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Abstract. Integrated information, denoted as Φ, quantifies the intrin-
sic information within causal systems. Despite its profound theoretical
implications, applications of Φ have mostly taken place in simulations of
arbitrary systems, particularly in terms of biological realism. This study
applies Φ calculations to biologically inspired robotic agents that adapt
to environmental conditions, thus providing a novel context for observing
changes in information integration. The agents’ neural network is evolved
to demonstrate behavior similar to Braitenberg’s Vehicles. The neuro-
mechanical design of these evolved agents are then suitable for Φ analysis.
Interestingly, early generations had higher Φ values. In later generations
the diversity of connection weights and the Φ values decreased, leading
to simpler and more reactive neural activations.
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1 Introduction

Integrated information, Φ, quantifies the intrinsic causal information of a net-
work system, by measuring the information above and beyond the sum of its
parts [1,13,14]. Inspired by subjective consciousness, Φ aims to measure infor-
mation intrinsic to the system. Despite its intriguing motivation, practical appli-
cations in neurobiological systems are rare due to the complexity of calculation.
Previous simulation studies primarily focused on verifying its theoretical aspects,
using logic gates to represent causal relationships rather than actual neuronal
wiring [2,5,11]. However, the emergence of conscious processes that Integrated
Information Theory aims to explain through Φ fundamentally occurs within bio-
logical systems. Thus, our study shifts the focus towards biological plausibility
by calculating Φ in biologically inspired systems. We aim to compare information
integration across behavioral scenarios using robotic agents that show adaptive
behaviors.
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In this study, the neurobiological robots are modeled on the Braitenberg vehi-
cle, a biological agent introduced by Valentino Braitenberg in his book Vehicles:
Experiments in Synthetic Psychology [3]. Although these vehicles feature a rel-
atively simple structure with two light sensors connected to two motor wheels,
they exhibit distinct behavioral patterns based on the neuron’s firing and wiring
mechanisms, which aligns well with the study’s objectives. The complexity within
these vehicles is sufficient for Φ calculations, making them suitable for simula-
tions that examine the relationship between biological functionality and Φ.

Evolutionary computation will be used to optimize the behavioral patterns of
these robots by altering the connection weights. Based on the genetic representa-
tion and fitness function, starting from randomly generated genes and selection
towards higher fitness, this process is also can be considered as supporting the
biological basis of the simulation [9]. This study will utilize artificial neural net-
works to build robots, using the connectivity weights of neural networks as the
genetic representation to simulate the evolution toward the behavior of Brait-
enberg vehicles. This lets us explore the comparison of connectivity weights and
integrated information in a neural network system.

The key contributions of this study are as follows: 1) Identify the relationship
among the functional behavior of biologically inspired agents and Φ. 2) Identify
the relationship between the connectivity weights selected by the evolutionary
algorithm and the Φ values.

2 Methods

2.1 Design of the Neural Network

Fig. 1. An overview of the neural network architecture of simulated robots.

The robot’s neural network architecture comprises 8 neurons: 2 neurons in the
input layer, 4 neurons in the hidden layer, and 2 neurons in the output layer.
Each input neuron is connected to all 4 neurons in the hidden layer, and each
output neuron is also connected to these 4 hidden layer neurons. The hidden
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layer neurons are fully-connected, including self-connections. The input neurons
function as sensors detecting light, with their activation directly proportional
to the intensity of light detected from the left side and right side. The output
neurons control the motors of the robot, corresponding to the motors on either
side of a Braitenberg vehicle. The neurons in the hidden layer receive activa-
tion signals from the input layer and transmit them to the output layer. Here,
the hyperbolic tangent (tanh) activation function is used for all neurons. All
connections are weighted connections that are free to evolve to excitatory (pos-
itive) or inhibitory (negative) values. These weights correspond to the genome
in the evolving process, and are determined through the following evolutionary
computation process to emulate the functions of the Braitenberg vehicle (Fig. 1).

2.2 Evolving the Vehicles

The robots were evolved to mimic Braitenberg vehicles for fear and aggression
(2A and 2B) and for lover and explorer (3A and 3B) [3]. A trial consisted of 200
movements in the Webots environment [16] during which the robot’s position
was collected. A trial began with the robot 0.75m from the light source and
from a position either 0.2m to the left or right of the arena’s center. Figure 2
shows the starting position of the trial on the Webots environment.

Fig. 2. Rendering of the simulated vehicle and arena under Webots environment.

Evolutionary computation was used to shape vehicle behavior [9]. The genome
consisted of the neural network connection weights and was initialized with a
uniform random distribution between -1 to 1. A population contained 100 indi-
viduals. After all individuals completed the two trials, the fitness was calcu-
lated for each individual. Fitness was judged by how closely the trajectory of an
evolved agent matched an ideal agent by calculating the overall mean squared
error (MSE) between trajectories.
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The ideal agent was based on the vehicle simulations described in Chap. 1
of [6]. It has the input layer (light sensor) directly connected to the output layer
(motor) without any hidden layers. The core part of the underlying code is as
follows.

# Vehicle 2A

leftSpeed = leftLight

rightSpeed = rightLight

# Vehicle 2B

leftSpeed = rightLight

rightSpeed = leftLight

# Vehicle 3A

leftSpeed = maxLight - leftLight

rightSpeed = maxLight - rightLight

# Vehicle 3B

leftSpeed = maxLight - rightLight

rightSpeed = maxLight - leftLight

From the given pseudocode, Speed refers to the motor’s speed, and Light

refers to the activation of the light sensor. Vehicle 2 had excitatory connections
and Vehicle 3 had inhibitory connections from the light sensors to the robot’s
motors. As a result, 2A and 3B will trace a path heading away from the light
source, and 2B and 3A will trace a path heading toward the light source. [7]
further provides simulation code of Braitenberg vehicles.

If an individual was successful, that is, its fitness had a lower MSE than
the previous generation, it survived into the next generation. Otherwise, it was
deleted and replaced with the prior individual. A full evolutionary run or set
consisted of 1000 generations at which point asymptotic population performance
was observed. The parameters for the evolutionary algorithm were chosen based
on a series of pilot runs and guidance from [9].

After a generation, agents were subjected to crossover and mutation. Multi-
point crossover was carried out by selecting the top 25% as parents, which would
then generate 10 children from the remaining 75% of the population. Both par-
ents and children were drawn from a uniform random distribution. A child con-
tained 50% of each parent’s genome as drawn from a uniform random distribu-
tion. After the crossover operation, mutations were carried out on 10% of the
genes for all individuals in the population. The gene to be mutated was drawn
from a random distribution. A mutation consists of taking the existing gene,
a connection weight, and altering it by drawing the new gene from a normal
distribution with a mean of the old gene and a standard deviation. To promote
exploration, the standard deviation varied. On the first generation and every 200
generations, the standard deviation was set to 1. For each subsequent generation,
the standard deviation was either increased by 0.01 if the number of successful
individuals was greater than 20 (5% of the population), or decreased otherwise.
This had the effect of initially exploring the evolutionary landscape and later
refining when the population as close to a solution [9]. The standard deviation
was kept between 0.1 and 1.0.

A total of 5 sets for each vehicle type (2A, 2B, 3A, 3B) were simulated.
For each set, individuals of the top 25% in a generation, that is, 25 individuals
in order of high fitness, were selected as the representative individuals for that
generation.
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2.3 Calculating Φ

The calculations and descriptions of Φ in this study are based on IIT v3.0.
Φ is derived from the informational difference between a system’s transition
probabilities when a given connection exists versus when it does not [13,14].
Since a network’s connection shows whether a particular node would contribute
to another node’s state change, the information from each connection can be
retrieved by selecting only a subset of nodes out of the system and dropping out
the rest. This results in partitioning the network, cutting the connection between
selected subsets and dropped nodes.

In IIT, the nodes of interest are called mechanism, and the subset of the sys-
tem as purview. Among all possible purviews, the smallest informational distance
is defined as the irreducible intrinsic information of the mechanism.

intrinsic information = min(D(p(systemunpartitioned)||p(systempartitioned) ))

Here, iteration of the same calculation over every possible subset selection
inside the mechanism and purview is performed (i.e. partitioning the mechanism
and purview), and the specific partitioning that results in the smallest informa-
tional distance is the Minimum Information Partition (MIP). Then, the largest
informational distance between the purview under MIP and the mechanism is
defined as φ (small phi) of the specific mechanism.

MIPmechanism ∼ min(D(p(mechanismpartitioned)||p(purviewpartitioned)))

φmechanism := max(D(p(mechanismunpartitioned)||p(purviewMIP )))

Now the same iteration is done for the original system. The partitioning over
the original system, not just over mechanisms and purviews, is performed to
discover the MIP of the system level. The difference is that the sum of φmechanism

contributes to calculating informational distance among system-level connection
cuts. Finally, Φ of the system is defined by the largest informational distance
among candidate mechanisms.

Φsystem := max(D(p(systemmechanism)||p(systemMIP )))

To optimize iteration, this study limited the hidden layer to four neurons.
Computation of Φ is achieved with the Python library PyPhi [12]. The theoret-
ical basis of the calculation of integrated information is further detailed in [12]
and [14]. This section will mostly focus on detailing how the activation data was
specifically transformed in order to calculate Φ.

The activation of the neural network over time captures the state transitions
for the robot vehicles during behavior. Testing runs were conducted using genes
from representative individuals to capture the activity of the neural network.
Each testing run was performed under the same conditions as during vehicle
evolution. While testing runs, the neural network activity and the trajectory of
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Fig. 3. Schematic process of obtaining TPM from activation data.

individuals are recorded over 1000 timepoints. Hence, the functional behavior
of each individual robot and its corresponding Φ during those movements are
measured.

The informational difference of state changing from one state to another
can be captured as the probabilistic difference of such transition. Thus, the
transition probability matrix (TPM) plays the key role in the computation of
Φ [14]. From the calculation of Φ, the dropped-out nodes do not affect state
transitions, thus calculating informational distance over different mechanisms
and purviews is done by reducing the dimension of the TPM, by adding up the
transition probabilities related to those nodes.

To obtain the TPM of an individual neural network, the system’s activity
must be expressed as either 0 or 1. Therefore, each neuron’s activation data is
normalized and then binarized using the median as the threshold to determine
if it is considered active. The transition probability for each state was then
extracted by counting how many times a transition from a particular state to a
particular state has occurred over the 1000 timepoints, and dividing this count
by 1000. Only the activity of the hidden layer from the neural network was used
in the calculation of Φ, and since the hidden layer contains 4 nodes, the total
number of possible states for the system is 42 = 16. Specifically, at timepoint ti,
the state of the neural network could be one of 0000, 0001, 0010, 0011, ..., 1111,
and at the next timepoint tj , it will change to one of these states. The state
transition probability from ti to tj is thus represented by a 16-by-16 matrix.
Each entry (i, j) in this matrix gives the probability that the current state i will
transition into the next state j. Following the TPM convention in PyPhi, this
is referred to as a state-by-state TPM [12]. This process is illustrated in Fig. 3.

Importantly, the interpretation concerns cases where a state transition never
occurs within the provided activity data, leading to the sum of the probability
not equal to 1. For a state-by-state TPM, the sum of each row of any column must
always equal 1. Since integrated information fundamentally represents causal
information, it is impossible to calculate Φ in nondeterministic systems. Hence,
the system must be assumed deterministic if Φ is to be calculated, which in turn,
any row of a state-by-state TPM that does not sum to 1 would indicate that
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the activity data lacks sufficient information to fully represent transitions for
that case. That is, unobserved transitions in the data should be deemed due to
transitions to states external to the dataset. Under such interpretation, if the
sum of a specific row in the TPM is 0, it indicates insufficient observations of the
current state; if the sum is between 0 and 1, it indicates insufficient observations
of the next state. In this study, instances occurred where the sum of certain
rows in the TPM is 0. To interpret these cases, a context node is introduced.
This context node is assumed to activate under such unobserved transitions, and
it is marginalized during the calculation process to obtain only the information
derived from the activation of the actual hidden layer neurons.

The Φ values are non-negative, with a lower bound of zero and no defined
upper bound [1,14]. Since Φ is not an absolute metric, it is unsuitable for com-
paring information integration across systems under different structures directly.
It should be used to explore relative differences under different conditions within
the same-structured system.

2.4 Analysis of Results

To examine changes in Φ across evolution, testing runs were conducted for the
representative individuals of the 0th, 100th, 200th, 500th, and 1000th gener-
ations. To determine whether the differences in Φ values between generations
are statistically significant, repeated measures ANOVA is used. Additionally,
differences across vehicle types are assessed using the Kruskal-Wallis test.

To explore the relationship between Φ and the connectivity weights (genes),
t-distributed stochastic neighbor embedding (t-SNE) analysis [10] was conducted
on evolved weights from both early (100th) and late (1000th) generations. Vehicle
type, set, and the magnitude of Φ were labeled for t-SNE clustering and visu-
alized accordingly. For Φ values, agglomerative hierarchical clustering, which is
less affected by outliers [8], was used to categorize them into three clusters: high,
medium, and low based on their magnitude.

3 Results

3.1 Evolution of Vehicles

For all four vehicle types (2A, 2B, 3A, 3B), fitness approached an asymptote
around the 500th generation. As shown in Fig. 4, the best-so-far fitness individ-
ual in the final generation exhibited functional behavior characteristics of the
expected Braitenberg vehicle.

Furthermore, Φ from each vehicle type appeared to be statistically different
according to the Kruskal-Wallis test. As in Table 1a, the probability that Φ
calculated from each vehicle type would share the same distribution decreases
significantly with increasing generation. Therefore, it can be safely concluded
that the population of integrated information would differ depending on the
vehicle type. Based on this result, each vehicle type was considered independent
for the remaining analyses.
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Fig. 4. Fitness change over generation and movement trajectory of evolved best-so-far
(BSF) individuals of each vehicle type.

Table 1. Statistical test results.

(a) Test statistic and corresponding p-value
of Kruskal-Wallis test of Φ over different
vehicle types from each generation.

Generation test statistic p-value

0 5.3053 0.1508

100 25.4399 < .0001

200 57.9434 < .0001

500 59.1832 < .0001

1000 110.0884 < .0001

(b) F-statistic and corresponding p-value of
repeated measures ANOVA of Φ over
generation from each vehicle type.

Vehicle type F-statistic p-value

2A 18.7849 < .0001

2B 22.9872 < .0001

3A 7.8776 < .0001

3B 24.0576 < .0001

3.2 Changes in Φ over Generation

For all four vehicle types, Φ decreased as generations progressed. The trend and
its statistics can be found in Fig. 5. Additionally, the difference in Φ over genera-
tions was found to be statistically significant for each vehicle type, as confirmed
through repeated measures ANOVA conducted for each type in Table 1b.

The average value of Φ mostly falls below 1. While Φ cannot be directly
compared in a strict sense across different studies due to its non-absolute scale,
however, other studies with systems of similar node numbers also report Φ values
mostly ranging from 0 to 2, suggesting there is no significant anomaly in the case
of our calculation [2,4,5,11].



244 H. Pae and J. L. Krichmar

Fig. 5. Changes of Φ under increasing generation among four different types of vehicles.
Regression line illustrated as dotted red line. (Color figure online)

One notable point is that, although the average value of Φ generally decreases
as generations progress, there are still a considerable number of outliers exceeding
the average throughout all generations. Consequently, in the subsequent t-SNE
analysis, vehicle type, set, and the magnitude of Φ were labeled to facilitate
tracking of individuals with high Φ values through visualization.

3.3 Changes in Connection Weights over Generation

The t-SNE analysis in Fig. 6 demonstrates how evolution has influenced connec-
tion weights. In this simulation setting, evolution appears to have led individuals
to converge on specific genes (weights). Interestingly, this convergence of weights
resulted in decreased Φ values. The bottom right plot in Fig. 6 shows that only
one cluster maintains a high Φ after the evolutionary process, predominantly dis-
tributed among the set 4 group that evolved the functional behavior of vehicle
2B. In contrast, most late-generation genes measured lower Φ values, especially
when compared to the highly dispersed early-generation genes, suggesting that
earlier generations could be more prone to maintain higher Φ values due to more
integration between hidden layer nodes. Interestingly, as behavior becomes more
stereotyped and accurate as Φ decreases. This transition has been observed in
animals as they progress from planned behavior to habits when learning a task
[15].
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Fig. 6. t-SNE analysis. The first column shows the weights at the 100th generation,
and the second column shows the 1000th generation. The first row is labeled with
vehicle types, the second row is labeled with different runs (set1 - set5), and the third
row is labeled with the Φ magnitude.

3.4 Tracking the Sample Individuals

In Fig. 7, individuals with distinct characteristics are selected to specifically
examine their evolved behavior, connection weights, and Φ. It is notable that
individuals of earlier generations, despite less accurate trajectories, can have
higher Φ values. Note that the weights should not be similar since all individuals
are selected from different t-SNE clusters. As seen in Fig. 6, there are multiple
types of weights the individual can converge even for the same behavior. Figure 7
also shows that the TPM also can be different for the same behavior, though
the TPM alone cannot directly tell the range of Φ value.
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Fig. 7. Trajectory, neural network weight, and TPM of selected individuals. All indi-
viduals perform vehicle 2B behavior. First row. Early-generation high-Φ individual
(Φ = 2.08529). Second row. Late-generation high-Φ individual (Φ = 1.4463). Third
row. Late-generation low-Φ individual (Φ = 0).

4 Conclusion

The present paper applied IIT, which is used to investigate conscious systems,
to a classic thought experiment from synthetic psychology. Rather than apply-
ing supervised or reinforcement learning methods that would limit the neural
architecture, we used an evolutionary approach that explored different weight
configurations. As the evolutionary process proceeded, there was a reduction in
weight diversity, and at the same time, a decrease in the Φ values. In the early
stages of evolution where the robots were “exploring” to find the optimal path,
the weights were diverse, but as weights became relatively consistent later on,
the neurons’ activation was also optimized, similar to behavior observed in rats
[15]. Although the results were unexpected, they are consistent with the initial
transition from random behavior to stereotyped, goal-driven behavior. However,
to determine whether high Φ can be consistently observed in various instances
of random behavior and low Φ in goal-driven behavior beyond the scope of this
simulation, further studies in more complex systems including real-world exper-
iments are necessary.
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