots employing 5 different strategies,
Route (RT), Survey (SW), and the mixed strategies (0.9RT 0.1SW, 0.6RT 0.4SW,
0.4RT 0.6SW). These values were measured and averaged over 5 trials. (A) Time to
completion. Cumulative time taken to accomplish all goals (B) Robot collisions (C)
Occupancy, which is the proportion of the environment covered by the robot teams
(D) Intersection, which quantifies the percentage of cells visited by two or more robots

a significant reduction in the average time taken (see Supplementary Table 8 for
statistical comparisons). This outcome can be attributed to the distribution of
the goal locations among multiple robots, thereby enhancing efficiency.

We examined the metric of robot collisions, which denotes the total number
of encounters between two robots. Notably, for a single robot scenario, this value
is zero. The RT strategy exhibited the highest average number of robot collisions
when tested with five robots (Fig. 5(B)). Although this may be due to an RT trial
with 5 robots in which many collisions occurred, Increasing the number of robots
tended to increase the number of collisions. It appeared that mixed strategies and
the SW strategy had fewer collisions. However, it is hard to compare due to high
variability from trial to trial (see Supplementary Tables 3 and 4 for statistical
comparisons).
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We analyzed the metric of occupancy, which reflects the extent of the map
area covered by the robots. As anticipated, an increase in the number of robots
resulted in significantly more area coverage (Fig. 5(C)) for all strategies except for
SW when comparing teams of 3 to teams of 5 (see Supplementary Table 6). The
RT strategy and mixed strategies covered more area than SW (Supplementary
Table 5).

Finally, we evaluated the metric of team intersection, which quantifies the
extent of intersected areas between robots on the map. Note that there is no
intersection with only one robot. As the navigation strategies went from pure RT
to mixed strategies to pure SW, the intersected areas between robots diminished
significantly (Fig. 5(D)). Conversely, an increase in the number of robots resulted
in a significant rise in this metric (see Supplementary Tables 7 and 8 for statistical
comparisons).

Taken together, these results suggest that there may be a sweet spot where
varying navigation strategies, like 0.9RT 0.1SW, 0.6RT 0.4SW and 0.4RT 0.6SW,
can lead to shorter search times than a pure RT strategy and more coverage of
the environment than a pure SW strategy. Moreover, increased intersections, as
seen with RT and mixed strategies, may facilitate team communication, which is
especially important in situations where lines of communication are down (e.g.,
disaster zones).

5 Discussion

The main finding of the paper was that although survey knowledge was the most
time-efficient strategy and route-based strategies explored most regions of the
environment, mixtures that varied strategies struck a balance between being effi-
cient and covering more of the environment. As the number of robots increases
tasks are completed faster, and the area covered expanded. The mixed strate-
gies were a sweet spot of efficient navigation, area coverage, and collisions as the
team size increased. Robot teams that had varied strategies completed the task
of finding all the goal locations in less time than a pure route strategy while vis-
iting more of the environment than a pure survey strategy. This heterogeneous
strategy increases efficiency while gaining more knowledge compared to a homo-
geneous team strategy. In human populations, and potentially in robot teams,
the choice of strategy depends on the context. In conditions where efficiency is
critical, shortcuts that take more cognitive processing should be favored [8]. In
contrast, a familiar route alleviates cognitive load and leads to more interactions
with others.

Our results have significant implications for the design of heterogeneous
swarms. Rather than varying the agent’s sensing or locomotion capabili-
ties [14,18], the agents used a mixture of strategies, which demonstrated clear
population benefits. Unlike many multi-agent studies, the present study required
to incorporate the physics of the environment with an accurate simulation of
commercially available robots [15].These computationally intensive simulations
limited team size. In the future, it would be of interest to test the benefits of
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varying strategies with larger, physical robot teams, which might be possible in
an environment like the Robotarium [16].

In summary, the present results explain why human populations vary their
navigation strategies and demonstrate that this variation is beneficial. By
employing a physical robot simulation that used realistic local sensing and spac-
ing of physical robots, we can better assess how the these results could transfer
to the real world.

6 Supplementary Materials

6.1 Algorithms

Algorithm 1. Agent’s controller pseudo-code
1: procedure Controller(self, robots, source, destination, strategy, costMap):
2: while self → timeStep() do
3: d[self] ← ∞
4: newCM←costMap
5: for agent: all agents except self do:
6: d[agent] ← agent’s distance from self
7: end for
8: [r,i] ← [min(d), argmin(d)]
9: checkForObstructionSignal(&newCM) ◃ checks if other robots

have sent any obstruction signal, newCm was passed as reference to apply changes
accordingly

10: if r ≤ 6 then
11: collision[self]++
12: sendObstructionSignalTo(robots, 25) ◃ Sends a signal to other robots

within 25 meters of the conflict point to update their costMap subsequently
13: if self → id ≤ i then
14: newCM←newCM + block(3, robots[i]) ◃ block(size,robot)

makes an all-zero 64*64 matrix except for a size ∗ size square block centering at
the location of robot with infinity value, used size=3 as an arbitrary value to avoid
further collisions between these two robots

15: else self→ waitFor(robot[i],12) ◃ waitFor would stop
this agent until its distance to robot[i] is at least 12 and then restores the original
costMap for both robots

16: end if
17: end if
18: path ← spikeWave (source, destination, strategy, newCM) ◃ Shortest path

from source to destination obeying the strategy
19: navigate(path) ◃ Navigate functions as a helper method that ensures

traversal along a given path
20: end while
21: end procedure
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6.2 Statistical Comparisons

All statistical comparisons and p-values were generated using the two-sample
Kolmogorov-Smirnov goodness-of-fit hypothesis test. Bonferroni corrections
based on the number of comparisons were used to test for significance level
(Table 2).

Table 1. Time to Completion. Comparing effects of strategy within same robot
team. ** denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 1 Robot 3 Robots 5 Robots

RT vs. RT60%,SW40% 0.0038* 0.8899 0.9999

RT vs. RT40%,SW60% 0.0038* 0.0515 0.237

RT vs. SW 0.0038* 0.00001** 0.00001**

RT60%, SW40% vs. RT40%, SW60% 0.209 0.1359 0.237

RT60%, SW40% vs. SW 0.0361 0.00001** 0.00001**

RT40%, SW60% vs SW 0.0348 0.00001** 0.00001**

Table 2. Time to Completion. Comparing effects of strategy between different robot
team sizes. ** denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 1 vs. Robots 1 vs. 5 Robots 3 vs. 5 Robots

RT 0.0003** 0.0001** 0.0006**

RT60%, SW40% 0.0066* 0.0037* 0.0098*

RT40%, SW60% 0.0003** 0.0001** 0.0006**

SW 0.0003** 0.0001** 0.00001**

Table 3. Collisions. Comparing effects of strategy within same robot team. ** denotes
p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 3 Robots 5 Robots

RT vs. RT60%, SW40% 0.9983 0.237

RT vs. RT40%, SW60% 0.8899 0.4141

RT vs. SW 0.9983 0.237

RT60%, SW40% vs. RT40%, SW60% 0.9999 0.4141

RT60%, SW40% vs. SW 0.9983 0.0038*

RT40%, SW60% vs SW 0.9983 0.0038*
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Table 4. Collisions. Comparing effects of strategy between different robot team sizes.
** denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 3 vs. 5 Robots

RT 0.5898

RT60%, SW40% 0.0904

RT40%, SW60% 0.0363

SW 0.8634

Table 5. Occupancy. Comparing effects of strategy within same robot team. **
denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 1 Robot 3 Robots 5 Robots

RT vs. RT60%, SW40% 0.209 0.6974 0.9996

RT vs. RT40%, SW60% 0.0361 0.209 0.209

RT vs. SW 0.0038* 0.0038* 0.0038*

RT60%, SW40% vs. RT40%, SW60% 0.9996 0.6974 0.209

RT60%, SW40% vs. SW 0.6974 0.0038* 0.0038*

RT40%, SW60% vs SW 0.6974 0.209 0.0361

Table 6. Occupancy. Comparing effects of strategy between different robot team
sizes. ** denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 1 vs. 3 Robots 1 vs. 5 Robots 3 vs. 5 Robots

RT 0.0038* 0.0038* 0.0038*

RT60%, SW40% 0.0038* 0.0038* 0.0361

RT40%, SW60% 0.0361 0.0038* 0.0361

SW 0.0038* 0.0361 0.209

Table 7. Intersection. Comparing effects of strategy within same robot team. **
denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 3 Robots 5 Robots

RT vs. RT60%, SW40% 0.1359 0.0258

RT vs. RT40%, SW60% 0.1359 0.0001**

RT vs. SW 0.00001** 0.00001**

RT60%, SW40% vs. RT40%, SW60% 0.1359 0.0001**

RT60%, SW40% vs. SW 0.00001** 0.00001**

RT40%, SW60% vs SW 0.0047* 0.00001**
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Table 8. Intersection. Comparing effects of strategy between different robot team
sizes. ** denotes p < 0.01 and * p < 0.05 after Bonferroni correction.

Strategy 3 vs. 5 Robots

RT 0.0012**

RT60%, SW40% 0.0012**

RT40%, SW60% 0.00001**

SW 0.00001**
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