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Abstract. By removing a fractal from time-rolled Minkowski spacetime, we
construct an extendible spacetime without closed timelike curves whose every

extension contains closed timelike curves. This settles a question posed by

Geroch.

1. Introduction

Geroch [1] has emphasized that a suitable definition of a “singularity” within
the context of general relativity depends crutially on the definition of spacetime
maximality. He has also suggested that the latter definition is far from clear given
its sensitivity to a background collection of spacetimes. In recent years, there
has been significant interest in better understanding this sensitivity by exploring
spacetime maximality outside the standard context, e.g., C0-maximality [2, 3, 4].
In his paper, Geroch articulated a number of “important and unsolved problems”
concerning spacetime maximality – some of which remain open 50+ years later.
The present work concerns one such problem.

Let U be the collection of all spacetimes (M, g) whereM is a smooth, connected,
Hausdorff manifold and g is a smooth Lorentzian metric on M . For any collection
P ⊆ U , let us say that a spacetime in P is P-maximal if it is not isometric to
a proper subset of another spacetime (M ′, g′) in P. We say a spacetime in P is
P-extendible if it is not P-maximal. Now consider the following condition on a
collection P ⊂ U :

(*) Every P-maximal spacetime is U -maximal.

Many spacetime properties of interest do not satisfy (*). For instance, if P ⊂ U
is the collection of all globally hyperbolic spacetimes, one can easily find a P-
maximal spacetime that is U -extendible: the t < 0 region of Misner spacetime is
one such example [5, 6]. This particular example can be used to obtain similar
results for a number of other steps on the causal ladder: stable causality, strong
causality, and (past and future) distinguishability. The case of causality is handled
with another simple example [7]. Consider any U -maximal spacetime (M, g) with
a single closed null curve and then remove a point p on this curve. The resulting
spacetime (M − {p}, g) is causal but it has only one proper extension: the acausal
spacetime (M, g). This last step relies on an intuitive but non-trivial result recently
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proved by Sbierski [4]: If (M, g) is a U -maximal spacetime and p ∈ M , then the
only proper U -extension (up to isometry) of (M − {p}, g) is (M, g) itself.

It can also be seen that some spacetime properties trivially satisfy (*): if P ⊂ U
is the collection of all geodesically complete spacetimes, then it is immediate that
each spacetime in P is U -maximal and thus P-maximal [8, 9]. But the status
of (*) with respect to other spacetime properties is sometimes difficult to settle.
Geroch [1] wondered about four spacetime properties in particular:

(i) “is a source-free solution to Einstein’s equations”
(ii) “has no closed timelike curves”
(iii) “satisfies an energy condition”
(iv) “has a Killing vector”

Questions concerning (i) and (iv) are still open as far as we know. Question
(iii) was settled by Manchak [7] who showed that (*) is not satisfied by any of the
standard energy conditions.

Question (ii) is settled in the present paper. Geroch had special interest in this
case, he writes in [1, p. 277]: “In fact, the status of closed timelike curves with
respect to condition [(*)] would have an important bearing on whether or not the
program for refining the notion of a “singular point” by using extensions can be
carried out for the ideal points construction.” For some time there was hope for
a positive resolution, but it turns out that condition (*) is not satisfied by the
collection P ⊂ U of all spacetimes without closed timelike curves (CTCs).

In this paper, an example is presented which is a U -extendible spacetime without
CTCs whose every extension contains CTCs. The example is a variation of an idea
that is often used in the foundations of Lorentzian causality theory: take Minkowski
spacetime and “roll it up” along the time direction and then remove points in an
appropriate way [10, 11]. In our case, the set of removed points needs to be quite
intricate; here it is a fractal and at the same time a generalized Cantor set. We note
that because of this construction, the example (M, g) should not be considered a
“time machine” since all of the CTCs in every extension (M ′, g′) are confined to
the timelike past of M in M ′ [12, 13].

2. Puncturing time-rolled Minkowski spacetime to ban all CTCs

In this section we construct the desired spacetime for dimension 2, it will be
extended to all dimensions in Section 4. Time-rolled Minkowski spacetime has
plenty of CTCs, we construct a “barrier” B such that each CTC in time-rolled
Minkowski spacetime has at least one point from B. Because all extensions of the
example need to have CTCs, the set B cannot contain any line segment.

The idea is to build an infinite horizontal wall from fractal bricks, each of which is
constructed as the Cantor set; but instead of removing middle thirds starting from
the interval [0, 1], we remove sets from a closed trapezoid having lightlike legs. We
do this such that what remains are three disjoint closed trapezoids each similar to
the original one and whose corresponding legs are on the same lightlike line. Then
we continue this procedure with the small trapezoids ad infinitum. See Figure 1.

To see the condition for self-similarity, let S be the length of the longer base and
T be the height of the trapezoid, and let λ be the ratio of similarity, see Figure 2.
Then, because the legs of the trapezoids are lightlike, we have S = 3

λS− 2T , which
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Figure 1. Construction of the barrier B by an infinite iteration.

can be reorganized as

(1) 2λT = (3− λ)S.

If λ = 3, then T = 0 and our construction degenerates into a line segment. If
λ = 2, then S = 4T and the smaller trapezoids overlap. However, any of the cases
2 < λ < 3 are equally good for our purposes.

To construct the fractal bricks, let us choose and fix some λ for which 2 < λ < 3.
For concreteness, choose T = 1, then S = 2λ/(3 − λ).1 Let B0

0 be the closed
trapezoid with nodes (0, 0), (1, 1), (1, S − 1) and (0, S). Then B0

0 has horizontal
bases and lightlike legs such that its height and longer base satisfy equation (1).
See Figure 2.

Let B1
0 be the union of the three closed smaller trapezoids similar to B0

0 placed
as in Figure 2, and let Bi+1

0 be the union of the 3i+1 trapezoids that we get by
iterating the same replacement step with all the 3i trapezoids of Bi0. Let m be the
length of the midsegment of trapezoid B0

0 . For each n ∈ Z, let Bin be Bi0 translated
horizontally by nm and rotated around its center if n is odd. See Figure 1.

We now define our barrier set B as

(2) Bi :=
⋃
n∈Z

Bin and B =

∞⋂
i=0

Bi.

We note that B ⊆ [0, 1] × R and the horizontal projection of B to the vertical
interval [(0, 0), (1, 0)] is almost the Cantor set. The only difference is that the
lengths of the removed intervals here are shorter. This is so because the lengths
of the removed intervals are (1 − 2/λ)-th of the original ones, which is less than
one third since 2 < λ < 3. The intersection of B with the horizontal line segment
[(0, 0), (0, S)] is also almost the Cantor set.

Proposition 1.

(a) B is closed.
(b) The complement of B is connected.

Proof. It is easy to see that, for each i, the set Bi =
⋃
n∈ZB

i
n is closed because it is

the union of isolated-enough trapezoids. For a formal proof, Bi is the union of the
locally finite collection of closed sets Bin, i.e., there is a neighborhood of each point

1S = 6 if λ = 2.25. The figures are constructed with λ = 2.4.
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Figure 2. The figure illustrates the main construction step of
barrier B together with the variables of equation (1) that is used
to derive the condition 2 < λ < 3 of self-similarity. The light gray
part is the set that we remove from the trapezoid, and the three
dark gray trapezoids are the remaining closed trapezoids which are
similar to the original one. Analogously to the construction of the
Cantor set, we repeat this removal step ad infinitum.

in R2 such that it intersects only finitely many of the closed sets [14, Cor.1.1.12].
Then B is closed because it is an intersection of closed sets by (2).

For each i ≥ 1, the complement of Bi is clearly connected since we just removed
some isolated closed trapezoids from the plane. The complement of B is the union
of the complements of Bi. Hence, the complement of B is connected because it is
the union of an upward directed collection of connected sets. □

The following proposition says that no causal curve can cross region [0, 1] × R
without intersecting B. It is here where we use that the legs of the trapezoids are
lightlike.

Proposition 2. Assume that γ : [0, 1] → R2 is a broken future-directed causal
curve such that γ(0) = (0, x) and γ(1) = (1, y) for some x, y ∈ R. Then there is
0 ≤ t ≤ 1 such that γ(t) ∈ B.

Proof. Let γ be a causal curve in Minkowski spacetime (R2, η) as in the statement.
The plan of the proof is as follows. Using induction, we are going to show that there
is an n ∈ Z such that, for all natural numbers i, γ intersects one of the trapezoids of
Bin at its longer base. Moreover, if γ intersects a trapezoid in Bin, then it intersects
a sub-trapezoid in Bi+1

n . The intersection of these nested closed trapezoids is a
point p of B to which the intersection points converge. Thus p has to be on γ
because the latter is continuous. This will complete the proof of the proposition.

By definition, B0 is [0, 1]×R, so γ(0) is on one of the bases of some B0
n. If γ(0)

is on the shorter base of B0
n, then γ(1) is on the longer base of B0

n, because the
legs of B0

n are lightlike and γ is broken future-directed causal. See Figure 3. Thus
either γ(0) = (0, x) or γ(1) = (1, y) is on the longer base of B0

n for some n ∈ Z.
This shows the base case i = 0 of the induction.

Assume now that we have already seen that γ intersects one of the trapezoids of
Bin at its longer base. By symmetry, without loss of generality, we can assume that
this longer base is at the bottom. Then there are three cases: either γ intersects
the left closed, middle open or the right closed part of this bottom base. In the first
and third cases, γ intersects the longer base of the left or the right smaller trapezoid
of the next iteration step. In the second case, γ has to intersect the longer base
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1

0

Figure 3. No causal curve can cross region [0, 1] × R without
intersecting B, cf. Proposition 2 below.

of the middle trapezoid because the common legs of these trapezoids are lightlike.
Hence, γ intersects one of the included trapezoids of Bi+1

n at its longer base, and
this is what we wanted to show.

Let now pi be the intersection points of γ with the longer bases and let p be the
unique point in the intersection of the nested trapezoids γ intersects. Then p ∈ B
by definition. Also, the pi converge to p because each open neighbourhood O of p
contains one of these nested trapezoids as a subset, since their diameters tend to 0
as i tends to infinity. But then O contains all pj , j ≥ i for some i. We have seen
that the pi converge to p. Since γ is continuous, then γ(t) = p for some 0 ≤ t ≤ 1
because for all i, we have that pi = γ(ti) for some 0 ≤ ti ≤ 1. □

By Proposition 1, we have that (R2 \B, η) is a spacetime. We can roll it up by
choosing a large enough ℓ ∈ Z and gluing points (−ℓ, x) and (ℓ, x) together, for all
x ∈ R. For concreteness, choose an ℓ > λ/(3− λ) = S/2 (cf. equation (1)) and let
M− = (M−, η) be the spacetime that we get this way. By Proposition 2, there are
no closed timelike curves (CTCs) in M−. Clearly, M− is extendible, because, e.g.,
Minkowski spacetime rolled up at the same ℓ is an extension of M−. We can call
M− punctured time-rolled Minkowski spacetime.

In the following, we state three lemmas about B that we will use in the next
section when proving that each proper extension of M− does have a CTC. In the
rest of this section, we will work in (R2, η).

Because the diameters of the trapezoids tend to 0, every point of B can be
described by a choice sequence that starts with an integer and continues with an
infinite series of decision of Left, Middle, Right. In other words, there is a one-to-
one correspondence between points of B and Z× {L,M,R}ω.

We call a point e ∈ B eventually middle iff its choice sequence contains only
finitely many L and R choices, in other words, it becomes constant M after some
time.

Lemma 1. The set of eventually middle points is everywhere dense in B, i.e., for
every ε > 0 and for every p ∈ B there is an eventually middle point e such that
|p− e| < ε.

Proof. This follows easily from the construction because every point of B is in a
small enough closed trapezoid of the construction and every such trapezoid contains
(infinitely many) eventually middle points. □

The statement of the next lemma is illustrated in Figure 4.
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R

e

Figure 4. Inside the smallest light rhombus containing a trape-
zoid used in the construction of B, the vertical centerline intersects
B only in one point, which is an eventually middle point.

Lemma 2. Let e be an eventually middle point. Inside the smallest light rhombus
R containing the trapezoid after which we always choose M to reach e, the vertical
centerline of R intersects B only in e.

Proof. This follows by self-similarity, see Figure 4. In more detail, let e be an
eventually middle point and let the big grey trapezoid of the figure illustrate the
one after which we always choose M to reach e. Let R be the smallest rhombus
with lightlike sides which contains this trapezoid. By the construction, the parts
of the green vertical center-line-segment of R which are outside the big trapezoid
is outside B, for checking see Figure 3. Similarly, by the construction, the parts
connecting the midpoints of the corresponding bases of the big and small trapezoids
are outside B, for checking see Figure 4. The part of B covered by the big trapezoid
and the part of B covered by the small trapezoid in the middle are similar and can
be transformed into each other by a homogeneous dilation with center e. This can
be seen as follows. For B0

0 , using the summing formula of geometric series, we get

e =
(
S/2,

(
1− 1

λ

) (
1 + 1

λ2 + 1
λ4 + . . .

))
=

(
λ

3−λ ,
λ
λ+1

)
. The bottom left corner of

the middle trapezoid is
(
S
λ − 1 + S

λ2 − 1
λ , 1−

1
λ

)
=

(
λ−1
λ

λ+1
3−λ ,

λ−1
λ

)
= λ2−1

λ2 ·e. This
calculation confirms that the center of the homogeneous dilation is indeed e. Hence,
except e, every point of the vertical center-line-segment of R is outside B. □

The statement of the next lemma is illustrated in Figures 5, 6.

Lemma 3. For every eventually middle point e ∈ B, there are timelike curves
τ, τ ′ : [0, 1] → R2 such that
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τ(0) = (−ℓ, x)
(−S/2, x)

(S/2, x)
τ ′(0) = (ℓ, x)

Figure 5. Through every eventually middle point e there are
timelike curves τ and τ ′ respectively connecting e to points (−ℓ, x)
and (ℓ, x) for some x ∈ R such that these curves contain no other
point of B apart from e, cf. Lemma 3.

(a) τ(1) = τ ′(1) = e, τ(0) = (−ℓ, x), τ ′(0) = (ℓ, x) for some x ∈ R,
(b) the ranges of τ and τ ′ become part of the vertical line through e after a

while, and
(c) both τ and τ ′ intersect B only in e.

Moreover, there are rn, tn ∈ (0, 1) tending to 1 when n tends to infinity, and there
are curves λn ⊂ R2 \B connecting τ ′(rn) and τ(tn) such that the Euclidean length
of λn tends to 0 when n tends to infinity.

Proof. Let e ∈ B be an eventually middle point. There is a series of nested trape-
zoids corresponding to the choice sequence of e. Let B0

n be the first trapezoid of
this sequence. Let x be such that (−ℓ, x) and (ℓ, x) are on the vertical centerline of
B0
n. Then the edges of B0

n at its longer base are lightlike related to points (−S/2, x)
and (S/2, x), cf. Figure 5.
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λ1
. . . λ2

τ

τ ′

τ(1) = τ ′(1) = e

Figure 6. There is an infinite sequence of curves λn ⊂ R2 \ B
whose Euclidean length tends to 0 as n tends to infinity and who
“witnesses” in R2 \B that the two halves of the centerline meet at
e, cf. Lemma 3.

First by induction, we show that: Each point p of the lower bases of the trapezoids
from B0

n are reachable from below from point (−ℓ, x) by a timelike curve intersecting
B at most this point p; and analogously, the upper bases of these trapezoids are
reachable from above from (ℓ, x) by a timelike curve avoiding B in this sense.

By symmetry, it is enough to show the first part of this statement. The base
case, when p is on the bottom base of B0

n is easy because we have that the line
segment from (−ℓ, x) to p is timelike since point (−S/2, x) and the endpoints of the
bottom base of B0

n are lightlike separated, and ℓ > S/2. Since there is no point of
B below this bottom base, we can easily reach p by an appropriate timelike curve
from (−ℓ, x).

To see the induction step, it is enough to observe that the bottom base of each
trapezoid is either part of the bottom base of the trapezoid of the previous iteration
step, and then we have already reached it with an appropriate timelike curve; or it
is reachable from a point of that base which is not in B by a timelike curve avoiding
B; and hence, by continuing the curve given by the induction hypothesis with this
one, we get the timelike curve we need. The above property used in the induction
step is easy to confirm by the self-similarity of the construction, see Figure 5.

Consider now the trapezoid after which we always choose M to reach e. By
Lemma 2, inside this trapezoid, the vertical centerline intersects B only in the
point e, see Figure 6.

Now take a timelike curve from (−ℓ, x) to the bottom point of this centerline and
continue it with the bottom part until e, with an appropriate parametrization this
gives curve τ , and a completely analogous way we can find a τ ′ connecting (ℓ, x)
and e.

By self-similarity, to see the existence of curves λn, it is enough to see the
existence of r1, t1 and λ1, which is easy because there is plenty of space outside
B but inside the first middle trapezoid to go around the next middle trapezoid
connecting some point τ(r1) and τ ′(t1). Now, we can recursively define λn by
scaling down λn−1 by scaling factor 1/λ. That the parameter points rn and tn of
τ and τ ′ tend to 0, as well as, that the Euclidean length of λn tends to 0 when n
tends to infinity follows from the fact that, in each step, we scaled down by factor
1/λ < 1/2. □
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3. All extensions of the punctured time-rolled Minkowski spacetime
have closed timelike curves

The idea of the proof is that any proper extension of M− has to fill in a point
of B since time-rolled Minkowski spacetime is geodesically complete. Once the
extension fills in a point, it fills in nearby points, of B, too (see the next lemma).
To any point of B, arbitrarily close there are eventually middle points, and those
are the only missing points of some CTCs in M−. Thus, the extension will have at
least these CTCs.

We begin by proving a general lemma about extensions. We say that an extension
fills in a limit for a curve living in the smaller spacetime if the curve converges to
a point in the extension (but it may not converge to any point in the smaller
spacetime). The next lemma says, intuitively, that if an extension fills in a limit,
it also fills in nearby limits witnessed by short curves in a coordinate system, and
two such new limits coincide if a system of short coordinate curves witness their
coincidence.

Some notation: For a chart ψ of S and broken curve δ : [0, 1) → S, we denote
the Euclidean coordinate-length of ψ(δ) by |δ|ψ. We say that δ convereges to q in
S if there is a broken curve δ′ : [0, 1] → S such that δ′(1) = q and δ′(x) = δ(x) for
all 0 ≤ x < 1. We say that δ can be continued if there is δ′ : [0, y) → S with y > 1
and δ′(x) = δ(x) for all 0 ≤ x < 1. By δ ⊆ X we mean that the range of δ is a
subset of X.

The next lemma is interesting when p /∈ N . Lemma 4(ii) below is somewhat
similar to Proposition 5.1. of [4].

Lemma 4. Let m ≥ 2, let S = (S, g) be an m-dimensonal Lorentzian manifold, let
O be an open set of S, and let ψ : N → Rm be a chart of S such that the components
gij and ∂kgij are bounded in the range of ψ. Then for all p ∈ O there is ε ∈ R
such that (i) and (ii) below hold for all broken curves δ, δ′ : [0, 1) → S starting at p
(i.e., δ(0) = δ′(0) = p). Let δ− denote the curve δ without its starting point, i.e.,
δ− = δ \ {p} and similarly for other broken curves starting at p.

(i): If δ− ⊆ N and |δ−|ψ < ε then δ ⊂ O and δ can be continued in O.
(ii): If δ, δ′ are as in (i) and ψ(δ−), ψ(δ′−) converge to the same point in Rm such

that this is “witnessed by a vanishing ψ-ladder”, then they converge to the
same point in S, too. In more detail: Let rn, tn ∈ (0, 1) be such that they
tend to 1 when n tends to infinity. Let the curves λn ⊂ N connect δ(rn)
with δ′(tn) such that |λn|ψ converges to 0 when n tends to infinity. Then δ
and δ′ converge to the same point in O.

Proof. Let S, ψ, O, p and δ be as in the lemma such that δ \ {p} ⊂ N . Let
ξ : D → Rm be a chart in S such that p ∈ D. Since the range of ξ is an open set in
Rm, we may assume that the range of ξ is an open ball G of radius r around ξ(p).
By taking r to be small enough, we may assume that, in ξ, the components gij of
g as well as the components ∂kgij of the derivatives of g are bounded by a number
in G. Let Cg be a common bound for the components of g and its derivatives in
the coordinate systems ξ and ψ.

First we prove (i). Assume that δ is not a subset of D. There is 0 < a < 1
such that δ(a) /∈ D but δ(x) ∈ D for all 0 ≤ x < a. Let γ be δ till this point, i.e.,
γ : [0, a) → S such that γ(x) = δ(x) for 0 ≤ x < a. We are going to show that γ
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cannot be too short, i.e., there is ε ∈ R such that |γ−|ψ > ε. Therefore, δ ⊂ D ⊆ O
if |δ−|ψ < ε and also δ can be continued in D in this case.

Let k ∈ R be arbitrary and assume that

(1) |γ−|ψ < k.

Let q = δ(a) and let ρ denote the curve γ taken from q till p but such that p /∈ ρ,
i.e., ρ : [0, a) → S is defined by ρ(x) = γ(a − x) for x ∈ [0, a). Then |ρ|ψ = |γ−|ψ
and ρ ⊂ N , γ ⊂ O.

From here on in the proof of (i), we will extensively rely on Section 4 of [4].
Take an orthonormal basis e = (ei : i < n) in TqS. Let gap(ρ) denote the general-
affine-paramater length of ρ with respect to e. This is denoted by Lgap,e(ρ) in [4],
its definition is recalled at the beginning of Section 4 of [4]. By Lemma 4.2 of [4],
there is 0 < b < ω, depending only on k, e and Cg, such that

gap(ρ) < b · |ρ|ψ if |ρ|ψ < k.

We have |ρ|ψ < k by |γ−|ψ < k.
Let now f = (fi : i < n) in TpS be the orthonormal basis which we get if we

parallel transport e along δ from q to p. By the definition of gap-length, then
gap(γ) = Lgap,f (γ) taken with this basis f is the same as gap(ρ) = Lgap,e(ρ). Now
we can apply Corollary 4.12 of [4] to the chart ξ, since γ ⊂ D. It says that there are
c, d ∈ R depending only on Cg and f such that if gap(γ) < c then |γ|ξ < d · gap(γ).
We got

|γ|ξ < d · gap(γ) = d · gap(ρ) < d · b · |ρ|ψ = d · b · |γ−|ψ,
i.e.,

(2) |γ|ξ < d · b · |γ−|ψ
whenever gap(γ) < c. The latter holds if

(3) |γ−|ψ < c · b−1.

Now we use that the range of ξ is a ball with radius r. This implies that |γ|ξ
cannot be shorter than r because it is a curve starting at the center of the ball and
leaving the ball. Hence |γ|ξ ≥ r and so

(4) |γ−|ψ ≥ r · (d · b)−1.

Let ε = min{k, c · b−1, r · (d · b)−1}. Taking this ε makes (i) true. We also got in
the proof that there is a bound K ∈ R such that

(5) |δ|ξ < K · |δ−|ψ
whenever |δ−|ψ < ε (namely, by (2), we can take K = b · d).

Proof of (ii): Let δ, δ′ and λn be as in the statement of (ii). By (i), both δ and
δ′ converge to points of O, say to q and q′. These q and q′ may not belong to N .
We want to show q = q′. Let the broken curves γn be defined as δ from p till δ(rn)
and then continued with λn till δ′(tn). Then by our conditions, for large enough n,
the broken curve γn satisfies the conditions for (i), i.e., it starts at p, γ−n ⊂ N , and
|γ−n |ψ < ε. Thus there is n0 such that γn ⊂ O, in particular λn ⊂ O for all n ≥ n0.

Let us consider now curves starting at q. We have q ∈ O, by (i). Let ε0 ∈ R be
the bound that exists for q according to (i). Let the broken curves ρn be defined as
starting from q then going in reverse direction along δ till δ(rn), continuing along λn
till δ′(tn) and then continuing along δ′ till its end (so that q′ /∈ ρn). Then ρ

−
n ⊂ N
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and |ρ−n |ψ tends to 0 as n tends to infinity. Let n1 ≥ n0 be such that |ρ−n |ψ < ε0
for all n ≥ n1.

Let K0 be the bound that exists for q by the proof of (i), i.e., we have |ρn|ξ <
K0 · |ρ−n |ψ for all n ≥ n1. Thus |ρn|ξ tends to 0 as n tends to infinity. Since ξ(ρn)
starts at ξ(q) and converges to ξ(q′) for all n ≥ n1, this means that ξ(q) = ξ(q′).
Hence q = q′ since ξ is a bijection, and we are done. □

We are ready for proving the main property of M−, namely, that it is maximal
among the spacetimes that do not contain CTCs.

Proposition 3. Each proper extension of M− contains closed timelike curves.

Proof. Assume that S = (S, g) is a proper extension of M− = (M−, η). We may
assume that M− is the restriction of S to M− ⊂ S and M− is an open set in S.

From now on, we will work in S.

Step 1: We show2 that there is geodesic γ ⊂M− converging to some p ∈ S \M−.

Let q ∈M− and p ∈ S\M− be arbitrary, there are such points. There is a broken
geodesic γ that connects them in S because S is connected. By the properties of
the real numbers, and because p ∈M− and q /∈M−, there is a first point in γ that
is not in M−. Thus, we may assume that γ ⊂ M− is a geodesic that converges to
p /∈ M− (in S of course), by letting γ be the last portion of the broken geodesic
that lies in M− and taking p to be the first point that is not in M−. We may
assume that γ ⊂ R2.

Step 2: We show that γ converges, in R2, to a point p′ ∈ B.

This is so because γ has to converge to some point we left out from rolled-up
Minkowski spacetime as the latter is geodesically complete.

We are ready to apply Lemma 4. Let N = ((−1, 2)×R) \B. Then N is an open
subset of M− as well as it is a subset of R2. Let ψ : N → R2 be defined to be the
identity, i.e., ψ(x, y) = (x, y) for all (x, y) ∈ N . Then ψ is a chart of M−, so it is a
chart of S, too, because S is an extension of M−.

We are going to apply Lemma 4 to S and ψ by taking O to be any open neigh-
borhood of p (in S, of course). By using this scenario and the properties of our
concrete example M−, we are going to show that an eventually middle point in B
is “filled in” in O, and this will bring in the CTC whose only missing point in M−

was this middle point.
The conditions of Lemma 4 hold because on chart ψ the components gij are 0 or

1 and all of ∂gij = 0 since here the metric is the standard Minkowski metric. Let
ε ∈ R be as given by Lemma 4 for p.

Step 3: There are broken curves δ, δ′ : [0, 1) → S starting at p and short enough
according to chart ψ such that apart from their starting points they stay
within N∩O, and on chart ψ, they both converge to some eventually middle
point e ∈ B from opposite vertical directions.

Except from the initial ones, around every trapezoid used in the construction
of B, there is a surrounding rectangle not intersecting B. By Lemma 1, there is
an eventually middle point e ∈ B arbitrarily close to p′. Let e be so close to p′

that they are in a non-initial trapezoid whose surrounding rectangle R has sides
less than ε/6, see Figure 7. Since γ tends to p′ here, we can assume without

2We give a reason, but this is well-known, see, e.g., Lemma A.6 in [4].
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R
γ

δ
e

p′

< ε/6

Figure 7. This figure illustrates the construction of the curves
used in Step 3.

loss of generality that γ intersects R. Let δ : [0, 1) → S be the broken curve
defined as follows and as illustrated by Figure 7: We go from p along γ backwards
until the intersection point of γ and R. From this point, we go around along R
until the intersection point of the vertical line through e and R. Finally, we go
along the vertical line until e. Analogously, we get δ′ going to e in the opposite
direction after the first breaking point. The coordinate lengths |δ|ψ and |δ′|ψ are
both less than ε because the coordinate length of the part along γ is shorter than
the diagonal of R, which is less than 2 · ε/6, and the rest is less than 4 · ε/6 because
it contains at most 4 segments each of which is shorter than the longest sides of R.
By their construction and Lemma 2, both δ and δ′ stay within N apart from point
p = δ(0) = δ′(0). Hence, by (i) of Lemma 4, we have that, apart from p, they are
also in O.

Step 4: In S, δ, δ′ : [0, 1) → S converge and have the same limit point.

By (i) of Lemma 4, δ and δ′ can even be continued in O, and hence they have
limit points in S. After a while, the ranges of curves δ and δ′ overlap with those
of timelike curves τ and τ ′ given by Lemma 3. Hence, by Lemma 3, we have the
“vanishing ψ-ladder” witnessing that δ and δ′ converge to the same point in chart
ψ required to apply (ii) of Lemma 4 and to conclude that they converge to the same
point in O, and hence in S.

Step 5: Through this common limit point of δ and δ′, there is a CTC in S.

Since after a while the ranges of curves δ and δ′ overlap with those of τ and τ ′

given by Lemma 3, the common limit point of δ and δ′ is also a common limit point
for timelike curves τ and τ ′. Hence, going forwards in τ and backwards in τ ′ gives
us the desired CTC in S, because the starting points of τ and τ ′ are glued together
in M−. □

4. Higher dimensions

The barrier B × Rd−2 works in d-dimension in an analogous construction. We
have that B × Rd−2 is closed and its complement is connected because the direct
product of closed sets is closed and the direct product of connected sets is connected.
Hence removing B × Rd−2 from d-dimensional time-rolled Minkowski spacetime
gives an analogous d-dimensional punctured time-rolled Minkowski spacetime M−

d .

The set B × Rd−2 can also be constructed analogously to B by intersecting d-
dimensional closed bars that have trapezoids as 2-dimensional cross sections. Hence
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that no broken future-directed causal curve can cross [0, 1] × Rd−1 without inter-
secting B×Rd−2 can be proven the same way as Proposition 2. The only difference
is that, instead of a point, the intersection of the corresponding nested bars give a
horizontal d−1-dimensional subspace3, which is contained in B×Rd−2 and crosses
the causal curve trying to go through region [0, 1]× Rd−2.

Let us note that if we intersect B × Rd−2 with any plane parallel to the plane
{(t, x, 0, . . . , 0) ∈ Rd : t, x ∈ R}, we get back B in these 2-dimensional vertical cross
sections. Hence, even though in this higher dimensional construction instead of
eventually middle points we have eventually middle d − 1-dimensional subspaces,
every point of these eventually middle subspaces is an eventually middle point of
some B from some 2-dimensional vertical cross section, and these eventually middle
points also satisfy Lemmas 1, 2 and 3 generalized to Rd replacing B with B×Rd−2.

We have that M−
d is maximal among spacetimes that do not contain CTCs

because each step of the proof of Proposition 3 goes through in this modified con-
struction. The same way as we did in Step 1 and Step 2, we can find a point p
from the extension corresponding to a removed point. Because the 2-dimensional
vertical cross section of M−

d through this point p is isomorphic to M−
2 , curves δ,

δ′, λn’s, τ and τ ′ of the two 2-dimensional construction exist also in M−
d . So, since

Lemma 4 works in any dimension, we can repeat the same proof with these curves
and find the CTC we are searching for.
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