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Preface

This book concerns the modal structure of spacetime within the context of
Einstein’s general relativity. The aim is to expose a rich set of philosophical
issues somewhat informally and from a bird’s eye view. No familiarity with
general relativity is presupposed. A large number of examples (worked out in
coordinates) and corresponding diagrams (over 130) will play a central role in
illustrating the ideas involved. One of the intended readers is a non-expert.
She is perhaps a philosophy graduate student just getting started with an
interest in better understanding cosmic possibility delimited by Einstein’s
theory. Under her belt, she has little more than some basic set theory and
a passing acquaintance with calculus and vector spaces. The other intended
reader is the expert. She will find several interconnecting lines of current
research mapped out and a clear thesis defended. Many of the results have
appeared in print before but there is also a good deal of new material here.

The investigation will focus on the “maximality” property of spacetime
— the requirement that (a model of) the universe must be “as large as it
can be.” The maximality of spacetime is something of a dogma within the
context of generality relativity. In the background, it is often presupposed
by practitioners without comment in order to go on to investigate a number
of other foundational topics (e.g. determinism). Here and there, one does
sometimes find a few sentences by way of justification. A passage from John
Earman (1995, p. 32) gives sense of the literature.

Metaphysical considerations suggest that to be a serious can-
didate for describing actuality, a spacetime should be maximal.
For example, for the Creative Force to actualize a proper subpart
of a larger spacetime would seem to be a violation of Leibniz’s
principles of sufficient reason and plenitude. If one adopts the
image of spacetime as being generated or built up as time passes
then the dynamical version of the principle of sufficient reason

6
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would ask why the Creative Force would stop building if it is
possible to continue.

The Leibnizian reasoning here may seem compelling — even obvious. But
under the surface, one finds a surprisingly weak foundation for the dogma
of spacetime maximality. First, there are definitional puzzles: what does
it even mean to say that the universe is as large as it can be? The modal
notion of spacetime maximality is defined relative to a background collection
of possible universes. But what is a “possible universe” within the context
of general relativity? Much depends on this deep, murky question. Second,
the dogma comes with an epistemological problem. Spacetime maximality is
not the sort of property that can be empirically observed. Various forms of
induction do not help the situation. So how can one ever be in position to
know that the universe is as large as it can be? Third, metaphysical tensions
abound. Leibnizian principles are problematic in some contexts: it is not
always possible for the Creative Force to build a universe to be as large as
it can be. Moreover, the dogma can clash with other cherished metaphysical
demands. One example is the requirement that spacetime maximality be a
property of all “nearby” possible universes.

In what follows, I do not defend or oppose the case for spacetime max-
imality. Instead, I will simply put forward a thesis that nonetheless runs
counter to the prevailing orthodoxy: it is not at all clear that the universe is
a large as it can be. Keeping track of the evidence for and against spacetime
maximality will be the primary undertaking. In addition, I will explore the
some of the philosophical consequences if the dogma were to hold and also
if it were to fail. The inspiration for the project can be traced back to three
main sources:

(i) Appendix B from the paper “Singularities” by Bob Geroch (1970b).
There, it is emphasized that a suitable definition of a “singularity” within
the context of general relativity must depend crucially on the definition of
spacetime maximality. Geroch also suggests that the latter definition is far
from clear given its sensitivity to a background collection of possible uni-
verses. To help clarify the situation, a number of “important and unsolved
problems” are communicated — many of which remain open more than a half
century later (Geroch, 1970b, p. 276). Essentially, the present work is an
attempt to follow up on several of these lines of inquiry as best I can.

(ii) The “dirty open secret” discussed by John Earman (1995) in his book
Bangs, Crunches, Whimpers, Shrieks. Attention is drawn to the fact that
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those wishing to secure determinism for general relativity employ a type
of circular reasoning: indeterminism is only avoided by excluding certain
types of spacetime “holes” by fiat. A similar point applies to spacetime
maximality which is also imposed by fiat but at a more fundamental level. I
have endeavored to expose this even dirtier open secret in a variety of ways.

(iii) A table presented by David Malament (1977b) in his “Observationally
Indistinguishable Space-Times” paper. The 13 rows are first-order spacetime
properties and the three columns are second-order properties of collections
of spacetimes (these concern whether certain relations hold among elements
in the collection). Each “yes” or “no” entry corresponds to the result of
one of 13x3=39 precise questions under consideration. This visual helps to
illuminate a nuanced situation from many angles at once. Here, I have tried
to adapt this idea to the topic of spacetime maximality; the entire book can
be summarized in similar table on the final page. Although most of the
20x6=120 questions under consideration have been settled, there are also
dozens of “?” entries. My hope is that, by drawing attention to these issues,
even more progress can be made by others.

A number of people have helped this project along. David Malament
has been an extraordinary sounding board for many years now and his sug-
gestions and corrections have guided the inquiry significantly. I am very
grateful to him. Thomas Barrett, Bob Geroch, and Jim Weatherall also
provided useful comments on an earlier draft. Jeff Barrett, Gordon Belot,
Eddy Chen, Erik Curiel, Juliusz Doboszewski, John Earman, Sam Fletcher,
Hans Halvorson, Sergey Krasnikov, Ettore Minguzzi, Bryan Roberts, and
Jan Sbierski deserve thanks as well for enlightening discussions and feedback
on earlier work. I am fortunate to have such mentors and colleagues. Above
all, I appreciate Meka and June for their love and support along the way.
Midas too.



Introduction

It is helpful to think of (standard) general relativity as a particular collection
of models of spacetime on the largest possible scale. Each model represents a
possible universe compatible with the theory. Just as it would be a mistake
to conclude that the earth is flat simply because it seems to be that way in
one’s immediate vicinity, so too would it be a mistake to conclude that the
local structure of the universe mirrors its global structure. As George Ellis
(2007, p. 1231) has put it: “The situation is like that of an ant surveying the
world from the top of a sand dune in the Sahara desert. Her world model
will be a world composed only of sand dunes — despite the existence of cities,
oceans, forests, tundra, mountains, and so on beyond her horizon.” For this
reason, global spacetime structure within the context of general relativity
can be quite permissive with respect to physical possibility. Pathologies such
as “time travel” and spacetime “holes” of various kinds are not ruled out
a priori. After all, how is one to “identify the space-times which are too
pathological to be of physical interest unless he has at least examined the
possibilities which can arise?” (Geroch, 1971b, p. 72)

Focusing on global spacetime structure will allow us to investigate the
more foundational aspects of general relativity. For the most part, we will
step away from the details of local physics in order to examine a number
of qualitative features. Some of these have received a great deal of philo-
sophical attention over the years such as the causal and singular structures
of spacetime (Earman, 1995; Malament, 2012). These features will certainly
figure prominently in what follows. But the central focus of this book will
concern a somewhat less explored aspect of global structure of spacetime: its
modal structure. Before jumping in, it might be useful to provide a brief
sketch of the style of work carried out within the study of global structure
more generally. Doing so will help to illuminate the distinctive nature of our
exploration of the modality of spacetime.
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As a mathematical subject, global structure is somewhat unusual in the
sense that it is not characterized by a small number of key theorems from
which corollaries easily flow. Instead, one finds “a large number of true
statements, all of about equal utility” (Geroch and Horowitz, 1979, p. 214).
In practice, this means that a type of careful collecting activity is encouraged;
propositions which have limited significance when taken in isolation can be
bundled together to shed light on deep questions. An example may be useful
here. Consider a collection % of models of (standard) general relativity.
Each element in the collection represents a possible universe. Naturally, any
spacetime property corresponds to a particular subcollection of %. Much of
the work in global structure proceeds by first restricting attention to some
collection & C % of “physically reasonable” universes in order to tame the
unruly background possibility space. The limited context then allows one to
show that a certain spacetime property of interest must hold. For example,
the famous “singularity theorems” of Hawking and Penrose (1970) come out
as propositions of the form &2 C . where the collection . C % represents
the property of being “singular” in some precise sense.

Let’s now consider the modal structure of spacetime. Usually, spacetime
properties are defined without reference to the background possibility space
% . Examples of such properties include those concerning the “causal” struc-
ture of spacetime as well as the local distribution and flow of matter in the
form of “energy” conditions. There are a few exceptions, however. These are
modal properties and spacetime “maximality” — the requirement that the
universe be “as large as it can be” — is the paradigm example. A curious
tension arises with respect to modal properties that is almost never appreci-
ated in the literature. On the one hand, practitioners often pare down the
background possibility space by restricting attention to some physically rea-
sonable collection & C % as in the singularity theorems mentioned above.
On the other hand, they do not correspondingly define the modal properties
of spacetime (e.g. maximality) relative to the reduced collection &; the phys-
ically unreasonable background possibility space % is used instead (Hawking
and Ellis, 1973; Wald, 1984). It is not clear why this is done, perhaps for
reasons of simplicity. (As we shall see, non-standard definitions call for a
great deal of book keeping.) But as a result of this mismatch, one can easily
find situations where a possible universe in & is both (i) maximal relative
to the collection &2 and yet (ii) not maximal relative to the collection % . If
standard practice is followed and spacetime maximality is assumed to hold
under the usual definition (relative to the collection %), then such a uni-
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verse is ruled out on physically unreasonable grounds! Given the situation,
it would seem appropriate to initiate a consistent, systematic exploration of
spacetime maximality under various choices of background possibility spaces
& C /. This, in a nutshell, is what this book is all about.

The presentation is divided into two parts. In Part I, the vast possibility
space % is surveyed. Chapter 1 investigates the basic structure of space-
time. In order to help visualize this entity, diagrams are introduced first.
Attention is then given to the possible universe of Minkowski — the setting
for Einstein’s special relativity. Within this context, any spacetime event
can be characterized as a point in a four-dimensional Cartesian coordinate
system. Its shape is therefore a higher dimensional generalization of the Fu-
clidean plane. Moreover, the universe is “flat” in the sense that there is no
spacetime curvature present. One simple way to get a grip on the universes
permitted by general relativity is to keep the requirement of flatness in place
but explore other spacetime shapes. Chapter 2 does this with a study of
spacetime “manifolds” of various kinds. Chapter 3, brings curvature into the
mix and a variety of spacetime “metrics” are considered. The connection
between curvature and the distribution of flow of matter is also discussed.

Chapter 4 introduces the transfer of vectors between manifolds and the
key notion of an “isometry” which is an isomorphism between possible uni-
verses. This will allow for a definition of invariant spacetime properties and
a distinction between “global” and “local” varieties. Stepping back, the first
four chapters build, from the ground up, a good portion of basic differen-
tial geometry in a reader friendly way: manifolds, metrics, and isometries.
Other foundational topics such as derivative operators and arbitrary tensors
are not rigorously defined but these are discussed informally. Various global
properties become the focus of the next few chapters.

Chapter 5 concerns the causal structure of the universe and a hierarchy
of spacetime properties is central. The lowest level rules out a type of “time
travel” in which an event may causally influence itself. The highest level en-
sures that the universe is “deterministic” in the sense that physical situation
at any one instant depends entirely on the physical situation at any other.

Chapter 6 considers spacetime “holes” which signal a type of incomplete-
ness present in the universe. The singularity theorems are discussed and
key examples such as black holes and the big bang are reviewed. A num-
ber of modal properties are then introduced to help classify spacetime holes.
Spacetime maximality is the most basic among them.

Chapter 7 examines a hierarchy of spacetime asymmetry properties. The
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highest level is characterized by the “Heraclitus” demand that no distinct pair
of spacetime events have the same local structure. The Heraclitus asymmetry
property proves useful in the extended investigation of spacetime maximality
to follow.

Part T provides dozens of ways to slice and dice the possibility space %
into subcollections & C % of physical significance. In Part II, the modal
property of spacetime maximality is investigated relative to these various
subcollections.

Chapter 8 considers a plurality of definitions of spacetime maximality.
For any & C %, a universe in the subcollection counts as &-maximal if it
is “as large as it can be” relative &. It was conjectured by Geroch (1970b)
that some reduced possibility spaces & C % are such that a universe is
Z-maximal if and only if it is % -maximal. Although some important cases
remain open, it is shown that the conjecture fails in almost all contexts.

Chapter 9 explores the principles of Leibnizian metaphysics used to moti-
vate the imposition of spacetime maximality. The linchpin for such a position
is a theorem due to Geroch (1970b): any universe in % is either maximal or
can be extended to be maximal. Although analogous statements remain true
for some reduced possibility spaces &2 C %, one finds that others come out
as false. In such cases, Leibnizian metaphysics faces significant difficulties in
getting off the ground.

Chapter 10 takes up the question of whether, by using empirical observa-
tions and some form of induction, one can come to know that one’s universe
is maximal. Building on the results of Malament (1977b), we show that the
prospects are unsurprisingly dismal no matter what background possibility
space is considered. In an appendix, we also explore the epistemological situ-
ation in general relativity if the dogma of spacetime maximality were to hold
with respect to Heraclitus asymmetry property. Curiously, we find a sense
in which one can know which universe one inhabits within this context. We
also explore of a type of “meta-maximality” which requires reduced possi-
bility spaces & C % to be “as large as they can be” with respect to some
second-order property.

Chapter 11 concerns the “stability” of spacetime maximality. It is often
assumed that any physically significant property of spacetime must be stable
— it must hold in all “nearby” universes (Hawking and Ellis, 1973). Although
some limited stability results are available, &?-maximality turns out to be
unstable for some collections & C % . Moreover, we emphasize that there
are many open questions including the stability of the standard notion of
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% -maximality.

Chapter 12 investigates the notion of “determinism” within the context
of general relativity which is connected to several different notions of space-
time maximality. A celebrated theorem due to Choquet-Bruhat and Geroch
(1969) is considered which captures a sense in which general relativity is a de-
terministic theory: there exists a unique “maximal development” spacetime
associated with any initial data. For uniqueness to hold, the result must pre-
supposes a type of dynamical spacetime maximality relative to the collection
% . We emphasize that statements analogous to the Choquet-Bruhat and
Geroch (1969) theorem can be false relative to various reduced possibility
spaces & C 7/ . This poses a problem for the dynamical justification for the
dogma of spacetime maximality. We also note that any such justification also
depends crucially on the “cosmic censorship” conjecture of Penrose (1979)
which states that, relative to some collection &2 C % of “physically rea-
sonable” universes, any initial data (assumed to maximal in an appropriate
sense) must evolve uniquely into a &-maximal universe. But given the many
questions that remain unsettled concerning cosmic censorship, the status of
the dogma of spacetime maximality also remains murky.

Chapter 13 concerns the maximality properties of certain “branching”
(i.e. non-Hausdorff) universes. Because such models of general relativity are
non-standard, the background possibility space % is expanded in various
ways rather than reduced. After a brief walk on the wild side, we explore
and extend the foundational work of Clarke (1976) to show senses in which
some branching universes can be domesticated so as to be compatible with
the maximality dogma.

Chapter 14 provides a comprehensive review of the book. From the work
primarily done in Part I, we identify twenty different possibility spaces &2 of
physical interest. These concern the first-order local, causal, asymmetry, and
branching properties of spacetime. In Part II, we identify six second-order
conditions on such possibility spaces & that, if satisfied, speak in favor
of the &-maximality of spacetime. These second-order conditions mirror
foundational results and conjectures of standard general relativity such as:
the Geroch (1970b) theorem showing the existence of maximal spacetimes,
the Choquet-Bruhat and Geroch (1969) theorem concerning determinism,
and the cosmic censorship conjecture of Penrose (1979). Twenty first-order
properties times six second-order properties gives 120 precise questions to
consider. The questions are not all of equal importance but the end tally
does give a sense a the balance of evidence for and against the maximality
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of spacetime. Of the 120 question, 25 results speak in favor spacetime max-
imality, 56 speak against it, and 39 are still open. It is not at all clear that
the universe is as large as it can be.



Part 1

Possible Universes

15



Chapter 1

Spacetime

1.1 Introduction

In this chapter, we introduce the basics of relativistic spacetime. We start
by conveying some of its qualitative features via a number diagrams. These
pictures will help us to visualize the universe and its happenings from a four-
dimensional point of view. After we get accustomed to the new spacetime
framework, the focus then turns to the possible universe of Minkowski —
the setting for Einstein’s special relativity. An elementary mathematical
formalism is gently introduced somewhat informally. Using a number of
examples, we explore the curious way in which both “time” and “space” are
understood to be relative to the observer. We also highlight the “metric”
structure of Minkowski spacetime which is observer independent.

1.2 Diagrams

One can think of spacetime as a collection of events with some additional
structure that specifies how the events are related. One’s birth and one’s
death are events. The moon landing is also an event. But July 20, 1969 is not
an event. And the moon is not an event. Experience seems to tell us that any
event can be characterized by four numbers: one temporal coordinate ¢ and
three spatial coordinates x, y, z. Accordingly, the local structure of spacetime
resembles a four-dimensional Cartesian coordinate system. Diagrams can
help us “see” this spacetime structure. Because our brains are not good
at visualizing four-dimensional entities, we will need to suppress one or two

16
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spatial dimensions when representing spacetime diagrammatically. Consider
a spacetime diagram of the moon landing for example (see Figure 1.1).

A

t 3
july 20 | moon
1969 ©’ landing
moon “\
“\\ X\
— spaceship

y

Figure 1.1: A spacetime diagram of the moon landing event. The world-line
of the spaceship and the world-tube of the moon are depicted.

Following a long tradition, the time axis t is vertical with the up arrow
pointing in the future direction. Two spatial dimensions x and y are also
depicted. Because the spatial dimension z is suppressed, the moon at a
given time is a two-dimensional disk instead of a three-dimensional sphere.
We can think of each of the moon-at-a-time disks as being stacked like cards
along the t axis. The result is that the moon is a three-dimensional tube in
the diagram. Now for the spaceship. At any particular time, it is represented
as a point (given that it is so much smaller than the moon). When we stack
all of the spaceship-at-a-time points, the result is the smooth curve. We say
the future-directed path an object takes through spacetime is its world-line
(as in the case of the spaceship) or a “world-tube” (as in the case of the
moon). We see that as time gets closer to July 20, 1969, the world-line of the
spaceship gets closer to the world-tube of the moon. The event of the moon
landing is represented as the dot on the outside surface of the world-tube of
the moon.

Consider another example: a race between a tortoise and the hare (see
Figure 1.2). The race starts at the same event at the lower, left-hand side of
the spacetime diagram. The runners then move toward the finish line along
the z axis. At any instant, the finish line is a one-dimensional string but,
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over time, the collection of all such strings form a two-dimensional “world-
sheet” in the diagram. During the race, three events are depicted along the
world-line of the hare and corresponding velocity vectors are represented by
the three dotted arrows. At the first such event early in the race, the hare
is moving very fast which is indicated by a near horizontal arrow. Roughly
halfway through, he decides to take a nap and stops moving altogether. This
is represented by the vertical second arrow. After waking from the nap, the
hare once again moves quickly. The near horizontal third arrow once again
captures this state of affairs. Meanwhile, the tortoise begins the race at
a slow and steady pace. An event is depicted along his world-line exactly
where he passes the sleeping hare. At this point, the velocity of the tortoise
is represented by an arrow which is neither vertical nor nearly horizontal —
it is somewhere in between. Because this particular velocity is maintained
all along the world-line, the tortoise reaches the finish line just ahead of the
rushing hare. It is important to appreciate that the tortoise and the hare
both move in a straight line in space. The curve in the world-line of the
hare simply corresponds to his changing velocity through time. On the other
hand, the world-line of the tortoise appears straight because of his constant
velocity throughout.

A

t

hare _...-- Y

13K

finish
line

V tortoise

v
A4

Figure 1.2: A race between the tortoise and the hare. The world-lines of the
runners along with a few velocity vectors are depicted.

Spacetime diagrams take some getting used to. But with a little practice,
one can develop the ability view the universe and its happenings from a dif-
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ferent angle. A door opening is depicted in Figure 1.3. Or consider another
example: what is the spacetime diagram of the entire human race? After a
bit of thought, it becomes clear that it must look be something like an enor-
mous tree. The world-line of each person is a little branch of the tree that is
joined to some other branch — the world-line of the person’s biological mother
— at the event of the person’s birth. At any given time, humanity is a collec-
tion of disconnected bodies in three-dimensional space. In four-dimensional
spacetime, however, humanity is a single entity. From this perspective, the
aphorism “we are all connected, man” is not a mere metaphor.

A

t

door

y

Figure 1.3: A door opens.

Our next spacetime diagram example will help in the transition to the
Minkowski universe. Consider a strike of lightning (see Figure 1.4). Just after
the event, light propagates radially outward in all spatial directions. The
uniform speed of light has the effect of producing a cone shape in spacetime.
The thundering sound of the strike creates a similar structure. The “sound
cone” fits inside the “light cone” because the speed of light is so much faster
than that of sound. If you are nearby, you will see the lightning before hearing
the thunder. How much time passes between these two event will depend on
how far away you are from the strike; the further away, the more time will
separate the two events.
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ithunder
heard

lightning
seen

X

N
>

you

strike

Figure 1.4: The event of a lightning strike along with the associated light
and sound cones. You see lighting and hear thunder at the indicated events.

1.3 Minkowski Universe

Einstein’s special relativity came in 1905. A few year later, the theory was
given a geometric formulation by Hermann Minkowski (1908). Let us now
consider one (standard) way to present this possible universe. As before,
any spacetime event can be characterized as some point p = (¢, z,y,2) in a
four-dimensional Cartesian coordinate system. The shape of the Minkowski
universe is therefore R* which is just a higher dimensional generalization of
the Fuclidean plane.

The idea that “nothing can travel faster than light” is central in relativity
theory. Photons travel at the speed of light while objects with non-zero
mass must travel more slowly. At each event in R?*, there is a double “light
cone” structure that marks this cosmic speed limit; one lobe corresponds to
the future and the other to the past. We have already explored the future
lobe of the light cone in the lightning strike example just considered (recall
Figure 1.4). From the event of the strike, a massive object can only travel
to spacetime points found inside the light cone region depicted. This is
the future lobe. Similarly, the past lobe of the light cone (not shown in
the diagram) extends in the other direction and demarcates the region of
spacetime from which a massive object could have traveled to reach the
lightning strike.
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Now consider the spacetime diagram given in Figure 1.5. A spaceship
travels from event p to event ¢ and then on to event r. At each of these
points, the velocity vector of the spaceship (dotted arrow) is found inside
the light cone. We call such vectors timelike. In addition, we see a photon
traveling from event ¢ to event s. The velocity vector of the photon is found
on the boundary of the light cone at events ¢ and s. We call such vectors
null. Notice that null vectors are depicted as arrows with a 45 degree angle:
light travels one unit of distance per one unit of time. In what follows, we will
stick to using units of years and light years. Finally, vectors which fall neither
in nor on the boundary of the light cone we call spacelike. Velocity vectors
can never be spacelike and so no such vectors are depicted in the diagram.
But this notion will be useful later on in defining other geometrical objects
of physical significance. Note that since the spaceship at p is contained in
the past light cone of s, it would have been possible for it to travel from the
former event to the later. But at ¢ it is too late for the spaceship to travel to
s; only a photon is fast enough to do this. Finally, nothing — no spaceship,
not even light itself — can travel from 7 to s (or vice versa).
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Figure 1.5: Light cone structures at various events. The world-lines of a
spaceship and a photon are depicted along with their velocity vectors.

Any curve in Minkowski spacetime (e.g. a world-line) is a smooth func-
tion A : I — R* where [ is some interval of the real numbers such as (0, 1)
or R itself. Each point s € I is mapped to an event A(s) € R* in Minkowski
spacetime. A tangent vector v = [v;,v,,v,,v,] is associated with each
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event on A(s) which tracks the direction of the curve in spacetime at that
location. Here square brackets are used to distinguish vectors from points
since both are members of R*. We are already familiar with tangent vectors
in the case of world-lines: they are just the velocity vectors. Suppose there
is a spaceship whose world-line is given by the curve A : R — R* defined
by A(s) = (s,sin(s)/2,0,0). The parameter time s coincides with t. As
s =t passes, the position in the x direction oscillates between —1/2 and 1/2
while the position in the y and z directions does not change. The motion is
somewhat similar to that of the spaceship in Figure 1.5.

One can easily calculate the tangent vector at each point. We first break
A(s) down into four component functions A\;(s) = s, A (s) = sin(s)/2, A\, (s) =
A.(s) = 0. We then use basic calculus to differentiate each of these component
functions with respect to s to find Aj(s) = 1, X(s) = cos(s)/2, and X, (s) =
A.(s) = 0. Here, the prime symbol indicates that the function has been
differentiated in accordance with standard calculus notation. We then slot
these derivatives in as components of a vector [X(s), A, (s), A, (s), \.(s)] =
[1,cos(s)/2,0,0]. This is the tangent vector of our curve as a function of s
which will be often be written \'(s). Since we are using units of years and
light years, we see that \'(s) is found inside the light cone at each point
and is therefore timelike. In the natural way, a curve is timelike if all of its
tangent vectors are timelike and similarly for null and spacelike curves. So
A(s) counts as a timelike curve.

We say a curve in spacetime is a geodesic if it is “as straight as possible”
in a sense we will explore a later on. An observer along a geodesic world-
line experiences no acceleration. In the standard presentation of Minkowski
spacetime that we have been using, the images of geodesics appear as straight
lines or portions thereof. It turns out there is a simple formula for the
“length” of timelike and null geodesics. In the timelike case, this length rep-
resents the elapsed time measured by a clock along the geodesic. The formula
to determine length amounts to a slight tweak of the Pythagorean theorem.
Now consider a timelike or null geodesic A : I — R* in the Minkowski universe
which runs from the event p = (pt, pa, py, p») to the event ¢ = (i, ¢u, gy, ¢z )-
Let At = p; — ¢; and similarly for Az, Ay, and Az. The length of the
geodesic A is denoted by ||A|| and is given by the following formula which we
will call the (Minkowskian) interval.

1
A = At? — C—Q(AmQ + Ay? + AZ?)
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Here, ¢ is the speed of light. Since we are using units of years and light
years, we have ¢ = 1. But because of the 1/c? term, the units of |A| come
out as years. When a geodesic is timelike, we call its length elapsed time.

A

t
x

y

Figure 1.6: The world-lines of Alice and Betty from p to q. The elapsed
times are 6 and 10 years respectively.

1.4 Relative Time

A mind bending consequence of interval formula this: the elapsed time be-
tween two events depends on the path taken between them through space-
time. Let us take a closer look (see Figure 1.6). Consider twins Alice and
Betty at the event p = (0,5,5,0). Suppose they want to attend a tea party
at event ¢ = (10,5, 5,0). Betty travels along the timelike geodesic \,, which
runs from p to ¢q. Using the interval formula, we find that this geodesic has
an elapsed time of ||\,,|| = 10 years. This follows since ¢ = 1 light year/year,
At = 10 years, and Az = Ay = Az = 0 light years. Betty’s watch has
measured ten years between events p and ¢. This makes intuitive sense and
seems to accords with our everyday experiences. But Alice has found another
way to travel from p to g. She goes from p to the event r = (5,9, 5,0) along
the timelike geodesic \,.. She turns around and goes from r to ¢ along the
timelike geodesic A,,. What is || A, ||? We know At = 5 years, At = 4 light
years, and Ay = Az = 0 light years. Using the interval formula, we find
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that ||A\,r|| = 3 years. In a similar way, we find that ||\,|| = 3 years. So
zig-zagging from p to r to ¢, Alice’s watch has measured only 6 years in total.
She is now four years younger than Betty when the twins meet up at the tea
party at q. Curious!

An even stranger state of affairs arises when we examine the behavior
of null geodesics. Consider again the lightning strike example (recall Fig-
ure 1.4). What is the length along the geodesic running from the event of
the strike to the event at which the observer sees the lightning? From the
diagram, we see that Ay = Az = 0. Since ¢ = 1 light year per year, this
means that whatever At and Az happen to be (this is not indicated in the
diagram), it must be the case that At = Az. It follows from the interval
formula that the spacetime length from the event of the strike to the event
at which the observer sees the lightning must be zero. Curiouser!

Useful as it is, the interval formula is limited in that it only applies to
timelike and null geodesics. How can one determine the elapsed time along
a smooth but curvy world-line? A Minkowskian “metric” is similar to the
interval formula but assigns a length to vectors at each event instead of
geodesics. In order to determine the length of a smooth timelike or null
curve, the lengths of the velocity vectors at each point are “added up” along
the curve using integral calculus. Let’s explore this idea in more detail. The
Minkowskian metric 7 assigns a real number 7(v, w) to any pair of vectors
U = [V, Uy, 0y, 0] and w = [wy, Wy, wy, w,] at any point according to the
following rule.

n(v,w) = viw — VW, — VW, — VW,

Here we have suppressed a 1/¢? term since we are working in units where
¢ = 1. The (squared) length ||v|| of a vector v is just n(v,v). So, for example,
the length of the vector v = [3,1,2,0] at any point is ||v| = n(v,v) =
32 —1%2 — 22 — 0? = 4. One finds that any timelike vector has positive length:;
any null vector has zero length; and any spacelike vector has negative length.
In this way, the light cone structure at each event is encoded in the metric
1. To give a sense things, a few timelike vectors of unit length are depicted
in Figure 1.7. Such vectors form a hyperboloid structure at each point.

Let A : I — R* be any timelike or null curve. For each s € I, the
tangent vector at A(s) is X (s). One can integrate the quantity +/||N(s)||
along the curve to calculate its total length (or elapsed time in the case of
timelike curves) which is denoted ||A]|. Let’s again consider an example of
the Alice-Betty twin effect but now only make use of smooth timelike curves
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y

Figure 1.7: At p, the Minkowskian metric 7 assigns a unit length to all of
the timelike vectors depicted. Such vectors form a hyperboloid structure.

— no zig-zags allowed!

Before we get going, it will prove useful to have a basic understanding
of the smooth hyperbolic sine and cosine functions sinh : R — R and cosh :
R — R respectively (see Figure 1.8). Two remarkable properties will be used
often in what follows: (i) for any z € R, we have cosh?(x) — sinh®*(z) = 1
and (ii) the derivative of sinh(z) is cosh(z) and the derivative of cosh(x)
is sinh(x). From the diagram, we also see that sinh(—z) = —sinh(x) and
cosh(—x) = cosh(x).

Now consider Alice. Let her world-line be the (non-geodesic) timelike
curve A : (—=3,3) — R?* given by A(s) = (sinh(s),cosh(s),0,0) (see Fig-
ure 1.9). Differentiating each component of A(s) with respect to s gives
the velocity vector A'(s) = [cosh(s),sinh(s),0,0] at every point along the
curve. The (squared) length || N (s)|| is given by n(X(s), N(s)) = cosh?(s) —
sinh®(s) = 1. We then integrate /[N (s)|] = 1 from s = —3 to s = 3
to find the Alice’s elapsed time is ||A|| = 6 years. Notice that the curve
starts at the point p = (sinh(—3),cosh(—3),0,0) and ends at the point
g = (sinh(3),cosh(3),0,0). One can get a qualitative grip on things by
noting that sinh(3) ~ cosh(3) & 10. If Betty’s world-line is the geodesic ~y
from p to g, her elapsed time is easy to calculate using the interval formula:
|7]]? = [sinh(—3) — sinh(3)]* — [cosh(—3) — cosh(3)]> — 0 — 0. Tt follows that
7|l = 2sinh(3) = 20 years as one might expect. In the original situation,
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cosh(x)

sinh(x)

Figure 1.8: The functions sinh(z) and cosh(z) have two remarkable proper-
ties: (i) cosh?(x) — sinh?(z) = 1 and (ii) the derivative of sinh(z) is cosh(z)
and the derivative of cosh(z) is sinh(z).

Alice experiences a radical and instantaneous change in velocity when turn-
ing around half-way through. The second iteration here is similar but we
have effectively “smoothed out” this acceleration at the turnaround point.
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Figure 1.9: The world-lines of Alice and Betty from p to q. The elapsed
times are 6 years and 2sinh(3) & 20 years respectively.
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Consider a general result along these lines. Let p and ¢ be any events in
Minkowski spacetime that can be connected by a timelike world-line. Among
all smooth timelike curves connecting the events, the geodesic between them
has the longest elapsed time. Moreover, for every ¢ > 0, there is a timelike
curve connecting the events with an elapsed time less than e. A trip from p
to ¢ can take less than a year. Or less than a second. One can see this must
be true since one can approximate a zig-zag null geodesic with zero length
arbitrarily closely with a timelike curve.

1.5 Relative Space

We have seen a sense in which the notion of “time” is relative to the observer.
Now let us briefly consider a sense in which “space” is as well. In addition
to determining the lengths of vectors, the metric 7 also keeps track of the
angles between them. Given vectors v and w at a point, if it is the case that
n(v,w) = 0, then we say the vectors are orthogonal. It is immediate that
a null vector is orthogonal to any scalar multiple of itself. Naturally, the
timelike vector [1,0,0,0] pointing in the ¢ direction is orthogonal to scalar
multiples of the vectors [0,1,0,0], [0,0,1,0], and [0,0,0, 1] that point in the
x, y, and z directions respectively.

Let A : I — R be a timelike geodesic with tangent vector v at event p. Let
g be any other event. We say p and ¢ are simultaneous relative to A if the
geodesic from p to ¢ has a tangent vector w at p that is orthogonal to v. A
timelike geodesic A through event p determines an associated simultaneity
slice: the collection of all events simultaneous with p relative to A. Suppose
your world-line is the geodesic A with tangent v = [1,0,0,0] at event p =
(2,2,2,0). Intuitively, we find that the simultaneity slice relative to you at
event p is the three-dimensional surface given by the constraint ¢ = 2. This
region is depicted in Figure 1.10 which contains the event ¢ = (2,0,2,0).
You judge p and ¢ to be simultaneous.

Now consider your friend’s world-line which is the geodesic v that also
runs through event p but with tangent vector w = [2,1,0,0]. What is the
simultaneity slice at p relative to v? To get a sense of things, let’s first find
a non-zero vector u = [ug, Uy, Uy, U] at p which is orthogonal to w. The
condition n(w,u) = 0 implies that 2u; = u,. So we see, for example, that
the vector u = [1,2,0,0] at p is orthogonal to w = [2,1,0,0] there. Next,
we can find a geodesic through p with tangent vector u there. Starting from
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Figure 1.10: Simultaneity slices at p relative to both you and your friend.
You judge p and ¢ to be simultaneous; she judges p and r to be so.

v

the point p = (2,2,2,0) and using the vector v = [1,2,0,0] as a guide, we
move up one unit in the ¢ direction and over two units in the x direction to
arrive at the point r = (3,4,2,0). This means the geodesic from p to r has
the features we are after: it runs through p with tangent vector u there. It
follows from all of this that the event r is orthogonal to p relative to your
friends’s world-line v (see Figure 1.10). From here, it is not too difficult to
see that extending the geodesic from p to r out as far as it can go gives
the line ¢ = (x + 2)/2. Any point on this line is orthogonal to p according
to your friend. Indeed, since the y and z components of the vector u are
zero, we see that any point on the three-dimensional surface given by the
constraint ¢t = (z 4 2)/2 is orthogonal to p according to your friend. This is
the simultaneity slice at p relative to 7.

Stepping back, we have now seen senses in which both “time” and “space”
are relative to the observer. In contrast, we emphasize here that the space-
time metric is observer independent. There are no disagreements concerning
the light cone and geodesic structures. This means that the speed of light
and the notion of acceleration is the same for everyone. We will explore these
ideas in greater depth in Chapter 4 when we discuss the “symmetries” and
"invariant properties” of spacetime.
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1.6 Conclusion

We have come a long way already. We have introduced the notion of four-
dimensional spacetime and explored some of the basic features of special
relativity. This includes the curious ways in which “time” and “space” are
observer dependent. Now that we have a better sense of the spacetime metric
and its invariant nature, we are in a position to characterize formally the
standard presentation of Minkowski spacetime that we have been working
with. It is an ordered pair (R* 1) where R?* is the background collection of
spacetime events (with an associated topological structure we will explore in
the next chapter) and 7 is the Minkowskian metric defined at each event. In
what follows, we continue to learn more about the properties of Minkowski
spacetime (e.g. its symmetries). We will also investigate ways of generalizing
this structure so as to generate the wide variety of spacetimes permitted by
general relativity.



Chapter 2

Shapes

2.1 Introduction

As we have seen, the Minkowski universe (R* ) is a bit strange. Even so,
it is the vanilla model of general relativity. One way to start exploring some
of the other flavors is to retain the Minkowskian metric n but consider some
spacetime shapes other than R*. We start with some basic topology which
will allow us to precisely characterize various shapes in the most general
setting. We then work our way to the formal notion of a “spacetime manifold”
which has the local structure of R* and is smooth in the appropriate sense.
We also define vectors within this context. This will allow us to consider the
Minkowskian metric 1 on spacetime manifolds other than R*. We close with
a focus on a particular example — a locally Minkowskian model of general
relativity with a cylindrical shape.

2.2 Topology

Let X be any set whatsoever. We can endow X with a shape by associating
with it a collection 7 of subsets of X that satisfy certain properties. We say
T is a topology on X if (i) both the empty set @ and X itself are in 7, (ii)
an arbitrary (finite or infinite) union of members of 7 is also in 7, and (ii) a
finite intersection of members of 7 is also in 7. If 7 is a topology for a set
X, the ordered pair (X, 7) is called a topological space and elements of 7
are the open subsets sets of X. A set C' C X is closed if its complement
X — C is open. An (open) neighborhood of a point p € X is an open set

30
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O C X such that p € O. Intuitively, a neighborhood of a point p is a set
which contains points in X that are “close” to it.

It is easy to find a topology for any set X. One can let 7 = {&, X'}
for example. This is the trivial topology on X. One can also let 7 be
the collection of all subsets of X (i.e. the power set of X). This is the
discrete topology on X. Usually, topologies of interest are in between these
two extremes. We will consider a number of examples as we go along. To
help us, here we introduce two ways of making new topologies from old ones.
Given a topological space (X, 7), the subspace topology for a set A C X is
the collection of all subsets AN O C O where O C X is an open set in 7.
If (X, 7) and (Y, 0) are topological spaces, the product topology on the set
X x Y is the collection of all subsets of X x Y which can be expressed as
unions of sets of the form O x U with O € 7 and U € . We will consider
many examples of these topologies in what follows.

A

y

Figure 2.1: A ball centered at the point p with radius e.

The shape of the Minkowski universe is given by the set R* with its
“standard” topology. Consider the set R™ where n is any positive integer.
Let p = (p1,...,pn) be any point in R™ and let € be any positive real num-
ber. An (open) ball B C R"™ with radius € centered at the point p is de-
fined as the collection of all points (z1, ..., z,) € R™ such that the quantity
V(p1 —x1)2 + ...+ (pn — @,)? is less than e. A diagram of a ball in R® cen-
tered at the point p with radius € is depicted in Figure 2.1. A one-dimensional
ball with radius € at a point p in R is just the interval (p — ¢,p +¢€). An
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open subset O of R" is one such that, for each point p € O, there is a ball
B centered at p with some radius e (however small) such that B C O. The
standard topology on R" is the collection of all of these open subsets of R".
One can verify that this collection satisfies conditions (i)-(iii) in the topol-
ogy definition. We will assume the standard topology on R™ throughout and
suppress explicit reference to it.

Before moving on, we note a few basic definitions here that will be needed
later on. (Beyond the basics, the reader is referred to Willard (1970). For
some fun practice with the basics, see Geroch (2013).) Let (X,.7) be any
topological space and let A C X. The closure of A is the intersection of
all closed sets containing A. The interior of A is the union of all open sets
contained in A. The boundary A is defined as the closure of A with the
interior removed. The closure of A is always closed; A is a subset of the
closure of A; and the two sets are identical if A is closed. Similarly, the
interior of A is always open; the interior of A is a subset of A; and the two
sets are identical if A is open. Finally, the boundary of A is always closed
and the closure of A is equal to the union of boundary of A and the interior of
A. As a simple example, consider the set A = (—1,1] in R with its standard
topology. We see that the closure of A is {—1} U A, the interior of A is
A — {1}, and the boundary of A is {—1,1}.

What are the spacetime shapes compatible with general relativity? These
are the spacetime “manifolds” which are topological spaces having a “local
structure” of R™ that are also “smooth” in the appropriate sense. One usu-
ally requires that spacetime manifolds are also “connected” in an intuitive
way and satisfy the “Hausdorft” condition ensuring that distinct events are
properly separated from each other. We will slowly build up to all of these
ideas in what follows.

2.3 Continuity

Consider a pair of topological spaces (X, 7) and (Y,0) and let f : X — YV
be any function. For any subset A C X, we define its image f[A] as the
set of all points f(p) € Y such that p € A. Similarly, for any set A C Y,
we define its preimage f![A] as the set of all points p € X such that
f(p) € A. We say the function f : X — Y is continuous if, for each open
set O C Y, its preimage f~![0] is an open subset in X. To get a grip on
this notion of continuity, consider an example timelike curve A : R — R* in
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Minkowski spacetime. Define it by setting A(s) = (s,1,1,0) for all s < 2 and
A(s) = (s,3,1,0) for s > 2 (see Figure 2.2). As one would expect, the curve
is not continuous. Consider the ball B centered on the point (2,3, 1,0) with
unit radius. Since any ball is necessarily open, B is open. But the preimage
A7![B] is the interval [2,3) in R and this interval is not open in since there
is no one-dimensional ball (open interval) around the point s = 2 which fits
inside the interval [2, 3). Since B is open in R* but A™*[B] is not open in R,
the curve is not continuous.
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Figure 2.2: A timelike world-line A\ in the Minkowski universe. It is not
continuous since the open ball B has a preimage A~'[B] that is not open.

A continuous function f : X — Y from a topological space (X,7) to
a topological space (Y, o) need not preserve basic topological notions. For
example, an open set O C X may not have an open image f[O] in Y. Just
consider the function f : R — R defined by f(z) =1 for all x € R. It must
be continuous since any open set O C R must either contain 1 or not. If so,
/O] = R which is open; if not, f~'[O] = & which is also open. But the
continuous function f does not map open sets to open sets. To see this, just
consider that R is open while f[R] = {1} isn’t.

But stepping back, there is one basic topological notion that is preserved
under continuous functions: that being a “compact” subset. This property
is extremely important and captures an abstract sense of the “finiteness” or
“boundedness” of a topological space. Let (X, 7) be a topological space and
let A C X. A collection {O;} of open sets is an open cover for A if the
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union of all of the O; contains A as a subset. An open subcover of A is a
subcollection of {O;} which is also an open cover of A. We say A is compact
if every open cover of A has a subcover with only a finite number of elements.

In R™, one can show that a set A is compact if and only if it is (i) closed
and (i) “bounded” in the sense that A C B for some ball B. This is the
Heine-Borel theorem. Let’s work through a pair of simple examples to better
understand the role of conditions (i) and (ii). First, let A be the interval
(0,1) in R that fails to be closed but is bounded since it is contained in
the unit ball B centered at 0, i.e. the open interval open interval (—1,1).
Now consider the open cover {O;} defined by setting O; to the open interval
(1/(1+41),1) for all positive integers i. Any finite subcollection of {O;} does
not cover A which shows it is not compact. Now consider a second example:
the closed set A = R which fails to be bounded. Let {O;} be the open cover
defined by setting O; to the open interval (i,i + 2) for all integers i. Any
finite subcollection of {O;} does not cover A which shows it is not compact.

We now come to the foundational result mentioned above concerning the
preservation of compactness by continuous functions. Let (X,7) and (Y, 0)
be topological spaces and let f : X — Y be a continuous function. If A C X
is compact, then the image f[A] is also compact. Using the Heine-Borel
theorem, we also have a useful corollary: If f : X — R is a continuous
function on a topological space (X, 7) and A C X is compact, then f[A] is
closed and bounded. It follows that there will be points a,b € R such that
f[A] is contained in the closed interval [a,b] with f(p) = a and f(q) = b
for some points p,q € A (see Figure 2.3). Another useful result is that the
product X x Y of compact topological spaces (X, 7) and (Y, o) must also be
compact in the product topology.

We are now ready to spell out what it means to say that two topological
spaces have the same structure. The topological structures (X, 7) and (Y, 0)
are homeomorphic if there is a bijection (one-to-one and onto function)
f : X — Y such that both f and its inverse f~! are continuous. Such a
bijection is called a homeomorphism. One finds that R" is homeomorphic
to R™ if and only if n = m. A somewhat counterintuitive result is this: an
open ball in R™ with the subspace topology is homeomorphic to R™ itself. For
example, consider open interval (—1,1) which is a one-dimensional ball in R
centered at 0 with radius 1. Take this interval as a topological space in its own
right by endowing it with the subspace topology from R. The function f :
(—1,1) — R defined by f(z) = /(1 — 2?) counts as a homeomorphism. The
function “stretches” the interval to infinity without changing its topological
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Figure 2.3: The continuous function f maps the compact set A € X to its
image f[A] € R. This image is contained in the closed interval [a,b] with
f(p) =a and f(q) = b for some points p,q € A.

structure.

2.4 Manifolds

We say a topological space (M, 7) is locally R™ if each point p € M has a
neighborhood O C M that is homeomorphic to some open subset of R". It
is trivial that R™ is locally R™. A sphere is a simple but non-trivial example.
For any positive integer n, we define the n-dimensional sphere S™ with
radius € centered at the point p = (py, ...,, pny1) in R"™! to be the collection
of all points (z1, ..., 1) such that \/(pl —21)2+ .+ (Pl — Tns1)? = €
As one would expect, we see that a sphere S™ is just the boundary of some
open ball in R™"!. Unless otherwise flagged, we take S™ to be centered at
the origin R"*! with radius € = 1.

The standard topology on S™ (assumed throughout) is the subspace
topology induced from R™*!. The sphere S™ is compact in this topology for
all n. The unit sphere S? centered at the point p = (2,2,2) is depicted in
Figure 2.4. It is worth mentioning the points such as p that are contained
inside the sphere are not part of the sphere itself. The “eastern hemisphere”
O is the z > 2 region of the sphere which counts as an open set. The function
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f defined by taking any point (z,y,z) € O and projecting it to the point
(y,2) € R? is a homeomorphism. One can verify that that the image f[O]
is just the unit ball in R? centered at the point (2,2) and is therefore open.
So the hemisphere and the ball have the same structure. Since we can cover
the surface of S? with hemispheres such as O, we find that the sphere S?
is locally R?. We now consider the notion of “smoothness” on a locally R"
topological space.

A AN

y y

Figure 2.4: The sphere centered at p. The homeomorphism f projects the
open hemisphere O C S? to an open ball f[O] C R?. The surface of the
sphere can be covered by such hemispheres showing that it is locally R2.

Let (M, T) be a topological space. A n-dimensional chart (or coordinate
patch) on M is an ordered pair (U, y) where U is an open subset of M
and ¢ is a homeomorphism from U to an open subset of R™. In the sphere
example just given, we see that (O, f) is a chart on S? (recall Figure 2.4).
We say that any pair of n-dimensional charts (U, ) and (V,1) on M are
compatible if either UNV = & or both of the composed “transition” maps
potp 1 [UNV] = R and o™t : p[UNV] — R™ are smooth. Since each
of the composed maps is just a function from an open set of R” to some other
open set of R” we know what “smoothness” means here: having continuous
partial derivatives of all orders. It might be useful to consider an example of
compatible charts.

Consider the unit circle (one-dimensional sphere) S C R? that is centered
at the origin (0,0) (see Figure 2.5). Let the sets U and V' be, respectively,
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the x > 0 and y > 0 portions of the circle which are open in S. The function
¢ defined by projecting any point (x,y) € U to y € R is a homeomorphism.
So (U, ¢) is a one-dimensional chart on S. Similarly, the function v defined
by projecting any point (z,y) € V to z € R is a homeomorphism. So (V, )
is also a one-dimensional chart on S. Are the two charts compatible? Since
UNV is non-empty (dotted line in the diagram), we must check the transition
maps. Consider 1) o o' : p[U N'V] — R depicted in the diagram. Let p be
any point in p[UNV] = (0,1). The inverse function ¢! must send this point
p to the point (1/1 —p?,p) € UNV. And 9 sends the point (1/1 —p?,p) €
U NV to the point y/1 —p% € R. So we have ¢ o )"1(p) = /1 — p? for all
p € plUNV]=(0,1) which is a smooth function. The other transition map
is handled similarly and so the two charts are compatible.

Yoo’ (p)
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Figure 2.5: The unit circle S centered at the origin. The charts (U, ) and
(V,4) are depicted with overlapping domain U N'V. A smooth transition
map sends the point p € R to the point ¢ o o~ !(p) € R.

A topological space (M, 7) has an atlas (of dimension n) if there is a
collection C of n-dimensional charts on M that cover it in the sense that for
each p € M, there is a chart (U, ¢) € C such that p € U. If an atlas is such
that any pair of its charts are compatible, it is smooth. A smooth atlas
is maximal if there is no chart compatible with all charts in the atlas that
is not already found in the atlas. A topological space (M, T) is a (smooth)
n-dimensional manifold if it has a maximal smooth atlas of dimension n.
Of course, all n-dimensional manifolds are locally R™ topological spaces. In
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dimensions three or less, each locally R™ topological space admits exactly one
maximal smooth atlas. But in higher dimensions, things are more compli-
cated. A locally R" topological space need not admit a maximal smooth atlas
at all; an example in ten dimensions was first given by Kervaire (1960). And
a locally R™ topological space can also admit more than one maximal smooth
atlas; an example in seven dimensions was first given by Milnor (1956).

When no confusion arises, we will drop explicit reference to the topology
7 and maximal smooth atlas C of a manifold M. It will be useful to note
a couple of basic facts here. First, the result of excising any closed proper
subset from a manifold is also a manifold. Let M be a manifold with C' a
closed proper subset of M. The set M — C' with the subspace topology needs
a maximal smooth atlas. It is given by the collection of all charts (U, ¢) in the
maximal smooth atlas of M for which U C M —C'. Second, one can show that
the product of any two manifolds is itself a manifold. Let M and N be an m
and n dimensional manifolds respectively. The set M x N with the product
topology needs a smooth maximal atlas. Suppose (U, ¢rr) and (Un, pn)
are any charts in the maximal smooth atlases for M and N respectively. One
can define a chart (U, ) for M x N by letting U = Uy x Uy and letting
© map any point (p,q) € U to the point (p1, ..., Pm, @1, -+, @) in R™T™ where
om(p) = (p1, -, pm) and ©n(q) = (q1, .-, gn)- The collection of all such charts
(U, ¢) is a smooth atlas for M x N. Adding to this collection all charts that
are compatible with all charts in the collection defines a maximal smooth
atlas for M x N.

Let M be an manifold. A scalar function f : M — R is smooth if, for all
charts (U, ¢) in the maximal smooth atlas of M, the function fop™!: p[U] —
R is smooth. The composed map is just a function from an open portion
of R” to R and the notion of smoothness is clear in that context. We will
soon use this notion of smooth scalar functions on manifolds to characterize
vectors in a general way. Before doing so, it will be helpful to define what it
means to say that a map between a pair of manifolds is smooth. This idea
gives rise to a natural formulation of a smooth curve A : I — M on a manifold
M — as long as we require that the interval I C R is open and connected.
In that case, I is the result of removing a closed set from the manifold R.
And as we have mentioned above, this means [ inherits a natural maximal
smooth atlas from M and therefore can be thought of as a manifold in its
own right. We will not always require the interval I to be an open, connected
interval. It will be useful, for example to consider closed curves of the form
A :[0,1] — M so as to allow for curve endpoints. There is a way to rigorously
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define smooth curves within this context but we will not consider it here (see
Lee (2013) for details).

4 |R N
aof a
N
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Figure 2.6: The map f from the manifold M to the manifold N is smooth if,
for all smooth scalar functions o : N — R, the composed map aof : M — R
is smooth.

Let f: M — N be a map from the manifold M to the manifold N. We
say f is smooth if, for all smooth scalar functions o : N — R, the composed
map ao f: M — R is smooth (see Figure 2.6). From this definition, we see
that if M is a manifold and A : I — M is a curve, then the curve is smooth if
ao\: I — Rissmooth in the familiar sense. A second equivalent definition
of a smooth map between manifolds is sometimes useful: the map f: M — N
between manifolds M and N is smooth if and only if for any p € M one can
find a chart (U, ) containing p and a chart (V) containing f(p) € N such
that (i) f[U] C V and (ii) the composed map ¢ o f o™t : [U] — R" is
smooth where n is the dimension of N.

2.5 Vectors

When working with the manifold M = R™, the notion of a vector at point is
clear. At each p € M, one associates a copy of the vector space R" whose
elements are thought to be based at p. Denote this vector space by V,. A
point p = (p1, ..., pn) is an element of M = R™ while a vector v = [vy, ..., vy,
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at p is an element of V,, = R". We now explore the notion of “vectors” with
respect to arbitrary manifolds.

Let M be an n-dimensional manifold M and let p € M. Let § be the
collection of all smooth functions o : M — R. A vector at p is a function
v : § — R such that for all , 8 € § the following are satisfied: (i) v(a+f) =
v(a) +v(B), (ii) v(aB) = alp)v(B) + B(p)v(a) and (iii) v(a) = 0 if « is
a constant function, i.e. «(q) is the same real number for all ¢ € M. The
collection V), of all vectors at p has a natural vector space structure. One can,
for example, add the vectors v and w by setting (v + w)(a) = v(a) + w(a).
This vector space V, is n-dimensional and is called the tangent space of p.

The characterization of vectors here is quite abstract. Let’s try to connect
it up to some familiar notions. Let (U, ¢) be a chart containing p where
(x1,...x,) are the coordinates of R". For each i = 1,...n, let X; : § — R
be defined as follows: for all @ € §, the quantity X;(«) is just the partial
derivative %(aogp”) evaluated at ¢(p). This definition makes sense because
the composition a0 =1 is just a smooth scalar function on a portion of R”
containing the point ¢(p). So we can take partial derivatives in each of
the x; directions. It turns out one can express any vector v at p as linear
combination of the X; functions: for some real numbers vy, ..., v,, we have
v(a) = 1 Xi(a) + ... + v, X, () for all & € F. So relative to a given chart
(U, ), the vector v can be represented simply by its coordinate components
which we will put in square brackets as before: v = [vy, ..., v,].

Now consider any smooth curve A : I — M such that A(sy) = p for some
so € I. The tangent vector of \ at p is the vector v : § — R defined as
follows: for all a € §, the quantity v(«) is the derivative of the composed
map ao A : I — R evaluated at s = s5. Here, the number v(«) can be
thought of as the rate of change of o at p in the direction of the curve.

Now let’s think about what the tangent vector looks like in particular
coordinates. Let (U, ¢) be a chart where (z1, ...x,) are the coordinates of R".
For each ¢+ = 1,...,n, one has a natural projection z; : R® — R that maps
the point (xy,...z,,) € R" to its ith coordinate. Associated with the chart
(U, ) are the coordinate maps u;,...,u, : U — R defined as follows: for
all ¢ € U, the quantity u;(q) is just (z; o ¢)(q) for ¢ = 1,...,n. This means
that ¢(q) = (u1(q), ..., un(q)). The tangent vector of A at the point A(s) in
coordinate components comes out as as [(u3 o A)'(s), ..., (un, o A)'(s)] where
the prime indicates differentiation. For this reason, we shall often denote the
tangent vector by X (s) as before.
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An example might be useful to bring things down to earth. Let M be the
cylinder R x S in (¢,6) coordinates. Here, we allow the coordinate 6 € S to
take on all values of R but we identify each 6 with 6 + 27n for all integers
n. In these coordinates, at least two charts are needed to cover M. Consider
a curve X : R — M defined by A(s) = (s,s%). Suppose we wanted to find
an expression for its tangent vector v at the point p = (1,1). Given our
choice of coordinates, there must be a chart (U, ¢) containing p where U
is the 0 < 6 < 7 region of M and ¢ is a map from U to a subset of R?
defined by ¢(t,0) = (t,0). This chart does not contain all of the curve but
this is okay; all that matters is that p € U. Naturally, the coordinate maps
ug, up - U — R are given by wy(t,0) = t and uy(t,0) = 6. If we let the
composed maps u; o A = s and ug o A = s2 be denoted ), and )y to accord
with our earlier notation, we find that the tangent vector of A in coordinate
components comes out as as A'(s) = [Ai(s), \y(s)] = [1,2s]. Since s =1 at p,
we see that the tangent vector there is v = [1, 2] (see Figure 2.7).
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Figure 2.7: The tangent vector v = [1, 2] to the curve A at point p = (1, 1).

2.6 Spacetime Shapes

We now wish to restrict attention to manifolds that are suitable for represent-
ing spacetime shapes. A pair of topological conditions are usually imposed:
it must be connected and Hausdorff. We now turn to these notions. We say a
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topological space (X, 7) is connected if there do not exist disjoint open sets
01,05 C X such that Oy UOy = X. This idea here is quite intuitive and one
can verify that R” and S™ are connected for all n. Now consider X = R—{0}
with the subspace topology induced from R. It counts as a manifold but fails
to be connected since X is the union of the disjoint open intervals (—oo, 0)
and (0,00). There is no “connection” between these parts of X. One finds
that the product of any two connected topological spaces is itself connected.
Moreover, if (X, 7) to (Y, o) are topological spaces, then a continuous func-
tion f: X — Y will preserve connectedness: if (X, 7) is connected then so
is f[X] C Y in the subspace topology. In particular, this means that for any
connected manifold M and any continuous function f : M — R, the image
f[M] is a connected interval of R.

We say a topological space (X, 7) is Hausdorff if, for any distinct points
p,q € X, there exist disjoint neighborhoods of the points. The Hausdorff
condition ensures that distinct points can be properly “separated” no matter
how close they are. One can verify that R™ and S™ are Hausdorff for all n.
Consider any distinct points p,q¢ € R for example. If we let € = |p — ¢|/2,
then the intervals (p — €,p + €) and (¢ — €,q + €) are disjoint open balls
containing p and ¢ respectively. A non-Hausdorff topological space called
the “branching line” is depicted in Figure 2.8. Consider two copies of the
real line: X = R and Y = R. Identify the points x € X and y € Y if such
points are both negative and x = y. The resulting structure is a manifold but
fails to be Hausdorff since any neighborhoods of the distinct pointsp =0 € X
and ¢ = 0 € Y overlap. For example, the interval U = (—1,1) in X and
V = (-2,2) in Y are neighborhoods of p and ¢ respectively. But because
of the identifications for all negative points, one finds that U and V have a
non-empty intersection (dotted line in the diagram). If a topological space
is Hausdorff, then (i) a compact set must be closed and (ii) a closed set
contained in a compact set must itself be compact. The product of any
two Hausdorff topological spaces is itself Hausdorff. Moreover, the result of
excising any closed proper subset from a Hausdorff topological space is also
Hausdorff.

We have finally arrived at the class of spacetime shapes that will be the
primary focus in what follows: connected, Hausdorff manifolds. All standard
general relativistic spacetimes will necessarily have an underlying manifold of
this type. But as we will see in the next chapter, some connected, Hausdorff
manifolds fail to admit a spacetime metric and are therefore not suitable
for representing spacetime. (In Chapter 13, we will consider a non-standard
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Figure 2.8: The negative portions of two copies of the real line X = R
and Y = R are identified. The distinct points p and ¢ have respective
neighborhoods U and V' with non-empty intersection.

context of general relativity in which the Hausdorff condition is dropped.)
A large number of such shapes can be constructed by taking products of
R"™ and S™ and excising closed sets. For example, consider the manifold R?
in (t,z) coordinates and let C' be the closed set {p} for any point p € R>.
Then M = R? — C counts as a connected, Hausdorff manifold. Now endow
M with a two-dimensional version of the Minkowskian metric n: for any
vectors v = [vg, v, and w = [wy, w,|, we let n(v,w) = vaw; — vyw,. The
resulting structure (M, n) qualifies as a possible universe compatible with
general relativity (see Figure 2.9). But it does not seem to be “as large as
it can be” because of the “missing” point p. Such examples will play an
important role in our study of spacetime modality in what follows.

Let’s now consider another locally Minkowskian spacetime with a cylin-
drical manifold. Unlike Minkowski spacetime itself, this possible universe
allows for some spacetime events to be connected by more than one timelike
geodesic. This gives rise to a third iteration of the Alice-Betty twin effect.
But this time no acceleration is needed for Alice to arrive at the tea party
younger much younger than Betty. Let M be the cylinder R x S in (t,0)
coordinates. As before, we allow the coordinate # € S to take on all values
of R but we identify each 6 with 6 4 27n for all integers n. As we have seen,
a vector v at any point p € M can be expressed in term of the coordinate
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X

Figure 2.9: The result of removing a point from Minkowski spacetime is also
a spacetime.

components [v;, vg]. A two-dimensional version of the Minkowskian metric
n can now be defined on M: for any vectors v = [v;,vg] and w = [wy, wy),
we let n(v, w) = vaw, — vgwy. We see that this spacetime (M, n) is a type of
“rolled up” Minkowski universe in two dimensions.

Consider the events p = (0,0) and ¢ = (57, 0) and Alice’s world-line
A @ [0,57] — M that connects them which is defined by A(s) = (s,4s/5).
This is a timelike geodesic that moves around the cylinder twice (see Figure
2.10). Differentiating the components of \(s) we find that Alice’s the tangent
vector is X' (s) = [1,4/5]. So extending the definitions and notion used in our
study of Minkowski spacetime, we find that the (squared) length of this
tangent vector is |[|[N'(s)|| = n(N(s),N(s)) = 1 — 16/25 = 9/25. Integrating

IN(s)|| = 3/5 from s = 0 to s = 5w, we find that Alice’s elapsed time
is ||A|| = 37 years. Betty’s world-line is the timelike geodesic v : [0, 57] —
M which also runs from p to ¢ which is defined by setting v(s) = (s,0).
Here, Betty’s tangent vector +/(s) is [1,0] at every point. So ||7/(s)|| = 1.
Integrating +/||7/(s)|| = 1 from s = 0 to s = 5w, we find that ||y|| = 57 years.
Alice is more than 6 years younger than Betty when they meet up and no
acceleration was needed to achieve the effect.
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Figure 2.10: The geodesic world-lines of Alice and Betty from p to q. The
elapsed times are 37 and 57 years respectively.

2.7 Conclusion

The shape of spacetime within the context of general relativity must be a
connected, Hausdorff manifold. Spacetime manifolds have the local structure
of the manifold R™ but are permitted to have different global features. In
this chapter, we have given a given a formal characterization of such objects.
Because spacetime manifolds are smooth in the appropriate sense, we were
able to give quite general definitions of a variety of notions that are familiar
in the context of R™ such as smooth scalar fields and vectors at a point
(including tangent vectors associated with smooth curves). This allowed us
to consider a generalized notion of the Minkowskian metric  on spacetime
manifolds other than R*. A pair of examples provided a first look at general
relativistic spacetimes other than the Minkowski universe.
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Curvatures

3.1 Introduction

The spacetimes of general relativity we have considered so far have all been
of the form (M, n) where M is a connected, Hausdorff manifold and 7 is the
Minkowskian metric defined at each event in M. Even when the shape of M is
different from R", such a model is “flat” with respect to its metric structure.
In what follows, we will explore other metrics permitted by general relativity
that allow for spacetime “curvatures” of various kinds. We begin with an
informal discussion to better understand the notion of geodesics. We then
get rigorous and formally define smooth vector fields on a given manifold.
This allows for a precise characterization of the main idea of the chapter:
a (smooth) general relativistic spacetime metric. We take a look at pair of
examples: the non-flat de Sitter and anti-de Sitter metrics. We return to an
informal discussion of curvy spacetime and its relationship to the distribution
and flow of matter given by Einstein’s equation. We close by considering a
few “energy conditions” connected with Einstein’s equation that constrain
the local spacetime structure in different ways. For details concerning all
of the informal discussions, we refer the reader to the foundational texts of
Wald (1984) and Malament (2012).

3.2 Geodesics

In Minkowski spacetime (R*,7), there is a natural way of “connecting up”
the tangent spaces V, and V, at distinct points p and ¢. A vector v =

46
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[V, Vg, vy, v,] In V), is “the same” as a vector w = [wy, wy, wy, w,] in V, if
all of the components are identical. But how does one compare vectors at
distinct points p and ¢ on the sphere S?? (See Figure 3.1.) One needs a
way of “transporting” a vector from one of the points to a vector at another.
A derivative operator V specifies how this is to be done relative to any
smooth curve A : I — M which runs from p to ¢. It is a type of standard
by which one can keep track of how a vector (or any geometrical structure
on M) “changes” along the curve. If one starts with a vector v at p, one
can parallel transport it to the point ¢ by requiring that it stay constant
with respect to V along the way. Geodesic curves are special in the sense
that if one parallel transports its tangent vector at any point p on the curve
to any other point ¢ along the curve, the result is identical to the curve’s
tangent vector at ¢. In this way, geodesics are “self parallel” or “as straight
as possible” relative to V.

Figure 3.1: Vectors at points p and ¢ on the sphere are elements of different
tangent spaces V), and V.

There are infinitely many distinct derivative operators V that one can
define on any manifold M. In some contexts, one choice may be more natural
than others. For example, one usually defines V on the sphere S? so that the
geodesics come out as (portions of) the great circles that divide the sphere
in two equal hemispheres (e.g. the equator on the earth). Consider Figure
3.2. We see a geodesic A on the sphere go from the point p on the “equator”
through the “north pole” to another point ¢ on the equator. Because A is a
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geodesic, if one parallel transports its tangent vector v at p to the point ¢
along the curve, the result w is just the tangent vector of A of at that point.
Also depicted in the diagram is another geodesic v that runs from p to ¢ as
well but this time along the equator. Note that if we parallel transport the
vector v at p along v, then the result u at ¢ is quite different from w. When
parallel transport is path dependent in this way, the derivative operator is
curved. Otherwise, it is flat.

Figure 3.2: When the vector v at point p on the sphere is parallel transported
to ¢ along one curve, it yields w; along another, it yields .

Consider again the Minkowski universe (R?, 7). There are many derivative
operators V one could define on R*. But there is only one such that the metric
1 constant with respect to it. Relative to that choice, if the metric is parallel
transported along any curve whatsoever, it will not change. An equivalent
way to put the point: if vectors v and w at p are parallel transported to
the vectors v' and w’ at point ¢ along any curve whatsoever, then n(v, w) =
n(v';w’). In the Minkowski universe, the unique derivative operator V that
makes 7 constant is flat (see Figure 3.3). We have been implicitly using this
derivative operator all along when considering the geodesics of that universe.
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Figure 3.3: When the vector v at event p in the Minkowski universe is parallel
transported to ¢ along any curve, it always yields the same vector w.

3.3 Metrics

Let M be a manifold. A vector field over M a function v that assigns to
every point p € M a vector v, € V,,. For any smooth function a : M — R, can
one construct the scalar function v(a) : M — R defined by v(a)(p) = v,(a)
for all p € M. We say the vector field v is smooth if this function v(«)
is smooth for all smooth functions «. For example, on M = R? in (¢, )
coordinates, one can consider the smooth vector field v defined by assigning
the vector v, = [t/2,z] at each point p = (¢t,z) in M (see Figure 3.4).
Recall what this means: the vector v, at p assigns a number to each smooth
function a : M — R. What is the number? Let’s say «a(t,z) = tx?. So
at the point p = (¢,x) the vector v, = [t/2,z] assigns the function « the
number v,(a) = (t/2)(0ix) + (x)(0,cv) evaluated at p. (Recall the discussion
in Section 2.5.) This comes out as vy(a) = (t/2)(2?) + (z)(2tz) = 5tx?/2 at
p = (t,x). Thus, at the point p = (3,2) the vector v, = [3/2,2] assigns the
function « the number v,(a) = 30.

Stepping back, we see the scalar function v(a) : M — R defined by
v(a)(p) = vy(a) for all p € M is just 5tz?/2 which is smooth. One can verify
that this would be the case no matter what function o were chosen and so
the vector field v is smooth. It is of some interest to explore which smooth
vector fields can be defined on which manifolds. For example, the “hairy
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ball” theorem of Brouwer states that the sphere S™ admits a non-vanishing
continuous vector field if and only if n is odd. Intuitively, one can try to
“comb” a hairy two-dimensional sphere but one always finds this impossible
as a “cowlick” must appear somewhere.
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Figure 3.4: The smooth vector field v = [t/2, z] on M.

A metric at p € M is a function g, : V), x V, = R that is everywhere (i)
symmetric in the sense that g,(v,, w,) = g,(w,, v,) for all vectors v,, w, € V,
and (ii) non-degenerate in the sense that if g,(v,,w,) = 0 for all v, € V,,
then w, is the zero vector. In the natural way, one can define a metric
g on all of M by assigning a metric g, at each point p € M. We say a
metric g on M is smooth if, for any smooth vector fields v and w on M,
the function g(v,w) : M — R defined by g(v, w)(p) = g,(v,, w,) is smooth.
For any metric g on M, there is a unique derivative operator V on M that
is compatible with ¢ in the sense that ¢ is constant with respect to V. So
the metric g encodes (via its compatible derivative operator V) a natural
geodesic structure on M.

Let g be a smooth metric on a manifold M. Naturally, the (squared)
length ||v|| of a vector v at a given point in M is given by g(v,v). We find
that at every point p € M, there will be a basis of vectors vy,...,v, € V,
that is orthonormal in the sense that (i) g(v;,v;) = 0if i # j and (ii) the
length ||v;|| of any vector v; is either 1 or —1. A metric is Riemannian
if, at any point, the length of all such basis vectors is 1. One can show
that the manifolds R" and S™ admit a Riemannian metric for all n. Let
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g be any Riemannian metric on a manifold M and let A : I — M be a
smooth curve with tangent vector X' (s). Because the length || N (s)|| will be
non-negative, we can integrate the quantity +/||N(s)| along the curve to
calculate its length ||A||. A familiar Riemannian metric is the Euclidean
metric e on R” which in standard (xy, ..., z,) coordinates defined as follows:
at any point p € R", and for any vectors v = [vy, ..., v,] and w = [wy, ..., wy]
at the point, set e(v,w) = vyw; + ... + vyw,. Like the Minkowskian metric
7, the derivative operator compatible with the Euclidean metric e is flat.
A smooth metric g on the n-dimensional manifold M is Lorentzian if
n > 2 and, at any point, there is an orthonormal basis such that one basis
vector has length 1 while n — 1 basis vectors have length —1. Of course,
the Minkowski metric n we have been working with is Lorentzian. Let us
now define, in a quite general way, many of the notions we have already
introduced within the familiar but limited context of Minkowski spacetime.
Let g be any Lorentzian metric on a manifold M. A vector at a point
p € M with positive length is timelike; a zero length vector is null; a
negative length vector is spacelike. Thus, at any point p € M, we recover a
light cone structure. A smooth curve A : I — M is also called timelike, null,
or spacelike in the natural way. If A is timelike, we can integrate the quantity
|IV(s)|| along the curve to calculate its elapsed time. If \ is spacelike or
null, we can integrate the quantity /—||N(s)|| along the curve to calculate
its length ||A||. Of course, the length of any null curve must be zero. The
elapsed times and lengths along several geodesics in Minkowski spacetime
are depicted in Figure 3.5. One finds the familiar Pythagorean theorem on
the t = 0 surface and a type of Minkowskian variation on the y = 0 surface.
We are finally ready to introduce the definition of a (standard) spacetime
according to general relativity: an ordered pair (M,g) where M is an n-
dimensional (for n > 2), connected, Hausdorff, (smooth) manifold and ¢
is a (smooth) Lorentzian metric on M. Although much of this chapter is
presented informally, we emphasize here that the definition of a relativistic
spacetime has been precisely formulated. We have carefully built, from the
ground up, the notions of a spacetime manifold and a Lorentizian metric.
Some connected, Hausdorff manifolds fail to admit a Lorentzian metric.
For example, the fact that there cannot be a continuous non-vanishing vector
field on the sphere S™ for even n implies that no Lorentzian metric cannot
be defined on such manifolds. But S™ and R™ admit a Lorentzian metric for
all odd n > 2 and all m > 2. If a connected, Hausdorff manifold does admit
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Figure 3.5: The elapsed times and lengths along several geodesics in
Minkowski spacetime.

a Lorentzian metric, then it must also satisfy a useful topological property
ensuring that it is not “too big.” Consider a topological space (X, 7). A set
o C 7 is a basis if every open set O € 7 can be expressed as a union of sets
in 0. A topological space (X, 7) is second countable if it has a countable
basis. One can show that R™ and S™ are second countable for all n. In the
case of R™, a countable basis can be found by taking the collection of all
open balls B C R with rational radius € centered at the point p = (p1, ..., Pn)
for which py, ..., p,, are all rational. A simple example of a topological space
which is not second countable is R with the discrete topology. We introduced
this topological definition to state the following result: any standard general
relativistic spacetime necessarily has a second countable manifold. (As we
will see in Chapter 13, dropping the Hausdorff condition will permit non-
standard spacetimes that fail to be second countable.)

3.4 Curvy Spacetime

In what follows, let % be the collection of all spacetimes. Let’s take a look at
some members of this collection with non-trivial spacetime curvature. Let M
be the cylinder R x S in (¢, 0) coordinates. As before, we allow the coordinate
0 € S to take on all values of R but we identify each # with 6 + 27n for all
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integers n. Now consider a metric g defined on M as follows: at each point
(t,0) € M and for any vectors v = [v;,vy] and w = [wy, wy] at the point,
let g(v,w) = vaw, — vywycosh®(t). One can verify that a given metric is
smooth by checking to make sure that any scalar functions used to define
it are themselves smooth. In this case, cosh(t) is smooth and so we know g
is also. (Recall our discussion of the hyperbolic sine and cosine functions in
Section 1.4.)

Figure 3.6: The de Sitter universe with null geodesic depicted.

The pair (M, g) is a two-dimensional version of de Sitter spacetime
introduced and named after Willem de Sitter (1917). Associated with the
metric g is a compatible derivative operator V defined on M. But in contrast
to the flat derivative operator compatible with the Minkowskian metric 7, the
derivative operator V compatible with g is curved. The non-trivial curvature
present gives rise to peculiar geodesic structure. One can better understand
things by considering the behavior of light which travels along null geodesics
(see Figure 3.6). At any point (¢,0) € M a null vector v = [v4,vp] must
have zero length: ||v|| = 0. But since ||v|| = g(v,v), this means that v? =
v2 cosh®(t). The function cosh(t) has a value of 1 at ¢t = 0 and increases
rapidly as ¢ increases in absolute value. This means that the light cones will
be at a 45 degree angle at t = 0 and rapidly narrow as ¢ increases in absolute
value. An example null geodesic A through the point (0, 0) is depicted in the
diagram. As t — oo, the curve A approaches but never reaches § = 7 /2;
similarly, as t — —oo, it approaches § = —m /2.
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In any spacetime (M, g), the derivative operator V compatible with met-
ric g on can be used to define the Riemann curvature R on the manifold
M. With various combinations of R, g, and V, one can construct an infinite
collection of geometric objects, each of which keeps tracks of some type of
invariant “curvature” on M. Of these infinitely many notions of curvature,
we will focus primarily on two in what follows.

The Einstein curvature G on M is, like the metric g, a smooth assign-
ment of a real number to pairs of vectors v, w € V, at each point p € M. The
Einstein curvature plays an important role in the famous “Einstein’s equa-
tion” relating the curvature and matter content of the universe that we will
consider in a moment. The other type of curvature we want to consider is the
Ricci curvature R on M which is a smooth scalar function R : M — R. For
certain “maximally symmetric” spacetimes, the Ricci curvature is constant
on M and, moreover, its value determines the local structure of the space-
time completely. Spacetimes of this kind come in three varieties: (i) those
with R = 0 are locally structured like the Minkowski spacetime, (ii) those
with R > 0 are locally structured like de Sitter spacetime (in the version
presented here R = 2), and (iii) those with R < 0 are locally structured like
“anti-de Sitter spacetime” we will discuss now.

Let M = R? in (t,7) coordinates. Now consider a metric g defined on
M as follows: at each point (¢,2) € M and for any vectors v = [v;, v,] and
w = [wy, w,] at the point, let g(v, w) = v,w, cosh®(z) —vpwy. Anti-de Sitter
spacetime is the pair (M, g). The associated derivative operator V is curved
(here R = —2) but the behavior of geodesics is very different from the de
Sitter universe. Let us again consider the behavior of light. At any point
(t,x) € M a null vector v = [v;,v,] must have zero length: ||v]| = 0. Since
|lvl| = g(v,v), this means that v? cosh?(t) = v2. So the light cones will be
at a 45 degree angle at x = 0 and rapidly widen as x increases in absolute
value. An example null geodesic A through the point (0, 0) is depicted in the
diagram. As x — o0, the curve A approaches but never reaches t = 7/2;
similarly, as z — —oo, it approaches ¢t = —7/2. Timelike curves can also
exhibit a similar behavior. Perhaps an explicit example may be useful to
work through.

Let’s consider a wizard whose world-line is the timelike curve v : R — M
defined by the function v(s) = (v/2arctan(sinh(s)), s) where arctan is the
inverse tangent function (see Figure 3.7). Do not worry too much about the
ugly function v/2 arctan(sinh(s)); it is carefully chosen to make calculations
easy in a moment. One can verify that as s = x — oo, the curve A approaches
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Figure 3.7: The anti-de Sitter universe with a null geodesic and a timelike
curve depicted.

but never reaches t = \/§7r/2. This follows since, as s — oo, we have
sinh(s) — oo and therefore arctan(sinh(s)) — 7/2. Similarly as s = 2 —
—o00, the curve approaches t = —\/§7r/ 2. Differentiating the components of
v(s) we find that the velocity vector is 7/(s) = [v/2/ cosh(s), 1]. Things are
reducing nicely already. What is ||7/(s)||? It comes out as g(7'(s),7'(s)) =
2[cosh(z)/ cosh(s)]? — 12. Because s = x, things now reduce magically and
we find that ||7/(s)|| = 1. Integrating \/[|7/(s)|| = 1 from s = —o0 to s = o0,
we find the elapsed time is ||y]| = oco. At any event, the wizard has “always
existed” in the sense that his elapsed time is infinite in the past direction.
And yet the he “never existed” before t = —\2r /2 after which he seems to
have appeared out of thin air. The causal structure of this peculiar situation
will be explored later on (see Section 5.5).

3.5 Einstein’s Equation

We turn now to the connection between curvature and matter. Let (M, g)
be a spacetime. One can consider an energy momentum tensor 7" on M
which, like the metric g, amounts to a smooth assignment of a real number
to pairs of vectors v,w € V,, at each point p € M. For an observer at p
with tangent vector v, the quantity T'(v,v) represents the energy density of
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matter as determined by the observer at the point. Recall that the metric g
determines (via its unique compatible derivative operator V) the Riemann
curvature R on M which encodes every imaginable notion of “curvature” at
each point on M. Of all such notions, the Einstein curvature G is special.
To see why, consider an observer at point p with tangent vector v. The real
number G(v,v) represents a particular type of curvature as measured by the
observer at p. By some sort of cosmic coincidence, the observer always finds
that the following relationship holds at every spacetime event: G = 87T
This is Einstein’s equation which will be assumed in what follows.

Under Einstein’s equation, we can associate with each spacetime (M, g)
a unique energy momentum tensor 7 the metric g determines GG which de-
termines T. So the geometry of spacetime determines the distribution and
flow of matter. What about the other direction? Although T determines G
via Finstein’s equation, one cannot determine g from G in general. To better
understand this asymmetry, let’s consider an example. We say that a space-
time (M, g) is a vacuum solution to Einstein’s equation if its associated
energy momentum tensor 7" is such that T'(v,w) = 0 for all vectors v and w
at any point p € M. One can show that any flat spacetime (e.g. Minkowski)
is a vacuum solution. But in two dimensions, any spacetime is a vacuum
solution (Fletcher et al., 2018). This includes the non-flat de Sitter and anti-
de Sitter universes we have already considered. There are also examples of
non-flat vacuum universes in four dimensions that we will consider later on.
So, the distribution and flow of matter does not determine the geometry of
spacetime.

Without any constraints on the energy momentum tensor 7', any space-
time (M, g) counts as a type of “solution” to Einstein’s equation. A given
metric g on M will always give rise to some 7' or other via Einstein’s equa-
tion. But the distribution and flow of matter represented by that T" may not
be “physically reasonable” in various senses. So one often uses a variety of
local “energy conditions” to constrain things (Curiel, 2016). Let’s take an
informal look at a few. The weak energy condition requires that for any
timelike vector v at any point p € M, we have T'(v,v) > 0. This requires
that the energy density of matter as determined by an observer with tangent
v is never negative. The strong energy condition is satisfied when a cer-
tain effective energy density as determined by any observer is never negative.
This requires that “gravitation is attractive” in some sense. The weak and
strong energy conditions are independent in the sense that neither implies
the other. The dominant energy condition can be thought of as prohibit-
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ing the flow of matter in a spacelike direction. The dominant and strong
energy conditions are independent but dominant does imply weak. All three
conditions do imply the null energy condition which requires that, for any
null vector v at any point p € M, we have T'(v,v) > 0. This doesn’t have
much significance physically but is a simple condition to work with that is
useful to have around as a minimal non-trivial constraint: if it were to fail, all
three of the other energy conditions would also fail. On the other extreme,
the condition of being a vacuum solution is very strong as it implies all four
energy conditions.

Later on, we will explore the modal structure of spacetime in terms
of background “possibility spaces” consisting of various collections of
spacetime models. For this reason, it will be useful to think of the energy
conditions as subcollections of the collection % of all spacetimes. Let
(NEC),(WEC),(SEC),(DEC) C % be the collections of all spacetimes
satisfying, respectively, the null, weak, strong, and dominant energy condi-
tions. Let (Vac) C % be the collection of vacuum solutions. We can sum
up the relationships between all the conditions as follows (see Figure 3.8).

(Vac) C (DEC) c (WEC) C (NEC)
(Vac) C (SEC) C (NEC)

Figure 3.8: Various local spacetime properties concerning the distribution
and flow of matter.
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3.6 Conclusion

We have just discussed a number of topics in an informal way. Examples
include derivative operators, parallel transport, geodesics, various types of
spacetime curvature, Einstein’s equation, and a number of the energy condi-
tions. But the centerpiece of the chapter was a precise definition of spacetime
according to (standard) general relativity: an ordered pair (M, g) where M is
an n-dimensional (for n > 2), connected, Hausdorff, (smooth) manifold and
g is a (smooth) Lorentzian metric on M. We also introduced the associated
collection % of all such spacetimes and studied some example members with
non-trivial curvature. This collection % represents the standard background
“possibility space” used to define various of modal properties of spacetime
(e.g. maximality) that will be central in what follows.



Chapter 4

Isomorphisms

4.1 Introduction

[somorphisms are structure preserving maps between a pair of mathemat-
ical objects. Isomorphic objects are the “same” with resect to all of the
relevant structure. We have already considered homeomorphisms which are
isomorphisms with respect to topological spaces. In what follows, we will
first consider “diffeomorphisms” which are isomorphisms between manifolds.
Diffeomorphism allow for the smooth transfer of vectors between manifolds
of the same structure. This vector transfer gives us the resources to define
“isometries” which are the isomorphisms between spacetimes. This key def-
inition will be used to define many foundational notions from here on out.
We close by exploring two of them: the symmetries and invariant properties
of spacetime.

4.2 Diffeomorphisms

We already know what it means to say that a map f : M — N from a mani-
fold M to a manifold N is smooth. We used this definition to define smooth
scalar and vector fields on a given manifold as well as smooth curves on a
manifold. In all of these definitions, one has a map between manifolds that
is smooth in one direction but not necessarily the other. We now consider
maps between manifolds that are smooth in both directions. We say the map
f: M — N is a diffeomorphism if it is a bijection (one-to-one and onto)
and both f and its inverse f~! are smooth. In this case, we say the manifolds

29
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M and N are diffeomorphic. In the same way that homoemorphic topo-
logical spaces have the same topological structure, diffeomorphic manifolds
have the same manifold structure. Consider a simple example (see Figure
4.1).

R? ; R* e
pofoe W(f(p))

. _—

¢(p)
‘PT T v

M f N o

e f(p)

p

Figure 4.1: The function f : M — N along with charts (M, ) and (N, ).
Since the composed map 1 o f o =1 : R? — R? is smooth, so is f.

Let M be R? in (¢, ) coordinates. Let N be RT™ x R in (7, x) coordinates
where R is the open interval (0,00) in R. The map f: M — N defined by
f(t,x) = (exp(t), 2z) is a diffeomorphism. Let us verify this.

Recall that a map f : M — N between manifolds M and N is smooth
if and only if for any p € M one can find a chart (U,v) containing p and
a chart (V,4) containing f(p) € N such that (i) f[U] C V and (ii) the
composed map o fop~!: p[U] — R™ is smooth where n is the dimension
of N. Consider any point p € M. There is a global chart (M, ¢) containing
p where ¢ : M — R? is just the identity (¢, ) = (¢, 2). Similarly, there is a
global chart (N, ) containing f(p) where v : N — R? is just the inclusion
map (7, x) = (7, ). Since f[M] = N, we see that condition (i) is satisfied.
The composed map ¥ o f o o~! : R? — R? is just the function that sends
(t,z) € R? to the point (exp(t),2z) € R? which is smooth. So condition
(ii) is satisfied and we see that f is smooth. The other direction where
7' N — M is defined by f~'(7,x) = (In(7),x/2) is handled similarly.
So f is a diffeomrophism. Although M and N are different manifolds, they
share all of the same structure. We will return to this example in a moment.
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4.3 Vector Transfer

One can use a diffeomorphism f : M — N to transfer a vector v at p € M
to the “push forward” vector f.(v) at f(p) € N. Similarly, we can also “pull
back” a vector w at ¢ € N to the vector f*(w) at f~!(q) € M. Let’s build
up to this idea step by step.

Let f : M — N be a diffeomorphism. Consider a smooth function
B : N — R. It is easy to see that one can use f to pull back g to M
by considering the composed function S o f : M — R. In a similar way, one
can use f to push forward a smooth function o : M — R to N by considering
the function awo f=': N — R. Now for vectors.

Let v be a vector at p € M. For each smooth function o : M — R, we
know that v determines a smooth function v(«) : M — R. We can use f
to to push forward the vector v at p to the vector f.(v) at f(p) by setting
f«(0)(B) = v(B o f) for all smooth functions f : N — R. So the vector
f«(v) at f(p) assigns to any function § just what the vector v assigns to
the pulled back function f o f at p. In a similar way, we can use f to to
pull back a vector w at ¢ € N to the vector f*(w) at f~'(q) by setting
f*(w)(a) = w(ao f71) for all smooth functions a : M — R. So the vector
f*(w) at f~1(q) assigns to any function a just what the vector w assigns to
the pushed forward function avo f=% at ¢. On can extend these definitions in
the natural way to apply to smooth vector fields v on M and w on N. For
example, one can push forward a vector field on M by pushing forward the
vector at each point p € M.

At each point p € M, the push forward map f, is a function of from the
tangent space V), to the tangent space Vj(,. One can think of this function
as the “derivative” of the diffeomorphism f at the point p. If one considers
coordinates for M and N, then one can express the push forward as a function
of a number of partial derivatives. Even in low dimensions, things can get
a bit hairy. But the payoff is worth it. After we better understand the
idea of transferring vectors between diffeomorphic manifolds, the definition
of an isometry is one simple step away. And that notion is at the center of
philosophical discussions of symmetry, structure, modality, and more. A few
concrete examples will help us get a grip on things. Let’s start with the push
forward map in one dimension.

Suppose M is R in x coordinates. Let’s consider three different diffeomor-
phisms from M to itself: a, b, and c¢. The first diffeomorphism is the identity
map a : M — M defined by a(x) = x for all z € M. Now let v = [v,] be a
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Figure 4.2: The diffeomorphisms a, b, and ¢ all push forward the vector
v = [—1] at a point = 1 but do so in different ways.

vector at a point p € M. (Even if one dimension, we continue to use square
brackets to distinguish vectors from points.) Where do we map v to at the
point a(p) = p? To itself of course: we push forward v at p to the vector
a.(v) = v at a(p) = p. For example, the vector v = [—1] at the point p = 1
is mapped to the vector a.(v) = [—1] at the point a(p) = 1 (see Figure 4.2).
The second diffeomorphism is just a tad more interesting. The map b :
M — M is defined by b(x) = x — 2 for all z € M. Here, we shift each point
two units in the negative direction. Let v = [v,] be a vector at a point p € M.
Where do we map v to at the point b(p) = p — 2?7 Even though, we have
“moved” the points, the vector v at p and the push forward vector b, (v) = v
at b(p) = p—2 are “the same” in the sense that their coordinate components
are identical. For example, the vector v = [—1] at the point p = 1 is mapped
to the vector b,(v) = [—1] at the point b(1) = —1 (see again Figure 4.2).
Now for the third diffeomorphism ¢ : M — M is defined by c(z) = 2° +z
for all z € M. One can show that this map is smooth with a smooth inverse.
(Why couldn’t we use the function z3 instead?) Here, we are “stretching”
the manifold. Let v = [v,] be a vector at a point p € M. Where do we
map v to at the point ¢(p) = p* + p? This is trickier. A general formula will
be given in a moment. But what we do is this: we take the derivative of
c(x) with respect to z, evaluate it at p, and then multiply it by the vector
component v,. Whatever this number is becomes the component of the push
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forward vector at the point ¢(p). Since the derivative of ¢(x) with respect
to x comes out as c/(z) = 3z% + 1, we push forward v at p to the vector
c.(v) = [(3p* + 1)v,] at ¢(p) = p* + p. As we stretch the manifold, we stretch
the vectors on it as well. For example, the vector v = [—1] at the point
p = 1 is mapped to the vector c,(v) = [(3(1%) 4+ 1)(—1)] = [—4] at the point
c(1) = 2 (see again Figure 4.2).

Let’s try two-dimensions. Now four partial derivatives are required to
determine the push forward. (In general, one must keep track of n? partial
derivatives when working in n dimensions.) Returning to our example in
the previous section, let M be R? in (¢, x) coordinates and let N be R* x R
in (7,x) coordinates. As we have seen, the map f : M — N defined by
f(t,x) = (exp(t), 2z) is a diffeomorphism. Now let v = [v;, v, be a vector at
a point p in M. What is the push forward vector f.(v) at the point f(p)? It
will be useful to separate f(t,z) = (exp(t),2x) into its 7 and y components.
Let f/(t,x) = exp(t) and f,(t,z) = 2z so that f(t,z) = (f-(¢,2), f\(t,2)).
Various partial derivatives of these functions can be arranged into the Jaco-
bian matrix below.

ath aa:fT _ exp(t) 0
Ofy Oufyl | O 2

The push forward vector f,(v) is the result of matrix multiplication of the
vector v = [vg, v,] by the Jacobian matrix. This comes out as the following.

[Utatff + Uza’rf‘r; Utatfx + Uxaa:fx] = [Ut eXp(t)a ZU:E]

Suppose one has the vector v = [—2, 3] at the point p = (1, —2) in M. So
fe(v) = [—2exp(1),6] at f(p) = (exp(l), —4) in N (see Figure 4.3).

In the example just given, two partial derivatives vanish. Let’s try another
example where things aren’t so simple. Let M = R* x S be the half cylinder
in (z,0) coordinates. Let N = R? — {(0,0)} be the punctured plane in (z,y)
coordinates. The map f : M — N defined by f(z,0) = (zcos#@,zsinf)
is a diffeomorphism. Suppose one has a vector v = [v,,vp] at a point
p in M. Where do we map v to at the point f(p)? We first separate
f(2,0) = (zcos0, zsin0) into its = and y components. Let f,(z,6) = zcos6
and f,(z,0) = zsinf so that f(z,0) = (f.(2,0), fy(2,6)). The Jacobian
matrix in this case is the following.

[GZ fo Op f;,;} B [cos # —zsin 9]

~ |sinf zcos®

azfy a@fy



CHAPTER 4. ISOMORPHISMS 64

IS
N
N
S
o, >
<
~ N
. N
IS .

Figure 4.3: The diffeomorphism f : M — N pushes forward a vec-
tor v = [=2,3] at p = (1,—2) to the vector f.(v) = [—2exp(1l),6] at
f(p) = (exp(1), —4).

The push forward vector f,(v) is the result of matrix multiplication of the
vector v = [v,, vy| by the Jacobian matrix. This comes out as the following.

(0.0, fr + V90p fo, V05 fy + V900 f] = [v2 cOsO — vpzsinb, v, sin 6 + vz cos O]

Suppose one has the vector v = [—4, —1] at the point p = (3,0) in M. So
felv) = [(=4)(1) = (=1)(3)(0), (=4)(0) + (=1)B)(1)] = [-4, 3] at f(p) =
(3,0) (see Figure 4.4). We will return to this example again soon.

Given a diffeomorphism f : M — N, we now know how to push forward
a vector v at p € M to a vector f.(v) at f(p) € N. One can also use [ to
pull back any vector w at f(p) € N to a vector f*(w) at p € M. We do this
by pushing forward w using the inverse of f and setting f*(w) = f'(w).
It is a basic fact that if we push forward a vector with f and then pull it
back with f, the result is just the vector we started with, i.e. f*(f.(v)) =v
for any vector v at any point in M. Similarly, if we pull back a vector with
f and then push it forward with f, the result is just the vector we started
with, i.e. f.(f*(w)) = w for any vector w at any point in N.
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Figure 4.4: The diffeomorphism f : M — N pushes forward a vector v =
[—4,—1] at p = (3,0) to the vector f.(v) =[—4,—3] at f(p) = (3,0).

4.4 Isometries

Let M and N be manifolds such that there is a diffeomorphism f: M — N.
Suppose M and N are endowed with smooth metrics ¢ and h respectively.
Just as we can use f to transfer vectors between at any point p € M and
the corresponding point f(p) € N, we can also use it to transfer metrics as
well. We use f to pull back the metric h at f(p) to the metric f*(h) at p.
How do we do this? Let v and w be any vectors at the point p. We need
to find a suitable number to assign to the quantity f*(h)(v,w). Here is how
we provide that number. We can push forward the vectors v and w at p to
the vectors f.(v) and f.(w) at f(p). The metric h then assigns a number
h(f.(v), f«(w)) to these vectors. Whatever this number winds up being, we
assign it to the quantity f*(h)(v,w). In this way, we have now defined a
new metric f*(h) on M. We can also push forward the metric g at p to
the metric f.(g) at f(p). We just set f.(g) to f~'*(g) — the pull back of g
using the inverse of f. As with vectors, if we push forward a metric on M
with f and then pull it back with f, the result is just the metric we started
with, i.e. f*(f.(9)) = g for any metric g on M. Similarly, if we pull back a
metric with f and then push it forward with f, the result is just the metric
we started with, i.e. f.(f*(h)) = h for any metric h on N.

We can now define what it means for (M, ¢g) and (N, h) to have the same
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structure. We say a diffeomorphism f : M — N is an isometry if, at any
point p € M and any vectors v, w at p, we have g(v,w) = f*(h)(v,w). This
definition makes sense. The metric ¢ assigns a number g(v,w) to the vectors
v and w at p. We can use f to pull back the metric h on N to a metric
f*(h) on M. If f*(h) just is g, then (M, g) to (N, h) share the same metric
structure — they are isometric. Here’s an equivalent way to formulate the
definition of isometry. Suppose one uses f to push forward the vectors v and
w at p to vectors f.(v) and f.(w) at f(p). The metric h then assigns them
a number h(f.(v), fi(w)). This number is the same as the number g(v, w) if
and only if (M, g) to (N, h) are isometric. Let’s take a look at some examples.
We start with a pair of Riemannian manifolds. Consider again the half
cylinder and punctured plane. Let’s define a metric g on the half cylinder
M as follows: at each point (z,0) € M and for any vectors v = [v,, vy] and
w = [w,,wy] at the point, let g(v,w) = v,w, + 2%vpwy. On the punctured
plane N define the Euclidean metric e: at each point in N and for any vectors
v = [vg,vy] and w = [w,, w,| at the point, let e(v, w) = v,w, + vyw,. It is
not to difficult to verify that (M,g) and (IV,e) are isometric. One can use
the diffeomorphism f : M — N defined by f(z,60) = (2 cosf, zsin @) that we
have already explored above. Try it! Here’s a way to see the idea intuitively.
Fix some k& > 0 and consider a curve Ay : [0, 27] — M around the cylinder
defined by A(s) = (k, s). So z = k. What is the length of this curve according
to g7 Differentiating its components, we find that its tangent vector comes
out as N, (s) = [0,1] and so | N.(s)|| = 2% = k?. Integrating /|| \.(s)|| = &
from s = 0 to s = 27 gives 2rk. Thus, the length of the curve ||\;|| around
the cylinder goes to zero as £ — 0. Such curves are mapped via the isometry
f to curves f o A : [0,27] — N. The images are circles of radius k going
around the “missing” origin in N like ripples in a pond just after a dropped
pebble. According to the metric h, the circumference || f o \g|| of these ripples
also goes to zero as k — 0 (see Figure 4.5). We see that even though (M, g)
and (N, e) are presented differently, they represent the same structure.
Let’s do one more check to verify that f is an isometry. Earlier, we
saw that the vector v = [—4, —1] at p = (3,0) in M is pushed forward to
the vector f.(v) = [—4,—3] at f(p) = (3,0) in N (recall Figure 4.4). The
(squared) length ||v]| = v? 4 2%v3 of v = [—4, 1] according to g is comes out
as ||v|| = (=4)% + (3)?(=1)* = 25. But we see that the (squared) length
| f(v)|| = v2 4 vy of f.(v) = [~4, —3] according to h also is comes out as
| fe(0)]] = (—=4)* + (=3)% = 25 just as we would expect.
We now consider isometric spacetimes. We will extend the other example
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ripples 1

Figure 4.5: The isometry f maps ripples in M to ripples in N.

we have have been working with in the chapter: the diffeomorphic manifolds
M = R*> and N = Rt x R. Let (M,n) be two-dimensional Minkowski
spacetime in standard (¢,z) coordinates. Let N = RT X R be given in
(1, x) coordinates as before. As we have seen, the map f: M — N defined
by f(t,x) = (exp(t),2z) is a diffecomorphism (recall Figure 4.1). We have
already explored how to push forward any vector v at point p € M to the
vector f.(v) at point f(p) € N (recall Figure 4.3). We now use f to push
forward the metric n on M to some metric f,(n) on N so that f is an isometry.

Let v and w be any vectors at the point f(p). We will pull back v and
w at f(p) to the vectors f*(v) and f*(w) at p. The metric n then assigns
a number n(f*(v), f*(w)) to these vectors. Whatever this number winds up
being, we will assign it to the quantity f.(n)(v,w). In this way, we can
define a metric f.(n) on N. Let’s work out an expression for this metric in
the current example.

Let v = [v;, v, ] and w = [w,, w,] be any vectors at the point f(p) = (7, x).
As we have seen, pulling back these vectors using f is equivalent to pushing
them forward using the inverse of f. It is not difficult to see that in our case,
the inverse f~!' : N — M comes out as f~!(7, x) = (In(7), x/2). We now sep-
arate f~'(7,x) = (In(7), x/2) into its ¢ and = components. Let f;(7,x) =

In(7) and f; (7, x) = x/2 so that f~(r,x) = (fi (7. %), f }(7;x)). The
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Jacobian matrix is given by the following.

8Tft_1 axft_l _ I/ 0
o f -t O 0 1)2

The push forward vector f1(v) at p € M is then result of matrix multi-
plication of the vector v = [v,,v,] at f(p) € N by the Jacobian matrix. This
comes out as the following.

[UTa'rft_l + Uxaxft_la Urarfx_l + Uxaxfx_l] = [v-/T, Ux/2]

So pushing forward the vectors v and w, we get f, ! (v) = [v,/7,v,/2] and

[t (w) = [w,/7,w,/2]. But as we mentioned, using f~! to push forward
vectors v and w is the same as using f to pull them back. So f*(v) =
[v:/7,0,/2] and f*(w) = [w,/T,w,/2]. Now what number does n assign

to the pulled back vectors f*(v) and f*(w)? It comes out as the quantity
v.w, /7% — vyw, /4. This number is what we require f.(n) to assign to v
and w. In this way, we have now defined the push forward f.(n)(v,w) =
vw, /T — vyw, /4 of the metric 7. Let’s call it h. We see that (N, k) is just
Minkowski spacetime (M, n) in disguise. Things “look different” in (N, h)
but all the relevant structure is preserved. In what follows, when we speak
of “Minkowski spacetime” we are really speaking of any spacetime isometric
to the particular presentation (R™,7n) we have been working with.
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Figure 4.6: The isometry f maps null geodesics in M to null geodesics in N.
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We have already seen in our example that the vector v = [—2, 3] at the
point p = (1,2) € M is pushed forward to the vector f.(v) = [-2exp(1), 6]
at f(p) = (exp(1),—4) € N (recall Figure 4.3). Let’s check to make sure that
the lengths the vectors v and f.(v) match up. The metric n assigns v the
(squared) length ||v|| = v —v? = (—2)? — 32 = —5. And as we would expect,
the metric h = f.(n) assigns the (squared) length || f,(v)| = vZ/7> — v} /4 =
((—2exp(1))?/ exp(1)?—6%/4) = 4—9 = —5 as well. We see that the isometry
f transfers the spacelike vector v at p to its counterpart spacelike vector f,(v)
at f(p) with the same length.

One can get a better grip on the light cone structure of (N, h) by pushing
forward null geodesics in (M, n) via f to null geodesics in (IV, h). Consider the
null geodesics A\t : R — M defined by Ay (s) = (s, £s). We can now compose
these geodesics with f to produce the null geodesics fo Ay : R — M defined
by (f o AL)(s) = (exp(s), £2s) (see Figure 4.6). We see that the light cones
widen rapidly as 7 — 0. Stepping back, one can also verify that for any s, if
one pushes forward the tangent vector X (s) of the geodesic A} at p = A, (s)
to the point f(p), the result is just the the tangent vector (f o A} )'(s) of the
geodesic foA, at f(p). A foundational result says that this is true in general
for any curve whatsoever. In some cases, this can make pushing forward a
vector a piece of cake: no Jacobian matrix needed!

4.5 Symmetries

The (global) symmetries of a given mathematical structure are the isomor-
phisms from the given structure to itself. Manifolds have infinitely many
symmetries in this sense. But if we add a metric to a manifold, then the
resulting structure can have, at best, only a few non-trivial symmetries and
sometimes none at all. We will return to this point in Chapter 7. For now,
let’s explore the symmetries of the two-dimensional Minkowski universe we
have been working with.

Consider (M, n) where M = R? in (¢, z) coordinates and n(v, w) = vyw; —
vpw, for all vectors v = [vg,v,] and w = [wy, w,] at any point in M. We
know the identity map trivially counts as an isometry from (M,n) to itself.
Translations and reflections with respect to the t or x coordinates are also
isometries. For example, consider the map f: M — M defined by f(t,z) =
(t + a,z + b) where a and b are any real numbers. A vector v = [v;, v,] at a
point p = (t,x) € M get pushed forward to the vector f.(v) = [v, v,] = v at
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the point f(p) = (t + a,x +b). So n(v,w) for any vectors v and w at p will
be the same as n(f.(v), f«(w)) at f(p) which shows that f is an isometry.
By choosing the real numbers a and b carefully, one can use the isometry f
to map any point p € M into any other point ¢ € M. So the event “here
and now” is just like the event “there and then” because of the symmetries
of the Minkowski universe (see Figure 4.7)

t
M M there
f then
X > fp)®  «x
here
now
p [ ]

Figure 4.7: The isometry f maps any event “here and now” to any other
event “there and then” in the Minkowski universe.

The most interesting symmetry of Minkowski universe is the Lorentz
transformation. Fix a real number k. We let ¢ : M — M be defined by
the following.

U(t,z) = (tcosh(k) — x sinh(k), z cosh(k) — t sinh(k))

It is not difficult to verify that the map ¢ is an isometry. Try it! To get a
better conceptual grip on the significance of the Lorentz transformation, sup-
pose your world-line is the timelike geodesic A : R — M given by A(s) = (s,0)
with tangent vector v = [vy, v, = [1,0]. Now suppose your friend’s world-line
is the timelike geodesic 7 : R — M defined by ~(s) = (scosh(k), ssinh(k))
with tangent vector w = [wy, w,| = [cosh(k), sinh(k)] (see Figure 4.8). In the
case where k # 0, it would appear as though your friend is “moving” since
w,/wy # 0 while you are “not moving” since v, /v; = 0. The Lorentz transfor-
mation shows that such talk does not make sense. It maps the world-lines of
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you and your friend so that from the new perspective, the roles are reversed:
it appears as though you are “moving” while your friend is “not moving” (see
Figure 4.8). Indeed, under the Lorentz transformation, one can verify that
your friend’s world-line o~ : R — M comes out as £o~y(s) = (s,0) which is
the same as your world-line from the first perspective. Your friend appears
to be “not moving” now as her new velocity vector ¢,(w) is just [1,0]. On
the other hand, we find that your world-line £ o A : R — M comes out as
¢ o A(s) = (scosh(k),—ssinh(k)) under the Lorentz transformation. From
the new perspective, your velocity vector £,(v) = [cosh(k), — sinh(k)] is the
mirror image of your friend’s original velocity vector w across the x = 0 line.
In the case where k # 0, you now appear to be “moving” in the opposite
direction that your friend was earlier.
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Figure 4.8: The world-lines of you and your friend under a Lorentz transfor-
mation.

Stepping back, we see that there is no matter of fact about the “velocity”
of you or your friend. Such a notion is not preserved under the symmetries of
Minkowski spacetime. But everyone agrees on the speed of light. Consider
the null geodesic A : R — M defined by A(s) = (s,s). From the first
perspective, it has a null tangent vector of v = [v;, v,] = [1, 1]. So the speed
of light must come out as v, /v; = 1. Under a Lorentz transformation, we find
that foX : R — M comes out as (¢o7)(s) = (scosh(k)—ssinh(k), s cosh(k)—
ssinh(k)). So the tangent vector (¢o)'(s) becomes the null vector [cosh(k)—
sinh(k), cosh(k) —sinh(k)] which, as we have noted, must be the same as the
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push forward £, (v) of the original tangent vector v of the curve A(s). If we let
li(v); and £, (v), be the coordinate components of this push forward vector
such that £,(v) = [l.(v), £ (v),], we see that, from the new perspective, the
speed of light must also come out as £,(v),/l,(v), = 1.

4.6 Properties

The symmetries of a spacetime can be used to define its invariant properties.
Recall that % is the collection of possible universes: all pairs (M, g) where
M is a connected, Hausdorff manifold and g is a smooth Lorentzian metric on
M. In a sense, any subcollection & C % can be thought of as a spacetime
“property” but we will only be interested in those that are invariant under
symmetries. Consider Minkowski spacetime (M, 7). We do not want to think
of “having M = R" as the spacetime manifold” as a property of Minkowski
spacetime since it has isometric variants (N, h) where N # R" (recall Figure
4.6). Let us say that a subcollection & C % is an (invariant) property of
spacetime if, for any two isometric spacetimes (M, g),(N,h) € %, we have
(M, g) € & ifand only if (N, h) € 2. On this definition, we see that “having
a manifold R™ is not an invariant property of Minkowski spacetime while
“having a manifold diffeomorphic to R™” does count as an invariant property
of Minkowski spacetime.

It will be useful to distinguish “local” and “global” properties. We can
do this by considering the “local symmetries” of spacetime. Let (M, g) be a
spacetime and let O C M be any connected, open subset M. The pair (O, g)
counts as a spacetime in its own right since O is a connected, Hausdorff
manifold. We will call (O,g) a sub-region of (M,g). We say that the
spacetimes (M, g), (N, h) € % are locally isometric if, for any event p € M,
there is a sub-region (O, g) of (M, g) with p € O and a sub-region (U, h) of
(N, h) such that (O, g) and (U, h) are isometric, and, correspondingly, with
the roles of (M, g) and (N, h) reversed. One can show that local isometry,
like isometry itself, is an equivalence relation on the collection of possible
universes % .

Consider the two-dimensional Minkowski universe (M, g) and any event
p. If N = M — {p}, then (NN, g) counts as a sub-region of (M, g). Because
of the “missing” point p, the spacetimes (M, g) and (N, g) are not isometric.
The manifold M is diffeomorphic to R? while N is diffeomorphic to RT x S
(recall Figure 4.4). But (M, g) and (N, g) are locally isometric. Any event
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Figure 4.9: The isometry f maps the ball B to a region not containing p.

q # p € M is contained in the sub-region (N, g) of (M, g). So the identity
map from N to itself shows that ¢ is contained in a sub-region which is
isometric to (IV, g). What about event p? For that special case, just consider
a unit ball B € M centered at p and a map that shifts B over sufficiently
far away from p. For example, let f : B — M defined by f(¢,z) = (t + 3, z).
Since f[B] C N, this local translation f counts as an isometry (see Figure
4.8). So even a sub-region containing p has an isometric counterpart in
(N, h) even though p is “missing” there. We have verified one direction of
the local isometry. Now consider any point » € N. There is a sub-universe of
(N, g) containing p, namely (N, g) itself, that is isometric to a sub-universe of
(M, g). Just take that sub-universe to be (N, g) and consider the identity map
from N to N. So (M, g) and (NN, g) are locally isometric. Any universe that is
locally isometric to Minkowski spacetime we will call locally Minkowskian.
This counts as an invariant property of spacetime. Moreover, one can show
that a spacetime is flat if and only if it is locally Minkowskian.

We say that an (invariant) property &2 C % is local if, for any locally
isometric spacetimes (M, g), (N, h) € %, we have (M, g) € & if and only if
(N,h) € &. A property that is not local is global. We see that “having
a manifold diffeomorphic to R™ comes out as a global property given the
example we just considered. On the other hand, “being flat” comes out as
a local property. The properties of “being a vacuum solution of Einstein’s
equation” and “satisfying an energy condition” (of any type) counts as local.
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Figure 4.10: Property & C % is local while property 2 C % is global.
Each cell is an equivalence class of locally isometric universes.

Because local isometry is an equivalence relation on %, we can think of a local
property as a union of equivalence classes of locally isometric spacetimes. A
global property necessarily fails to be such a union (see Figure 4.10). In what
follows, a wide variety of global properties will be considered.

4.7 Conclusion

In previous chapters, we have formally built up the key definition of a gen-
eral relativistic spacetime. This allowed us to construct the collection % of
all spacetimes. In this chapter, we have added another definition that will
be central in what follows: isometries. These are isomorphisms (structure
preserving maps) between certain elements of %7. In order to formulate this
definition, we first had to consider the notion of diffeomorphisms, i.e. the
isomorphisms with respect to manifolds. A diffeomorphism f : M — N
between the manifolds M and N, gives rise to the associated push forward
and pull back maps f, and f*. These maps permit one to transfer any vector
at any point in one manifold to a corresponding vector at a corresponding
point in the other manifold. Formally defining the push forward and pull
back maps was a bit hairy. But the return on investment has already been
great. Suppose the manifolds M and N are endowed with the metrics g and
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h respectively. Then the transfer the vectors between these manifolds can be
used to formulate a natural definition: if at any point p € M and any vectors
v, w at p, we have g(v,w) = h(f.(v), f«(w)), then the diffeomorphism f also
counts as an isometry.

With the notion of an isometry in hand, the dividends start rolling in.
One can understand the (global) symmetries of a spacetime to be the isome-
tries from that spacetime to itself. We looked at a number of symmetries
of Minkowski spacetime including translations, reflections, and the Lorentz
transformations. The notion of an isometry also allowed for a precise formu-
lation of the invariant properties of spacetime as well as a useful distinction
between local and global varieties of such properties. Additional topics based
on the foundational definition of isometry will be explored in Chapters 6 and
7. The former deals with the modal properties of spacetime including the cen-
tral definition of spacetime maximality. The latter deals with the asymmetry
properties of spacetime including local and global types. Before moving to
discuss these properties, it will be useful to consider a hierarchy of global
properties relating to the causal structure of spacetime.



Chapter 5

Causality

5.1 Introduction

In the Minkowski universe, the causal structure of spacetime is very well-
behaved. But the possible shapes and curvatures of spacetime permitted
by general relativity permit a wide variety global causal pathologies. For
example, it may not be possible to label the two lobes of each light cone as
“past” and “future” in a continuous way. Such spacetimes fail to be “time-
orientable” and we begin our exploration of the causal structure of spacetime
with a look at this property. Under the assumption of time-orientability, we
then move to consider a hierarchy of six global causal properties. The lowest
two levels of the hierarchy rule out types of “causal loops” in which events can
causally influence themselves. The possibility of “time travel” is discussed.
The middle two levels of the hierarchy forbid spacetimes that “almost” have
causal loops. At these middle levels, the causal structure of spacetime is
sufficiently well-behaved to allow for different senses in which the topology
of spacetime can be determined from its causal structure. The two highest
levels of the hierarchy concern the “stability” of causal structure and a form
of causal “dependence” of certain spacetime regions upon others. The latter
notion is connected to a kind of causal “determinism” in which the structure
of the entire universe depends only on the physical situation at any given
instant.

76
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5.2 Orientability

In order to consider the hierarchy of causal conditions in the few sections,
we will need a global distinction between the “past” and “future” directions
of time. We say that a spacetime (M, g) is time-orientable if one can de-
fine a continuous timelike vector field on M. If such a vector field exists,
then at each point p, the there will be vector v, pointing in one of two lobes
of the light cone. If we label that lobe “the future” at each point and the
other lobe “the past” we have the globally defined distinction we are af-
ter. Of course, we could switch the labels at each point. This means that
if a spacetime is time-orientable, there are two such time orientations to
choose from. The “problem of the direction of time” concerns the justifi-
cation of choosing one orientation over another (Callender, 2017). It is an
interesting question whether all “physically reasonable” spacetimes must be
time-orientable (Bielinska and Read, 2023). Here is an intuitive argument
(Geroch and Horowitz, 1979, p. 228-229).

We observers, in our own local region of spacetime, perceive
a preferred future time-direction. Furthermore, there is agree-
ment between different observers as to which time-direction this
is. Suppose, then, that one universalizes these local experiences —
i.e. one imagines that there could be local observers in all regions
of the universe, that each observer would perceive a preferred fu-
ture time-direction, and that there would be agreement among
these observers. One would then conclude that a physically real-
istic model of our universe must be time-orientable.”

All of the spacetimes we have encountered so far have been time-
orientable. Let’s look at an example which isn’t. To construct it, first
consider two-dimensional Minkowski spacetime (R?,7) in standard (t,x)
coordinates. This spacetime is time-orientable since it admits a smooth (and
therefore continuous) timelike vector field v on M defined by assigning the
vector v, = [1,0] to each event p. Now let N be the set of points (¢, z) € R?
such that —1 <t <1 and 0 < 2 < 10. The set N is not a manifold since
any point at either of the x = 0 and z = 10 ends of the strip must fail
to have a neighborhood homeomorphic to R?. But we can construct the
manifold M by “gluing” these ends together in curious way. Let Ey and E1q
be, respectively, the one-dimensional manifolds consisting of the x = 0 and
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x = 10 portions of N. Any point in either Ey or Ey, is characterized by its
t coordinate which ranges from —1 to 1. Now consider the diffeomorphism
[ Ey — Ejo defined by f(t) = —t. Identity the point p € Ey with the point
f(p) € Eyq for all p € E,. Because points are identified in this way, a vector
at one end of the strip is identified with a vector at the other end that
points in the opposite ¢ direction. Indeed, one can easily verify that any
vector v = [vy] at point p gets pushed forward by the diffeomorphism f to
the vector f.(v) = [—v] = —v at the point f(p). Under the identifications,
the resulting structure M is a manifold: the famous Mobius strip (see
Figure 5.1).

f.(v)

Figure 5.1: The Mobius strip M endowed with the metric 1. The vector v
at p is identified with the vector f,(v) at f(p). It is not possible to label all
of the lobes of the light cone as “past” and “future” in a continuous way.

At each point on the Mobius strip M, one can define the metric 7 in the
natural way to construct the spacetime (M,n). One can verify there is no
problem in doing so under the proposed identifications. Vectors vy = [vy, vy]
and wy = [wg, w,| at a point p € FEy are identified with the vectors vy =
[—vg, v, and wyg = [—wy, w,] at the point f(p) € Eyp. Notice that n(vy, wo) =
n(v10, w1p). But there is a problem in finding a continuous timelike vector
field on M which shows that the spacetime fails to be time-orientable. One
can label the lobes of the light cone in continuous way in the middle portion of
the Mo6bius strip as in the diagram. But because of the “flip” in ¢ orientation
at the ends, there is no way to globally extend the labelling. Because (M, n)
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is locally isometric to Minkowski spacetime and but only one of the pair is
time-orientable, we see that “being time-orientable” is a global spacetime

property.

5.3 Causal Loops

In what follows, we will assume that spacetimes are time-orientable and that
a particular orientation has been chosen. Let (M, g) be such a spacetime. A
curve \ : I — M is causal if its tangent vectors are all either timelike or
null. A causal curve is future-directed if each tangent vector falls in or on
the future lobe of the light cone. We can use the notions of future-directed
timelike and causal curves to define a pair of useful relations on the points
in the manifold M. For any points p,q € M, we write p < ¢ if there is a
future-directed timelike curve which has a past endpoint at p and a future
endpoint at ¢q. Similarly, we write p < ¢ if there is a future-directed causal
curve which has a past endpoint at p and a future endpoint at q. These
relations can be used to formulate the four “domains of influence” associated
with each event p € M.

~
+
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{ee M q<p}
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The set I1(p) is called the timelike future of p and represents the region
of spacetime which can be be reached by causal influences emanating from
the event p propagating below the speed of light. Similarly, the set I~ (p) is
called the timelike past of p and represents the region of spacetime which
can reach the event p via causal influences propagating below the speed of
light. The causal future J*(p) and causal past J~(p) are analogous to
I*(p) and I~ (p) except that now causal influences are permitted to propagate
at light speed. It would seem that only events in the causal past of p are
empirically accessible from p. An observer has no way of “seeing” events
outside this region.
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One can generalize these definitions in the natural way so as to apply to
sets of events: for any set S C M, define I7(S) to be the region U{IT(p) :
p € S} and similarly for I~(S), J*(S), and J~(S). Clearly, we have I'*(S) C
J1(S) and I~(S) € J~(S). One can verify that the regions I7(S) and I~(5)
are always open sets. In Minkowski spacetime, the sets J*(p) and J~(p) are
closed for any point p € M. But in general, these sets are neither open nor
closed. To see this, consider two-dimensional Minkowski spacetime (R?, 7)
in standard (¢,z) coordinates. Remove the origin point (0,0) and let and let
(M, n) be the resulting spacetime. The point p = (2,2) is such that J~(p) is:
(1) not open since the event ¢ = (1,1) is in J~ (p) and yet every neighborhood
of ¢ extends outside of J~(p) and (ii) not closed since the event r = (—1, —1)
is not in J~(p) and yet every neighborhood of r extends inside J~(p) (see
Figure 5.2).

Figure 5.2: The causal past J~(p) of the p is neither open nor closed. The
region contains ¢ but every neighborhood of ¢ extends outside of J~(p) and
r is not in J~(p) and yet every neighborhood of r extends inside J~(p).

Consider again an arbitrary time-orientable spacetime (M, g). For any
p € M,let A : R — M be the smooth curve defined by A(s) = p for all s € R.
The curve counts as a null curve since its tangent vector must be the zero
vector for all s € R. Given the way we have set things up, the curve is both
future-directed and past-directed. It follows that p € J*(p) and p € J~(p).
In contrast, since timelike curves cannot have vanishing tangent vectors by
definition, we see that p € I™(p) and p € I~ (p) do not hold in general. But
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such statements can be true when a type of “time travel” is present in the
spacetime (M, g). Let’s now explore this notion.

A future-directed causal curve X : I — M is closed if its tangent vectors
are nowhere vanishing and there are distinct sg,s; € I such that A(sg) =
A(s1). Let’s consider an example of a closed timelike curve (CTC). Let M
be the product S x R in (¢,x) coordinates where 0 < t < 27 and t = 0
is identified with ¢ = 27. The spacetime (M,n) is a type of “rolled up”
Minkowski universe where the time coordinate ¢ has a circular structure
(see Figure 5.3). Now consider an observer, Marty, whose world-line is the
CTC X : [0,27] — M defined by A(s) = (s,0). So differentiating the curve

components gives a tangent vector of X' (s) = [1,0] that we will take to be
future directed. So /||N(s)|| = 1 which, when integrated from s = 0 to
s = 2m, results in an elapsed time of |A|| = 27 years. Marty begins his

journey at the event p = A\(0), then travels into the future for 27 years, and
finally reaches the end his journey at A(27) which is just the event p where
he started. We see that Marty has not really gone “back to the future” but
rather “forward to the past.”

Figure 5.3: Marty begins and ends his journey at the very same event p. His
tangent vector points in the future direction at every point along the curve.

Let us say that a spacetime (M, g) without CTCs satisfies the chronol-
ogy condition. One can show that any spacetime with compact manifold
(e.g. the torus S x S) must violate chronology (Geroch, 1967). Moreover,
for any n-dimensional spacetime (M, g) where n > 3, there is a spacetime
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(M, g") with CTCs (Manchak, 2016¢). This means that even a manifold like
R* admits a metric that fails to satisfy the chronology condition. Perhaps
the most famous example is the one due to Godel (1949). Einstein famously
responded to such chronology violating spacetimes as follows: “It will be in-
teresting to weigh whether these are not to be excluded on physical grounds”
(Einstein, 1949). To be sure, the physical situation along a CTC will be con-
strained so as to be consistent. But the possibility of “time travel” remains
an open question (Smeenk et al., 2023; Earman et al., 2024).

Let us say that a spacetime without closed causal curves satisfies the
causality condition. One finds that the causality condition is equivalent to
the requirement that for all p € M, it is the case that J*(p) N J~(p) = {p}.
It is immediate that causality implies chronology. But the two conditions are
not equivalent. This can be seen by “rolling up” two-dimensional Minkowski
spacetime in one of the null directions. We will do this by considering some
non-standard coordinates. Let M and N be two copies of R? in (6,u) and
(t,z) coordinates respectively. Let f : M — N be the diffeomorphism defined
by f(0,u) = (0 + u,0 — u). Now consider the metric n on N given in the
usual (¢, x) coordinates. We’d like to pull this metric back to define a metric
gon M. Let v = [vg,v,] and w = [wy, w,] be vectors at a point p € M. We
can push forward these vectors via f to the vectors f,(v) and f.(w) at the
point f(p). We first separate f into its component functions f;(6,u) =0+ u
and f,(0,u) = 0 — u such that f(0,u) = (fi(0,u), fz(0,u)). The Jacobian
matrix comes out as the following.

afe Ouf] _ 11
The push forward vector f,(v) is the result of matrix multiplication of the
vector v = [vg, v,| by the Jacobian matrix. This comes out as the following.

[U089ft + Uuauft; UQaOf:B + Uuaufm] = [UO + Uy, Vg — Uu]

So f.(v) = [vg + Vu, v — V] and fi(w) = [wp + wy, wy — w,] at f(p).
Now what is n(f.(v), f«(w))? After a bit of algebra, we find that it is simply
2(vow, +v,wy). So this is the number that the pull back metric f*(n) assigns
tov and w at p. Let g = f*(n) be the metric defined in this way at every point
in M. By construction we now have an isometry f from (M, g) to (N,n).
This makes sense. The vectors v = [1,0] and w = [1,1] at p = (0,0) € M
are such that ||v]| = 0 and ||w| = 4 according to g. So v is null and w is
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timelike. But f.(v) = [1,1] and f.(w) = [2,0] at f(p) = (0,0) € N are such
that || f«(v)|| = 0 and || f«(w)|| = 4 according to 1. So f.(v) is null and f.(w)
is timelike (see Figure 5.4).

Figure 5.4: The isometry f takes the vectors v and w at p € M to the vectors
fi(v) and f.(w) at f(p) € N.

Now consider the 0 < # < 27 portion of M and identify, for all u, the
point (0,u) with (27, u). The resulting manifold is just S x R. Since the
0 coordinate is null, the spacetime (S x R, g) has closed null curves. Just
consider the curve X : [0,27] — M defined by A(s) = (s,0). We find a
(non-vanishing) tangent vector of X (s) = [1,0] which, as we have seen, is
null according to g. Since A(0) = A(27), the curve is closed and we see that
the spacetime violates causality. But one can verify that any future-directed
timelike curve must always increase along the u coordinate and thus can
never be closed. So the spacetime satisfies chronology.

5.4 Topology from Causality

We now consider a couple of conditions that rule out types of “almost” closed
causal curves. For each condition, we will see a sense in which the topology
of spacetime can be determined from its causal structure. Let us say that
a model (M, g) distinguishing if for any distinct p,q € M, it follows that
It(p) # I'(q) and I~ (p) # I~ (q). One can show that every distinguishing
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spacetime satisfies causality but not the other way around. Let M be the
product R x S in (¢,0) coordinates where 0 < 6 < 27 and 0 = 0 is identified
with § = 27w. Now consider the spacetime (M, g) where ¢ is the metric
defined by g(v,w) = wviwy + vew; — t*vewe for all vectors v = [vy, vy] and
w = [wy, wy]. We see that the vector v = [0, 1] has a length of |jv]| = —t* at
any point (¢,0). So v is spacelike except at t = 0 where it is null. On the
other hand, the vector w = [1, 0] is null at every point in the spacetime. The
result is that at ¢ = 0 the light cones are at a 45 degree angle but “tipped”
to allow for a single closed null curve. As t increases in absolute value, the
light cones close up rapidly but in a way that keeps the t direction null. Now
remove the point (0,0) from M and let N be the resulting manifold. Because
of the “missing” point, the single closed null curve no longer closes ensuring
that (NN, g) satisfies causality. But the distinguishability condition is violated
since the distinct points p = (0, 1) and ¢ = (0, 2) are such that I~ (p) = I~ (q)
which is just the ¢ < 0 region of N (see Figure 5.5).

Figure 5.5: The spacetime violates the distinguishing condition since the
distinct points p and ¢ share the same timelike past I~ (p) = I~ (q).

Spacetimes that satisfy the distinguishing condition are sufficiently well
behaved that there is a sense in which the causal structure determines the
topology spacetime. In fact, it even determines all manifold structure. We
say a bijection f : M — N is a causal isomorphism between spacetimes
(M, g) and (N, h) if, for all p,q € M, the following holds: p < ¢ if and only
if f(p) < f(q). If there is a causal isomorphism between the spacetimes
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(M, g) and (N, h), then they share the same causal structure. In general,
a causal isomorphism between the spacetimes need not be an isomorphism
of another kind of structure (homeomorphism, diffecomorphism, etc). To see
this, let (M, g) be Marty’s spacetime allowing for time travel. One can show
that for any events p,q € M, the p < ¢q. Now remove a point » € M and
let (N,h) be the resulting spacetime. Again, we find that p,q € N, the
p < q. This means that any bijection f : M — N whatsoever be must
be a causal isomorphism. (We know such a bijection exists since the two
manifolds both have continuum many points.) But because of the “missing”
event r in (IV, h), it doesn’t have the same topology as (M, g). Even if were
to require the spacetimes (M, g) and (N, h) to be chronological or causal,
similar examples could be constructed showing that a causal isomorphism
need not preserve other structure. But as we move up the causal hierarchy,
everything changes at the level of the distinguishing condition.

Let (M, g) and (N, h) be spacetimes. We say a diffeomorphism f : M —
N is a conformal isometry if f*(h) = Q%g for some smooth positive func-
tion €2 : M — R. Here, the function () is called a conformal factor on
M. If spacetimes (M, g) and (N,h) are related by a conformal isometry
f M — N, then the light cone structure as determined by ¢ at any point
p € M is such that, when pushed forward to f(p) € N, it is the same as
the light cone structure as determined by h there. A conformal isometry is
somewhere between a diffeomorphism and an isometry. All manifold struc-
ture is preserved and, in addition, so is the causal structure determined by
the metric. But the geodesic structure determined by the metric may not
be preserved as it is in an isometry. We are now ready to state a founda-
tional result: a causal isomorphism between distinguishing spacetimes must
be a conformal isometry (Malament, 1977a). When attention is restricted to
distinguishing spacetimes, information concerning which events are causally
related to which others encodes all manifold (including topological) structure.

A spacetime (M, g) satisfies the strong causality condition if, for each
event p € M and any neighborhood O of p, there is a smaller neighbor-
hood U C O of p such that no future-directed causal curve that begins in
U and leaves it, ever returns. One can show that strong causality implies
distinguishability. The other direction does not hold. To see this, consider
Marty’s spacetime (M, n) once more in which M = S x R in (¢,2) coordi-
nates where 0 < ¢t < 27 and t = 0 is identified with ¢ = 27. Now remove
the slits Sp : {(0,z) : < 1} and Sy = {(1,z) : x > 0} from M to produce
the manifold N. One can show that the spacetime (N, g) satisfies distin-
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guishability but not strong causality. Consider the point p = (1/2,1/2) and
an open neighborhood O of p consisting of an open ball centered at p with
radius 1/2. Then every neighborhood U of p that fits inside O will be such
that there is a causal curve that starts in U, leaves it, and then returns (see
Figure 5.6).

S

Figure 5.6: The spacetime violates strong causality condition since any suffi-
ciently small neighborhood U of p will be such that there is a future-directed
causal curve that starts in U, leaves it, and then returns.

The strong causality condition ensures that certain causal curves cannot
be “imprisoned” inside a compact set. Let A : I — M be a future-directed
causal curve in the spacetime (M, g). A point p € M is a future endpoint
of A if, for every neighborhood O of p, there exists a sy € I such that A(s) € O
for all s > sg. Notice that a future endpoint of a causal curve need not be
a part of the curve itself. A causal curve is future inextendible if it does
not have a future endpoint. Similarly, one can define a past endpoint and
a past inextendible curve. A causal curve is inextendible if it is both
future and past inextendible. Let (M, g) be a spacetime satisfying the strong
causality condition and let A : I — M be a future-directed causal curve such
that the image of X is contained in a compact set K C M. Then the curve
A has past and future endpoints in K. In other words, a strongly causal
spacetime cannot imprison a (past or future) inextendible causal curve in a
compact set.

Strongly causal spacetimes have another interesting property connected
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to a type of “causal topology” one can define on the manifold. Let (M, g) be
a spacetime and, for any p, ¢ € M, define the set O(p, q) to be the intersection
I*t(p)NI~(q). Let o be the collection of all subsets of M that can be expressed
as a union of sets of the form O(p, q) for p,q € M. The collection o counts
as a topology on M, called the Alexandrov topology, which is always a
subset of manifold topology 7. In general, we find ¢ # 7. For example,
in Marty’s spacetime (M, g) we have I~ (p) = I't(p) = M for any point p.
So O(p,q) = M for any p,q € M. The only subsets that can be expressed
as a union of sets of the form O(p,q) are M and & (since it is the union
of an empty collection of sets). So o is the trivial topology which is very
different from the manifold topology 7. Notice, for example, that the trivial
topology is not Hausdorff. A foundational result is this: a spacetime satisfies
strong causality if and only if ¢ = 7 if and only if ¢ is Hausdorff. So one
can explicitly define the topological structure of a strongly causal spacetime
from its causal structure.

5.5 Stability and Dependence

A spacetime (M, g) satisfies the stable causality condition if there is a
smooth function ¢t : M — R such that for any distinct points p,q € M,
if p € J (q), then t(p) < t(q). The function ¢ is called a global time
function. So along any future-directed causal curve, the “time” ¢ always
increases. Stable causality gets its name because there is a sense in which it
is equivalent to the condition that “nearby” spacetimes are chronological. We
will come back to this idea in a later chapter. For now, we note that stable
causality implies strong causality but not the other way around. Consider
again Marty’s spacetime (M, n) in which M = S x R in (¢,2) coordinates
where 0 <t < 27 and ¢t = 0 is identified with ¢ = 27. In the last example
we removed the slits Sy : {(0,2z) : # < 1} and Sy = {(1,z) : > 0} from
M (recall Figure 5.6). In this example, we remove these slits again as well
as the slit Sy : {(2,2) : © < 1} from M to produce the manifold N. One
can show that the spacetime (N,n) fails to be stably causal. But it does
satisfy strong causality: the series of three slits ensures that one can find a
sufficiently small neighborhood U of any point p such that no future-directed
causal curve that begins in U and leaves it, ever returns (see 5.7).

One can construct similar examples to show that there are actually an
infinite number of levels of the causal hierarchy in between strong causality
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and stable causality (Carter, 1971). For more on these levels, as well as others
not covered in our presentation, we refer the reader to the comprehensive
review given by Minguzzi (2019). In what follows, we will make use of this
result: if (M, g) is stably causal and C' is any closed proper subset of M for
which M — C' is connected, then (NN, g) is a stably causal spacetime where
N = M — C. To see why, just take any global time function ¢t : M — R for
(M, g) and restrict its domain to obtain the global time function ty : N — R
for (N, g). So Minkowski spacetime with a point removed is stably causal.

Sz U
S
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X

Figure 5.7: The spacetime satisfies the strong causality condition since a
sufficiently small neighborhood U of any point p will be such that no future-
directed causal curve that begins in U and leaves it, ever returns

Our next condition sits atop the causal hierarchy and ensures a sense of
“determinism” in spacetime. We say a spacetime (M, g) is causally com-
pact if for any p,q € M, the region J*(p) N J (q) is compact. Minkowski
spacetime (M, n) is causally compact. Since J*(p) and J~(p) are closed for
any p € M, we know that J*(p) N J (q) is closed for any p,q € M. One can
also show that such a set always fits inside some ball in M = R* so they are
also bounded. Since J*(p)NJ~(q) is both closed and bounded in M = R*, it
must be compact (see Figure 5.8). On the other hand, Minkowski spacetime
with a point removed is not causally compact. In such a spacetime, there
are events p such that the region J~(p) is not closed (recall Figure 5.2). One
can find some ¢ is this region J~(p) (just below the “missing point”) such
that J*(p) N J~(q) is not closed. So because the manifold is Hausdorff, we
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find that J*(p) NJ~(q) is not compact. Let us say that a spacetime satisfies
the global hyperbolicity condition, if it is causally compact and causal.
One can show that any globally hyperbolic spacetime (such as Minkowski
spacetime) must be stably causal but not the other way around. Minkowski
spacetime with a point removed is not causally compact and therefore not
globally hyperbolic. But as we have seen, this spacetime is stably causal.
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Figure 5.8: In Minowski spacetime, the region J*(p) N J~(¢) is compact for
any events p and q.

Older definitions of global hyperbolicity used the strong causality condi-
tion in place of the causality condition (Hawking and Ellis, 1973). Eventually,
a useful result showed that using the weaker causality condition gives rise to
an equivalent definition (Bernal and Sanchez, 2007). It turns out that if at-
tention is restricted to non-compact spacetimes of dimension three or more,
the causality condition can be dropped altogether (Hounnonkpe and Min-
guzzi, 2019). Let’s now try to get a better grip on the physical significance
of the global hyperbolicity condition.

Let (M, g) be any spacetime and let S C M be any set. The future
domain of dependence of S, denoted D*(S), is the set of points p € M
such that every past-inextendible causal curve through p meets S. The past
domain of dependence of S, denoted D~ (5), is defined analogously. The
domain of dependence D(S) of S is the union D*(S) U D~(S). Since
nothing can travel faster than light, any causal influences at each point p €
D(S) must register somewhere on S. Often one restricts attention to sets
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S C M which are achronal in the sense that I7(S) NS = &. Or one might
consider cases where S C M is a “spacelike surface” is a sense we now make
precise.

Let n be the dimension of (M, g). Let S be a manifold of dimension k
for 1 <k <n. A smooth map f:S — M is an embedding if (i) f is one
to one (ii) for all p € S, the push forward map f, at p is one to one and (iii)
the inverse map f~!: f[S] — S is continuous where f[S] has the subspace
topology inherited from M. (Note that we haven’t formally defined the push
forward map f, in the case where f is not a diffeomorphism but it is clear how
to generalize this notion to the present context of smooth maps.) Condition
(i) ensures that the set f[S] does not intersect itself while conditions (ii) and
(ili) capture senses in which f[S] does not “almost” intersect itself. One can
show that the three conditions are all independent, i.e. one can find examples
where any two of the conditions are satisfied while the third is not.

If S € M and the inclusion map is an embedding, we say that S is an
embedded submanifold of M. An embedded submanifold S C M is a
hypersurface if the dimension k£ of S is n — 1. A hypersurface S C M
is a spacelike surface if every curve contained in S is a spacelike curve.
A spacelike surface can fail to be an achronal set (e.g. if there are CTCs
through the surface). Alternatively, an achronal set S C M need not be
spacelike surface (e.g. it may contain only null curves). In Figure 5.9, a
closed, achronal, spacelike surface S is depicted in Minkowski spacetime with
a point removed, along with its associated domain of dependence D(S). Be-
cause of the “missing” point, there is an inextendible causal curve through p
that never registers on S. So p ¢ D(S). But any inextendible causal curve
through ¢ must meet S at some point r € S and therefore ¢ € D(S5).

If a spacetime (M, g) has a closed, achronal set S C M such that D(S) =
M, then S is a Cauchy surface. One can show a sense in which the phys-
ical situation on a Cauchy surface S completely determines the situation at
every point in M (Choquet-Bruhat and Geroch, 1969). We will explore this
idea in Chapter 12. A foundational result is this: a spacetime (M, g) admits
a Cauchy surface S if and only if it is globally hyperbolic (Geroch, 1970a).
Another equivalent formulation will introduce a few definitions that will be
needed later on. Let (M, g) be a spacetime and let S C M be a closed,
achronal surface. The future Cauchy horizon of S, denoted H*(.5), is de-
fined by taking the closure of DT (S) and then removing the set I~[D*(S)].
The past domain Cauchy horizon of S, denoted H~ (), is defined analo-
gously. The Cauchy horizon H(S) of S is the union H(S)UH(S). One
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can show that H(S) is just the boundary of D(S). If S is nonempty, then
H(S) is empty if and only if S is a Cauchy surface. Finally, we note that if
a spacetime (M, g) is globally hyperbolic, then one can choose a global time
function ¢t : M — R such that each surface of constant ¢ is a Cauchy surface
S C M. Tt follows that the topology of M is just R x S.

A

Figure 5.9: Due to the “missing” point, an inextendible causal curve through
p never registers on S. So p ¢ D(S). But any inextendible causal curve
through ¢ must meet S at some point r € S. So ¢ € D(S).

Global hyperbolicity is a very strong condition. Even so, it has been
argued that: “All physically reasonable spacetimes are globally hyperbolic”
(Wald, 1984, p. 304). Indeed this is one way of understanding the content of
one version of the famous “cosmic censorship” conjecture of Roger Penrose
(1979) which rules out “naked singularities” of a certain kind. We will explore
this idea later on in Chapters 6 and 12.

We have already seen how removing points from otherwise causally well-
behaved spacetime results in a spacetime that is not globally hyperbolic.
But such mutilations are not necessary for spacetime to fail to be globally
hyperbolic. Marty’s time travel spacetime, for example, does not contain a
non-empty achronal set so there can be no Cauchy surface. Other examples
exist which are causally well-behaved. Consider again two-dimensional anti-
de Sitter spacetime (M, g) (recall Section 3.4). Here M = R? in (¢, x) coordi-
nates and ¢ defined as follows: at each point (t,z) € M and for any vectors
v = [v,v,] and w = [wy, w,] at the point, let g(v, w) = v,w; cosh?(z) — vywy.
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The function f : M — R defined by f(t,z) = t is a global time function
which shows that anti-de Sitter spacetime is stably causal. But it is not
globally hyperbolic. Consider, for example, any real number k and the set S
defined by t = k. One can show that D(S) must be confined to the region
k—7n/2<t<k+mn/2andso S is not a Cauchy surface. Recall the wizard
whose world-line seemed to appear out of thin air (see Figure 3.7). Such a
timelike curve is inextendible and can be chosen so that it is confined to the
future of D(S) (see Figure 5.10). So we see a sense in which determinism
fails in such a spacetime.

Figure 5.10: Anti-de Sitter spacetime fails to be gloablly hyperbolic. The
world-line of a wizard is an inextendible timelike curve that fails to meet S
showing D(S) # M.

5.6 Conclusion

In this chapter, we have considered the causal structure of spacetime. After
restricting attention to time-orientable spacetimes, we examined six levels of
a causal hierarchy. The lower two levels — chronology and causality — rule out
types of causal loops. The middle two levels — distinguishability and strong
causality — rule out spacetimes which “almost” have such loops. At these
levels, one finds various senses in which the causal structure of spacetime
determines its topology. The higher two levels concern “time” on a global
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scale. One level — stable causality — requires the existence of such a global
time. The other — global hyperbolicity — requires a sense in which there is
global time at some instant that can be used to determine the structure of
the entire universe.

Just as with the various energy conditions considered in Section
3.5, it will be useful later on to think of the causal hierarchy in
terms of subcollections of the collection % of all spacetimes.  Let
(Chron), (Caus), (Dist), (Str), (Stab),(GH) C % be the collections of all
spacetimes satisfying, respectively, the chronology, causality, distinguishing,
strong causality, stable causality, and global hyperbolicity conditions. It is
easy to see that each of these properties count as global. This follows since
Minkowski spacetime is a member of each collection and Marty’s time travel
spacetime (which is locally isometric to Minkowski spacetime) is a member
of none of them. The hierarchy of causal properties can be summarized as
follows (see Figure 5.11).

(GH) C (Stab) C (Str) C (Dist) C (Caus) C (Chron)

@(Stab) (Str) ) (Dist) ) (Caus))(Chron)

Figure 5.11: The hierarchy of causal properties.



Chapter 6
Holes

6.1 Introduction

Take any spacetime and remove a point from its manifold. The resulting
structure is also a spacetime and would seem to be pathological in a variety
of senses due to its “missing” point. In what follows, we will explore a
hierarchy of “no-hole” conditions that can be used to rule out such examples.
We begin with a natural proposal that requires geodesics to be “complete” in
the appropriate sense. We find that this route is closed off due to the presence
of “singularities” in some physically reasonable spacetimes. We take a look
at some examples including a black hole and the big bang. Next, we focus
on a series of three weaker modal conditions to rule out spacetime holes:
maximality, hole-freeness, and local maximality.

Unlike the energy and causal conditions we have considered so far, the
definitions of these modal conditions depend crucially on a background pos-
sibility space in the form of some collection of spacetimes. Each of the condi-
tions pinpoint different senses in which spacetime can fail to be “as large as it
can be” relative to the chosen background possibility space. In this chapter,
we use the standard collection % in formulating all three definitions. Even
within this context, we will see that the justification for the imposition of
the conditions is already quite thin. In the second half of the book, we will
explore the weakest of the three — spacetime maximality — defined relative to
background possibility spaces other than the standard collection %. As we
will see, the thin justification for spacetime maximality will get even thinner.

94
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6.2 Geodesic Completeness

Let’s start with a natural no-hole condition that concerns the behavior of
geodesics. A (smooth) curve A : [ — M in a spacetime (M, g) is maximal if
there is no curve v : J — M such that [ is a proper subset of J and A(s) =
v(s) for all s € I. When attention is restricted to causal geodesics, a curve is
maximal if and only if it is inextendible (i.e. has no future or past endpoint).
But inextendibility can fail if a maximal causal curve is not a geodesic. In
two-dimensional Minkowski spacetime (M, ) in (¢, z) coordinates, consider
the timelike curve A : I — M defined by A(s) = (s + /s, s) where [ is the
interval (0, 00). The curve is maximal since it cannot be extended in a smooth
way through the origin point p = (0,0). This follows since the tangent vector
along the curve is [1 + 1/(24/s), 1] which is undefined at s = 0. But A is not
inextendible since the origin point p counts as its past endpoint: for any
neighborhood O of p, there exists a so € I such that A(s) € O for all s < s
(see Figure 6.1).

M t
A
S
A
—
Sol X

Figure 6.1: The point p is a past endpoint for the curve \ : I — M since, for
any neighborhood O of p, there is a sy € I such that \(s) € O for all s < s

Now consider a maximal geodesic A : I — M in a spacetime (M, g). We
say it is incomplete if I # R. Let (/V,n) be the ¢ < 0 portion of two-
dimensional Minkowski spacetime (M,n). Consider the timelike geodesic
A I — M defined by A(s) = (s,0) where [ is the interval (—oo,0). This
geodesic is maximal but incomplete. At any event along the curve, the
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elapsed time is finite in the future direction. So an observer with such a world-
line will have an existence that is “cut short” in a seemingly artificial manner.
Let us say that a spacetime with an incomplete geodesic is geodesically
incomplete. Otherwise it is geodesically complete. Insisting on geodesic
completeness would seem to be a natural way to rule out “holes” in spacetime.
It does exclude virtually all of the problematic examples. But the proposal
runs into a couple of major problems.

First, it excludes spacetimes in which holes seemingly cannot exist. In
any topological space (X, 7), a point p € X is an accumulation point of
an sequence {p,} in X if every open neighborhood of p contains infinitely
many points in the sequence. In R, the infinite sequence {p,} defined by
pn = (n/n+ 1)(=1)" for all positive integers n has accumulation points at
both —1 and 1. A useful result is the following: if a topological space (X, 7)
is second countable, then a set A C X is compact if and only if every infinite
sequence {p,} in A has an accumulation point p in A. Recall that every
(standard) spacetime manifold is second countable. We now find something
curious: “In a compact spacetime, every sequence of points has an accumu-
lation point, so in a strong intuitive sense, no “holes” can be present. Yet
compact spacetimes exist which are geodesically incomplete” (Wald, 1984,
p. 215). (We will explore an example of a geodesically incomplete compact
spacetime in Chapter 11.)

A second major problem concerns the “singularity theorems” of Hawking
and Penrose (1970). In these results, attention is restricted to various collec-
tions of “physically reasonable” spacetimes. It is shown that any spacetime
in such a collection must be geodesically incomplete. Let’s take a closer look.

6.3 Singularities

We start by restricting attention to four-dimensional spacetimes that satisty
(i) chronology, (ii) the strong energy condition, and (iii) the generic condi-
tion which requires that every causal geodesic encounters a particular type
of “effective curvature” at some point (Wald, 1984, p. 227). A flat spacetime
fails to satisfy the generic condition but it is thought that a slight perturba-
tion to any spacetime will result in one which satisfies the generic condition.
A number of singularity theorems proceed by invoking various “boundary”
conditions in addition to (i)-(iii) to ensure geodesic incompleteness. Here is
an example. Consider a spacetime (M, g). The edge of a closed, achronal set
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S C M is the collection of points p € S such that every open neighborhood O
of p contains points ¢ € I~ (p) and r € I (p) and a timelike curve A : [ — O
from ¢ to r which fails to intersect S (see Figure 6.2). A slice is a closed,
achronal set with an empty edge. A spacetime (M, g) with a compact slice
represents a “spatially closed” universe and can serve a boundary condition
for a singularity theorem: any four-dimensional spacetime satisfying (i)-(iii)
with a compact slice must be geodesically incomplete.

M

Figure 6.2: The edge of a closed, achronal set S C M is the collection of
points p € S such that every open neighborhood O of p contains points
q € I"(p) and r € I'"(p) and a timelike curve A from ¢ to r which fails to
intersect S.

Another singularity theorem boundary condition is the existence of a
“trapped surface” which forms whenever a sufficiently large amount of matter
is contained in a small enough region of spacetime (Schoen and Yau, 1983).
The result is a “black hole” structure. To better understand this notion, we
now consider a simple example. Consider Minkowski spacetime (R? 7) in
(t,z) coordinates. Let M be the portion of R? for which ¢* — 2 < 1. The
spacetime (M, n) has the exact same causal structure as a two-dimensional
version of the famous Schwarzschild black hole model introduced and named
after Karl Schwarzschild (1916). Moreover, because the geodesic structure
of (M,n) is sufficiently similar to the Schwarzschild model, we will be able
to appreciate the basic features of a black hole within a very simple context.
First divide M into four regions: I such that = > |¢|; II such that |z| < ¢;
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IIT such that —|z| > t; and IV such that + < —[t|]. The “event horizon”
is the boundary between these four regions: the union of the ¢t = z and
t = —z lines. Geodesics approaching the “singularity” at t? — 22 = 1 will be
incomplete (see Figure 6.3).

singularity

singularity

Figure 6.3: From p, you stay forever in region I while you friend crosses the
event horizon at ¢ into region II. Any future-inextendible causal curve from
an event in region II is destined to hit the “singularity.”

Suppose you and a friend are both at event p = (0,1) in region I. From
p it is possible for your world-line to stay within region I and record an
infinite elapsed time. Just consider the future-inextendible timelike curve
A [0,00) — M defined by A(s) = (sinh(s),cosh(s)). Now consider your
friend. Suppose her world-line takes her from p to the point ¢ = (1, 1) on the
event horizon. Nothing dramatic happens at q. There is no indication that
a “point of no return” has been reached by your friend. But every future-
directed timelike curve at ¢ must pass through the event horizon and enter
region II. And any future-inextendible causal curve from any event in region
IT is destined to hit the “singularity” at ¢t — 2% = 1. Nothing (not even light)
can escape this fate. Meanwhile, since you remain in region I for all time,
one can verify that the timelike past of any point along your world-line is
contained in regions I and III. So you will never “see” any event in region II.
Indeed, it takes you forever just to observe your friend approach ¢ and you
never observe this event itself. Tragically, your friend will appear “effectively
frozen” for all time (Geroch, 1978, p. 210).
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Black holes cannot be observed directly. But the movement of stars near
the middle of our Milky Way galaxy seems to indicate that a supermassive
black hole exists in the region (Ghez et al., 2000). Given the cosmological
data we have collected, we find that our own universe may be best represented
by a geodesically incomplete spacetime. So we see that geodesic completeness
is a very strong a condition in the sense that it rules out holes that are
“physically reasonable” in addition to those that are not. To exclude the
latter but not the former, ones needs a more nuanced approach.

M

Figure 6.4: The region I~ (p) contains the future-inextendible timelike curve
A. An observer at p can “see” the curve A fall into the “missing” point.

One influential idea is to formulate a condition to rule out holes using
the causal structure of spacetime. Here is one example. Let us say that a
spacetime (M, ¢g) has a naked singularity if there is a point p € M such that
I~ (p) contains (the image of) a future inextendible timelike curve A : I — M.
Intuitively, an observer at p can “see” the curve A fall into a singularity. This
can happen, for example, in Minkowski spacetime with a point removed (see
Figure 6.4). On the other hand, the black hole example given above (as well
as the Schwarzschild model it is based on) is not nakedly singular. Even if
you were to enter region II, you would never be able to witness your friend’s
final seconds (or vice versa). As Geroch (1978, p. 211) has put it: “The act
of “reaching the singularity” is a very personal one.”

The “big bang” models of cosmology are also examples of geodesically
incomplete spacetimes which are nonetheless free of naked singularities. Let
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(M,n) be Minkowski spacetime in (¢, z) coordinates and let N be the t > 0
portion of M. Now consider the conformal factor 2 : N — R defined by
Q(t,x) = t. The spacetime (N,g) is a big bang model where g = Q2.
Every maximal timelike geodesic is incomplete in the past direction since
it runs into the “singularity” at ¢ = 0. One such geodesic is given by the
curve A : (1,00) — N where A(s) = (In(s),0). But one can verify that this
spacetime does not have a naked singularity. There is no event whose past
contains a future inextendible timelike curve (see Figure 6.5).

I"(p)

/

Figure 6.5: The geodesic A is incomplete in the past direction due to the
“big bang.” There are no naked singularities since, for any p € N, the region
I~ (p) does not contain a future inextendible timelike curve (e.g. ).

big bang

The particular definition of naked singularity we are considering turns out
to be equivalent to the non-existence of a Cauchy surface (Earman, 1995,
p. 75). We can now see where the Penrose (1979) “cosmic censorship”
conjecture gets its name. This conjecture, which is sometimes formulated as
the statement “all physically reasonable spacetimes are globally hyperbolic”
(Wald, 1984, p. 304), is equivalent to the conjecture that “all physically
reasonable spacetimes are free of naked singularities.” It is tempting to
use the condition of no naked singularities to distinguish between physically
reasonable and unreasonable spacetime holes. But this doesn’t seem to get
to the heart of the matter.

On the one hand, the condition is too strong in the sense that it rules
out some spacetimes that it seemingly shouldn’t. For example, the rotating
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black hole spacetime introduced by Kerr (1963) seems to be physically rea-
sonable but it has a naked singularity. Moreover, anti-de Sitter spacetime
is not globally hyperbolic and therefore counts as nakedly singular despite
the fact that it is geodesically complete. On the other hand, the condition
is too weak in the sense that it fails to rule out examples in which regions
of spacetime seem to have been “artificially” removed. To see this, just take
two-dimensional Minkowski spacetime (M, 7n) in (¢,x) coordinates and re-
move the t < 0 portion of M. Despite the “missing” region, the resulting
spacetime is globally hyperbolic and thus free of naked singularities. Since
the example has an impeccable causal structure, using that structure alone
to appropriately sort varieties of spacetime holes will not work.

There have been other attempts at using the causal structure to sort
between physically reasonable and unreasonable spacetime holes but none
have been entirely successful (Manchak, 2016a; Doboszewski, 2020). A more
fruitful approach is to bring the modal structure of spacetime into the picture.
We now look at three conditions of this kind.

6.4 Maximality

Intuitively, what we need is a condition to ensure that “space-time does not
arbitrarily stop” (Clarke, 1976, p. 17). The most basic such condition is
the requirement of spacetime “maximality” that is the focus of this book.
Hawking and Ellis (1973, p. 58) introduce the notion like so: “We have to
impose some some condition on our model (M, g) to ensure that it includes
all non-singular points of space-time.” Another type of justification based
on the Leibnizian principles of plenitude and is sufficient reason is given
by Geroch (1970b, p. 262): “We may regard [maximality] as a reasonable
physical condition to be imposed on models of the universe. (Why, after all,
would Nature stop building our universe at M when She could just as well
have carried on to build M'?)”

Let us say the spacetime (M, g) has a (proper) extension (V,h), if for
some proper subset O of N, the spacetime (M, g) is isometric to the spacetime
(O,h). A spacetime is extendible if it has an extension and maximal
otherwise. Notice that, unlike all of the spacetime properties considered up
to this point, the maximality property is modal in character. Whether or not
the spacetime (M, g) has an extension depends crucially on the existence of
some other spacetime (N, h). A foundational theorem is this: any spacetime



CHAPTER 6. HOLES 102

is either maximal or has a maximal extension (Geroch, 1970b). This result is
often used to underpin the Leibnizian justification for spacetime maximality
mentioned above (Earman, 1989, p. 161). We will explore the strength of
this justification in Part IT of the book (Chapters 8, 9, and 12). For now, we
will highlight a few basic features of the spacetime maximality definition.

It is often difficult to determine whether a given spacetime is maximal.
Consider again the big bang model from above (recall Figure 6.5). This is
the spacetime (N, g) where N is the t > 0 portion of Minkowski spacetime
(M,n) in (t,z) coordinates and g = t?n. This spacetime appears maximal
since the ¢? term goes to zero as t — 0. It would seem (and it turns out to be
true that) one cannot extend through the singularity ¢t = 0. But now consider
a very similar spacetime (N, h) where the metric h is defined as follows: at
each point (t,z) € N and for any vectors v = [v;, v,] and w = [wy, w,] at the
point, let h(v, w) = (1/t*)v;w; — v,w,. This spacetime also appears maximal
since the 1/t* term blows up as t — 0. Just as before, it would seem that
one cannot extend through the singularity ¢ = 0. But with a change of
coordinates, we can see this turns out to be possible after all.

Consider the the ¢t > 0 portion of Minkowski spacetime (N,n) and the
diffeomorophism f : N — N defined by f(t,x) = (1/t,z). We can use f
to pull back the metric 7 on N to the metric f*(n) on N. One can verify
(try it!) that f*(n) = h which shows that f is an isometry. This means that
Minkowski spacetime (M, n) counts as an extension for (N, h) and thus that
(N, h) fails to be maximal. We see that whether a spacetime harbors a “true
singularity” or a mere “coordinate singularity” is not always clear. This is
true in toy examples like the one just given but also historically in spacetimes
with immense physical significance like the Schwarzschild black hole model.

In Part II, we will explore senses in which the maximality may be too
strong a condition to impose on spacetime. Here, we highlight an example
from Hawking and Ellis (1973) that shows a sense in which it is also too weak.
Consider two-dimensional Minkowski spacetime (M, n) in (¢, z) coordinates.
Remove from N the slits S; and Sy which are defined, respectively, as the
set of points (0,2) € M such that —2 < z < —1 and the set of points
(0,2) € M such that 1 < x < 2. Except for the four boundary points
(0,-2), (0,—1), (0,1), and (0,2), identify the “top edge” of S; with the
“bottom edge” of Sy and vice versa (see Figure 6.6). Let (N,g) be the
resulting spacetime. Because of what Hawking and Ellis (1973, p. 59) call
the “perverse” identifications, one can show that the spacetime is maximal
despite that fact that the four boundary points are “missing” from N.
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Figure 6.6: The top edge of S; is identified with the bottom edge of S
and vice versa. The spacetime is maximal despite the four boundary points
“missing” from V.

6.5 Hole-Freeness

How does one rule out a spacetime like the perverse example just given?
Those in favor of the cosmic censorship conjecture would be quick to point
out that the model fails to be globally hyperbolic. But we know that, by
itself, the global hyperbolically condition is not strong enough to rule out
the “artificial” example of the ¢ > 0 portion of Minkowski spacetime. Now
we see that spacetime maximality, by itself, is not strong enough to rule
out the perverse example just given. Perhaps the conjunction of the global
hyperbolicity and maximality conditions will be able to exclude all types
physically unreasonable holes. This is an influential route. Indeed, we find
that the “statement of cosmic censorship implicitly assumes that the space-
time model is maximal” (Earman 1995, p. 45). But recall how strong the
global hyperbolicity condition is (e.g. it rules out the spinning black hole
in Kerr spacetime). One wonders if there is a less heavy-handed way to
bring together the causal and modal structures of spacetime to deal with the
problem of holes. This leads us to the “hole-freeness” property of spacetime.

There a number of definitions of hole-freeness. The first was due to Ge-
roch (1977) whose condition was shown, somewhat surprisingly, to be violated
by Minkowski spacetime (Krasnikov, 2009). Revised definitions have been
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given by Manchak (2009b) and Minguzzi (2012). Although they are inde-
pendent notions, hole-freeness and maximality are often assumed together for
the same reason that global hyperbolicity and maximality are often assumed
together: their conjunction rules out different types of holes that either con-
dition alone fails exclude (Clarke, 1976; Geroch, 1977). In what follows, we
will give a simple definition of hole-freeness which presupposes the maximal-
ity condition. This will allow us to sidestep some technical difficulties as well
as build up a hierarchy of no-hole properties of spacetime. Within the con-
text of maximal spacetimes, the simple definition given below is equivalent
to the more general one given by Minguzzi (2012). Indeed, this fact is one
of his key results.

Let (M, g) be a spacetime. A set S C M fails to be acausal if there
is a causal curve A : [ — M without vanishing tangent vector and distinct
S0, 81 € I such A(sp), A(s1) € S. Any acausal set is achronal. But the image of
a null geodesic in Minkowski spacetime is achronal but not acausal. It turns
out that if an acausal set S is also a slice, then it possesses a particularly
nice property: its domain of dependence D(S) must be open (Minguzzi,
2012). We say a maximal spacetime is hole-free if, for every acausal slice
S and every isometry f : D(S) — O where O C N is an open region of
a spacetime (N, h) for which f[S] is acausal, we have f[D(S)] = D(f[S]).
Intuitively, the idea is that a spacetime is not hole-free if there is an acausal
slice S whose domain of dependence is not “as large as it can be” in the
sense that it can be isometrically embedded into another spacetime (N, h)
and extended there. Such a spacetime violates a sense of determinism since
it would seem to contain “unpredicted holes developing without reasonable
cause” (Ellis and Schmidt, 1977, p. 934). We can see how this works in the
case of the perverse example (IV, g) from above. Let S be the acausal slice
given by t = —1. Because of the “missing” boundary points, the domain of
dependence D(S) could be larger. There is a natural isometry f : D(S) — O
showing that D(S) is isometric to just a portion O C M of Minkwoski
spacetime (M, n) while the domain of dependence f[S] is much larger — it is
all of M (see Figure 6.7).

One can show that every globally hyperbolic, maximal spacetime must
be hole-free (Minguzzi, 2012). In other words, the cosmic censorship conjec-
ture (amended so as to assume maximality) implies a weaker conjecture: all
physically reasonable spacetimes are hole-free. But even this weaker conjec-
ture is quite strong and, moreover, its justification is not clear. In what he
calls a “dirty open secret,” Earman (1995, p. 97-98) remarks on the circular
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Figure 6.7: The spacetime (N, g) is not hole-free. The domain of depen-
dence D(S) is not “large as it can be” since its image f[D(S)] in Minkowski
spacetime (M, g) is a subset of D(f[S]) = M.

logic involved in requiring hole-freeness. If the domain of dependence D(S)
fails to be “as large as it can be” in some spacetimes, then a type of inde-
terminism threatens. Determinism can be restored if attention is restricted
to hole-free spacetimes. But on what grounds is that not question begging?
The perverse example considered above is flat and therefore a vacuum solu-
tion to Einstein’s equation. After introducing a similar vacuum spacetime
with holes, Earman (1995, p. 98) writes:

“To rule out the above example is to rule out one way Nature
might, consistently with all of the known laws of GTR, continue to
evolve things [past D(S)]. What then is to say that She cannot
proceed this way? The most prevalent attitude among general
relativists seems to be that fiat is required (see Ellis and Schmidt
1977), otherwise questions about more interesting ways in which
determinism can fail are never reached. I implicitly adopted this
attitude in the foregoing sections. I am not proud of doing so,
but I am no better than my brethren in physics in seeing an
alternative to fiat.”

Stepping back, we emphasize that there is related “dirty open secret”
concerning the maximality condition as well. The ¢ > 0 portion of Minkowski
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spacetime is a vacuum solution to Einstein’s equation. Moreover, it has a
well behaved causal structure as it is globally hyperbolic. One can decree
that such a spacetime is physically unreasonable. But on what grounds? We
will return to this point again in Chapter 12.

6.6 Local Maximality

The hole-freeness condition is not suitable for spacetimes that fail to be
causally well-behaved. For example, if one carries out the perverse iden-
tifications within Marty’s time travel spacetime, the result is not globally
hyperbolic (it is not even chronological) but it must be counted as hole-free
since there is no acausal slice in such a spacetime. One can rule out such ex-
amples without resorting to the heavy-handed cosmic censorship conjecture
by invoking a type of “local” maximality condition. As with hole-freeness,
there are a number of definitions of this notion — often called “local inex-
tendibility” — that one can find in the literature. An early formulation was
given by Hawking and Ellis (1973) that was later shown, somewhat surpris-
ingly, to be violated by Minkowski spacetime (Beem, 1980). In response,
variations of another early definition introduced by Clarke (1973) are now
often used (Ellis and Schmidt, 1977; Beem et al., 1996). Here, we present
a simple formulation of this type where where, in order to both avoid some
technical difficulties, we restrict attention to incomplete geodesics rather than
the more general class of “b incomplete” curves (Hawking and Ellis, 1973).
Let (M, g) be a spacetime. We say that (M, g) is locally extendible if
there is an incomplete (and therefore maximal) geodesic A : I — M contained
in an open set O C M and an isometry f : O — U where U C N is an open
region of a spacetime (N, h) such that fo X : I — N is not maximal. We say
a spacetime is locally maximal if it is not locally extendible. Intuitively,
the idea is that a spacetime is locally extendible if one can find an incomplete
geodesic A contained in some open set O that is not “as large as it can be” in
the sense that it can be isometrically embedded into another spacetime (N, h)
and extended there. We can see how this works in the case of the perverse
example (N, g) from above (recall Figure 6.6). Let A : (—o00,0) — N be
the incomplete timelike geodesic defined by 7(s) = (s,1) which is aimed at
one of the four “missing” slit boundary points. Let O C N be the t < 0
region which contains the image of the curve A. Finally, let U C M be the
t < 0 region of Minkowski spacetime (M,n). The map f : O — U defined
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by f(t,z) = (t,z) is an isometry and the composed curve fo X : [ — M is
not maximal since it can be extended through the future endpoint p = (0, 1)
(see Figure 6.8).

s PR ol 7 > P

Figure 6.8: The spacetime (N, g) is not locally maximal. The incomplete
geodesic A is not as “large as it can be” since its image f o A in Minkowski
spacetime (M, g) can be extended through its future endpoint p = (0, 1).

From the way we have set things up, it is immediate that any geodesi-
cally complete spacetime is locally maximal. Things do not run in the other
direction since the big bang example (recall Figure 6.5) is a locally maximal
spacetime but geodesically incomplete. One can show that a spacetime that
fails to be hole-free must be locally extendible (Minguzzi, 2012). But the
conditions are not equivalent since a perverse version of Marty’s time travel
spacetime is locally extendible but hole-free as mentioned above.

Here is another example of independent interest (Misner, 1967). Let M
be the cylinder R x S in (¢,6) coordinates. Here, we allow the coordinate
6 € S to take on all values of R but we identify each 6 with 6 4+ 27n for
all integers n. Misner spacetime is the pair (M, g) where the metric g is
defined as follows: at each point (¢,0) € M and for any vectors v = [vy, vg]
and w = [wy, wy] at the point, let g(v,w) = vywy + vow; + tvgwy. One can
get a grip on this spacetime by considering the behavior of light traveling
along null geodesics. Since there is no vw; term, it is immediate that the
vector [1,0] is null at every point. So one family of null geodesics run along
the cylinder and are complete. We also see that the vector [0, 1] is spacelike
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for t < 0, null for t = 0, and timelike for t > 0. This means that the light
cones open up as t increases. In the t < 0 and ¢t > 0 regions, another family
of null geodesics spiral around the cylinder approaching but never reaching
t = 0. These geodesics are incomplete. One example in the ¢t < 0 region is
A1 i (—00,0) = M defined by Ai(s) = (s, —21In(—s)). We also see that there
is a closed null geodesic at t = 0 and, for any k > 0, there is a CTC at t = k
(see Figure 6.9).

Figure 6.9: In Misner spacetime, an incomplete null geodesic A; spirals
around the cylinder approaching but never reaching ¢ = 0. There is a closed
null geodesic at ¢ = 0 and, for any k£ > 0, there is a CTC at t = k.

One can show that Misner spacetime is hole-free. To see that it is locally
extendible, consider a “reverse twisted” variant (M, h) of Misner spacetime
where h is defined as follows: at each point (t,0) € M and for any vectors
v = [y, vg] and w = [wy, wy] at the point, let h(v, w) = —vywy — vow; + tvgwy.
One can verify that the diffecomorphism on M which takes the point (¢,6)
to the point (¢,—6) is a reflection isometry from Misner spacetime (M, g)
to the reverse twisted variant (M, h). Now consider again the incomplete
null geodesic Ay : (—00,0) — M in Misner spacetime (M, g) defined above
by A(s) = (s,—2In(—s)) which spirals around the cylinder, approaching
but never reaching ¢ = 0. It is contained in the open set O C M given
by the t < 0 region. One can show that there is an isometry f : O — O
from (O, g) to (O, h) defined by f(t,0) = (t,0 + 2In(—t)) that “untwists”
this geodesic. In the reverse Misner spacetime (M, h), we find that the null
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geodesic f o A; : (—00,0) = O reduces simply to f o A(s) = (s,0) which is
not maximal in (M, h) since it can be extended through its future endpoint
p = (0,0) (see Figure 6.10). So Misner spacetime is locally extendible.

f
fon ifol

Figure 6.10: The isometry f untwists the incomplete null geodesic A\; so that
f oA can be extended through p. The null geodesic Ay with future endpoint
p is twisted up by f so that it becomes the incomplete null geodesic f o \s.

We see that the twisted null geodesic \; in the spacetime (O, g) cannot
be extended in (M, g) but can be untwisted and extended in (M, k). But the
move to (M, h) has the effect of twisting up other null geodesics that were un-
twisted in (M, g). For example, consider the null geodesic Ay : (—00,0) — O
in (M, g) defined by 72(s) = (s, 0) with future endpoint p = (0,0). Under the
isometry f, this curve becomes the twisted null geodesic fo~y, : (—00,0) — O
in (M, h) defined by Aa(s) = (s,21In(—s)) (see Figure 6.10). One cannot un-
twist both A\; and Ay in a single extension. At least, one cannot do so while
the standard Hausdorff condition is in place. We will explore the possibility
of non-standard “branching” spacetimes in Chapter 13.

6.7 Conclusion

In this chapter, we have had our first look at a variety of topics that will
become the focus later on when spacetime maximality becomes the focus. We
considered four conditions to rule out “holes” in spacetime that form a type
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of no-hole hierarchy. We started with a look at the highest level: geodesic
completeness. This condition is much too strong given that it rules out
physically reasonable models of the universe including various black hole and
big bang spacetimes. Indeed, the “singularities” present in these examples
seem to be a generic feature of spacetime (Hawking and Penrose, 1970). In
light of the situation, we then turned to the three lower levels — all modal
conditions that require spacetime to be “as large as it can be” in different
senses.

At the lowest level, we have spacetime maximality itself. The perverse ex-
ample of Hawking and Ellis (1973) showed that spacetime maximality is too
weak in the sense that it fails to rule out all spacetimes with holes. (Later
on, we will explore senses in which the condition is also too strong.) We
then moved up one level in the no-hole hierarchy to consider hole-freeness.
This condition requires a sense in which the domain of dependence must be
maximal. But the “dirty open secret” discussed by Earman (1995) draws at-
tention to the questionable justification of the hole-freeness condition. Like
spacetime maximality itself, the condition seems to be adopted by fiat in
order to avoid problems with determinism. We then moved up another level
in the no-hole hierarchy to consider the final condition — local maximality
— which forbids incomplete geodesics from being extendible in some other
spacetime. Since local maximality is stronger than hole-freeness, the justifi-
cation problems concerning the latter apply to the former as well.

Just as with the various energy and causal conditions, it will be useful
later on to think of the no-hole hierarchy in terms of subcollections of the col-
lection % of all spacetimes. Let (Maz), (HF),(LM),(GC) C % be the col-
lections of spacetimes satisfying, respectively, the conditions of maximality,
hole-freeness, local maximality, and geodesic completeness. It is easy to see
that each of these properties count as global and, except geodesic complete-
ness, they are modal properties whose definition depends on the collection of
spacetimes as standardly defined. The hierarchy of these no-hole properties
can be summarized as follows (see Figure 6.11).

(GC)C (LM) C (HF) C (Max)
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(LM) (HF) (Max)

Figure 6.11: A hierarchy of no-hole properties.



Chapter 7

Asymmetries

7.1 Introduction

Recall that the (global) symmetries of a mathematical structure are the iso-
morphisms from the structure to itself. Just about any example spacetime
that one is likely to run across in the literature (and all example spacetimes
we have considered so far) has a few different isometries from it to itself.
These symmetries allow for nice calculations. But there are reasons to think
that spacetimes with non-trivial symmetries are rare among the collection of
all spacetimes. In this chapter, we turn our attention to a hierarchy of (global
and local) spacetime asymmetry conditions. In Part II, we will see ways in
which these conditions can help us better understand aspects of spacetime
maximality.

We begin with a discussion concerning the impossibility of global asym-
metries on any manifold due to the existence of “hole diffeomorphisms” of a
certain kind (Earman and Norton, 1987). In contrast, the additional struc-
ture of a metric ensures that a minimal type of spacetime asymmetry called
“rigidity” always obtains: no hole diffeomorphism is a spacetime symme-
try (Halvorson and Manchak, 2022). We also consider two natural ways to
strengthen the rigidity condition. The next two levels of the asymmetry hier-
archy concern the “giraffe” condition which requires that the identity map is
the only global spacetime symmetry (Barrett et al., 2023). Finally, we con-
sider the “Heraclitus” condition which sits atop the asymmetry hierarchy.
This condition is satisfied when any pair of distinct events fail to have even
local neighborhoods that are isometric (Manchak and Barrett, 2023).

112
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7.2 Symmetry Holes

As a warm up, and to better appreciate the significance of spacetime asym-
metries, let’s consider a few different levels of mathematical structures and
what the symmetries of each level are like. We start with topological spaces
and their associated isomorphisms: homeomorphisms. Let X be any set
with either the trivial or discrete topologies. Then any bijection f : X — X
counts as a homeomorphism. One can verify that there will be n! = (n)(n —
1)(n — 2)...1 symmetries in the case of a finite set X with n elements and
uncountably many symmetries otherwise. But topologies on X in between
these two extremes can allow for highly asymmetric structures.

Figure 7.1: The topological space (X, 7) is such that each element n € X is
contained in all but n + 1 open sets in 7.

The simplest example is the Sierpinski space (X, o) where X = {0,1}
and 0 = {&, {0},{0,1}}. The identity map is the only homeomorphism from
this topological space to itself. The other bijection that exchanges the two
elements doesn’t respect the topological structure that distinguishes 0 (whose
neighborhoods include both {0} and X) and 1 (whose only neighborhood is
X). One might think this effect obtains because the Sierpiniski space has only
a small number of elements. But an infinite version has the same properties.
Let X = {0,1,2,...} and let 7 be the set containing @, X, and the subsets
{0}, {0,1}, {0, 1,2}, and so on. One can verify that (X, 7) is a topological
space and that each element n € X is contained in all but n + 1 open sets
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in 7 (see Figure 7.1). For example, 0 is contained in all open sets but &;
1 is contained in all open sets but @ and {0}; etc. In this way, one can
topologically distinguish any element from any other. So any bijection from
X to itself that isn’t the identity map will not respect this structure and thus
fail to be a homeomorphism.

Now let’s now consider manifolds and their associated isomorphisms: dif-
feomorphisms. Let M be any connected Hausdorff manifold and for any let
D1y -y Pn and qq, ..., ¢, be any points in M that are all distinct. One can show
that M is extremely “non-rigid” in the sense that there is a diffeomorophism
f M — M such that f(p1) = q1, ..., f(pn) = ¢n (Geroch, 1969, p. 189). It
follows that every manifold has uncountably many symmetries. So in con-
trast to the situation with topological spaces, we find that asymmetry among
manifolds is impossible.

Within this context, it might be useful to consider an influential construc-
tion used in discussions of the “hole argument” (Earman and Norton, 1987).
Let M be any connected Hausdorff manifold and let H C M be such that
both it and M — H both contain non-empty open sets. A hole diffeomor-
phism f : M — M is a diffeomorphism which is (i) not the identity map
in the “hole” region H but (ii) acts as the identity map on the restricted
domain M — H. It turns out that M admits uncountably many hole diffeo-
morphisms: even fixing the symmetries in the region outside the “hole” will
not fix them inside.

Consider a simple example of a hole diffeomorphism on the manifold M =
R? in (¢,z) coordinates where H is the ¢t > 0 region of M. Let f: M — M
be defined piecewise: f(t,x) = (t + exp(—1/t),z) for all points (t,x) € H
and f(t,x) = (t,z) for all points (¢,z) € M — H. One can verify that the
function f is a diffeomorphism. It maps each point in M — H to itself. So
the origin p = (0,0) gets mapped to f(p) = p. But it “stretches” the region
H in the positive ¢ direction in such a way that it maps a point ¢ € H to a
point f(q) € H with a slightly larger ¢ value. For example, it maps the point
¢ = (1,0) into the point f(q) = (1 +exp(—1),0) ~ (1.37,0) (see Figure 7.2).

7.3 Rigid Spacetime
Let’s add some more structure and consider spacetimes and their associated

isomorphisms: isometries. We have just seen that there is a hole diffeomor-
phism f : M — M with respect to some hole region H C M. We can use
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M-H M-H

Figure 7.2: The hole diffeomorphism f maps any point in M — H to itself
(e.g. the origin p). But it “stretches” the region H. For example, it maps
the point ¢ = (1,0) into the point f(¢) = (1 + exp(—1),0) ~ (1.37,0).

this diffeomorphism f to push forward the metric ¢ on M to produce the
spacetime (M, f.(g)). The diffeomorphism f certainly counts as an isometry
from (M, g) to (M, f.(g)). But we note the following facts which are often
not appreciated: (i) the identity map on M fails to be an isometry from
(M, g) to (M, f.(g)) (Weatherall, 2018) and (ii) the diffeomorphism f is not
an isometry from (M, g) to itself. Fact (ii) shows that f is not a symmetry
of the spacetime (M, g) (Halvorson and Manchak, 2022). Let’s explore this
idea a bit more.

Let’s say that a spacetime (M, g) is rigid if, for any isometry f : M — M
and any non-empty open set O C M, if f acts as the identity on O, then it
is the identity map. A general result due to Geroch (1969) is the following:
Let (M, g) and (N, h) be spacetimes, let p € M and ¢ € N be points, and
let {v,} and {w,} be orthonormal bases of vectors at p and ¢ respectively.
Then there is at most one isometry f : M — N such that f(p) = ¢ and
{fe(vn)} = {w,}. From this it follows that any (standard) spacetime must
be rigid and thus a hole diffeomorphism is never a spacetime symmetry. (We
will see in Chapter 13 that non-standard spacetimes can fail to be rigid if
the Hausdorff condition is dropped.) We find that fixing the symmetries
of spacetime on an open region, however small, fixes them everywhere. An
example may help to illustrate the point.
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Consider two-dimensional Minkowski spacetime (M,7) in (¢,2) coordi-
nates. Let f: M — M be the hole diffeomorphism defined above. So H is
the t > 0 region of M and f is defined piecewise: f(t,z) = (t+exp(—1/t),z)
for all points (¢,x) € H and f(t,z) = (t,z) for all points (t,z) € M — H.
We can use f to pull back the metric n on M to produce the spacetime
(M, f*(n)). What is f*(n)? Of course, for any point p € M — H, we have
f*(n) = n. Consider the region H. Let v = [v,v,] and w = [w, w,] be
any vectors at any point ¢ € H. One can use f to push these vectors
forward. We find that f.(v) = [a(t)vs,v.] and fo(w) = [a(t)w, w,] where
a(t) =1+t2exp(—1/t). So n(f.(v), fe(w)) = a(t)*v;w; — vyw,. This is the
number that the pull back metric f*(n) assigns to v and w. So n # f*(n)
for every point ¢ € H. For example, at the point ¢ = (1,0), we have
(v, w) = a(t)*vw, — vyw, = (1 + exp(—1))v;wy — vyw, which is not
n(v, w) = vyw; — Vw,.

This makes sense. The timelike geodesic A : [0,1] — M defined by
A(s) = (s,0) has a tangent vector N'(s) = [1,0]. According to the metric
f*(n), the (squared) length |\ (s)|| of this tangent vector is o?(t) = a?(s)
at each point A(s) = (s,0). So integrating /[N (s)|| = a(s) from s = 0 to
s = 1 gives an elapsed time of ||A|| = 1 + exp(—1) ~ 1.37 along the curve
from the origin p to the point ¢ = (1,0). On the other hand, the metric 7
judges this timelike geodesic A to have a shorter elapsed time of just 1. The
fact that the metrics disagree about the elapsed time of A shows that f is not
an isometry from (M, n) to itself. But one can check that pushing forward
A to the curve fo A :[0,1] — M defined by f o A(s) = (s + exp(—1/s),0)
results in an elapsed time of ||f o A|| = 1 + exp(—1) ~ 1.37 as determined
by the metric 1. So the elapsed time between p and ¢ according to f*(n) is
the same as the elapsed time between f(p) = p and f(q) according to n (see
Figure 7.3).

Stepping back, we see that spacetime structure allows for asymmetry in
a way that manifold structure doesn’t: all spacetimes are rigid while all
manifolds are not. We have seen that fixing spacetime symmetries in any
open region, however small, fixes them everywhere. A natural strengthening
of the condition requires that fixing spacetime symmetries at any point fixes
them everywhere. We say a spacetime (M, g) is point rigid if, for any
point p € M, any isometry f : M — M such that f(p) = p must be the
identity map. We know that not all spacetimes are point rigid. Consider two-
dimensional Minkowski spacetime (M, 7) in (¢, x) coordinates. The reflection
f: M — M defined by f(t,x) = (t, —z) is an isometry such that f(p) = p
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Figure 7.3: The elapsed time along A from p to ¢ according to the pulled
back metric f*(n) is the same as the elapsed time along f o A from f(p) to
f(q) according to the metric 1. In each case, it is 1 4 exp(—1) & 1.37.

for the origin p = (0,0). Since f is not the identity map, (M, n) is not point
rigid. Another natural way to strengthen the rigidity condition is to require
that, at least at some points, the spacetime symmetries are completely fixed.
We say a spacetime (M, g) has a fixed point if, for some point p € M,
any isometry f : M — M is such that f(p) = p. As with the point rigid
condition, Minkowski spacetime (M, n) shows that not all spacetimes have a
fixed point. The time translation f: M — M defined by f(t,z) = (t + 1, x)
is an isometry such that f(p) # p for any p € M.

The point rigid and fixed point conditions are independent. Let (M,n)
be two-dimensional Minkowski spacetime in (¢, z) coordinates. Consider the
spacetime (N,n) where N C M be the set of points (¢,z) such and ¢ > 0
and z? < t? (see Figure 7.4). Both the identity map and the reflection
f N — N defined by f(t,x) = (t, —x) map the point p = (1,0) into itself.
So the spacetime is not point rigid. But one can verify that f and the identity
map are the only symmetries of the spacetime. Since p is mapped into itself
in both isometries, it is a fixed point for the (N, n).

Now consider an example that is point rigid but has no fixed point. Let
(M,n) be two-dimensional Minkowski spacetime as before. For each integer
n, excise from M the compact region enclosed by the points (0,n), (1/2,n),
and (0,n + 1/2). Let (N, n) be the resulting spacetime (see Figure 7.5. We
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Figure 7.4: The identity map and the isometry defined by f(t,z) = (¢, —x)
are the only symmetries of the spacetime. In each case, the point p = (1,0)
is mapped to itself. So the spacetime has a fixed point but is not point rigid.

A MM AANA

P

Figure 7.5: For each integer n, there is an isometry defined by f,(t,z) =
(t,xz +n). But only the identity map (n = 0) takes any point p € N into
itself. So the spacetime is point rigid but has no fixed point.
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see that for each integer n, we have an isometry f, : N — N defined by
falt,z) = (t,x + n). So the spacetime fails to have a fixed point. But it
is point rigid. This follows since the f, isometries just defined are the only
symmetries of the spacetime. If f,(p) = p for any p € N, it must be the case
that n = 0, i.e. the isometry f, is the identity map.

7.4 Giraffe Spacetime

All of the spacetimes considered so far have non-trivial symmetries. Let us
now consider simple example due to David Malament that does not (Barrett
et al., 2023). Let (M,n) be two-dimensional Minkowski spacetime and let
C' C M be a compact set shaped like a (sufficiently asymmetric) giraffe and
let N = M — C. One can verify that the only symmetry of the spacetime
(N,n) is the identity map (see Figure 7.6). The “missing” giraffe region
blocks all of the symmetries of Minkowski spacetime. Let us say that a
spacetime (M, g) is giraffe if the only isometry f: M — M is the identity
map. It is immediate that a giraffe spacetime must have a fixed point and
be point rigid. When considered on their own, both the point rigid and the
fixed point conditions are strictly weaker than the giraffe condition. But a
simple result shows that a spacetime satisfies both of these conditions if and
only if it is giraffe (Manchak and Barrett, 2023).

It has been claimed that “everyone knows” giraffe spacetimes are
“generic” in some sense (D’Ambra and Gromov, 1991, p. 21). But a general
statement is difficult to formulate precisely and a proof remains elusive.
Among compact manifolds with Riemannian metric, it has long been known
that the giraffe condition is generically satisfied in a natural sense (Ebin,
1968). More recently it has been shown that this is true for compact
spacetimes as well (Mounoud, 2015).

Giraffe spacetime have no symmetries in a global sense but they can
still be highly symmetric in a “local” sense. Let us say that a spacetime
(M, g) is locally giraffe if, given any open, connected set O C M, the
spacetime (O, g) is giraffe. It is immediate that a locally giraffe spacetime
must be giraffe. The example just considered of a compact giraffe region
removed from Minkowski spacetime is giraffe but not locally giraffe. Here is
a less interesting but more tractable example. Let (M, n) be two-dimensional
Minkowski spacetime in (¢, z) coordinates. Now consider the spacetime (V, )
where N C M be the set of points (¢, z) such and ¢ > 0, x > 0, and z? < 2
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Figure 7.6: Due to the “missing” giraffe region, the only symmetry of the
spacetime is the identity map.

(see Figure 7.7). One can verify that the spacetime is giraffe. But consider
the (open, connected) ball O C N centered at the point p = (2,1) with
radius 1/2. Let f : O — O be the isometry defined by f(t,z) = (£,2 — x)
which reflects O about the z = 1 line. Since this isometry is not the identity
map on O, we see that the spacetime fails to be locally giraffe.

7.5 Heraclitus Spacetime

A locally giraffe spacetime can still have local symmetries of a certain kind.
Let us say that a spacetime (M, g) is Heraclitus if, for any distinct points
p,q € M and any neighborhoods O, and O, of these points, there is no
isometry f : O, — O, such that f(p) = ¢ (Manchak and Barrett, 2023). In a
Heraclitus spacetime, each event is unlike any other. In this sense, one might
say that it is impossible step twice into the same river. One can show that a
spacetime (M, g) is Heraclitus if and only if, for any open sets U,V C M and
any isometry f : U — V, we have U = V and f is the identity map. From
this result, it follows easily that any Heraclitus spacetime must be locally
giraffe. The other direction does not hold as will be shown a bit later on.
First, let’s explore an example of a Heraclitus spacetime.

Let (M, n) be two-dimensional Minkowski spacetime in (¢, x) coordinates.
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Figure 7.7: The spacetime is giraffe but not locally giraffe. The ball O C N
centered at p = (2,1) has an isometry defined by f(¢,x) = (¢,2 — z) which
reflects O about the x = 1 line.

Now consider the giraffe but not locally giraffe spacetime (IN,7n) that we
constructed above where N C M is the set of points (¢,z) such and ¢ > 0,
r > 0, and 2% < t? (recall Figure 7.7). Let Q@ : N — R be a conformal
factor defined by Q(¢,z) = 1/(t* + z?). One can show that the spacetime
(N, g) is Heraclitus where g = Q?n. This follows from the peculiar nature of
the Ricci scalar curvature R : N — R given by R(t,z) = 8(z* — t*). Using
the derivative operator V associated with the metric g, one can compute a
type of “magnitude of the derivative” of R at each point in N. Using the
derivative operator V associated with (N, g), one can differentiate the scalar
field R to define a vector v, at every point in p € N. Let ) : N — R be the
smooth function defined by Q(p) = g(vp,v,). One can show that this scalar
curvature function is given by Q = —32R/Q?. Consider the points p,q € M
and any neighborhoods O, and O, of these points respectively. Suppose there
is an isometry f : O, — O, such that f(p) = ¢. Since R and @ are both
scalar curvature functions, and since such functions must be preserved under
any isometry, we have R(p) = R(q) and Q(p) = Q(q). Since Q = —32R/Q?
and R < 0 < Q on N, it follows that Q(p) = Q(g). But because of the way
N is truncated, we find that R(p) = R(q) and Q(p) = Q(q) can only obtain
if p = q (see Figure 7.8). So (N, g) is Heraclitus.

Among compact manifolds with Riemannian metric, one can show that
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Figure 7.8: The isometry f must map the point p to some point ¢ on the
solid line so that R(p) = R(q). But ¢ must also be somewhere on the dotted
line so that Q(p) = Q(¢). So p = ¢ and the spacetime is Heraclitus.

the Heraclitus condition is generically satisfied in a natural sense (Sunada,
1985). One wonders if an analogous result holds for compact Heraclitus
spacetimes or Heraclitus spacetimes more generally. It turns out that the
Heraclitus asymmetry property is sufficiently strong to show a sense in which
global spacetime structure is completely determined by local spacetime struc-
ture: any pair of locally isometric Heraclitus spacetimes must be isometric.
From this it follows easily that there can never be more than one Heraclitus
spacetime with the same local properties. One can also show that these local
to global uniqueness results fail if the Heraclitus condition is weakened to
the local giraffe condition. Consider the following example.

Let (N;,g;) for i@ = 1,2,3 be three copies of the Heraclitus spacetime
just constructed. In copies (Ny,¢1) and (Na, go) cut a slit S~ at ¢ = 3 and
1 < x < 2. Except for the four boundary points, identify the top edge of this
slit in (IVq, g1) with the bottom edge of the slit in (N2, g2) (but not vice versa).
In copies (Na, go) and (N3, g3) cut a slit ST at ¢ =4 and 1 < x < 2. Except
for the four boundary points, identify the top edge of this slit in (Ns, go) with
the bottom edge of the slit in (N3, g3) (but not vice versa). The resulting
spacetime (see Figure 7.9) is both (i) locally giraffe but not Heraclitus and
(ii) locally isometric but not isometric to the Heraclitus spacetime (N, g).
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Figure 7.9: Three copies of the Heraclitus spacetime (NN, g) are identified as
indicated. The resulting spacetime is (i) locally giraffe but not Heraclitus
and (ii) locally isometric but not isometric to (N, g).

7.6 Conclusion

In this chapter, we have looked at various conditions forming an asymme-
try hierarchy. The lowest level — rigidity — is satisfied by all (standard)
spacetimes. The condition ensures that a hole diffeomorphism fails to be a
spacetime symmetry. This means that fixing the symmetries of spacetime
in an open region — no matter how small — fixes them everywhere. A pair
of independent conditions form the next level of the asymmetry hierarchy.
The point rigid condition is satisfied when it is that case that that fixing
the symmetries of spacetime at a single point fixes them everywhere.The
fixed point condition requires the existence of a single point which must be
mapped to itself under any symmetry. The conjunction of these two con-
ditions is equivalent to the giraffe condition which is satisfied whenever the
identity map is the only spacetime symmetry. Above this level is the local
giraffe condition which requires that any open, connected region spacetime is
giraffe when considered as a spacetime in its own right. At the highest level
of the asymmetry hierarchy is the Heraclitus condition which requires that
no distinct points have isometric neighborhoods.

Previous work on compact Riemannian show senses in which versions of
all of the asymmetry conditions are generically satisfied (Ebin, 1968; Sunada,
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1985). The results also carry over to the context of compact spacetimes and
it has been claimed that “everyone knows” that the similar results hold for
non-compact spacetimes as well (D’Ambra and Gromov, 1991; Mounoud,
2015). Thus, it would seem that “almost all” physically reasonable space-
times satisfy even the strongest asymmetry conditions. The situation stands
in stark contrast with the highest levels of the causal hierarchy: it is not at
all clear, for example, that almost all physically reasonable spacetimes are
globally hyperbolic.

Just as with the wvarious energy, causal, and no-hole conditions,
it will be wuseful later on to think of the asymmetry hierarchy in
terms of subcollections of the collection % of all spacetimes.  Let
(Rig), (PR), (FP),(Gir),(LG),(Her) C % be the collections of spacetimes
satisfying, respectively, the point rigid, fixed point, giraffe, locally giraffe,
and Heraclitus conditions. It is easy to see that each of these properties
count as global. The hierarchy of these asymmetry properties can be
summarized as follows (see Figure 7.10).

(Her) C (LG) C (Gir) = (PR)N(FP) C (PR),(FP) C (Rig)

U=(Rig

)
(FP) (LG) (Gir) (PR)

Figure 7.10: A hierarchy of asymmetry properties.
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Chapter 8

Meaning

8.1 Introduction

The meaning of spacetime “maximality” depends crucially on a background
possibility space in the form of a collection of spacetime models. The stan-
dard definition uses the collection %/. In Part I, we identified a number of
different subcollections & C % of physical significance. Here in Part II, we
explore the notion spacetime maximality relative to these subcollections.

In this chapter, we begin by calling into question the significance of the
standard definition of spacetime maximality and we introduce the relativized
definitions to get a better grip on the situation. We then move to consider
some remarks of Geroch (1970b) who conjectures that, at least for some sub-
collections & C 7 of physical interest, a type of equivalence holds between
the standard and relativized definitions: a spacetime in & is maximal rel-
ative to &2 if and only if it is maximal relative to the standard collection
% . In the next few sections, we investigate whether this conjecture is true
with respect to the various local, causal, and asymmetry properties identi-
fied in Part I. Although some important cases remain open, we will show
that the conjecture is false for almost all spacetime properties under con-
sideration. This means that in order to understand the notion of spacetime
“maximality” in a general, nuanced way, it is not sufficient to study the stan-
dard definition. One needs to carefully consider a variety of the relativized
definitions as well. This is the task of the remainder of Part II.
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8.2 Definitions

As we have seen, the idea that the universe must be “as large as it can be”
is something of a dogma within the context of generality relativity. All over
the literature, one finds variations of the same decree: “any reasonable space-
time should be inextendible” (Clarke, 1993, p. 8). At root, the reasoning
behind such a position comes in two parts (Earman, 1989, p. 161):

“A justification for ignoring space-times that are not [max-
imal] can be given in two steps. First, it can be shown that
any space-time can be extended to a space-time that is maxi-
mal...Second, one can argue on PSR [principle of sufficient reason]
grounds that there is no good reason for the Creative Force to
stop building until the maximal extent is reached, and on grounds
of plenitude that the maximal model is better than a truncated
submodel.”

This justification for spacetime maximality is rarely questioned. When it
is, the focus has been almost exclusively on the second step. Let’s take a look
at a pair of examples. Regarding the grounds of plenitude, some incredulity
is expressed by John Norton (2011, p. 173):

“The principle of plenitude itself is sufficiently implausible
that we need to prop it up with anthropomorphic metaphors.
We are to imagine a personified Nature in the act of creating
spacetime, much as I might be painting my fence on the week-
end. Just as I might not want to stop when there is one board
remaining unpainted, so Nature is supposedly loath to halt with
a cubic mile-year of spacetime still uncreated.”

Regarding the principle of sufficient reason, we find that such grounds
can be turned on their head to argue against spacetime maximality. Here we
have Chris Clarke (1993, p. 9):

“It can be easily shown that any space-time can in fact be
extended until no further extension is possible. At this point the
space-time is called maximal, and so we are led to the idea that
we need only consider maximal space-times. But this idea is not
really as innocuous as it might seem, because of the problem that
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an extension of a space-time, when it exists, cannot usually be
determined uniquely...In cases such as these the same principle
of sufficient reason would not allow one extension to exist at the
expense of another. Perhaps the space-time, like Buridan’s ass
between two bales of hay, unable to decide which way to go, brings
the whole of history to a halt.”

Stepping back, it is not too surprising that whenever the maximality
condition is questioned (however rarely), the focus has been on the second
step of the justification that concerns the Leibnizian principles of plenitude
and sufficient reason. After all, step one amounts to a mathematical result:
every extendible spacetime has a maximal extension (Geroch, 1970b). How
could such a result possibly be questioned? Here, we draw attention to the
fact that the physical significance of this mathematical statement depends
crucially on a suitable formulation of a “maximal” spacetime. This modal
property is defined relative the background collection % of all (standard)
spacetimes. As we have seen, practitioners often pare down the collection
% by restricting attention to various physically reasonable subcollections
&P C . But if % is a physically unreasonable background possibility
space, then the significance of the definition of maximality (based on %) is
not at all clear. An example may help to illustrate the point.

Consider Misner spacetime (M, g) in (¢, ) coordinates (recall Figure 6.9).
As we have seen, the model fails to be chronological since there is a CTC
through each point in the ¢ > 0 region of M. But consider the spacetime
(N, g) where N is the ¢t < 0 region of M. Not only does this spacetime not
have CTCs, one can show that it is extremely well-behaved causally in the
sense of being globally hyperbolic. For each k£ < 0, the t = k slice Si counts
as a Cauchy surface (see Figure 8.1). Moreover, one can show that every
extension to (NN, g) fails to be globally hyperbolic (Chrusciel and Isenberg,
1993). Now suppose, for the sake of argument, that the cosmic censorship
conjecture is true: “All physically reasonable spacetimes are globally hyper-
bolic?” (Wald, 1984, p. 304). It follows that every extension to (NN, g) is
physically unreasonable. In other words, the ¢ < 0 portion of Misner is “as
large as it can be” if one restricts attention to the physically reasonable pos-
sible extensions. And yet this spacetime is ruled out on maximality grounds
under the prevailing dogma.

Given that the collection % may not adequately capture the notions
of physical possibility we are after, its seems natural to explore spacetime
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Figure 8.1: The t < 0 portion of Misner spacetime is globally hyperbolic.
Each t = k slice Sj is a Cauchy surface.

maximality under various choices of background possibility spaces & C % .
Indeed, because of examples like the one just given, a move to a plurality of
definitions of spacetime maximality is suggested early on by (Geroch, 1970b).
For any collection &2 C %, we say a member of & is a &-spacetime. Let
us say the &-spacetime (M, g) has a (proper) Z-extension (N, h), if (N, h)
is both a (proper) extension of (M, g) and a ?-spacetime. A Z-spacetime
is Z-extendible if it has a -extension and Z-maximal otherwise.

8.3 Equivalence

We see that for each spacetime property, we have a corresponding definition
of spacetime maximality. These alternate definitions give rise to “a number
of important and unsolved problems” (Geroch, 1970b, p. 276). Consider a
foundational question of meaning: Are there spacetime properties & C %
such that the notion of &-maximality is, in some sense, “equivalent” to
% -maximality? If so, then it would seem to make no difference whether
one considers &-maximality or the standard definition. Perhaps all results
established over the decades concerning %/-maximality carry over to the
context of &-maximality. Consider the following (second-order) condition
on a spacetime property & C % (Geroch, 1970b).
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(Equivalence) Any Z2-spacetime is &-maximal if and only if it is % -
maximal.

Given the example of the ¢ < 0 portion of Misner spacetime considered
above, we see that (Equivalence) is not satisfied by the collection (GH) C
% of globally hyperbolic spacetimes. As we have seen, the example is
(GH)-maximal but not maximal. On the other hand, it is trivial that the
collection % as well as any subcollection of the collection (Mazx) of %-
maximal spacetimes will satisfy (Equivalence). This includes the collections
(HF),(LM),(GC) C Z of hole-free, locally maximal, and geodesically com-
plete spacetime respectively. What about the other spacetime properties
investigated in Part 1?7

8.4 Local Properties

First, consider a few local spacetime properties. Geroch has conjectured that
the collection (Vac) C % of vacuum solutions of Einstein’s equation satisfies
(Equivalence). He writes: “While this statement is probably true, no proof
is known” (1970, p. 278). It is remarkable that more than fifty years later,
a proof (or disproof) of this beautifully simple claim has yet been found.
To be sure, settling the question would help to clarify the situation to some
degree. But we now emphasize a type of “subcollection problem” concerning
the significance of any isolated result of this kind.

Suppose Geroch’s conjecture is true and it is the case that the collection
(Vac) satisfies (Equivalence). We know that within (Vac) lurk physically
unreasonable spacetimes. For example, consider Minkowski spacetime where
a closed set spelling out the word “Leibniz” is removed from the manifold
(see Figure 8.2). If the “e” and “b” letters are chosen carefully (i.e. without
“holes”), then the resulting structure will be a connected spacetime. This
spacetime is a member of the collection (Vac) but seems to physically unrea-
sonable in various senses (even if issues of maximality are set aside). Because
such spacetimes lurk with within (Vac), this collection does not seem to be
a physically reasonable possibility space. So the physical significance of the
statement “(Vac) satisfies (Equivalence)” is unclear. To gain clarity, one
would like assurance that any subcollection &2 C (Vac) (for example, one
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that is more reasonable physically) also satisfies (Equivalence). But such
assurance is absent in general — this is the subcollection problem. Each
collection of spacetimes, and each of its sub-collections, must be checked in-
dependently or some new argument must be introduced for why this is not
needed. In the present case, perhaps an example will be useful.

X
Leibniz

Figure 8.2: A vacuum solution to Einstein’s equation. A closed set spelling
out the word “Leibniz” has been removed from the manifold.

Let (M,n) be Minkowski spacetime and let (N, 7n) be Minkowski space-
time with a point removed from M (recall Figure 2.9). Let & C (Vac)
be the collection {(M,n),(N,n)}. It is not difficult to verify that & sat-
isfies (Equivalence). We see that (M, g) is both maximal and #-maximal
while (NN, n) is both extendible and Z-extendible. So any &-spacetime is
Z-maximal if and only if it is maximal. Relative to the collection &, we
have a sense in which &-maximality is equivalent to standard maximality.
Now let 2 C & be the subcollection {(N,n)}. One can verify that (N,n)
is Z-maximal but not maximal. So 2 does not satisfy (Equivalence) (see
Figure 8.3). We now see that just because & satisfies (Equivalence) does
not mean that each of its subcollections also does so; each must be checked
independently. This is an instance of the subcollection problem that we will
encounter often in what follows concerning various second-order modality
conditions.

The collections & and 2 we have just constructed are surely physically
unreasonable. These constructions are essentially second-order analogs to
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Figure 8.3: It is unknown if (Vac) satisfies (Equivalence). The collection &
does satisfy the condition while one of its subcollections 2 does not.

the “cut and paste” example spacetimes one often finds in the global struc-
ture literature. There too, it is acknowledged that the constructed examples
are not physically reasonable. Rather, they serve a different purpose as em-
phasized by Geroch and Horowitz (1979, p. 221):

“The spacetimes which result from these constructions are, in
almost every case, physically unrealistic for various reasons. The
point of the construction, however, is not normally to construct
physically realistic cosmological models, but rather to demon-
strate by means of some example that a certain assertion is false,
or that a certain line of argument cannot work.”

In the present case, the constructions of & and 2 show us that the
satisfaction of a second-order modal property like (Equivalence) by a space-
time collection does not automatically “transfer down” to its subcollections.
This makes it difficult to get a good sense of how common it is that such
second-order conditions are satisfied. It is sometimes possible, however,
to settle many cases at once. For example, consider the spacetime collec-
tions (NEC),(WEC), (SEC),(DEC) C % satistying, respectively, the null,
weak, strong, and dominant, energy conditions. At the very end of his pa-
per, Geroch (1970b, p. 289) wondered about the status of (Equivalence)
relative to these collections. Recall that (DEC) C (WEC) C (NEC) and
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(SEC) C (NEC). One can use these relations to show the following gen-
eral result (Manchak, 2021): Any collection & C % such that either (i)
(DEC) C & C (NEC) or (ii) (SEC) C & C (NEC) does not satisfy
(Equivalence) (see Figure 8.4).

Figure 8.4: Any collection & C % such that either (i) (DEC) C & C
(NEC) or (ii) (SEC) C & C (NEC) does not satisfy (Equivalence). The
case of (Vac) is unsettled.

8.5 Causal Properties

Let’s now consider causal properties. We know that (Equivalence) is not
satisfied by the collection (GH) C % of globally hyperbolic spacetimes.
Consider again the spacetime (N, g) which is the ¢ < 0 portion of Misner
spacetime (recall Figure 8.1). It is (GH )-maximal but not % -maximal. But
not only does every extension to (NN, g) fail to be globally hyperbolic, every
extension must even fail to be distinguishing. This follows since any extension
will include a neighborhood O of some event p at ¢ = 0. But since there must
be a distinct point ¢ € O also at t = 0, we find that I~ (p) =1 (¢) = N (see
Figure 8.5). Since (1V, g) is globally hyperbolic and therefore distinguishing,
we see that the collection (Dist) C % of distinguishing spacetimes does not
satisfy (Equivalence). But the example shows much more than this: any
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collection & C % such that (GH) C & C (Dist) must fail to satisfy
(Equivalence).

Figure 8.5: Any extension to the ¢ < 0 portion of Misner spacetime (N, g)
will fail to be distinguishing since it will have a pair of distinct points p, ¢ at
t =0 for which I~ (p) =1 (q) = N.

In addition, the collection (Caus) C % of causal spacetimes does not
satisfy (Equivalence). To see why, we return to a spacetime that we have
already constructed showing that a spacetime can fail to be distinguishing
condition and yet still be causal (recall Figure 5.5). Start by letting M be the
manifold R x S in (¢,6) coordinates. Consider the spacetime (M, g) where
the metric g is defined as follows: at each point (¢,0) € M and for any vectors
v = [v, vp] and w = [wy, wy] at the point, let g(v, w) = vywy + vow; — t2vgwy.
In the ¢ < 0 region, the causal structure is similar to Misner spacetime: as
t increases, the light cones open up and tip over. At ¢t = 0, there is a null
geodesic in (M, g) just as in Misner spacetime. But in the ¢t > 0 region, the
spacetimes are very different. In (M, g) the light cones close up as ¢ increases
so that no CTCs exist. Now remove the point (0,0) from M and let N be
the resulting manifold. Because of the “missing” point, the single closed null
curve no longer closes ensuring that (N, g) satisfies causality (see Figure 8.6)

Given that (M, g) is a maximal spacetime and we have removed a sin-
gle point (0,0) to produce (N, g), it would seem that any extension to this
spacetime must restore the “missing” point. In other words, in would seem
that (M, g) is the only extension (up to isometry) to (N, g). Stepping back,
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Figure 8.6: The spacetime (NN, g) is causal since the “missing” point prevents
the null curve from closing.

there is a more general conjecture here. It would seem that for any maximal
spacetime (M, g) and any point p € M, there is a unique (up to isometry)
extension to the spacetime (M — {p}, g): it must be (M, g) itself. Over the
years, a number of leading experts were asked about this conjecture in private
communication. A consensus emerged that (i) it was true but that (ii) a proof
would be difficult to secure. In a recent paper on unique spacetime exten-
sions, the situation was finally clarified by Jan Sbierski (2024, p. 13226): “we
answer a question by JB Manchak in the affirmative as to whether the only
possible (smooth) extension of an inextendible Lorentzian manifold with one
point removed is the restoration of this point.” The proof is non-trivial but
the result does seem to accord with intuition. It follows from the Shierski
result that the only extension to the causal spacetime (IV,g) is the non-
causal spacetime (M, g). So (N, g) is (Caus)-maximal but not % -maximal.
Thus (Caus) does not satisfy (Equivalence). It is worth appreciating that,
while (Caus) and (Dist) both fail to satisfy (Equivalence), it unknown if
any collection & C % such that (Dist) C & C (Caus) also fails to sat-
isfy (Equivalence). This is another instance of the subcollection problem
discussed above.

The only causal property we have yet to explore is the collection
(Chron) C  of chronological spacetimes. Perhaps (Chron) satisfies
(Equivalence)? This simple question was posed by Geroch (1970b, p. 278)
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and remains open more than fifty years later. But no matter what the
outcome, we know that up and down the causal hierarchy, various collections
of spacetimes overwhelmingly fail to satisfy (Equivalence) (see Figure 8.7).

Figure 8.7: Any collection & C % such that (GH) C & C (Dist) does
not satisfy (Equivalence). Neither does (Caus). The case of (Chron) is
unknown.

8.6 Asymmetry Properties

We turn now to asymmetry properties. Consider two-dimensional Minkowski
spacetime (M, n) in (¢, x) coordinates. Remove the null related points (0, 0)
and (1,1) and let the resulting spacetime be (/N,7). One can verify that the
spacetime is giraffe: the only isometry f : N — N is the identity map. One
can adapt the Sbierski (2024) uniqueness result to show that there are only
two possible extensions (up to isometry) to (N,n). One of them replaces one
of the two “missing” points; the other replaces both points to recover (M, g).
(The result of replacing only (0, 0) is isometric to the result of replacing only
(1,1).) Of course, Minkowski spacetime does not have a fixed point and fails
to be point rigid. It turns out this is also true of the other extension as well.
To see this, suppose that the point (1,1) is replaced and the origin (0,0)
remains “missing” (the other case is handled similarly). Then there will be
one reflection isometry across the t = 0 line and another across the z = 0
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line. For any point p, one of these reflections will map p into a distinct point.
This shows that the extension has no fixed point. Moreover, the reflection
isometry across the ¢ = 0 line takes the point ¢ = (0,1) into itself. This
shows that the extension is not point rigid (see Figure 8.8).

Figure 8.8: A giraffe spacetime with two “missing” points. If (1,1) is re-
placed, a reflection across either the ¢ = 0 or x = 0 will map any point p into
a distinct point. The reflection across ¢ = 0 maps the point ¢ into itself.

It follows from all of this that for any collection & C % such that (Gir) C
P C (FP)U(PR) fails to satisfy (Equivalence). What about the collections
(LG),(Her) C % of spacetimes satisfying, respectively, the locally giraffe
and Heraclitus conditions? As far as we are aware, both questions are open
(see Figure 8.9).

8.7 Conclusion

Stepping back, we see (Equivalence) is false relative to almost all of the space-
time properties under consideration. Moreover, none of the properties are
known to render (Equivalence) true. A few important cases remain unsettled
— most notably the collections (Vac) and (Chron) highlighted by (Geroch,
1970b). But we have also seen that even if positive results were to obtain
for these properties, the subcollection problem calls into question the sig-
nificance of isolated results of this kind. Given the situation, it seems clear
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Figure 8.9: Any collection & C % such that (Gir) C & C (FP)U (PR)
fails to satisfy (Equivalence). The cases of (LG) and (Her) are unknown.

that further investigation is needed to better understand &-maximality with
resect to various physically reasonable collections & C % .



Chapter 9

Metaphysics

9.1 Introduction

In the previous chapter, we saw that virtually every physically significant
property & C % does not satisfy (Equivalence). For such collections, a
spacetime can be #-maximal and yet extendible in 7. Given the state of
affairs, one worries that foundational theorems concerning spacetime maxi-
mality proved relative the background possibility space % do not transfer
over to its more physically reasonable subcollections. Perhaps the most im-
portant such theorem is the statement that any extendible spacetime has a
% -maximal extension (Geroch, 1970b). Recall that upon this foundational
result rests the metaphysical justification for the spacetime maximality condi-
tion via the Leibnizian principles of sufficient reason and plenitude (Earman,
1989, p. 161).

We begin this chapter by introducing a generalized statement of the Ge-
roch (1970b) existence theorem relativized to any collection &2 C % . Next,
we review Zorn’s lemma which is used to secure the existence theorem within
the context of . Over the next few sections, we then investigate whether
this generalized existence statement is true with respect to the various local,
causal, and asymmetry properties identified in Part I. We will find that in
some cases an analogue to the Geroch (1970b) existence result can be proven
with the help of Zorn’s lemma. But we emphasize that there are many cases
in which Zorn’s lemma cannot be applied. We highlight a number of open
questions that, if settled, could help clarify the situation. We close with a
discussion of the “big bang” property for which the analogue existence result

139
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fails.

9.2 Existence

Let’s jump right in. Consider the following (second-order) condition on a
spacetime property & C % .

(Existence) Any Z-extendible &-spacetime has a Z-maximal exten-
sion.

If (Existence) were false for any collection & C %, then the analog to
the Geroch (1970) result would fail relative to &?. Thus, within that con-
text, Leibnizian metaphysical justification would face significant difficulties
in getting off the ground. We begin our study by noting that (Existence) and
(Equivalence) are independent conditions. A number of spacetime properties
of interest render the first true but the second false. We will explore many of
them soon. For now, we draw attention to the fact that even if (Equivalence)
is true for some collection & C %, it does not follow that (Existence) is also
true for &.

To see this, let (M, g) be the ¢t < 0 portion of two-dimensional Minkowski
spacetime in (t,z) coordinates. Let &2 = {(M, g)}. We know that (M, g) is
extendible in %/. But counterintuitively, it also extendible in & since the
spacetime (M, g) extends itself. Let (N, g) be the t < —1 portion of (M, g)
and let f : M — N be the isometry defined by f(¢,x) = (t—1, ) which shifts
all points one unit in the negative ¢ direction (see Figure 9.1). Since (M, g)
is isometric to a proper subset of (M, g), the spacetime counts as a (proper)
extension of itself. Since (M, g) is both extendible and &-extendible, we see
that (Equivalence) is true for &2. But (Existence) fails since & contains no
Z-maximal spacetimes. So we see that it is not the case (as was the hope
mentioned in the previous chapter) that if (Equivalence) were true for some
collection & C 7%, then all results established over the decades concerning
% -maximality carry over to the context of &-maximality.

Before moving on to explore the (Existence) condition, let’s take a brief
look at the significance of singleton collections & = {(M, g)} like the one
just given. Such collections have been considered in discussions on the meta-
physics of laws of nature. For example, Earman (1986) considers a situation
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Figure 9.1: The t < 0 portion of Minkowski spacetime is isometric to the
t < —1 portion of Minkowski spacetime. The isometry f maps any point
p = (t,z) in M to the point f(p) = (t —1,z) in N.

in which the actual universe is the only possible universe permitted by the
laws. He also remarks that, although Leibniz wished to avoid the “absolute
metaphysical fatalism” that would obtain in such a scenario, his principle
of sufficient reason seems to push him towards it (Earman, 1986, p. 19).
There is currently a renewed interest in this type of “strong determinism”
including the study of singleton collections of general relativistic spacetimes
(Chen, 2024, p. 56). Here, we note that the example considered above shows
that the modal structure of spacetime can be non-trivial for some of these
singleton collections. Surprisingly, spacetime can fail to be “as large as it
can be” even if the background possibility space has only one element. Of
course, the situation only arises because the single spacetime can properly
extend itself. One wonders if this consequence can be avoided for spacetimes
satisfying some condition of physical interest. Of course, any no-hole con-
dition that implies % -maximality (e.g. geodesic completeness) is trivially
sufficient. Using causal properties or local energy properties will not work
since the example of ¢ < 0 portion of Minkowski spacetime is a globally hy-
perbolic vacuum solution to Einstein’s equation. But looking to spacetime
asymmetry properties turns out to be fruitful.

It is not difficult to see that no Heraclitus spacetime can extend itself.
Recall that a necessary and sufficient condition for the Heraclitus property
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to obtain in a spacetime (M, g) is the following: for any open sets U,V C M
and any isometry f : U — V we have (i) U = V and (ii) f is the identity
map. It is now immediate that a Heraclitus spacetime (M, g) cannot extend
itself since in that case there would be some proper subset N C M and
an isometry f : M — N. Can the Heraclitus condition be weakened while
still ensuring that spacetimes do not extend themselves? The case of locally
giraffe is not yet clear. But certainly the giraffe condition is not strong
enough for these purposes. To see this, let (M, g) be the t < 0 portion of
Minkowski spacetime as before. Now remove the points (—1,0) and (—2,1)
and let the resulting spacetime be (NN, g). Because of the “missing” points,
this spacetime is giraffe. (Removing just one point is not enough since there
will be a reflection isometry in that case.) Let O be the set consisting of the
t < —2 portion of N except for the points (—3,0) and (—4, 1) (see Figure
9.2). There is an isometry f : N — O defined by f(t,x) = (t — 2, x). Since
(N, g) is isometric to a proper sub-portion (O, g), we find that (N, g) extends
itself.

Figure 9.2: (N, g) is the t < 0 portion of Minkowski spacetime with the points
(—1,0) and (—2,1) removed. It is isometric to the proper subset O C N.
The isometry f maps any point p = (¢,z) in NV to the point f(p) = (t — 2, )
in O.
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9.3 Zorn’s Lemma

Let us now turn to the question of which collections & C % satisfy the
(Existence) condition. In order to do this, we need to review a foundational
axiom of set theory: Zorn’s lemma. Let S be a set. A relation < on S is a
partial order if, for all a,b,c¢ € S, the following hold: (reflexivity) a < a,
(transitivity) if a < and b < ¢, then a < ¢, and (anti-symmetry) if a < b and
b < a, then a = b. Consider an example. Let (M, g) be any spacetime and
let < be the causality relation on M, i.e. for any p,q € M, let p < ¢ hold
if and only if p € J (¢). It is immediate that this relation must satisfy (i)
reflexivity and (ii) transitivity. One can verify that (iii) anti-symmetry will
also be satisfied if the spacetime (M, g) is causal.

If < is a partial ordering on a set S, we say a subset T C S is totally
ordered if, for all a,b € T, either a < b or b < a. A totally ordered set will
sometimes be called a “chain” in what follows. Let < be a partial ordering
on S and let T be any subset of S. An upper bound for the set T is an
element u € S such that for all a € T, we have a < u. Note that an upper
bound for T need not be a member of T itself. For example, consider a causal
spacetime (M, g) and the partial order on M given by the causality relation
< considered above. For any point p € M, an upper bound for the set J~(p)
is any point ¢ € J(p). This includes the point p itself which is a member of
J~(p). But any other point ¢ # p in J*(p) fails to be in J~(p) and yet still
qualifies as an upper bound for the latter set.

A maximal element of a set S partially ordered by the relation < is an
element m € S such that for all ¢ € S, if m < ¢, then ¢ = m. A maximal
element in S is one that is not “dominated” by any other member of S. In
the example above where (M, g) is a causal spacetime and the partial order
on M given by the causality relation <, there is no maximal element of M.
For any point p € M, there will be a point ¢ € J™(p) such that p < ¢ and
p # q. We note that a maximal element need not be an upper bound for a
set S partially ordered by the relation <. For example, let S = {a,b} and
let <= {(a,a),(b,b)}. We see that both a and b are maximal elements in S
since neither is dominated and yet neither is an upper bound for S.

Zorn’s lemma is the following. Let < be a partial order on S. If each
totally ordered subset 7' C S has an upper bound, there is a maximal element
of S. Zorn’s lemma is equivalent to the axiom of choice relative to standard
background set theoretic axioms. (The axiom of choice is defined below with
an application.) Zorn’s lemma is often used to show the existence of various
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mathematical objects. For example, it is invoked in the proof that every
vector space has a basis. Zorn’s lemma is also central to the Geroch (1970b)
result that every extendible spacetime has a maximal extension. Let’s explore
the proof of this fundamental statement.

We start with an intuitive idea. Let us say that a spacetime (M, g) can be
isometrically embedded into a spacetime (NN, h) if, for some set O C N,
there is an isometry f : M — O from (M, g) to (O, h). It is immediate that
a spacetime (M, g) can be isometrically embedded into a spacetime (N, h)
if and only if either (N, h) is an extension of (M, g) or the spacetimes are
isometric. Consider the collection % of all spacetimes and let < be a relation
on % defined such that, for all (M, g), (N, h) € %, we have (M, g) < (N, h)
if (M, g) can be isometrically embedded into a spacetime (NN, h). At once we
see that the relation < is reflexive and transitive. Unfortunately it fails to
be anti-symmetric. To see this, just consider a pair of distinct but isometric
spacetimes. One could perhaps take Minkowski spacetime (M, 7n) and use a
hole diffeomorphism f : M — M to pull back the metric n to construct the
spacetime (M, f*(n)) (recall Figure 7.2). As we have seen, f cannot be an
isometry from (M, n) to itself. So (M,n) # (M, f*(n)). But by construction,
the hole diffeomorphism f is an isometry from (M, f*(n)) to (M,n). Now
the problem becomes clear. Since the two spacetimes are isometric, we have
(M,n) < (M, f*(n)) and (M, f*(n)) < (M,n) and yet (M,n) # (M, f*(n)).
So the relation is not anti-symmetric and therefore not a partial order.

A natural way to fix things up presents itself. Let ~ be the relation on
% defined such that, for all (M,g),(N,h) € %, we have (M,g) ~ (N,h)
if (M, g) is isometric to (N,h). We know ~ is equivalence relation on % .
Let [(M,g)] be the equivalence class of any spacetime (M, g) € % and let
% | ~ be the collection of all equivalence classes of all spacetimes. Consider
the relation < on %/ ~ defined such that, for all [(M, g)],[(N,h)] € %] ~,
we have [(M,g)] < [(N,h)] if any member of [(M, g)] can be isometrically
embedded into any member of [(N, h)]. Tt is easy to check that the relation
< is once again reflexive and transitive. Moreover, the problem from above
is now avoided since, if (M,n) and (M, f*(n)) are isometrically related by a
hole diffeomorphism f, then [(M,n)] = [(M, f*(n))]. So it would seem that
< now counts as a partial relation on %/ ~. But it turns out even this is
not true. There is a different sort of problem lurking here.

Let (M, g) be the t < 0 portion of Minkowski spacetime in (¢, ) coordi-
nates. Now remove the point (—1,0) from M and let the resulting spacetime
be (N, g). By construction, (IV, g) can be isometrically embedded into (M, g)
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Figure 9.3: The isometry f maps any point p = (¢,x) in M to the point
f(p)=(t—1,2)in O. So (N, g) is an extension of (M, g).

using the inclusion map. So [(N,g)] < [(M, g)]. But (M, g) can also be iso-
metrically embedded into (N, g). To see this, let O be the t < —1 portion
of N. There is an isometry f : M — O defined by f(t,z) = (t — 1,z) (see
Figure 9.3). So we have both [(N, g)] < [(M, g)] and [(M, g)] < [(N,g)]. But
(M,g) and (N, g) are not isometric because of the “missing” point in the
latter spacetime. So [(M, g)] # [(N,g)] and therefore the relation < fails to
be anti-symmetric once again.

How can one define an appropriate partial order? The key is to consider
not equivalence classes of isometric spacetimes but rather equivalence classes
of isometric “framed” spacetimes. We say the triple (M, g, F') is a framed
spacetime if (M, g) is a spacetime and F' is an orthonormal basis of vectors
at some point p € M. Let (M, g, F') and (N, h, E) be framed spacetimes. An
isometry f: M — N is a framed isometry if the frame F is the result of
pushing forward the frame F' via f. For any framed spacetimes (M, g, F') and
(N, h, F), a framed embedding is a map e : M — N such that if the range
is restricted to e[M] C N, then e is a framed isometry. For any collection
P C U, let () be the collection of all framed spacetimes (M, g, F') such
that (M,g) € . Let ~ be the relation on §(%) defined such that, for
all (M,g,F),(N,h,E) € §(%), we have (M, g,F) ~ (N,h, E) if there is a
framed isometry from (M, g, F) to (N,h, E). One can check that ~ is an
equivalence relation on §(%). Let [(M, g, F)] be the equivalence class of any
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framed spacetime (M, g, F') € F(% ) and let §(% )/ ~ be the collection of all
equivalence classes of all framed spacetimes.

Now consider the relation < on F(%)/ ~ defined such that, for all
(M, g, F)],[(N,h,E)] € §(%)/ ~, we have [(M, g, F)] < [(N,h, E)] if there
is a framed embedding of any member of [(M, g, F')] into any member of
[(N,h, E)]. It is immediate that the relation < is reflexive and transitive.
We now show that anti-symmetry also holds. Suppose it were the case
that both [(M, g, F)] < [(N,h,E)] and [(N,h,E)] < [(M,g,F)] and yet
(N, h, E)] # [(M, g, F)]. Since [(N,h, E)] # [(M, g, F)], there is no framed
isometry from (M, g, F') to (N, h, E). Because both [(M, g, F)] < [(N, h, E)]
and [(N,h, E)] < [(M,g, F)], it follows that there is a proper framed em-
bedding from (M, g, F') into (N, h, E') and vice versa. So there is a proper
framed embedding from (M, g, F') into itself. But this cannot be. Recall
the general rigidity result due to Geroch (1969) we considered in Section
7.3 which can now be expressed in terms of framed spacetimes: there is
at most one framed embedding of a framed spacetime into another. Since
the identity map always counts as a framed embedding of a framed space-
time to itself, we know that there can never be a proper framed embedding
from a framed spacetime into itself. So we now have a contradiction. We
conclude that if both [(M, g, F)] < [(N,h, E)] and [(N, h, E)] < [(M, g, F)],
then [(N,h, E)] = [(M, g, F')]. Thus, the relation < satisfies anti-symmetry
and is therefore a partial order on §(%)/ ~.

Stepping back, one might wonder about the possibility of defining a par-
tial order on the collection §(% ) of framed spacetimes rather than the col-
lection §(% )/ ~ of equivalence classes of framed spacetimes. Indeed, in the
original paper Geroch (1970, p. 276) and in subsequent presentations such
as Earman (1995, p. 32), equivalence classes are nowhere in sight. How-
ever, it is clear that in these presentations the collection §(%)/ ~ is used
implicitly. To see why this must be, consider again Minkowski spacetime
(M,n) in (t,z) coordinates and a hole diffeomorphism f : M — M such
that f acts as the identity outside of the ¢ > 0 hole and non-trivially inside
it. One can pull back the metric n to construct the spacetime (M, f*(n)).
Now consider the point p = (—1,0) in each spacetime and the frame F' given
by the orthonormal basis vectors [1,0] and [0, 1] at p. By construction, the
hole diffeomorphism f is an isometry from (M, f*(n)) to (M,n). Moreover,
because this isometry acts as the identity outside the hole, we see that f
maps p into itself and the frame F' into itself (see Figure 9.4). So f counts
as a framed embedding of (M, f*(n), F) into (M, n, F'). Similarly, the inverse
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/7! counts as a framed embedding of (M,n, F) into (M, f*(n), F). Yet by
construction (M,n, F') # (M, f*(n), F). So we see that in order to satisfy
the anti-symmetry condition for a partial order, equivalence classes of framed
spacetimes must be brought into the picture.

_________________________

Figure 9.4: The isometry f acts as the identity outside the ¢ > 0 hole. So it
must map the frame F at the point p = (—1,0) into itself.

We finally have the desired partial order < on the collection §(% )/ ~ of
equivalence classes of framed spacetimes. Let’s put it to use. Consider any
subset T of (% )/ ~ that is totally ordered by <. We now show that ¥
has an upper bound in §F(%)/ ~. Let {X;} be the totally ordered collection
of equivalence classes of framed spacetimes in ¥ which is indexed such that
X; < Xj if and only if ¢ < j. For each equivalence class X; € ¥, choose a
representative framed spacetime (M;, g;, F;) € X;. To do this, one needs to
invoke the axiom of choice: for any set S of nonempty sets, there exists
function that maps each set A € S to an element of A. For any framed
spacetimes (M;, g;, F;) € X; and (M;, gj, F;) € X; such that i < j, there
must be a framed embedding e;; : M; — M;. From the Geroch (1969)
rigidity result, we know that this framed embedding must be unique. We
now take a type of “union” of all of the (M;, g;, F;) to construct the framed
spacetime (M, g, F) (Hawking and Ellis, 1973, p. 249). We first define the
manifold M by taking the union of all the manifolds M; and then, for any
framed spacetimes (M;, g;, F;) and (M;, g;, Fj) such that ¢ < j, we identify
any point p; € M; with the point e;;(p;) € M; (see Figure 9.5). Thus, each
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point p in the manifold M is really an equivalence class of points from the
union of all the manifolds M;. We will not formally keep track of these
equivalence classes of points in order to simplify the presentation. But one
can verify that M does count as a (connected, Hausdorfl) manifold under
this construction.

For each framed spacetime (M;, g;, F}), let f; : M; — M be the function
that takes each point p; € M; into its equivalence class in M. This function
counts as a diffecomorphism from M; to f;[M;]. On each open region f;[M;] of
M, let the metric g be the push forward fi.(g;). So f; : M; — M now counts
as an isometry from M; to f;[M;]. Finally, choose some framed spacetime
(M;, g;, F;) and let F' be the result of pushing forward the frame F; using f;.
The resulting structure (M, g, F') is a framed spacetime and, by construction,
X; <[(M,g,F)] for all X; € T. So [(M, g, F)] is an upper bound for ¥.

M;
M oMl
eij
F e F,
pi. ejj(pi)

Figure 9.5: For any framed spacetimes (M;, g;, F;) and (M, g;, F};) such that
¢ < j, there is a unique framed embedding e;; : M; — M;. Each point

pi € M; is identified with the point e;;(p;) € M;.

We have shown that any subcollection of §(% )/ ~ that is totally ordered
by < must have an upper bound in §(% )/ ~. We are now ready to invoke
Zorn’s lemma to show that any extendible spacetime has a maximal exten-
sion. Let (M, g) be any extendible spacetime. Consider the framed spacetime
(M, g, F) where F is any frame at any point p € M. Let X C §(%)/ ~ be
the collection of all equivalence classes [(NV, h, E)] of framed spacetimes in
§(%)/ ~ such that [(M,g,F)] < [(N,h,E)]. So X is the collection of all
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equivalence classes of all framed extensions of (M, g, F'). Since §(%)/ ~
is partially ordered by <, so is X. Consider any collection of equivalence
classes of framed spacetimes in X that is totally ordered by <. We know
this collection has an upper bound X in §(%)/ ~ from the argument given
above. So [(M, g, F)] < X. Because [(M, g, F)] < X, we know X € X by the
definition of X. So by Zorn’s lemma, there is a maximal element X* € X.
Let (M*, g*, F*) be any framed spacetime in X*. It follows that (M*, g*, F'*)
cannot be properly frame extended be any framed spacetime. So (M*, g*) is
a % -maximal extension of (M, g).

The application of Zorn’s lemma in this context shows that the collection
% of all spacetimes satisfies (Existence). What about various subcollections
P C % of interest? In some cases, one can use Zorn’s lemma in an argument
that mirrors the one just given. Given a collection & C %, recall that
§(22)/ ~ is the collection of all equivelence classes of all framed spacetimes
(M,g,F) € §(%) such that (M,g) € &. Because §(%)/ ~ is partially
ordered by the relation <, so is §(Z?)/ ~. Let T be any subset of F(Z)/ ~
that is totally ordered by <. If ¥ has an upper bound in §(Z?)/ ~, then one
can invoke Zorn’s lemma as before to conclude that & satisfies (Existence).
We shall consider several such examples below. But sometimes there is no
upper bound for ¥ in F(?)/ ~. In that case, the use of Zorn’s lemma
is blocked and it is unclear whether &7 satisfies (Existence). A number of
examples of this type will also be explored. Finally, we have already seen
that (Existence) can be false for some &2 — recall the singleton collection
consisting of the ¢ < 0 portion of Minkowski spacetime. We will highlight
that similar situations can also arise in more physically reasonable examples.

9.4 Local Properties

We start with local spacetime properties. Let us say that a property & C %
is strongly local if, for any spacetime (M, g) and any open cover {O;} of M,
we have (M, g) € & if and only if (0;,g) € & for all O; (Krasnikov, 2014).
One can show that any strongly local property must be a local property but
not the other way around (Manchak, 2021). Strongly local properties include
any of the usual local properties we have been considering: the spacetime
collections (NEC), (WEC), (SEC), or (DEC) satisfying, respectively, the
null, weak, strong, and dominant energy conditions, or the collection (Vac)
of vacuum solutions to Einstein’s equation.
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Suppose & C % is any of these strongly local collections. So F(Z?)/ ~ is
the collection of all equivalence classes of all framed spacetimes (M, g, F) €
§(%) such that (M, g) € &. This collection F(Z?)/ ~ is partially ordered
by the relation <. Let ¥ be any subset of F(Z?)/ ~ that is totally ordered
by <. For each equivalence class X; € T, use the axiom of choice to choose
a representative framed spacetime (M;,g;, F;) € X;. As before, one can
construct the framed spacetime (M, g, F') by taking the “union” of all of the
(M;, gi, F;). Tt is immediate that X; < [(M, g, F')] for each equivalence class
X; € T. So [(M, g, F)] will count as an upper bound for ¥ in §(£)/ ~ if it
can be shown that (M, g) € &. But this easily follows since we know that
each (M;, g;) is in &2, the collection {M;} is an open cover for M, and &7 is
a strongly local property.

Since [(M, g, F')] is an upper bound for ¥ in F(Z?)/ ~, one can invoke
Zorn’s lemma as before to conclude that &2 satisfies (Existence). Thus,
(NEC), (WEC), (SEC), (DEC), and (Vac) all satisty (Existence). On
the other hand, we know that arbitrary subcollections of these collections
will not necessarily satisfy existence. To see this, recall that the singleton
collection {(M,n)} where (M, n) is the t < 0 portion of Minkowski spacetime
is both vacuum and fails to satisfy (Existence). Thus, with respect to the
local spacetime properties considered here, we have another instance here of
the general subcollection problem introduced in the previous chapter; it is
unclear to what extent these isolated results can be generalized (see Figure
9.6).

9.5 Causal Properties

Next, we consider causal properties. We start with those for which Zorn’s
lemma can be applied (Manchak, 2017). Let & C % be the collection
(C'hron) of spacetimes satisfying the chronology condition. Once again, con-
sider the collection §(Z?)/ ~ partially ordered by the relation <. Let ¥ be
any totally ordered subset of F(Z?)/ ~. For each equivalence class X; € ¥,
choose a representative framed spacetime (M;, g;, F;) € X;. As before, one
can construct the framed spacetime (M, g, F') by taking the “union” of all of
the (M;, g;, F;). The equivalence class [(M, g, F')] will be an upper bound for
% if it can be shown that (M, g) satisfies chronology. Suppose it does not.
Let A C M be the image of a CTC. As a topological space (with induced
topology from M ), A is compact. Let \; = AN M; for all i. It follows that
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Figure 9.6: The collections (NEC), (WEC), (SEC), (DEC), and (Vac) all
satisfy (Existence). But there is no assurance that an arbitrary subcollection
2 of any of these collections also satisfies (Existence).

A = {\;} is an open cover for A. Because A is a compact, there is a finite
subset A’ C A that is also a cover for A\. The relation < can now be used to
order the finite elements of A" into a nested sequence of subsets A\; C ... \.
But this means that A = A\x. So (Mg, gx) has a CTC A = );: a contradiction.
So we may conclude that (M, g) € & and thus [(M, g, F')] is an upper bound
for T. Invoking Zorn’s lemma in the usual way, it follows that the collection
(Chron) satisfies (Existence).

In a completely analogous way, one can show that the collection (Caus) C
% of spacetimes satisfying the causality condition also satisfies (Existence).
But we emphasize again that the subcollection problem forbids us from con-
cluding that any collection & C % such that (Caus) C & C (Chron) also
satisfies (Exisistence). Indeed, it is not difficult to construct such a collec-
tion & which fails to satisfy (Exisistence). Start with Marty’s time travel
spacetime (M, n) in which M = S xR in (¢, x) coordinates where 0 < t < 27
and t = 0 is identified with ¢ = 27. Now consider the spacetime (N, n) where
N is the x < 0 portion of M. In just the same way that the ¢ < 0 portion
of Minkowski spacetime can (properly) extend itself, so can the spacetime
(N,n). It follows that the the collection &2 = (Caus) U {(N,n)} will not
satisfy (Existence) since there can be no &-maximal extension to (N, n).

It is unknown if the remaining causal properties satisfy (Existence). Con-
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Figure 9.7: The framed spacetime (N, g, F') fails to be strongly causal (and
therefore fails to be stably causal).

sider the collections (Dist), (Str), (Stab), (GH) C % of all spacetimes satis-
fying, respectively, the distinguishing, strong causality, stable causality, and
global hyperbolicity conditions. In the cases of (Dist), (Str), and (Stab),
one cannot invoke Zorn’s lemma. Low (2012) first showed the problem in the
case of (Stab). Let’s follow his argument for the similar case of (Str).

Let & C % be the collection (Str) and consider the collection §F(Z?)/ ~
partially ordered by the relation <. It is not difficult to construct a totally
ordered subset T C §F(Z?)/ ~ which has no upper bound. Again, start with
Marty’s time travel spacetime (M, n) in which M = SxR in (¢, x) coordinates
where 0 <t < 27 and t = 0 is identified with ¢t = 2. For each positive integer
i, let (N;, g;, F;) be the framed spacetime constructed by taking (M, n) and
removing the slits Sp = {(0,z) : « < 1} and S; = {(1,2z) : x > —1/i} and
adding a frame at the point p = (0, 2) consisting of the vectors [1, 0] and [0, 1].
Because of the removed slits, each spacetime (IV;, g;) is strongly causal. But
as 1 increases, the slit S; becomes smaller as its “edge” approaches the point
(1,0).

For each 7, let X; be the equivalence class [(N;, g;, F;)]. Clearly, {X;} C
§(2)/ ~ is totally ordered by the relation <. Now consider the “union”
(N, g, F) of all of the (N;,g;, F;). We see that (N, g, F) is just a framed
version of Marty’s spacetime (M,n) with the slits Sy : {(0,z) : z < 1}
and S = {(1,z) : « > 0} removed (see Figure 9.7). We have considered
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this example before in our discussion of the causal hierarchy; it was used to
show the existence of a spacetime satisfying the distinguishing condition but
not the strong causality condition (recall Figure 5.6). So (NN, g) fails to be
strongly causal and thus [(N, g, F')] fails to be an upper bound for the totally
ordered set {X;}. Moreover, one can show that any upper bound X for {X;}
must be such that [(N, g, F)] < X. Since any framed extension of (N, g, F)
must also fail to be strongly causal, we find that there can be no upper bound
for {X;}. Because not every totally ordered subset of §(#)/ ~ has an upper
bound, Zorn’s lemma cannot be invoked. Thus, it is unclear if (Stab) satisfies
(Existence). If so, new proof methods will need to be employed to show this.

A similar situation also arises for the collections (Dist). In an anal-
ogous way, one adapts the standard example (M, g) of a causal but not
distinguishing spacetime (recall Figure 5.5). For each positive integer i, let
(M;, g;) be the spacetime constructed by taking (M, g) and removing the slit
S; = {(t,0) : =1/i <t < 1/i}. When properly framed, one creates a se-
quence of distinguishing framed spacetimes whose “union” (M, g) fails to be
distinguishing. The case of (GH) is different in that it not known whether
Zorn’s lemma can be invoked. Stepping back, we see mostly unsettled ques-
tions concerning (Existence) and causal properties (see Figure 9.8).

Figure 9.8: The collections (Chron) and (Caus) satisfy (Existence).
But there is no assurance that an arbitrary subcollection & intermedi-

ate between these collections also satisfies (Existence). The cases for
(Dist), (Str), (Stab), (GH) are all unknown.
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9.6 Asymmetry Properties

Next, we explore the (Existence) condition with respect to various asymme-
try properties. Let & C % be the collection (Gir) of all giraffe spacetimes
and consider the collection §F(&?)/ ~ partially ordered by the relation <.
Start with two-dimensional Minkowski spacetime (M,n) in standard (¢, x)
coordinates. For each positive integer i, let (N, g;, F;) be the framed space-
time that results from excising from M the compact triangle region enclosed
by the points (0,0), (1/4,0), and (0,1/i) and adding a frame at the point
p = (0,2) consisting of the vectors [1,0] and [0, 1] (see Figure 9.9).

. X

A

Figure 9.9: The framed spacetime (N, g1, F1). As as i increases, the removed
triangle region becomes smaller as the two vertices (1/7,0), and (0,1/7) both
approach the third vertex (0, 0).

Because of the “missing” triangle region, each spacetime (1V;, g;) is giraffe.
But as ¢ increases, the removed triangle region becomes smaller as the two
vertices (1/4,0), and (0, 1/7) both approach the third vertex (0,0). For each
i, let X; be the equivalence class [(N;,g;, F;)]. Clearly, {X;} C §(£)/ ~
is totally ordered by the relation <. Now consider the “union” (N,g, F)
of all of the (N;,g;, F;). We see that (N, g, F') is just a framed version of
Minkowski spacetime with the origin removed. So (NN, g) fails to be giraffe
and thus [(N, g, F)] fails to be an upper bound for the totally ordered set
{Xi}. As before, since any upper bound X for {X;} must be such that
[(N,g,F)] < X, we see that any framed spacetime in X must be a framed
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extension of (N, g, F'). But the only proper framed extension to (N, g, F') is
Minkowski spacetime itself which fails to be giraffe. Thus, there can be no
upper bound for {X;}. Because not every totally ordered subset of F(Z)/ ~
has an upper bound, Zorn’s lemma cannot be invoked to show that (Gir)
satisfies (Existence). Similar conclusions follow for the collections (PR) and
(F'P) of all point rigid and fixed point spacetimes respectively. The example
given shows this since each (N, g;, F;) is both point rigid and fixed point and
yet the “union” (N, g, F') (as well as any framed extension to it) fails to be
both point rigid and fixed point.

What about the (Existence) condition with respect to the collections (LG)
and (Her) of, respectively, locally giraffe and Heraclitus spacetimes? The for-
mer case is not yet clear. But the latter case is settled: Zorn’s lemma can
be used to show that (Her) does satisfy the (Existence) condition (Manchak
and Barrett, 2024). The argument is simple. Let & C % be the collection
(Her) of all Heraclitus spacetimes and consider the collection §(4?)/ ~ par-
tially ordered by the relation <. (Although we work with equivalence classes
of framed spacetimes as usual here, it turns out that one need not frame
Heraclitus spacetimes in order to define a partial order. This follows since
one can verify that, unlike the general case, isometric embeddings among
Heraclitus spacetimes are unique.)

Let ¥ be any totally ordered subset of F(Z?)/ ~. For each equivalence
class X; € ¥, choose a representative framed spacetime (M, g;, F;) € X.
As before, one can construct the framed spacetime (M, g, F') by taking the
“union” of all of the (M;, g;, F;). The equivalence class [(M, g, F')] will be an
upper bound for ¥ if it can be shown that (M, g, F) is Heraclitus. Suppose
not. So there are distinct events p,q € M with neighborhoods O, and O,
and an isometry f : O, — O, such that f(p) = ¢. We know there is some
framed spacetime (M, g, F) such that p,q € M. Let U, = O,NM;, and let
U, = f|U,]. Although the open set U, is a subset of M}, by construction, the
open set U, may not be. So consider the open set V,, = U, N M, and the open
set V, = f1V,]. Now it follows that V},, V, C Mj. The isometry defined by
restricting the domain of f to V, maps the event p to ¢ which contradicts
the Heraclitus property of (My, gk, Fx). So (M, g, F') is Heraclitus. It follows
that [(M, g, F')] is an upper bound for €. Invoking Zorn’s lemma in the usual
way, we find that the collection (Her) satisfies (Existence).

So we see mostly unsettled questions concerning the (Existence) condition
and asymmetry properties. Moreover, we know that Zorn’s lemma is of no
help for a number asymmetry properties such as the collection (Gir) of all
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giraffe spacetimes. The collection (Her) does satisfy (Existence) but we
note once again that an instance of the subcollection problem lurks: there
is no assurance that an arbitrary subcollection of Heraclitus spacetimes also
satisfies (Existence) (see Figure 9.10).

Figure 9.10: The collection (Her) satisfies (Existence). But there is no as-
surance that an arbitrary subcollection &2 C (Her) also satisfies (Existence).
The cases for (PR), (F'P), (Gir), (LG) are all unknown.

9.7 Big Bang Property

Stepping back, it is notable that none of the local, causal, or asymmetry
properties we have been considering render (Existence) false. This is good
(or, at least not bad) news for those who wish to defend the dogma of space-
time maximality via Leibnizian metaphysics. But it should be emphasized
that most of the cases we have examined are unsettled and, of those, most
are the unsettled because we know that Zorn’s lemma cannot be invoked.
We have already seen that (Existence) can be false for some seemingly “arti-
ficial” properties (e.g. the singleton collection consisting of the ¢ < 0 portion
of Minkowski spacetime). We now discuss the possibility of more interest-
ing examples and also the significance of any isolated result concerning the
(Existence) condition.
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We begin by considering the property of geodesic incompleteness. Given
the singularity theorems of Hawking and Penrose (1970), this property seems
to be satisfied by some physically reasonable spacetimes. A simple argument
shows that the collection (GI) C % of geodesically incomplete spacetimes
renders (Existence) true. Consider any geodesically incomplete spacetime
(M, g) that is (GI)-extendible. Since % satisfies (Existence), we know (M, g)
has some % -maximal extension (N, h). If (N,h) € (GI), then we are done.
If not, let p be a point in the non-empty region N — M and consider the
spacetime (N — {p}, h). Either (i) (M, g) and (N — {p}, h) are isometric or
(ii) the latter spacetime properly extends the former. Clearly (N — {p},h)
is geodesically incomplete because of the “missing” point and, in addition,
its only extension (up to isometry) is the geodesically complete spacetime
(N,h). So (N — {p},h) is (GI)-maximal. Since (M, g) is (GI)-maximal, it
follows that(M, g) and (N — {p}, h) are not isometric, i.e. (i) cannot hold.
So (ii) must hold: (N — {p},h) is a proper extension to (M,g). Because
(N — {p},h) is (GI)-maximal and (Existence) must be true for (GI).

Despite the fact that (GI) renders (Existence) true, we know that, be-
cause of the subcollection problem, there is no assurance that arbitrary col-
lections &2 C (GI) also satisfy (Existence). One question of interest is this:
Let (S) C (GI) be a collection of spacetimes satisfying the assumptions of
any one of the singularity theorems. Does such a collection () satisfy (Exis-
tence)? More work is needed here. Or consider the collection (BB) C (GI)
of spacetimes with the “big bang” property: every maximal timelike geodesic
is incomplete in the past direction. One can show that (BB) does not satisfy
the (Existence) condition (Manchak, 2016b).

Start with two-dimensional Minkowski spacetime (M, g) in (¢,x) coor-
dinates. For all positive integers i, remove the slits S; = {(—i,z) : <
—1/i or 1/i <z} and let S be the union of all of the S;. Let 2: M — R be
a conformal factor such that 2 = 1 outside of D(S) but rapidly approaches
zero as S is approached along every timelike curve in D(S). The spacetime
(M — 5,Q2g) is % -maximal because of the chosen conformal factor. Let p;
be the point (—i,0) for all positive integers i and let P be the collection of
all the p;. Let (N, h) be the result of taking (M — S,0?g) and removing P.
The spacetime (N, h) has the big bang property since all maximal timelike
geodesics must approach either some slit in .S or one of the missing points in
P in the past direction (see Figure 9.11).

Any extension to (NN, h) will replace some subset of the missing points in
P. But in order for an extension to retain the big bang property, an infinite
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Figure 9.11: The spacetime (NN, k) has the big bang property since since all
maximal timelike geodesics must approach either some slit .S; or one of the
missing points p; in the past direction. Any big bang extension to (N, h) can
also be extended with the big bang property.

number of points in P must remain missing. (If only a finite number of points
in P remain missing in the extension, then below the “lowest” such missing
point a timelike geodesic along x = 0 will be geodesically complete in the
past direction.) And since an infinite number of points in P remain missing
in any big bang extension to (N, h), one can always extend such an extension
even further while still retaining the big bang property by replacing any one
of the infinitely many missing points. So there can be no extension to (N, h)
which is maximal with respect to the big bang property. So (BB) fails to
satisfy (Existence).

Stepping back, one might worry about the significance of the result. After
all, the spacetime constructed seems to be outrageously artificial. A natural
way to rule out such a mutilated example would be require one of the no-
hole spacetime properties we have considered in (e.g. hole-freeness or local
maximality). But one must remember that any such property implies % -
maximality which implies (BB)-maximality. So invoking a no-hole condition
of this kind to secure an (Existence) result is akin to assuming the result
itself.

A more promising route is to restrict attention to globally hyperbolic big
bang spacetimes. Does (BB)N(GH ) satisfy (Existence)? Perhaps. But even
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so, there remains a question about the significance of such a result given
the subcollection problem. Indeed it is not hard to construct a property
& C (BB) N (GH) which fails to satisfy (Existence). For each positive
integer 4, let (M;, g;) be the 0 < ¢t < i region of Minkowski spacetime. If
P C (BB)N (GH) is the collection of all of the (M;,g;), then it renders
(Existence) false. Such a property would seem to be artificial but it serves
only to demonstrate how difficult it is to get a grip on the big picture with
respect to the (Existence) condition; the significance of any isolated result is
unclear. Again, we have here an instance of the subcollection problem (see
Figure 9.12).

?

(GH)N(BB) | (BB)

Figure 9.12: An instance of the subcollection problem. The (Existence)
condition is true for (GI) but false for one of its subcollections (BB). An
even smaller subcollection (BB) N (GH) may render (Existence) true. But
the condition is false for an even smaller subcollection & C (BB) N (GH).

9.8 Conclusion

The metaphysical justification for the spacetime maximality condition seems
to depend crucially on the claim that “any space-time can be extended to a
space-time that is maximal” (Earman, 1989, p. 161). The foundational result
of Geroch (1970b) shows that this claim holds within the standard context:
the (Existence) condition is true for the collection %. In this chapter, we
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have investigated the extent to which the (Existence) condition is true for
various subcollections & C 2. We have found that all collections that count
as local properties render (Existence) true, e.g. the collection (Vac) of all
vacuum solutions. As for causal properties, there are mostly open questions
but we have shown that (Existence) is true for the collections (Chron) and
(Caus). Moreover, we have seen that if many of these open questions are
to be settled, new proof methods will need to be introduced since the usual
Zorn’s lemma argument is blocked. This is also the situation for almost all
asymmetry properties. But (Existence) is true for the collection (Her) of all
Heraclitus spacetimes.

We have also highlighted several instances of the sub-collection problem
which calls into question the significance of any isolated result. For example,
the collection (GI) of all geodesically incomplete spacetimes renders (Exis-
tence) true. But (Existence) is false for the subcollection (BB) C (GI) of
spacetimes with the big bang property. Perhaps restricting attention to the
even smaller subcollection (BB) N (GH) C (BB) of globally hyperbolic big
bang models will render (Existence) true again. Even if this is the case,
we constructed an even smaller subcollection & C (BB) N (GH) for which
(Existence) is false. We see just how difficult it is to get a grip on the big
picture with respect to the (Existence) condition. Because the significance of
any isolated (Existence) result is unclear, the significance of the metaphysical
justification for spacetime maximality is also unclear.



Chapter 10

Epistemology

10.1 Introduction

The Leibnizian metaphysical justification for the dogma of spacetime maxi-
mality rests on the Geroch (1970b) existence result concerning the possibility
space % : every extendible spacetime has a maximal extension. But we have
just seen that analogous results are difficult to come by with respect to a
number of natural reduced possibility spaces. For the most part, the status
of the (Existence) condition remains unsettled relative to the various col-
lections & C % under consideration. Moreover, the subcollection problem
adds another layer of obscurity since any isolated results can only bring lim-
ited significance. Given the murky state of the metaphysical justification for
spacetime maximality, one wonders about the possibility of empirical justi-
fication instead. Perhaps observational data (combined with some form of
induction) can somehow allow one to know that spacetime is maximal?

Here, we show that the prospects for an affirmative answer are unsur-
prisingly dismal. Indeed, an epistemological predicament with respect to
spacetime maximality obtains in a wide variety of reduced possibility spaces
& C . Under a modest causality assumption, one finds that for each
spacetime (M, g) in &2, there exists a non-isometric but “observationally
indistinguishable” counterpart spacetime (N,h), also in &2, which is not
maximal in &2. After showing various senses of this type of cosmic underde-
termination with respect to spacetime maximality, we highlight one curious
exception: the Heraclitus asymmetry property.

In an appendix, we then pivot to investigate the epistemology of spacetime
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if the maximality dogma were to hold. We find that maximality with respect
to Heraclitus asymmetry allows for a type of uniqueness result: within that
context, a pair of spacetimes are observationally indistinguishable if and only
if they are isometric. We emphasize a way in which this uniqueness result
is quite general in that it is not vulnerable to the subcollection problem.
But we also disentangle several different types of underdetermination and
show that Heraclitus-maximality is consistent with some of them. We close
with a discussion of a type of second-order “meta-maximality” which requires
collections of spacetimes to be “as large as they can be” with respect to some
second-order property. We show that Zorn’s lemma can be used at this higher
level to show the existence of various “maximal” collections of spacetimes of
this kind.

10.2 Observational Indistinguishability

There are several notions of cosmic underdetermination within general rela-
tivity. A few of these will be considered in the appendix at the end of the
chapter. For now, we focus a particular definition due to David Malament
(1977b) which builds on the ideas of Clark Glymour (1972, 1977). We say a
spacetime (M, g) is observationally indistinguishable from a spacetime
(N, h) if, for each event p € M, there is an event ¢ € N such that the timelike
pasts I~ (p) and I~ (q) are isometric.

To get a grip on this notion, consider a spacetime (M, g) that is obser-
vationally indistinguishable from a spacetime (NN, k). Because nothing can
travel faster than light, any observer at any event p € M has empirical access
only to events in her past light cone, i.e. the region I~ (p). (Here, the timelike
past is used instead of the causal past but nothing of consequence turns on
the choice. The timelike past is easier to work with since this region is always
an open set.) But since I~ (p) and I~ (q) are isometric for some point ¢ € N,
the observer at p cannot tell if she is at event p in the spacetime (M, g) or
at the event ¢ in the spacetime (N, g). Because this epistemological predica-
ment obtains at every possible event in M, then no observer in (M, g) can
be sure that she inhabits the spacetime (M, g) and not (V, h).

To see the definition at work, consider two-dimensional de Sitter space-
time (M, g) (recall Figure 3.6). Here M is the cylinder R x S in (¢,6) co-
ordinates where 0 < 8 < 27 and 6 = 0 is identified with § = 27. The
metric g is defined as follows: at each point (¢,0) € M and for any vectors
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v = [v;,v9] and w = [wy, wy] at the point, let g(v, w) = vaw, — vywy cosh®(t).
Now consider an “unrolled” variant of de Sitter spacetime (N, h) where the
manifold N is R? in (¢, z) coordinates and the metric h is defined just like
g except in (¢, x) rather than (¢,6) coordinates. In each spacetime, the light
cones rapidly narrow as the absolute value of ¢ increases. In the case of the
spacetime (M, g), this means that for any point p € M, the region I~ (p)
must have a #-width less than 2. No observer can “see” all the way around
the cylinder due to these “observational horizons” (Rindler, 1956). It follows
that there will be a corresponding point ¢ € N, such that I~ (p) and I~ (q)

are isometric (see Figure 10.1). So (M, g) is observationally indistinguishable
from (N, h).

Figure 10.1: The de Sitter spacetime (M, g) and its “unrolled” variant (N, h).
For each p € M, there is a ¢ € N such that I~ (p) and I~ (¢) are isometric.

In the example just given, not only is the spacetime (M, g) observation-
ally indistinguishable from (N, k) but the other direction also holds: (N, h)
is observationally indistinguishable from (M, g). In general, however, the
situation is not symmetric in this way. Let (M, g) be Minkowski spacetime
and let (IV, h) be Minkowski spacetime with a point removed. For any event
p € M, there is an event ¢ € N such that I~ (p) and I~ (gq) are isometric —
just take ¢ to be any event to the past of the “missing” point. But there
are events r € N such that /= (r) fails to be isometric to I~ (p) for all points
p € M — just take r to be any event to the future of the missing point (see
Figure 10.2). So (M, g) is observationally indistinguishable from (N, h) but
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not the other way around: some observers in (V, g) — namely those with the
missing point in their timelike past — have the epistemic resources to know
that they do not inhabit Minkowski spacetime.

" X" x
p. 'o" \s
< I=(r)
q .
I(p) N
" 11q)

Figure 10.2: For each point p € M, there is a point ¢ € N such that I~ (p)
and [~ (q) are isometric. But there are some points » € N such that 1~ (r)
has no isometric counterpart in M.

The example illustrates additional epistemological problems for observers
in Minkowski spacetime. Because (M, g) is % -maximal while (N, h) is not,
such observers are not only unable to determine which spacetime they in-
habit, they cannot even pin down whether or not their spacetime is maximal
under the usual definition. This shows a sense in which collecting empirical
data in Minkowski spacetime will never allow observers to “see” the maxi-
mality property of their spacetime. The situation may be contrasted with
that of some observers in (N, h) who do have the epistemic resources to know
that they inhabit a %/ -extendible spacetime. If (IV, k) is observationally in-
distinguishable from some spacetime (N’ h'), then by definition (N’, h') must
have a region isometric to I~ (7). Because such a region must contain a miss-
ing point, (N’,h’) fails to be % -maximal (it can be properly extended by
replacing that missing point). So we find that an observer at r € N can
effectively “see” the % -extendibility property of their spacetime.

We have just seen that observers in some spacetimes (i.e. Minkowski)
cannot know that their spacetime is %/-maximal while observers in some
other spacetimes (i.e. Minkowski with point removed) can know that their
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spacetime is % -extendible. Two questions naturally arise. Do there exist
spacetimes in which observers can know that their spacetime is %/-maximal?
Do there exist spacetimes in which observers cannot know that their space-
time is % -extendible? Yes and yes.

For the first question, consider first Marty’s time travel spacetime (M, g)
in which Minkowski spacetime is “rolled up” in the time direction. Such a
spacetime is % -maximal and for any event p € M, we have I~ (p) = M.
Suppose (M, g) is observationally indistinguishable from a spacetime (N, h).
So there is a point ¢ € N such that I~ (p) and I~ (q) are isometric. But
since I~ (p) = M, we see that I~ (q) is isometric to M. If I~(q) were a
proper subset of N, then (M, g) could be properly extended by (N, h) which
is impossible since (M, g) is % -maximal. So I~ (¢) = N which means that
(N, h) is isometric to (M, g). It follows that any observer in (M, g) can know
that their spacetime is % -maximal. As for the second question, let (M, g)
be the t < 0 portion of Minkowski spacetime and let (N, h) be Minkowski
spacetime itself. One can easily verify that for any p € M and ¢ € N the
regions I~ (p) and I~ (q) are isometric. So each spacetime is observationally
indistinguishable from the other. Since (M, g) is % -extendible while (N, h)
is not, we find that no observer in (M, g) can know that their spacetime is
Y -extendible.

10.3 Chain Construction

So far, the discussion of observationally indistinguishable spacetimes has op-
erated under the standard background possibility space %. One wonders
how the situation changes if reduced possibility spaces & C % are consid-
ered instead. We now turn to a more general investigation. Our focus will be
on the possibility of observers knowing that their spacetime is &?-maximal
relative to various collections &2 C % . A definition will help to articulate
this general question and present the strongest possible results.

Let us say that spacetime (M, g) contains a god point if there is an
event p € M such that I=(p) = M. From a god point, an observer can
“see” the entirety of spacetime. As we have seen in the example of Marty’s
time travel spacetime above, if (M, g) is also % -maximal, then there is no
possibility of a non-isometric observationally indistinguishable counterpart.
So there is a limited sense in which can be spacetime maximality can
determined in spacetimes with a god point. But this determination is
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necessarily linked with an extreme causal structure which implies a violation
of the chronology condition. For this reason, we will now focus on spacetimes
without god point. Consider the following (second-order) condition on a
spacetime property & C % .

(Observation) There are Z-spacetimes without god point that are
only observationally indistinguishable from &?-spacetimes that are &-
maximal.

The condition is formulated so as to be extremely weak. If a collection
P C U satisfies (Observation), then merely some — not all — spacetimes
(M, g) in the reduced possibility space & are such that their observers have
enough epistemic resources to determine that they inhabit a 4?-maximal
spacetime. As we shall see, even this weak formulation is rarely satisfied by
spacetime collections of interest. And if (Observation) is not satisfied by a
collection &, then (setting aside spacetimes with god point) every observer
in every &-spacetime inherits an cosmic underdetermination problem with
respect to &-maximality.

To see why (Observation) is rarely satisfied by a collection &2, it proves
useful to consider a particular cut and paste construction in which, given a
spacetime without god point, can generate a non-isometric observationally
indistinguishable counterpart spacetime (Manchak, 2009a). The construction
makes precise an informal argument sketch due to Malament (1977b). We
start by considering an arbitrary spacetime (M, g). Since any event in M is
in the timelike past of some other event in M, it follows that the set {I~(p) :
p € M} is an open cover for M. A general topological result due to Lindelof
is the following: any open cover of a second countable topological space has a
countable subcover. Since M is second countable and {/~(p) : p € M} is an
open cover for M, it follows that one can find a countable collection of points
{p:} in M such that U{I~(p;)} = M. For example, consider Minkowski
spacetime in (¢, z) coordinates. If p; = (i,0) for each positive integer i, then
the timelike pasts of all such points cover M (see Figure 10.3).

Now restrict attention to any spacetime (M, g) without god point. Let
{pi} be a countable collection of events in M, indexed by the positive integers,
such that U{I~(p;)} = M. For each p;, consider two copies of the spacetime
(M, g) — call them (N}, h}) and (N? h?). Since (M, g) fails to have a god
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Figure 10.3: The countable collection of points {p;} are such that their time-
like pasts cover M.

point, in each of the (N}, h}), one can find an open set O; outside of I~ (p;).
In each spacetime (N}, h}) for i > 1, cut two spacelike slits S; and S;" in
the region O;; in (N}, hi) cut just one slit S;. In each spacetime (N?, h?),
cut the slits S and S;,,. Because of the freedom one has in choosing the
slits, it is possible to ensure that S;" and S;1, are disjoint in each spacetime
(N2, h?). Now, excluding the slit boundary points, identify the top edge of
St in (N}, hl) with the bottom edge of S} in (N?, h?). Then identify the
top edge of S, in (N2, h7) with the bottom edge of S, in (N}, k! ). Let
the resulting “chain” spacetime be called (N, h) (see Figure 10.4).

The mutilated spacetime (NN, g) is not isometric to the spacetime (M, g)
that we started with. But the chain construction ensures that (M, g) is
observationally indistinguishable from the (N, g). This follows since any
event p € M is such that p € I~ (p;) for some p;. So I~ (p) C I~ (p;). But by
construction, the region I~ (p;) has an isometric counterpart in the (N}, h})
link of chain (N,h). So there will be a point ¢ in this counterpart region
such that I~ (p) and I~ (q) are isometric. It follows that any observer at any
event in (M, g) cannot distinguish between that spacetime and (N, h). Now
let ¢ € N be any point in any of the (N?, h?) links. If ¢ is removed from the
manifold, the resulting spacetime (N —{q}, h) is % -extendible. Since (M, g)
is also observationally indistinguishable from this %/ -extendible spacetime

(N —{q},h), we see that (Existence) is false for % .
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Figure 10.4: The “chain” spacetime (N, h). The top edge of S;" in (N}, h})

10"

is identified with the bottom edge of S;™ in (N7, h?) and the top edge of S ;
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in (N2, h?) is identified with the bottom edge of S, in (N}, hl,,).
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10.4 Local Properties

The chain construction not only ensures that (M, g) is observationally in-
distinguishable from the non-isometric (XN, g), it also preserves an number
a properties of (M,g). For example, consider an arbitrary local property
P C 7 and suppose that (M, g) is a P-spacetime without god point. It
is not difficult to verify that the spacetime (NN, g) generated via the chain
construction is locally isometric to (M, g). So (NN, g) is also a Z-spacetime.
Now, let ¢ € N be any point in any of the (N?, h?) links. If ¢ is removed
from the manifold, the resulting spacetime (N — {q}, k) is also locally iso-
metric to (M, g) and therefore also a &?-spacetime. Moreover, we find that
(M, g) is also observationally indistinguishable from (N — {q},h) and yet
the latter spacetime, by construction, is not &-maximal since it can be ex-
tended to the &-spacetime (N, g). It follows that any local property & C %
fails to satisfy the (Observation) condition (Manchak, 2011). In particular,
all the local properties we have been considering — the collections (NEC),
(WEC), (SEC), (DEC), and (Vac) — each render (Observation) false (see
Figure 10.5). So because the way the condition (Observation) was formulated
(with existential rather than universal quantification), we find that any local
property & inherits a serious underdetermination problem with respect to
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spacetime maximality; no observer any &-spacetime without god point has
the epistemic resources to determine that their spacetime is &?-maximal.

=) v

Figure 10.5: The collections (NEC), (WEC), (SEC), (DEC), and (Vac)
all fail to satisfy (Observation).

To better understand the significance of the result, we emphasize that
cosmologists often employ a type of induction on local spacetime properties
whereby “the normal physical laws we determine in our spacetime vicinity
are applicable at all other spacetime points” (Ellis, 1975, p. 246). Given
that we have yet to empirically observe a violation of, say, the weak energy
condition in our local vicinity, the cosmologist extrapolates the finding and
assumes the condition holds globally. The result just presented shows that
even under this type of local induction, determining that one’s spacetime is
maximal is not possible. Even so, the spacetimes generated by the chain con-
struction would still seem to be “irrelevant monstrosities by the standards of
working cosmologists” (Belot, 2023, p. 147). Perhaps paring down the back-
ground possibility space using various global properties can break the cosmic
underdetermination? We now highlight that similar results also obtain for
almost every global property of interest as well.
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10.5 Causal Properties

We start with the chronology condition. Let (M, g) be an arbitrary chrono-
logical spacetime which therefore fails to have a god point. Let (N, h) be
an observationally indistinguishable counterpart spacetime generated by the
chain construction outlined above. It is not difficult to verify that (IV, k) too
must be chronological. Consider any event p € N and any future-directed
timelike curve A\ from p. We know p is located in some link in the chain.
We know A cannot stay within this link and be closed. This follows since
each link is a copy of (M, g) which contains no CTCs. But we also know
that the timelike curve A cannot leave the link with p and be closed. Be-
cause the slits are spacelike, any future-directed timelike curve leaving one
link can never return to it. So A cannot return to p and therefore (N, h)
is chronological. One can remove a point ¢ € N in any point in any of the
(N?, h?) links to produce a spacetime (N — {q}, h) which is also chronological
and such that (M, g) is observationally indistinguishable from (N — {q}, h).
But by construction, this latter spacetime is not maximal with respect to
the chronology property since it can be extended to (N, g). It follows that
the collection (C'hron) of chronological spacetimes renders the (Observation)
condition false. Analogous arguments can be carried out for the collections
(Caus), (Dist), and (Str) of spacetime satisfying, respectively, the causality,
distinguishing, and strong causality conditions.

One can also verify that the collection (Stab) of stably causal spacetimes
also renders (Observation) false. Let (M, g) be a stably causal spacetime
(which therefore fails to have a god point). Let (N, h) be an observationally
indistinguishable counterpart spacetime generated by the chain construction
outlined above. Since (M, g) is stably causal, it admits a global time function
on M. But since each link of the spacetime (N, g) is just a copy of (M, g),
one can use the global global time function on M to define a global time
function on N in the natural way. So (V, g) is stably causal. As before, one
can then remove a point g to produce a stably causal spacetime (N —{q}, h)
which shows the (Observation) condition is false for (Stab).

Finally, we note that the situation for the collection (GH) of globally
hyperbolic spacetimes is open. Given a globally hyperbolic spacetime (M, g),
the observationally indistinguishable counterpart spacetime (N, h) generated
from the chain construction fails to globally hyperbolic. But this does not
necessarily mean that (Observation) is true for (GH). Consider Minkowski
spacetime (M, g) for example. It is observationally indistinguishable from
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the ¢ < 0 portion of Minkowski spacetime (N, h). Moreover, (N, h) is both
globally hyperbolic and also fails to be maximal with respect to this property
(it can be extended to Minkowski spacetime, for example). But it is not yet
clear that one can find such an observationally indistinguishable counterpart
for an arbitrary globally hyperbolic spacetime. Stepping back, we see that
(Observation) is false for all but one causal property with the case of global
hyperbolically still open (see Figure 10.6).

X

X
(Stab) ) (Str)

Figure 10.6: The collections (Chron), (Caus), (Dist), (Str), and (Stab) all
fail to satisfy (Observation) with the case of (GH) open.

10.6 Asymmetry Properties

Now we consider the asymmetry properties. Let (M, g) be any spacetime
without god point and let (N, h) be a spacetime generated by the chain con-
struction. The first link (N}, k1) of this spacetime is unique in that it is
linked to only one other link; it has only one slit cut. This ensures that any
isometry of (N,h) must map this first link to itself. And since the second
link (N3, h}) is the only link attached to this first link, then by continuity
considerations, it too must be mapped to itself. And so on. The fact that
any isometry must map each link to itself does not necessarily entail that
any isometry of (N,h) must be the identity map. For example, consider
Minkowski spacetime (M, g) in (¢,x) coordinates. If the chain spacetime
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(N, h) is constructed such that all spacelike slits are cut so as to be symmet-
ric about the the x = 0 line, there will be a non-trivial isometry of (V, k) in
which each link is mapped to itself but reflected about x = 0 line. In such a
case, the spacetime (N, h) will therefore fail to be giraffe. But one can rule
out such non-trivial isometries by removing from each link in (N, h) a com-
pact set shaped like a giraffe. If the removal takes place outside the region
I~ (p;) in each of the (N}, h}) links, then (M, g) will be observationally indis-
tinguishable from the resulting giraffe spacetime (see Figure 10.7). Moreover,
one can extend this spacetime while maintaining the giraffe property by ap-
propriately (i.e. asymmetrically) replacing a portion of one of the “missing”
giraffe regions. Stepping back, this argument shows something quite general:
If & is such that (Gir) C &, then (Observation) fails to be satisfied by Z.
So in addition to (Gir) itself, it follows that (Observation) is false for the
collections (PR) and (F'P) of spacetimes that satisfy, respectively, the point
rigid and fixed point asymmetry conditions.

RN
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Figure 10.7: Any spacetime without god point is observationally indistin-
guishable from some (non-isometric) giraffe spacetime.

Given any spacetime without god point, the modified chain construction
just considered generates an observationally indistinguishable counterpart
spacetime with only trivial isometries. So this construction has the effect
of introducing global asymmetries. But it also has the effect of introducing
some local symmetries. Since each link in chain spacetime is constructed from
a copy of the original spacetime, there will be innumerable local isometries
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between any pair of links. So the chain construction necessarily produces a
spacetime that fails to have the Heraclitus asymmetry property.

Of course, this does not necessarily mean that the (Observation) condition
is true for the collection (Her). Perhaps some other construction could be
employed. But that possibility is closed off if one considers spacetimes that
are maximal with respect to the Heraclitus property. Indeed this follows from
a more general result (Manchak and Barrett, 2024): if (M, g) and (N, h) are
Heraclitus spacetimes and (M, g) is observationally indistinguishable from
(N, h), then either the two spacetimes are isometric or (N, h) is a proper
extension of (M, g).

At its heart, this result follows because isometric embeddings among Her-
aclitus spacetimes are unique and, for each p € M, the region I~ (p) counts
as a Heraclitus spacetime it its own right. Because there is a unique way
to embed each region I~ (p) into (N, h), one finds that (M, g) itself can be
isometrically embedded into (N, h). (Intuitively, the radical asymmetry of
each of the I~ (p) requires that one can only smoothly “glue” all of these re-
gions together in one way, i.e. the way that results in a spacetime isometric
to (M, g) itself.) And if this isometric embedding from (M, g) to (N, h) is
proper, then (N, h) is a proper extension of (M, g); otherwise, the spacetimes
are isometric.

As simple corollary to this result, we see that if (M, g) is maximal with
respect to the Heraclitus property and it is observationally indistinguishable
from some Heraclitus spacetime (N, g), then (NN, g) must be isometric to
(M, g) and so must also be Heraclitus-maximal. Thus, if one takes (M, g) to
be one that fails to have a god point, we see that the collection (Her) satisfies
the (Observation) condition. In the reduced possibility space (Her), there
are some spacetimes in which observers do have enough epistemic resources
to determine that they inhabit a (Her)-maximal spacetime.

Taking stock, we see that (Observation) is false for any collection &2 such
that (Gir) C &2. This includes the collections (PR), (F'P), and (Gir) itself.
In contrast, (Observation) is a true for the collection (Her). Finally, we note
that the case concerning the collection (LG) of locally giraffe spacetimes is
not yet clear (see Figure 10.8).
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(LG) (Gir)

Figure 10.8: (Observation) is false for any collection & such that (Gir) C Z.
This includes the collections (PR), (F'P), and (Gir) itself. (Observation) is
true for (Her) while the case for (LG) is open.

10.7 Conclusion

Stepping back, we see (Observation) is false relative to every spacetime prop-
erty & C 7/ under consideration save two: there is an open question with
respect to the collection (GH) of all globally hyperbolic spacetimes and (Ob-
servation) is true for the collection (Her) of all Heraclitus spacetimes. But
we also emphasize again that we are working with an extremely weak sense
of (Observation) which, if satisfied by a collection &, only shows that some —
not all — spacetimes in & avoid a cosmic determination problem with respect
to Y-maximality. We used this formulation so that the negative results as
strong as possible. Had we instead formulated the condition (Observation) in
the universally quantified way, then even the collections of (GH) and (Her)
would fail to satisfy it. Thus, there is a robust sense in which there is a
cosmic underdetermination problem with respect to &?-maximality for every
collection & C % under consideration.
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10.8 Appendix: Heraclitus Maximality

We now explore a curious tension between the Heraclitus asymmetry prop-
erty, the dogma of spacetime maximality, and (some forms of) cosmic under-
determination. The tension will be captured by a no-go result that is quite
general in the sense that it is not vulnerable to the subcollection problem.
A corollary to the result is this: if the dogma of spacetime maximality were
to hold with respect to the Heraclitus asymmetry property, then spacetimes
are observationally indistinguishable if and only if they are isometric.

We go on to disentangle several different types of underdetermination
and show that Heraclitus-maximality is consistent with some of them. We
then consider a type of second-order “meta-maximality” which requires col-
lections of spacetimes to be “as large as they can be” with respect to some
second-order property of collections of spacetimes. We apply Zorn’s lemma
at this higher level to show the existence of various “maximal” collections of
spacetimes.

We begin with a statement that captures a relativized form of the dogma
of spacetime maximality. Consider the following (second-order) condition
on a spacetime property & C % .

(Maximality) Each &2-spacetime is &-maximal. ]

It is immediate that any collection & C % that satisfies (Maximality)
must also satisfy (Existence). And as long as the collection &2 contains a
spacetime without god point, if it satisfies (Maximality), then it must also
satisfy (Observation). So we see a clear sense in which our exploration of the
(Existence) and (Observation) conditions with respect to various reduced
possibility spaces helps to assess the status of relativized dogma; if these
conditions fail for a given possibility space, then effectively the relativized
dogma fails. We now pivot to consider what follows if the dogma of space-
time maximality is simply assumed to hold for various collections. As we
have noted, this is standard practice in the case of the collection %. We
will see that it is also fruitful to consider the strength and character of the
(Maximality) condition with respect to other collections as well.

Using the notion of observationally indistinguishable spacetimes, one
can keep track of universal and existential forms of general underdetermi-
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nation (as opposed to underdetermination with respect to the maximality
condition). Consider the following (second-order) conditions on a spacetime
property & C % .

(V Underdetermination) Each &7-spacetime is observationally indistin-
guishable from some other non-isometric &-spacetime.

(3 Underdetermination) Some Z-spacetime is observationally indis-
tinguishable from some other non-isometric &?-spacetime.

We see that any non-empty collection &2 that satisfies (V Underdeter-
mination) must satisfy (3 Underdetermination). How are these underde-
termination conditions related to the (Observation) condition we have been
considering? Suppose that (Observation) is satisfied by some collection Z.
Then there is some Z-spacetime (M, g) without god point that is only obser-
vationally indistinguishable from Z?-spacetimes that are &?-maximal. But
just because observers in (M, g) can determine that their spacetime is Z-
maximal does not mean that they are in a position to determine that they
inhabit a spacetime isometric to (M, g). For example, consider the collection
& consisting of two spacetimes: de Sitter and its “unrolled” variant (recall
Figure 10.1). This collection & satisfies (Observation) and yet it also satis-
fies (V Underdetermination) and hence (3 Underdetermination). Observers
cannot determine which of the two spacetimes they inhabit and yet they can
determine that they inhabit a &Z-maximal spacetime since all &?-spacetimes
are &-maximal.

We can now state the no-go result (Manchak and Barrett, 2024): any non-
empty subcollection &2 C (Her) of Heraclitus spacetimes cannot satisfy both
(Maximality) and (3 Underdetermination). As a corollary it follows that any
such subcollection cannot satisfy both (Maximality) and (V Underdetermi-
nation). So we see that both types of cosmic underdetermination vanish if
the relativized dogma holds in any reduced possibility space of Heraclitus
spacetime. Let’s consider one concrete instantiation of the result.

One can verify that the collection & C (Her) of all Heraclitus-maximal
spacetimes must satisfy (Maximality). In other words, each Heraclitus-
maximal spacetime is also a (Heraclitus-maximal)-maximal spacetime. To
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see this, suppose & fails to satisfy (Maximality). Then there is a -
spacetime (M, g) that can be properly extended by a Z-spacetime (N, h).
Since both spacetimes are in &2, they must both be in (Her). Since (N, h)
properly extends (M, g) and both spacetimes are Heraclitus, (M, g) cannot
be Heraclitus-maximal. So (M, g) is not in #2: a contradiction. So we now
have one instantiation of the result: the collection of all Heraclitus-maximal
spacetimes (which exists) renders both (3 Underdetermination) and (3 Un-
derdetermination) false.

We now emphasize that the tension captured here is quite general in the
sense that underdetermination is inconsistent with respect to any subcollec-
tion of (Her) that satisfies (Maximality). We have just seen that collection of
Heraclitus-maximal spacetimes is one such collection. One can easily verify
that any of its subcollections also satisfies (Maximality). But there are many
others as well.

Consider any Heraclitus spacetime (M, g) and let N be any connected
proper subset of M. The spacetime (N, h) is therefore Heraclitus-extendible.
But if & = {(N,g)} then (because Heraclitus spacetimes cannot extend
themselves) we see that (N,g) is &-maximal. So & is a subcollection of
Heraclitus spacetimes that satisfies (Maximality). Thus, the no-go result
applies which requires that & renders both underdetermination conditions
false. Of course, it is not surprising that there is no underdetermination
problem given that &2 is a singleton collection. But we will see in a moment
a sense in which any collection that satisfies (Maximality) — including any
singleton collection — can be “extended” so as to be “as large as it can be”
with respect to the (Maximality) property. For now, the point is simply to
highlight that the no-go result is not vulnerable to the subcollection problem.

So far, we have considered types of cosmic underdetermination connected
to a particular definition of observationally indistinguishable spacetimes.
This notion seems to be a “straightforward rendering of conditions under
which observers could not determine the spatio-temporal structure of the
universe” (Malament, 1977b, p. 69). But although the conditions specified
in the definition seem to be sufficient for underdetermination, they do
not seem to be necessary. If a spacetime (M, g) has no non-isomorphic
observationally indistinguishable counterpart spacetime, then there is a
sense in which the collective information that all individuals in the spacetime
have together is sufficient to determine which world they inhabit, but that
determination may be beyond the observational reach of any one individual
in the spacetime. In other words, there is no spacetime event in which all
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individuals can bring their collective information together. This suggests
a weaker notion of cosmic underdetermination that better captures that
epistemological situation of the individual observer (Butterfield, 2014,
p. 60). Consider the following (second-order) conditions on a spacetime
property & C % .

(V Underdetermination®) For each &-spacetime (M, g) and each event
p € M, there is a non-isometric &?-spacetime (N, h) with event ¢ € N
such that I~ (p) and I~ (q) are isometric.

(3 Underdetermination®) For some &-spacetime (M, ¢) and each event
p € M, there is a non-isometric &?-spacetime (N, h) with event ¢ € N
such that I~ (p) and I~ (q) are isometric.

It is immediate that any non-empty collection & that satisfies (V Un-
derdetermination™) must satisfy (3 Underdetermination®). We also see that
each starred condition is implied by its non-starred analogue. Now we show
that the implications do not run in the other direction. Indeed, we will show
something much stronger: both starred conditions are consistent with col-
lections of Heraclitus spacetimes that satisfy (Maximality). In other words,
there is no analogous no-go result that captures a tension between the Her-
aclitus asymmetry property, the dogma of spacetime maximality, and the
starred (weaker) forms of cosmic underdetermination.

To see how this can be, consider again de Sitter spacetime. As we have
seen, each individual observer in this spacetime has observational horizons in
the sense that she will never “see” some regions of spacetime. The de Sitter
model is highly symmetric on a global, matter-averaged scale. But one can
imagine a spacetimes with observational horizons similar to de Sitter which
are also Heraclitus at a fine-grained scale. One can show that there are
collections of such spacetimes that also satisfy the (Maximality) condition
(Manchak and Barrett, 2024). We now turn to an example collection.

We have already constructed a Heraclitus spacetime that is conformal to
a portion of Minkowski spacetime (recall Figure 7.8). So the causal struc-
ture of such a spacetime is, at least locally, the same as that of Minkowski
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spacetime. This fact allows us to construct a spacetime from a small portion
of Minkowski spacetime and then infer the existence of a Heraclitus space-
time with an identical causal structure. Consider two-dimensional Minkowski
spacetime (M, n) in (t,z) coordinates. For each i = 1,2,3,4, let S; be the
t > 0 region of the timelike past of the point (2,27). Let (N,n) be the space-
time consisting of the union of the four S; regions (see Figure 10.9). It is
important to note that for any ¢ = 1,...,4 any event p € S; is such that
I=(p) C S;. So there is a sense in which the this spacetime has observational
horizons similar to those of de Sitter spacetime.

Figure 10.9: The spacetime (N, 7) is the union of the regions S, ...., Sy in
two-dimensional Minkowski spacetime.

Now let (N, h) be a conformally related Heraclitus spacetime with the
same causal structure and, for each for ¢ = 1,2,3,4, let p; be the event
(1,29). For each i = 1,2,3,4, let the spacetime (N;, h;) be a portion of
(N, h) where two of the p; points have been removed: Ny = N — {p1,p2},
Ny = N — {ps,ps}, N3 = N — {p2,ps}, and Ny = N — {p1,pa} (see Fig-
ure 10.10). We let & = {(Ny, ), ..., (N4, hg)} which is, by construction,
a subcollection of Heraclitus spacetimes. One can now verify that each &2-
spacetime is #-maximal. Consider (Nj, h;) for example. This spacetime
cannot be isometrically embedded into (Na, hy) or (N3, hg) since the event
ps € Np has been removed in those spacetimes. Similarly, (N, hy) cannot
be isometrically embedded into (N, h4) since the event p, € N; has been re-
moved in that spacetime. So (Ny, hy) is Z-maximal. The cases for the other
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spacetimes are handled in an analogous way. So & satisfies the (Maximality)
condition.

We also see that the (V Underdetermination®) condition is satisfied as
well. Consider again the spacetime (/NVq, hy) and any event p € N;. Since p
is in some S;, we know that I~ (p) C S;. If p is in the S; region of Nj, then
I~ (p) has an isometric counterpart in the S} region of Ny; if p is in the Sy
region of Ny, then I~ (p) has an isometric counterpart in the Sy region of Nj;
if p is in the S5 region of N, then I~ (p) has an isometric counterpart in the
Ss region of Ny; if p is in the Sy region of Ny, then I~ (p) has an isometric
counterpart in the Sy region of N3. The cases for the other spacetimes in &
are handled in an analogous way. So the (V Underdetermination™) condition
is satisfied by Z2. It follows that the (3 Underdetermination®) is also satisfied
by &. Thus, we see that that the general tension between the Heraclitus
asymmetry property, the dogma of spacetime maximality, and the unstarred
underdetermination conditions does not carry over to the weaker starred
variants of the latter conditions.

Figure 10.10: The regions Ny, ..., N4 constructed by removing points from V.

One may worry that the collection &2 just constructed is artificially small
in some sense. But we now introduce a general procedure for “extending”
collections via Zorn’s lemma so as to be “maximal” with respect to second-
order properties of interest. In the present case, we will build a maximal
subcollection of Heraclitus spacetimes that satisfies both the (Maximality)
and the (V Underdetermination®™) conditions. We start by considering
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the power collection P(%) — the collection of all subcollections of % .
Any second-order property of collections — e.g. the property of satisfying
(Maximality) — corresponds to a collection R C P(%) of collections of
spacetimes with the property. It is easy to see that the relation C counts
as a partial order on the P(%). For any collections &, 2 € P(%), we
say that 2 is a (not necessarily proper) extension of & if & C 2. For
any second-order property R C P(% ), we say that a collection & € R
is R-maximal if it has no proper extension in R. Consider the following
condition on a collection R C P(%) of collections of spacetimes.

[Existence] Any collection of spacetimes in R has an R-maximal ex-
tension.

Here, we have used square brackets to distinguish the third order [Exis-
tence] condition on collections of collections of spacetimes from the second-
order analogue (Existence) condition on collections of spacetimes. A first-
order condition concerns spacetime itself, e.g. the chronology condition.
First-order conditions give rise to a natural collection of spacetimes: the
collection of all spacetimes satisfying the condition. We have often used
parentheses and italics when naming such collections, e.g. the collection
(Chron) C % of all chronology satisfying spacetimes. In an analogous way, a
second-order condition like (Existence) gives rise to a natural collection of col-
lections of spacetimes: the collection of all collections satisfying the second-
order condition. We will, in the analogous way, use square brackets and italics
when naming such collections of collections. For example, let [Ez] C P(%)
be the collection of all collections of spacetimes satisfying the second-order
(Existence) condition. In a similar way, define [Eq|, [Ob], [Maz] C P(%) to
be, respectively, the collection of all collections that satisfy the conditions
(Equivalence), (Observation), and (Maximality).

It is immediate that [Fq] and [Ex] satisfy the third order [Existence]
condition. Consider [Ex] for example. Any collection & € [Exz] will have an
[Ez]-maximal extension — namely the collection % of all spacetimes. This
follows since % satisfies (Existence) (recall the foundational (Geroch, 1970b)
result) and % counts as an extension to every collection in & € [Ez]| since
P C U . So [Ex| satisfies the third order [Existence| condition. The case for
[Eq] is similar: since % trivially satisfies (Equivalence) and this collection
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counts as an [E¢|-maximal extension to every collection in & € [Eq].

A more interesting situation arises when we consider [Ob] and [Max].
Consider the latter. Since % fails to satisfy (Maximality), it cannot be a
[Maz]-maximal extension to a given member of [Maz]. What about the
union J[Mazx] C %7 It is also too big to satisfy (Maximality) and hence
cannot be an [Maz]-maximal extension to a given member of [Max]. To see
this, consider any Heraclitus spacetime (M, g) and any proper, connected,
open set O C M. The singleton collections {(M,g)} and {(O,g)} both
satisfy (Maximality) since the spacetimes (M, g) and (O, g) are Heraclitus
and therefore cannot extend themselves. So these singleton collections are
members of [Mazx] and thus (M, g), (O, g) € |J[Max]. But since (O, g) can
be extended by (M, g), we see that (O, g) cannot be | J[Max]-maximal. So
U[Mazx] does not satisfy (Maximality).

To get around the problem, Zorn’s lemma can be invoked. Consider any
collection 7~ C [Maz] totally ordered by the C relation. We see that the union
U7 C % is an upper bound for 7. This union also satisfies (Maximality). If
it didn’t, there would be spacetimes (M, g), (N, h) € |JT such that one is a
proper extension of the other. But this cannot be since it means that (M, g)
and (N, h) can both be found in some collection in 7" and all such collections
satisfy (Maximality). From Zorn’s lemma, it now follows that any collection
in [Max] has an [Max]-maximal extension, i.e. it follows that [Max] satisfies
[Existence].

This type of higher level Zorn’s lemma argument can be used to show
that [Ob] also satisfies [Existence]. Another similar example is the follow-
ing. Let R C P(%) be the collection of all subcollections of Heraclitus
spacetimes that satisfy both the (Maximality) condition and the (V Under-
determination®) condition. So the collection & = {(Ny, hy), ..., (Na, ..., hy)}
constructed above (recall Figure 10.10) counts as one member of R. It is
not difficult to verify that Zorn’s lemma can be used to show that R satisfies
[Existence]. A similar result holds where the (3 Underdetermination®) is con-
sidered instead of (V Underdetermination®). Thus, we have assurance that
the collection & consisting of four elements can be extended to a collection
that is “as large as it can be” with respect to the second-order properties
of interest. More generally, we find here a useful tool for the construction
of maximal possibility spaces (satisfying certain desiderata) given an initial
collection of spacetimes.



Chapter 11

Stability

11.1 Introduction

Within the context of general relativity, the “stability” of various spacetime
properties has been one important focus of study. Indeed, it has been argued
by Hawking and Ellis (1973, p. 197) that “in order to be physically signifi-
cant, a property of space-time ought to have some form of stability, that is
to say, it should be a property of ‘nearby’ space-times.” Geroch (1971a, p.
70) also claims: “It is a general feature of the description of physical systems
by mathematics that only conclusions which are stable, in an appropriate
sense, are of physical interest.” He traces this idea all the way back to Pierre
Duhem (1906).

In this chapter, we will investigate the question of whether the property of
spacetime maximality (defined relative to various reduced possibility spaces)
is stable in an appropriate sense. We will ultimately find that (unlike many
other properties of interest) virtually nothing is known about the (in)stability
properties of spacetime maximality. This is partly due to technical barriers in
defining “stability” in a general way. We consider a workaround definition of
this notion and discuss some of its shortcomings. After reviewing some foun-
dational results concerning the stability of causal properties (Hawking, 1969;
Geroch, 1970a), we then turn to an investigation of various no-hole spacetime
properties to get a better grip on the situation for spacetime maximality. We
present a pair of surprising results that show that the properties of geodesic
completeness and local maximality are unstable when the background pos-
sibility space is % (Williams, 1984; Beem et al., 1996). This suggests that
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perhaps there are similar instability results lurking for spacetime maximality
as well. Along these lines, we close by showing that spacetime maximality is
unstable for some collections of globally hyperbolic vacuum solutions (Man-
chak, 2023). This highlights a vexing subcollection problem with respect to
the stability of spacetime maximality that is guaranteed to persist no matter
what isolated stability results can secured in the future.

11.2 What Is Stability?

In order to make the notion of “stability” precise, ideally one would like to put
a suitable topology on the collection % of all spacetimes. One could then say
that a spacetime property & C % is “stable” if each spacetime (M, g) € &
has a neighborhood & C % (i.e. a collection of “nearby” spacetimes) such
that 0 C & (see Figure 11.1). Another way to put it: a property & C %
is “stable” if & is an open set in % .

Figure 11.1: A property & C % is stable (relative to a suitable topology on
% ) if each spacetime (M, g) € & has a neighborhood & C Z.

Unfortunately, no suitable topology on the collection % has yet been
found. Essentially, the problem comes down to technical difficulties in cap-
turing the notion “nearby” spacetimes when the underlying spacetime man-
ifolds are non-diffeomorphic. As a workaround, various topologies have been
defined on the collection £ (M) of all spacetimes with the same underlying



CHAPTER 11. STABILITY 185

manifold M. By far, the most commonly used topologies of this kind are
the “C* fine” topologies which are sometimes called the “C* open” or “C*
Whitney” topologies (Lerner, 1973; Hawking and Ellis, 1973).

Fix a manifold M that admits a Lorentzian metric and consider the col-
lection .Z (M) of spacetimes with underlying manifold M. Let (M, g) and
(M,g") be spacetimes. At each point p € M, one would like to calculate
a “distance” between the metrics g and ¢’ (the £ = 0 case) and their kth
“derivatives” (for k = 1,2,3,...). But this idea runs into a basic problem
(Geroch, 1971a, pp. 70-71):

We have an intuitive idea of what it means to say that “two
metrics arc close,” but to make this idea precise turns out to
be surprisingly difficult. For example, it would not do simply
to compare the components of the metrics in some coordinate
system, for the difference between the components can, in gen-
eral, be made either arbitrarily large or arbitrarily small by an
appropriate (or inappropriate) choice of coordinates.

One can find a way around this problem by choosing a Riemannian metric
h on M to serve as a standard of comparison. This allows one to define a
natural distance d(g,¢’, h, k) between the kth derivatives of the metrics g
and ¢ relative to the Riemannian metric A and its associated derivative
operator. (Because we have not built up the machinery to express derivative
operators and arbitrary tensors in a rigorous way, we cannot give a precise
formulation of this distance function here. See Fletcher (2016) for a nice
presentation of the details.)

Of course, one does not want the topology on the collection £ (M) to
depend on the choice of Riemannian metric h. For any integer £ > 0 con-
sider basis elements of the form By(g, h,€) = {(M,q’) : sup,,[d(g, 4, h,0)] <
€, ...,sup,d(g, g, h, k)] < €} where g and h range over all Lorentzian and
Riemannian metrics on M respectively and e ranges over all positive real
numbers. A basis element can be thought of as an “open ball” of radius e
centered at the point (M, g) relative to h and k. One can then define the C*
fine topology on .Z (M) to be the collection of all subcollections of .Z (M)
which can be expressed as a union of the basis elements By(g, h,€).

Any C* fine topology on .Z(M) induces a natural subspace topology
on Z(M)N & for any collection & C % . This allows us to formulate a
notion of stability relative to a choice of background possibility space. For
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all non-empty 2 C & C %, we say the property 2 is C* stable relative
to the collection &2 if each 2-spacetime (M, g) has a C* fine neighborhood
O C L(M)Nn & such that ¢ C 2. It is not difficult to verify that, for
all 2 C & C %, if property 2 is C¥ stable relative to the collection 22,
then 2 is C! stable relative to & for all | > k. This follows since, for any
9-spacetime, the collection of C* fine neighborhoods in £ (M) N 2 is a
subcollection of the C! fine neighborhoods in £ (M) N 2.

Figure 11.2: There is a C° open neighborhood & C £ (M) of the spacetime
A(1) = (M, g) that contains no other spacetime on the curve A.

It has been argued that the C* fine topologies on .Z (M) are too “fine” is
the sense that they permit too many open collections. Consider the following
example (Geroch, 1971a, p. 71). Let (M,g) be any spacetime for which
M is non-compact. Let A : Rt — Z(M) be the curve defined such that
A(s) = (M, sg) for all s € RT. One finds that this curve is discontinuous at
every point when .Z (M) carries any of the C* fine topologies. To see why
this must be, consider the point A(1) = (M, g) for example. Since M is non-
compact, there is a Riemannian metric h on M whose components approach
infinity sufficiently rapidly so that sup,,[d(A(1), A(s), h,0)] = oo for all s # 1.
Thus, any C° open neighborhood & C £ (M) of A(1) = (M, g) that is built
using such a Riemannian metric h will be too small to contain any of the
spacetimes \(s) for s # 1 (see Figure 11.2). We now see that continuity fails
at s = 1 since the preimage A\~![&] of such an open neighborhood is just
{1} which is not an open set in R*. Since the image of the curve A is a
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subcollection of .Z (M), one can also consider the subspace topologies on the
image of A induced from the C* fine topologies on .Z(M). One finds that
all such induced topologies are discrete (i.e. maximally fine). This result is
especially troubling when one considers a spacetime (M, g) that is isometric
to (M, sg) for all s € Rt e.g. when (M, g) is Minkowski spacetime.

The example calls into question the physical significance of the C* fine
topologies. They seem to permit too many open collections to suitably cap-
ture, once and for all, what it means for one spacetime to be “close” to
another. But as we will see, exploring these topologies can nonetheless shed
light on the stability properties of various spacetime properties of interest.
Indeed, the fact that the C* fine topologies have too many open sets means
that any instability results that follow are quite significant. This is because
the finer the topology, the harder it is to secure such instability results.

11.3 Stable Causality

Early investigations of the C* fine topologies concerned causal properties.
One can show that a spacetime (M, g) admits a global time function if and
only if it has a C? fine neighborhood & C £ (M) such that & C (Chron),
i.e. each spacetime in the neighborhood & contains no CTCs (Hawking,
1969; Hawking and Ellis, 1973). So we see that the collection (Stab) C %
of all stably causal spacetimes (defined as those with a global time function)
is appropriately named. As one would expect, it is also the case that the
collection (Stab) is C* stable relative to the collection % for all k > 0 (Beem
et al., 1996). On the other hand, we see that any chronological spacetime
(M, g) that does not admit a global time function will fail to have a C° fine
neighborhood & C £ (M) such that & C (Chron) (see Figure 11.3).

It follows that the collection (Chron) of all chronological spacetimes is
not C° stable relative to the collection %/. Analogous arguments give rise
to similar instability results for the collections (Caus), (Dist), (Str) C %
of all spacetimes satisfying, respectively, the causality, distinguishing, and
strong causality conditions. This follows easily since (Caus), (Dist), (Str) C
(Chron). In contrast, one finds that the collection (GH) of globally hy-
perbolic spacetimes is C* stable relative to the collection % for all k& > 0
(Geroch, 1970a; Beem et al., 1996).
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Figure 11.3: Any chronological spacetime (M, g) that is not stably causal
will be such that each of its CY fine neighborhoods & C £ (M) contain
spacetimes that violate chronology.

11.4 Subcollection Stability

It is important to appreciate that the stability results just given concern-
ing the collections (Stab) and (GH) are quite robust in the sense that they
are not vulnerable to the subcollection problem. Although they are formu-
lated relative to the collection %, analogous results also hold relative to any
reduced possibility space &2 C % . Consider, for example, the collection
(Vac) C % of vacuum solutions. Because (GH) is C* stable relative to %,
we know that each globally hyperbolic spacetime (M, g) has a C* fine neigh-
borhood ¢ C Z(M) such that & C (GH). But this means that if (M, g) is
also a vacuum solution, then it has a C* fine neighborhood .4 = &' N (Vac)
in the subspace topology of .Z(M)N(Vac) such that A4 C (GH) (see Figure
11.4). So the property (GH)N (Vac) is C* stable for all k > 0 relative to the
collection (Vac) of vacuum solutions. More generally, we have the following
simple statement concerning the stability of subcollections (Manchak 2023):
For all 2 C & C % and for all integers k > 0, if the property 2 is C*
stable relative to &2, then for any subcollection Z C &, the property 2N%Z
is C* stable relative to Z.

Naturally, one wonders about the stability of spacetime maximality
relative to various reduced possibility spaces. Consider the following
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L(M)

Figure 11.4: Because the globally hyperbolic vacuum solution (M, g) has a
C* fine neighborhood ¢ C Z(M) such that ¢ C (GH), we know that it
also has a C* fine neighborhood .4 = & N (Vac) in the subspace topology
of Z(M)nN (Vac) such that A C (GH).

(second-order) condition on a spacetime property & C % .

(Stability) The collection of Z-maximal spacetimes is C* stable for
some k > 0 relative to .

Note that the condition is formulated so as to be relatively easy to satisfy.
A property need only be C* stable for some k > 0. As we have seen, even the
C° fine topology is already quite fine making C° stability results a relatively
low bar. So requiring only C* stability for some k > 0 or other lowers the
bar even further. Not only is it unknown whether the standard collection of
spacetimes % satisfies (Stability), there are also question marks associated
with each of the (sixteen) local, causal, and asymmetry properties we have
been concerning. We also emphasize that even if (Stability) winds up being
true for some collection & C %/, there is no assurance that it will also be
true for arbitrary subcollections #Z C . Thus, the situation differs signifi-
cantly from the case concerning the stability of the arbitrary subcollections
of (Stab) and (GH) mentioned above. Such results followed from a more
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general statement concerning the stability of subcollections of stable proper-
ties. In light of this general statement, how can the (Stability) condition be
vulnerable to the subcollection problem?

Suppose that the collection % satisfies (Stability). So the collection
(Mazx) of % -maximal spacetimes is C* stable for some k > 0 relative to
. Now let & C % be an arbitrary subcollection. It follows from the
general statement concerning the stability of subcollections that &2 N (Max)
is C* stable for some k > 0 relative to &2. But this does not mean that
(Stability) is true for & since & N (Mazx) and the collection of &-maximal
spacetimes are, in general, different collections. We see that it is the modal
character of spacetime maximality that makes any stability results involv-
ing this property vulnerable to the subcollection problem. We shall return
to this point a bit later on with an explicit example. For now, we will we
will investigate the stability of various no-hole spacetime properties to get a
better grip on the situation for spacetime maximality.

11.5 Geodesic Completeness

We start by considering the collection (GC) C % of geodesically complete
spacetimes. In the first edition of Global Lorentzian Geometry by Beem and
Ehrlich (1981), it was claimed that the collection (GC) was C* stable relative
to % for all k > 2. Then came a dramatic turn of events as later recounted
by Ehrlich (2006, p. 14):

That is how matters stood until 1985, when a copy of P.
Williams” Ph.D. thesis, “Completeness and its stability on man-
ifolds with connection,” was received unexpectedly in the mail.
This article revealed that there was a significant gap in the pre-
vious arguments for the C*-stability of geodesic completeness
in Lor(M), and that in fact neither geodesic completeness nor
geodesic incompleteness was C*-stable...From a certain perspec-
tive, a good deal of research in global space-time geometry during
the next decade can be viewed as trying to understand the more
complicated geometry of the space of geodesics, once it was real-
ized that [the claim]| failed to be valid.

Williams (1984) was able to show that the collection (C'G) is not C* stable
relative to % for all k > 0. The result is quite surprising given how fine the
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C* fine topologies are. It also contrasts with the Riemannian case where
geodesic completeness is C* stable for all k¥ < 0 (Beem and Ehrlich, 1987).
Williams proved his remarkable result with a relatively simple example. Start
with the manifold M =R x S in (z, ) coordinates. For each integer ¢ > 1,
consider the spacetime (M, g;) where the metric g; is defined as follows: at
each point (x,0) € M and for any vectors v = [v,,vy] and w = [w,, wy| at
the point, let g;(v, w) = v,wy + vow, + fi(x)vewy where f;(x) = sin(x)/i.

One can get a grip on these spacetimes by considering the behavior of
light. Since there is no v,w, term, it is immediate that the vector [1, 0] is null
at every point. So one family of null geodesics run along the cylinder and are
complete. We also see that the vector [0, 1] is spacelike for 7 < x < 0, null
for x = —m, 0,7 and timelike for 0 < x < w. This means that from © = —7
to x = m, the light cones close up, open up, and then close up again with this
pattern repeating with period 27. In this, way, the spacetime is essentially
a periodic version of Misner spacetime (recall Figure 6.9). Indeed, just as
in that spacetime, there are incomplete null geodesics that spiral around the
cylinder that approach but never reach z = 0 (see Figure 11.5).

4

:'I X=-T1 X=T1 :'I
i \ .:'
Figure 11.5: From x = —7 to x = 7, the light cones close up, open up, and

then close up again with this pattern repeating with period 2w. There is an
incomplete null geodesic A that spirals around the cylinder approaching but
never reaching x = 0.

The spacetimes (M, g;) are such that the third term in g; (the one with
the function f;(z)) approaches zero as the integer i approaches infinity. So
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the effect of the opening and closing of the light cones becomes less and less
pronounced as i increases. Let (M, g) be the spacetime in which the effect
completely vanishes, i.e. let g be the metric on M in which the third term of
gi is dropped completely. This is just two-dimensional Minkwoski spacetime
that has been “rolled up” along one null direction. We now “compactify” the
spacetimes (M, g) and (M, g;). Let N be the manifold M where each point
(x,0) is identified with the point (z + 27n, #) for all integers n.

Because of the periodicity of the metrics ¢ and g; on M, one can define
the spacetimes (N, g) and (N, g;) in the natural way. By construction, (N, g)
is geodesically complete while (N, g;) is geodesically incomplete for all ¢ > 1.
Let h be any Riemannian metric on N. Due to the compactness of N, the
quantity supyld, (g, g:, h,0)] is bounded and approaches zero as i — oo. It
follows that every C° fine neighborhood & C Z(N) of (N, g) will contain, for
sufficiently large i, the geodesically incomplete spacetime (N, g;) (see Figure
11.6). Thus, such a neighborhood & cannot be a subcollection of (GC). In
other words, the collection (C'G) is not C° stable relative to %. Extending
the argument shows that analogous results hold for all £ > 0.

L(N)

LIN)N(GC)

Figure 11.6: Every C° fine neighborhood & C Z(N) of (N, g) will contain
geodesically incomplete spacetimes (N, g;) for sufficiently large 1.

The example given by Williams (1984) sparked a search for sufficient
conditions to ensure the C* stability of geodesic completeness. Immediately,
one sees that local conditions are of no help in this regard. The spacetimes
(N, g) and (N, g;) are flat and therefore vacuum solutions. So it follows that
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the collection (Vac) N (GC) is not C* stable relative to (Vac) for all k > 0.
Excluding two-dimensional spacetimes will not help secure a stability result
either since the example can be generalized to any higher dimension. Looking
to causal conditions turns out to be more promising. First, we note that the
Williams (1984) instability result can be generalized somewhat (Beem and
Ehrlich, 1987, p. 328). Let (M, g) be any geodesically complete spacetime
with a closed null geodesic. Then for each k > 0, every C* fine neighborhood
of (M, g) will contain a geodesically incomplete spacetime. So there is a sense
in which the instability of geodesic completeness is a necessary feature of any
collection containing certain causally misbehaved spacetimes.

This general result suggests that perhaps restricting attention to some
causal property of interest be sufficient for the C* stability of geodesic com-
pleteness. This turns out to be almost true (Beem et al., 1996, p. 270). If
(M, g) is a geodesically complete, globally hyperbolic spacetime, there will
be a C!' neighborhood & C £ (M) of (M, g) such that each spacetime in
the neighborhood & is timelike and null geodesically complete. This result
is typical of much the work carried out since the Williams (1984) example.
Even under extremely strong assumptions (e.g. global hyperbolically) the
stability statement is not quite what one would hope for (e.g. the C° case
is not settled and the C' neighborhood ¢ may nonetheless contain models
with incomplete spacelike geodesics).

11.6 Local Maximality

One might think that that instability results concerning geodesic complete-
ness are not representative of the stability properties of other no-hole con-
ditions such as spacetime maximality. After all, geodesic completeness it is
an incredibly strong condition. And given the singularity theorems, there
is reason to believe that geodesically complete spacetimes are relatively rare
among “physically reasonable” reduced possibility spaces. But it turns out
that some weaker no-hole conditions also fail to be stable. Indeed, one can
use the Williams (1984) example to show that the collection (LM) of lo-
cally maximal spacetimes also fails to be C* stable relative to % for any
k > 0. The argument follows the one given for a similar result with a slightly
different definition of local maximality (Manchak, 2018).

We begin by recalling that (GC) C (LM). So we know that the geodesi-
cally complete spacetime (N, g) is locally maximal. But for each integer
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i > 1, one can show that the spacetime (N, g;) is locally extendible. To see
this, consider the —m < x < 0 region O C N of the spacetime (N, g;). As we
have seen, this open set will contain an incomplete null geodesic A that winds
around the manifold N ever approaching but never reaching x = 0 (recall
Figure 11.5). We can extend this null geodesic in the other direction as well
so as to be maximal. One finds that it also winds around the manifold ever
approaching but never reaching x = —m. Now let (N, h;) be the “reverse
twisted” isometric variant of the spacetime (N, g;) in which the light cones
tip in the opposite direction. One can find an isometry f : O — O from
(0, g;) to (O, h;) in which the null geodesic f o A is “unwound” (see Figure
11.7). This geodesic can be then be extended across both x = —m and z = 0
in the spacetime (N, h;) showing that (N, g;) is locally extendible. So for
each k > 0, any C* neighborhood of the locally maximal (N, g) will contain
some locally extendible spacetime (NN, g;) for sufficiently large i. Thus, the
collection (LM) fails to be C* stable relative to % for all k > 0.

° o[

Figure 11.7: The isometry f is such that the null geodesic fo A is “unwound.”

We have just seen how the Williams (1984) example can be used to show
the instability of the no-hole spacetime properties of geodesic completeness
and local maximality. But because of the compactness of the spacetimes
(N,g) and (N, g;), the instability results do not carry over to the weaker
no-hole condition of spacetime maximality. This follows since any compact
spacetime must be %/-maximal (O'Neill, 1983, p. 155). So because % -
maximality implies &Z-maximality for any collection & C %, we find that
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any collection &2 of compact spacetimes is a collection of &Z-maximal space-
times. So (Stability) must be true for such a collection 2.

What else is known concerning the (in)stability of spacetime maximal-
ity? Very little. Recall the limited result mentioned above: if (M, g) is
a geodesically complete, globally hyperbolic spacetime, there will be a C*
neighborhood ¢ C £ (M) of (M, g) such that each spacetime in the neigh-
borhood &' is timelike and null geodesically complete. One can show that any
spacetime will be %/-maximal if it is timelike, null, or spacelike geodesically
complete (Beem et al., 1996, p. 220). Combining these two results, we see
that if (M, g) is a geodesically complete, globally hyperbolic spacetime, there
will be a C! neighborhood & C £ (M) of (M, g) such that each spacetime
in the neighborhood & is % -maximal (Beem et al., 1996, p. 270). It is
remarkable that this single statement seems to be only known positive result
in literature that speaks in favor of the stability of spacetime maximality.

11.7 Subcollection Problem

We close by highlighting a vexing subcollection problem with respect to the
(Stability) condition. Consider the collection (Vac) N (GH) of globally hy-
perbolic vacuum solutions. Such a collection contains only incredibly well-
behaved spacetimes — locally and globally. Indeed, (Vac) N (GH) is a sub-
collection of any of the local and causal properties we have been considering.
It is an open question whether (Vac) N (GH) satisfies (Stability). Even if
it does, physically unreasonable spacetimes still lurk within this collection.
Consider, for example, the ¢ < 0 region of Minkwoski spacetime in which
notches have been removed that spell out the word “Leibniz” in Morse code
(see Figure 11.8). Given the existence of such globally hyperbolic vacuum
solutions, one would like some assurance that (Stability) is true for any sub-
collection & C (Vac) N (GH). We now show the impossibility of such a
result (Manchak, 2023).

We start by constructing a collection &2 C (Vac) N (GH). Consider the
smooth bump function u : [—2,2] — R defined by u(t) = exp[1/(t* — 1)] for
—1 <t <1 and u(t) = 0 otherwise. For each integer ¢ > 1, we now define
a pair of functions f;, F; : [-2,2] — R. We let fi(t) = /1 —u(t)/i and we
let F;(t) be the result of integrating the function f;(x) from z =0to x =t
(see Figure 11.9). It will be useful later on to note the following: Fj(t) has a
smooth inverse for all 4, (1) ~ 0.88, and F;(2) = F1(1) +1 ~ 1.88.
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Figure 11.8: A globally hyperbolic vacuum solution in which the removed
notches spell out the word “Leibniz” in Morse code.

Now let the manifold M be the —2 < ¢t < 2 portion of the cylinder R x S
in (¢,0) coordinates. For each integer i > 1, let (M, g;) be the spacetime
where g; is defined as follows: at each point (¢,0) € M and for any vectors
v = [v, vp] and w = [wy, wy| at the point, let g;(v, w) = f2(t)vsws — vowy. Let
(M, g) be the spacetime where g;(v,w) = vyw; — vowy. Define P2 C % be
the collection consisting of the spacetimes (M, g) and (M, g;) for all ¢ > 1.
We claim that (i) & C (Vac) N (GH) and (ii) (Stability) is false for the
collection . We will argue for (i) and (ii) in turn.

To show that (i) holds, first note (M,g) € (Vac) N (GH) as it is just
the —2 < t < 2 portion of two-dimensional Minkowski spacetime “rolled
up” in the spacelike direction. What about the rest of the spacetimes in
the collection &7 It turns out that each (M, g;) is isometric to a globally
hyperbolic portion of (M, g) and hence in the collection (Vac) N (GH) as
well. Let’s verify this. For each i > 1, let (M;, g) be the —F;(2) <t < Fi(2)
portion of (M, g). Here, it is helpful to note that 1 < F;(2) < 2 for all i (recall
Fy(2) ~ 1.88) that and F;(2) approaches 2 as i — co. We now claim that for
each i > 1, the spacetime (M, g;) is isometric to the spacetime (M;, g). To see
this, just consider the isometry v; : M — M; defined by ;(t,0) = (F;(t),0).
When the metric g on M; is pulled back to the metric ¢/ (g) = g; on M, we
see that the light cones are stretched in the region —1 < ¢ < 1 so as to match
up with those of the metric g; on M (see Figure 11.10). Since each spacetime
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fi(t)
1 t
-2 2
Fa(t)

Figure 11.9: The functions fi(t) and Fi(t).

(M, g;) is isometric to (M;, g) (which is just a globally hyperbolic portion of
(M, g)) it follows easily that for each i, we have (M, g;) € (Vac) N (GH)

Seeo

Figure 11.10: The isometry ;. When the metric g on M; is pulled back
to the metric ¥j(g) = g1 on M, the light cones are stretched in the region
—1 <t <1 s0 as to match up with those of the metric g; on M. Recall that
Fi(1) =~ 0.88.

Now we show (ii) (Stability) is false for the collection &. Since each space-
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time (M, g;) is isometric to (M;, g) (which is proper sub-portion of (M, g))
we know that each (M, g;) is P-extendible. We also see that (M, g) is Z-
maximal since it cannot extend itself. Consider any Riemannian metric h on
M. Let N be the compact region of M where —1 <t < 1. By construction,
d(g,gi,h,0) = 0 at each point in M — N. On the compact region N region,
the quantity supy[d, (g, ¢, h, 0)] is bounded and approaches zero as i — occ.
It follows that every C° fine neighborhood & C Z(M) of the &-maximal
spacetime (M, g) will contain, for sufficiently large i, the &?-extendible space-
time (M, g;). So the collection {(M, g)} of Z-maximal spacetimes is not C°
stable relative to &2. So the collection & fails to satisfy the (Stability)
collection.

Because & C (Vac) N (GH), it is difficult to see how one might rule
out this collection as “physically unreasonable” without invoking an no-hole
condition of some kind. All such conditions are at least as strong as % -
maximality which, in turn, implies &-maximality. So invoking a no-hole
condition is tantamount to requiring &-maximality itself — the very property
under investigation.

11.8 Conclusion

Stepping back, we see that very few results are available concerning the sta-
bility of spacetime maximality. It is unknown if the relatively weak (Stability)
condition is satisfied by the collection % or by any of the standard reduced
possibility spaces & C % we have been considering. If the customary line is
correct that “in order to be physically significant, a property of space-time
ought to have some form of stability, that is to say, it should be a property
of ‘nearby’ space-times” (Hawking and Ellis, 1973, p. 197), then it is not at
all clear that spacetime maximality is a physically significant property.
Moreover, the few limited results we do have do not seem to support the
dogma of spacetime maximality. We first highlighted a surprising example
to due to Williams (1984) showing that the stronger no-hole property of
geodesic completeness is not stable relative to the collection 7. Next, we
used this example to show that the weaker no-hole property of local maxi-
mality is also unstable. Both results suggest that perhaps similar instability
results hold for even weaker spacetime maximality property as well. Indeed,
we have seen that some collections & C (Vac)N(GH) of globally hyperbolic
vacuum solutions fail to satisfy the (Stability) condition (Manchak, 2023).
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Such collections cannot be ruled out via the imposition of the usual local or
causal properties. And invoking a no-hole condition is tantamount to requir-
ing #-maximality itself — the very property under investigation. It would
seem that a disturbing subcollection problem with respect to the stability of
spacetime maximality will remain no matter what isolated stability results
can secured in the future.



Chapter 12

Determinism

12.1 Introduction

Here we consider the notion of “determinism” within the context of general
relativity. A celebrated result due to Choquet-Bruhat and Geroch (1969)
captures a sense in which determinism holds: any “initial data set” gives rise
to a unique (up to isometry) “development” spacetime. But we will empha-
size that the result goes through only after a crucial maximality assumption
is made concerning a particular dynamical form of spacetime maximality.
The uniqueness clause holds only if one limits attention to “maximal” devel-
opments. Moreover, this maximality assumption presupposes that the collec-
tion 7% is used as a background possibility space. We will draw attention to
the fact that analogues of the Choquet-Bruhat and Geroch (1969) statement
can be false relative to various reduced possibility spaces & C % . Indeed,
we will highlight another instance of the subcollection problem within this
context.

We then revisit the related cosmic censorship conjecture of Penrose
(1979). The conjecture presupposes two forms of spacetime maximality: the
dynamical form utilized in the Choquet-Bruhat and Geroch (1969) result
and another which ensures that the initial data set is “as large as it can be”
in the appropriate sense. The hope is that when attention is restricted to a
certain collections &2 C % of “physically reasonable” spacetimes, the two
forms of spacetime maximality secure a third form: £?-maximality itself.
We review an influential formulation of the cosmic censorship conjecture
due to Wald (1984) and articulate a generalized variant relative to a choice

200
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of background possibility space &2 C % . Some natural choices render
the conjecture either false or open. We also explore the prospect of using
asymmetry properties to rule out potential counterexamples to cosmic
censorship.  We close with a discussion concerning how the notions of
determinism and cosmic censorship considered here could be used to justify
the dogma of spacetime maximality from a dynamical perspective. We
emphasize the limitations of such an approach given the many questions
that remain unsettled as well as the lurking subcollection problem.

12.2 Maximal Developments

In what follows, we restrict our discussion of determinism to the context
of vacuum solutions where things are relatively simple; an analogous dis-
cussion could be carried out in the non-vacuum case. Let (M, g) be any
four-dimensional globally hyperbolic vacuum solution and let > be any three-
dimensional, connected spacelike surface in M. The metric g on M induces
a two part initial data set on S: a natural Riemannian spatial metric h as
well as an associated extrinsic curvature 7. The latter can be thought of a
type of “time derivative” of h and captures how the surface S is embedded in
M. Since the spacetime (M, g) is a vacuum solution, we know that h and 7
must satisfy the appropriate vacuum “constraint equations” on ¥ (see Wald
1984, p. 259). Let any triple (3, h, ) arising in this way be called an initial
data set.

We note that initial data sets are usually defined more directly, i.e. with-
out making reference to a background vacuum spacetime. But one can show
that the two definitions are equivalent since any initial data set (X3, h, )
defined in the more direct way always finds a home in some “development”
spacetime — a globally hyperbolic vacuum solution (M, g) with Cauchy S and
an appropriate diffeomorphism from ¥ to S. This “local” existence result
concerning developments is the starting point for the work of Choquet-Bruhat
and Geroch (1969, p. 331). Their main result shows that not only do devel-
opments exist for a given initial data set, but there always exists a “maximal”
such development that is unique up to isometry. The notion of maximality
considered presupposes the standard background possibility space . We
now work to make precise a generalized version of the Choquet-Bruhat and
Geroch (1969) statement that is relativized to a choice of arbitrary reduced
collection & C %/. This will allow us to explore the notion of determinism
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in a more nuanced way.

Figure 12.1: The diffeomorphism ¢ from the initial data surface % to the
Cauchy surface S in the &-development spacetime (M, g).

Let (3, h, m) be an initial data set. A &?-development of the initial data
set is a triple ((M, g), S, 1) where (M, g) is a globally hyperbolic vacuum &7-
spacetime, S C M is a Cauchy surface, and ¢ : ¥ — S is a diffeomorphism
such that 1. (h) and . () are, respectively, the spatial metric and extrinsic
curvature on S induced from the metric g (see Figure 12.1). For convenience,
we will often refer to the spacetime (M, g) as the &?-development rather than
the triple ((M, g), S, v).

Whether or not an initial value set (X, h, 7) has a Z?-development depends
on the collection &. For example, let (M, n) be four-dimensional Minkowski
spacetime in standard (¢, x,y, z) coordinates. Let ¥ be the ¢t = 0 region of M
and let (X, h, 7) be the initial data set induced from 7. One can show that if
a P-development ((N,g), S, ) exists for (X, h, 7), then (N, g) must be flat.
It follows that if we let & be the collection of Heraclitus spacetimes (none
of which are flat), then (X, h, 7) has no #-development. This makes sense.
The initial data (X, h, 7) inherited from Minkowski spacetime has non-trivial
symmetries in the sense that there is a diffeomorphism f : ¥ — ¥ such that
f«(h) = h and f.(7) = 7 where f is not the identity map. Thus, one would
not expect that this initial data with non-trivial symmetries could give rise to
a development spacetime with radical Heraclitus asymmetries. Indeed, the
example could be considered an instance of “Curie’s principle” which states:
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“When certain effects show a certain asymmetry, this asymmetry must be
found in the causes which gave rise to it” (Curie, 1894, p. 401). Additional
results concerning determinism and (a)symmetries will be explored as we go
along. (See also Earman (2007) for a nice discussion.)

Given the way we have set things up, any initial value set has a %-
development. But % -developments are highly non-unique. Consider again
the example initial data set (3, h, ) from above arising from Minkowski
spacetime (M,n). Of course, ((M,n),%,) is a %-development of of this
initial data where ¢ : 3 — ¥ is the identity map. But if N is the —k <t < k
region of M for any real number k£ > 0, then ((N,n),%,) is also a %-
development of (3, h, 7). This follows since the truncated spacetime (N, n)
is also a globally hyperbolic vacuum solution with Cauchy surface > (see
Figure 12.2).

_____________________________

Figure 12.2: The initial data set (X, h,7) has both Minkowski spacetime
(M,n) and the truncated spacetime (N,n) as % -developments.

Let ((M,g),S,v¢) and ((M',¢'),5",1¢") be &-developments of the same
initial data set (X, h, 7). We say that ((M’',¢’),S’,¢') is a (not necessarily
proper) Z-extension of ((M,g),S,v) if there is an isometric embedding
f: M — M’ such that the composed map 1)'~! o f o1 is the identity on ¥
(see Figure 12.3). Returning the Minkowski spacetime example from above,
we see that the % -development ((M,n),%,1) is a (proper) % -extension of
the % -development ((N,n),3,1). To see this, just let f : N — M be the



CHAPTER 12. DETERMINISM 204

natural inclusion map and note that, since 1) is the identity map on X, so is
the composed map =1 o f o).

MI
M f
Y(X)=S — >
) Y'(x)=S'
LlJl
LIJ (

Figure 12.3: If the isometric embedding f : M — M’ is such that the
composed map ¢! o f o) is the identity on ¥, then the £-development
(M',g") is a P-extension of the Z-development (M, g).

A P-development ((M’,g'),S’,¢') of the initial data set (X, h, ) is said
to be a #-maximal development of (X, h,7) if it is an P-extension of
any other &-development ((M,g),S,¢) of (3, h,m). If a FP-development
((M,g),S,1) for some initial data set (X, h, ) is such that (M, g) is a -
maximal spacetime, then it is immediate that ((M,g), S, ) is a &-maximal
development of the same initial data set. But the other direction does not
hold: &-maximal developments can fail to be &?-maximal spacetimes.

To see this, consider again the example of Minkowski spacetime (M, n)
from above and let ¥’ be the 22 + y? + 22 < 1 portion of the ¢ = 0 surface
Y, C M. The Riemannian metric and extrinsic curvature on ¥’ are inherited
from ¥ so that (X', h,7) counts as is an initial data set. Let M’ C M be
the domain of dependence D(X') of ¥'. One can show that ((M’,n),>' ')
is a % -maximal development of (X', h, ) where ¢’ is the identity map on
Y. This follows since the spacetime (M’,n) has no % -extension in which
¥ remains is a Cauchy surface. But of course, the spacetime (M’, n) is not

7% -maximal since Minkowski spacetime (M, n) is a % -extension (see Figure
12.4).
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Figure 12.4: The %/-maximal development of the initial data set (X', h, ) is
the spacetime (M’,n) which fails to be %/-maximal since it can be extended
by Minkowski spacetime (M, n).

12.3 Existence and Uniqueness

One might have thought that if an initial data set (X, h, 7) has a &-maximal
development ((M, g), S,v), then it must be unique. But one can construct
innumerable isometric invariants by considering a hole diffeomorphism
f+ M — M which acts as the identity map in an open set O containing
the Cauchy surface S but does not act as the identity map in the “hole”
region M — O. The spacetime (M, f.(g)) is then isometric but not identical
to (M,g) and one can show that ((M, f.(g),S,¢) is also a Z-maximal
development of (3, h, 7). We are now in a position to make precise a
generalized statement of Choquet-Bruhat and Geroch (1969) that captures a
sense in which determinism holds relative to some reduced possibility space.
Consider the following (second-order) condition on a spacetime property
P Y.

(Determinism) For every Z-development of any initial data set, there
is a Z-maximal development of the same initial data set that is unique
up to isometry.




CHAPTER 12. DETERMINISM 206

Here, the uniqueness clause can be understood as follows: If ((M, g), S, 1)
and (M',¢'),S",¢') are both #-maximal developments of the same initial
data set (X, h, ), then there is an isometry f : M — M’ such that f o =
¢’. The result Choquet-Bruhat and Geroch (1969) shows that for every
% -development of any initial data set, there is a % -maximal development
of the same initial data set that is unique up to isometry. But since, by
definition, any %/-maximal development ((M, g), S, 1) is such that (M, g) is
a globally hyperbolic vacuum solution, the result shows that (Determinism)
is true for any & C %/ which contains the collection (GH) N (Vac) of all
globally hyperbolic vacuum solutions. It follows that (Determinism) is true
for all of the causal and local properties we have been considering. But we
note that there is no assurance arbitrary subcollections of (GH) N (Vac) will
render (Determinism) true (see Figure 12.5). Indeed, we will consider some
example subcollections of (GH) N (Vac) for which (Determinism) is false in
due course.

Figure 12.5: Any collection & C % which contains (GH) N (Vac) satisfies
(Determinism). But there is no assurance that arbitrary subcollections of
(GH) N (Vac) will also satisfy (Determinism).

The result of Choquet-Bruhat and Geroch (1969) uses Zorn’s lemma to
build the relevant % -maximal development. But we note that recent work
shows that Zorn’s lemma is not needed for the result to go through (Wong,
2013; Shierski, 2016). Here, we give an example of the use of Zorn’s lemma in
this context by sketching a proof that (Determinism) is true for the collection
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% . The sketch closely follows the presentations found in Choquet-Bruhat
and Geroch (1969), Hawking and Ellis (1973, p. 249), and Wald (1984, p.
263).

Let ((M,g), S,) be any % -development of any initial data set (X, h, 7).
Let ® be the collection of all % -developments of (3, h, 7). Let ~ be the
relation on ® defined such that, for all ((M,g),S,v),(M',¢'),S",¢') € D,
we have ((M,g),S,v) ~ (M',4"),S’,¢') if there is an isometry f: M — M’
such that f ot =1’. One can check that ~ is an equivalence relation on ®.
Let ®/ ~ be the collection of all equivalence classes of all % -developments
of (X,h,m). Now let the relation < on ®/ ~ be defined such that, for
all (M, g), S.)], [(M',¢), ', 4)] € D/ ~, we have [(M,g),5,0)] <
(M, ¢"),S", "] if any % -development in [(M', ¢'),S’,¢")] is a % -extension
of any % -development in [((M, g),S,)]. One can show that this relation <
is a partial order on ©/ ~ (see Wald 1984, p. 263). Let ¥ be a subcollection
of ®/ ~ that is totally ordered by <. We now show that ¥ has an upper
bound in ®/ ~ and then invoke Zorn’s lemma to establish the existence of a
7 -maximal development of the initial data set (3, h, 7). We then show that
this % -maximal development is unique up to isometry.

For each equivalence class X; € ¥, use the axiom of choice to choose
a representative % -development ((M;, g;), S, ;). For any % -developments
((Mi, gi), Si, i) and ((Mj,g5),S;,v;) in X; and X respectively, if i < j,
there must be an isometric embedding f;; : M; — M; such that the com-
posed map 1/);1 o fijo1); is the identity on ¥. Using the properties of globally
hyperbolic spacetimes, one can show that each such embedding f;; must be
unique (Hawking and Ellis, 1973, p. 249). These unique isometric embed-
dings can then be used to form a natural “union” spacetime (M, g) and an
associated % -development ((M, g), S, 1) (recall the similar construction out-
lined in Section 9.3). So the equivalence class [((M, g), S, )] will be an upper
bound in ¥.

From Zorn’s lemma, there must be a maximal element X in ©/ ~. In
general, maximal elements need not be unique. But in the present case, X
is unique. To see this, suppose there were another maximal element Y in
©/ ~. One could then consider % -developments in X and Y and “patch
together” their associated spacetimes to construct another %/-development
whose equivalence class Z is strictly “larger” than X, ie. Z # X and X < Z
(Wald, 1984, p. 263). This follows easily once one works to verify that
the patched together spacetime satisfies the Hausdorff condition (Choquet-
Bruhat and Geroch, 1969, p. 333). The existence of such an “extension” Z of
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X violates the maximality of X: a contradiction. So the maximal element X
is unique. Let ((M*,g*), S*,v*) be any % -development in the unique max-
imal element X € ©/ ~. The uniqueness at the level of equivalence classes
of developments translates to uniqueness only up to isometry at the level of
developments. So we see that the %/-maximal development ((M*, g*), S*, *)
of the initial data set (3, h,7) is unique up to isometry, i.e. any other % -
maximal development of (3, h, 7) must also be a member of the equivalence
class X.

12.4 Asymmetry Properties

Here, we explore the (Determinism) condition with respect to asymmetry
properties. Let & C % be any collection such that (Gir) C & C (PR) U
(F'P) where (PR), (FP), and (Gir) are, respectively, the collections of all
point rigid, fixed point, and giraffe spacetimes. We will show that &2 must
fail to satisfy (Determinism). Consider again the example of Minkowski
spacetime (M,n) and the associated initial data surface (X, h, ) where X
is the ¢ = 0 portion of M. Now, for each integer ¢ > 0, let (M;,n;) be
constructed as follows. Take Minkowski spacetime (M, ) and remove a three-
dimensional compact region shaped like a giraffe on the ¢ = ¢ surface. In the
resulting mutilated spacetime, let (M, n;) be the region D(X) considered as
a spacetime is its own right (see Figure 12.6).

By construction, each spacetime (M;, ;) is giraffe. Moreover, since each
spacetime (M;, n;) contains X3, we see that ((M;,n;), %, ¢) is a P-development
of (X, h,m) where 9 is the identity map on ¥. Suppose there were a -
maximal development ((M*,n*),¥x* ¢*) of (X,h, 7). So (M*,n*) is a -
spacetime. We show a contradiction. Since ((M*,n*), ¥*,¢*) is a &-maximal
development, it must be a P-extension of ((M;,n;),%,1) for all integers
1 > 0. Of course, any Z-extension must be a % -extension; similarly any
P-development must be a % -development. So ((M*,n*), ¥*,¢*) must be a
U -extension of each of the % -developments ((M;,n;), %, 1) for all integers
i > 0. This can only happen if (M*,n*) is isometric to Minkowski spacetime.
But Minkowski spacetime is not in the collection & since it fails to be both
point rigid and fixed point. Since (M*,n*) is a S-spacetime we have a
contradiction. So there is no &?-maximal development of the initial data
set (X, h, ) which shows that the (Determinism) condition is false for the
collection & such that (Gir) C & C (PR) U (FP).
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Figure 12.6: A giraffe is removed on the ¢t = i surface in Minkowski space-
time. In the resulting mutilated spacetime, the region D(X), considered as a
spacetime is its own right, is (M;, n;).

In the example just given, an asymmetric development fails to have an
asymmetric maximal development. One might think that the problem here
is that, although the development in the example is asymmetric, the initial
data set for this development is not. Indeed, the ¢ = 0 surface > in Minkowski
spacetime has non-trivial symmetries in the sense that there are diffeomor-
phisms from 3 to itself which preserve the induced Riemannian metric and
extrinsic curvature. But we emphasize here that there are other examples
in which the initial data set is “giraffe” in the appropriate sense, i.e. no
non-trivial global symmetries, and yet the %/-maximal development of this
initial guaranteed by the Choquet-Bruhat and Geroch (1969) result is not a
giraffe spacetime. So even in the standard context, it is not the case that
asymmetric initial data gives rise to an asymmetric maximal development.

To see this, let ¥’ be a three-dimensional open giraffe shaped region in
t = 0 surface ¥ in Minkowski spacetime (M, 7). The Riemannian metric and
extrinsic curvature on Y are inherited from ¥ so that (X', h,m) counts as is
an initial data set. The giraffe shape of ¥’ ensures that the initial data set
(3, h, ) is free of non-trivial symmetries. But the % -maximal development
(M',n) will be the domain of dependence D(X’) region in Minkowski space-
time. And this spacetime (M’, ) is not giraffe since there will be a non-trivial
reflection isometry f: M’ — M’ defined by f(t,z,y,z2) = (—t,x,y, 2).
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This isn’t so surprising though. One wouldn’t expect asymmetry in three
dimensions to necessarily give rise to asymmetry in four dimensions. In
contrast, one would expect symmetry in three dimensions to necessarily give
rise to symmetry in four dimensions. Indeed, here is a result along these lines.
Let (X, h,m) be an initial data set which fails to be giraffe in the appropriate
sense. The % -maximal development ((M, g),S, ) of this initial data set is
such that the spacetime (M, g) must fail to be giraffe (Friedrich and Rendall,
2000, p. 216-217).

Figure 12.7: (Determinism) is false for any collection & C % such that
(Gir) C & C (PR)U(FP). The cases for (LG) and (Her) are open.

We have seen that (Determinism) is false for any collection & C % such
that (Gir) C & C (PR) U (FP) where (PR), (FP), and (Gir) are, respec-
tively, the collections of all point rigid, fixed point, and giraffe spacetimes.
What about the other asymmetry conditions? It is an open question whether
(Determinism) is satisfied by the collections (LG) and (Her) of all locally
giraffe and all Heraclitus spacetimes respectively (see Figure 12.7).

12.5 Dynamic Extendibility

Suppose (Determinism) is true for some collection & C % . So we know that
for every &-development of any initial data set, there is a &-maximal devel-
opment of the same initial data set that is unique up to isometry. But as we
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have seen, a #-maximal development need not be a &-maximal spacetime.
Thus, even after one implicitly assumes a dynamical form of spacetime maxi-
mality by limiting attention only to &?-maximal developments of initial data
sets, the satisfaction of (Determinism) does not amount to a justification for
the dogma of spacetime maximality. The cosmic censorship conjecture can
be seen as a strictly stronger second-order condition on a collection & C %
that, if satisfied, ensures that any &?-maximal development of any “suitable”
initial data set is always a &?-maximal spacetime. So relative to the collec-
tion &, a dynamical justification for the dogma of spacetime maximality is
established. In this way, much depends on the cosmic censorship conjecture.
Let us now work to make precise a general statement.

We have already seen how a “small” initial data set (3, h,7) can yield a
7 -maximal development that is not %/-maximal (recall Figure 12.4). One
way to rule out such examples is to require that (3, h) be geodesically com-
plete as a Riemannian manifold (Wald, 1984, p. 305). This implies that the
initial data set (X, h,7) is “maximal” in a natural sense: there is no other
initial data set (X', h’,7") with proper subset O C ¥’ such that (3, h) and
(O, R') are isometric Riemannian manifolds. Unfortunately, even this max-
imality condition does not ensure that an initial data set is appropriately
suitable. Consider Minkowski spacetime (M, g) and let 3 C M be the “past
hyperboloid” given by t = —+/22 +y2 + 22+ 1 and let h and 7 be, respec-
tively, the Riemannian metric and extrinsic curvature on 3 induced from the
metric g on M. The resulting initial data set (X, h, 7) is such that (X,h) is a
geodesically complete Riemannian manifold. We see that ((N,g),%,¢) is a
% -maximal development of this initial data where 1) is the identity map and
(N, g) is the timelike past of the origin in Minkowski spacetime (see Figure
12.8). So (IV, g) fails to be a % -maximal spacetime.

In the example just given, any % -extension of the future Cauchy horizon
H*(X) contains points p such that the closure of I~ (p) N ¥ is non-compact.
For example, when extended by Minkowski spacetime (M, g), if p € H*(X)
is the origin point, then I~ (p) N X is just the surface 3 which is closed but
non-compact (see Figure 12.8). This behavior signals a “poor choice” of
initial data set and for this reason and is forbidden by many formulations of
the cosmic censorship conjecture (Geroch and Horowitz, 1979; Wald, 1984).
We note that such formulations are concerned only with % -extensions across
the future Cauchy horizon H*(X). This is understandable given the focus of
the cosmic censorship conjecture literature on forbidding singularities which
are “naked” in the sense that an observer “sees” their formation (recall the
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Figure 12.8: The %/-maximal development (N, g) of the past hyperboloid
¥.. The origin point p € H*(X) in Minkowski spacetime (M, g) is such that
I~ (p) N ¥ = X which is closed but non-compact.

discussion in Section 6.3). But it is important to recognize that there are
some initial data sets whose %/ -maximal development can be extended across
H~(X) but not H*(X). Indeed, just consider the “future” analogue of the
past hyperboloid example in which the %/-maximal development (N, g) of
the future hyperboloid S amounts to the timelike future of the origin in
Minkowski spacetime. One can show that H* (%) is empty but (N, g) can be
extended across H~(X). So there is a sense in which the future hyperboloid
is also a “poor choice” for an initial data set: in any % -extension, the future
Cauchy horizon H™(X) contains points p such that the closure of It (p)NX is
non-compact. For example, when extended by Minkowski spacetime (M, g),
if p € H*(X) is the origin point, then I7(p) N X is just the surface ¥ which
is closed but non-compact (see Figure 12.9).

12.6 Cosmic Censorship

In light of the past and future hyperboloid examples, we now formulate a
version of the cosmic censorship that concerns the extendibility of maximal
developments generally — in both the future and past directions. Let us say
that an initial data set (3, h, ) is P-suitable if (i) (3, h) is a geodesically
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Figure 12.9: The % -maximal development (N, g) of the future hyperboloid
Y. is extendible across H~ (X)) but not H*(X) since the latter region is empty
in any % -extension.

complete Riemannian manifold (ii) there is a #-development of (X, h,7)
and (iii) for any Z?-maximal development ((M,g),S, ) of (X, h, ), each
P-extension of the spacetime (M, g) is such that, if there is a p € H(S),
then the closures of both I~ (p)NY and I (p) N are compact. Now consider
the following (second-order) condition on a spacetime property & C %
which is a strengthening of the (Determinsim) condition.

(Censorship) The collection & satisfies (Determinism) and, in addi-
tion, the &-maximal development of any &?-suitable initial data set
is a -maximal spacetime.

We have set things up so that (Censorship) implies (Determinism). If
the (Censorship) condition is satisfied by a collection & C %, we see that
a type of dynamical justification for the &-maximality of spacetime can be
given. Suppose a collection &2 satisfies (Censorship). Any &?-suitable initial
data set has a &-development by definition. Because & satisfies (Censor-
ship), it must satisfy (Determinism). So there is a &-maximal development
of this initial data set that is unique up to isometry. And because & satis-
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fies (Censorship), this &-maximal development is a &-maximal spacetime.
Finally, one invokes a Leibnizian metaphysics from a dynamical perspective
to complete the justification: “If one adopts the image of spacetime as be-
ing generated or built up as time passes then the dynamical version of the
principle of sufficient reason would ask why the Creative Force would stop
building if it is possible to continue” (Earman, 1995, p. 32). If the dynamical
justification for spacetime maximality breaks down for a collection &2, keep-
ing track of both the (Determinism) and (Censorship) conditions will allow
us to pinpoint where this breakdown occurs.

Even in the best case scenario in which a collection &2 satisfies both con-
ditions, two forms of spacetime maximality relative to & are presupposed
in order to secure &-maximality: one form which assumes that an initial
data set (X, h,m) is P-suitable which requires that (X, h) is “as large as it
can be” as a Riemannian manifold and a second form in which a dynamical
version of the principle of sufficient reason is used to select, among all pos-
sible &-developments of (X, h, ), the unique (up to isometry) &-maximal
development. But this brings to mind the “dirty open secret” highlighted by
Earman (recall Section 6.5) in which practitioners display a circular sort of
logic in presupposing whatever is needed to secure determinism. To rule out
a P-development of (X, h, ) that fails to be a &-maximal development is
to establish by fiat a sense in which spacetime maximality holds (Earman,
1995, p. 98).

We now turn to the question of which collections &2 C % satisfy (Cen-
sorship). It is well known that % does not. The “Taub-NUT” spacetime
provides one such counterexample (Taub, 1951; Newman et al., 1963). An-
other similar counterexample is given by a four-dimensional version of Misner
spacetime (Chrusciel and Isenberg, 1993). Investigating the properties of the
simpler two-dimensional version suggests why this must be. Let (M, g) be
Misner spacetime (recall Section 6.6) and let ¥ be the t = —1 compact,
spacelike surface in M. We see that ¥ has a domain of dependence D(X)
which makes up the ¢ < 0 region of M (see Figure 12.10). This region D(),
considered as a spacetime in its own right, is globally hyperbolic with Cauchy
surface 3. Call it (N, g). As we have previously observed, this “bottom half”
of Misner spacetime cannot be extended by a globally hyperbolic spacetime.
This suggests that the four-dimensional analogue to (N, g) counts as a % -
maximal development of the three-dimensional analogue to 3 (also compact)
with appropriate initial data. Indeed this is the case. Since Misner space-
time extends (N, g), the latter spacetime is % -extendible. Moreover, one
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Figure 12.10: In Misner spacetime (M, g), the domain of dependence D(X)
of the compact, spacelike surface ¥ at t = —1 is just the ¢t < 0 region of M.

can verify that any % -extension (N',¢’) of (N, g) will be such that H~(X) is
empty and, for any point p € H*(X), the region I~ (p) is just D(X) = N (see
Figure 12.11). So the closure of I~ (p)NX is just X which is compact. Similar
results holds for in the four-dimensional case showing that the analogue to
Y counts as a %/ -suitable initial data set. So we see that the collection %
renders the (Censorship) condition false.

So far, we have focused on the cosmic censorship conjecture only within
the vacuum context. Even more potential counterexamples arise when matter
is brought into the picture. (For nice recent discussions of cosmic censorship,
we refer the reader to Landsman (2021); Smeenk and Wiithrich (2021).)
Indeed, a number of significant results show senses in which gravitational
collapse leads to the formation of a naked singularity (Yodzis et al., 1973;
Christodoulou, 1994). But it has been argued that “these examples are
extremely special, owing to the fact that spherical symmetry is assumed”
(Penrose, 1999, p. 242). The response has been to exclude these seemingly
special counterexamples from consideration by moving to various “physically
reasonable” reduced possibility spaces & C % . But as we have seen, the
question of what counts as a “physically reasonable” collection is a deeply
murky one. Earman (1995, p. 80) reminds us that the term “physically
unreasonable” should not be “used as an elastic label that can be stretched
to include any ad hoc way of discrediting putative counterexamples.”
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Figure 12.11: Any extension (N’ ¢') of the spacetime (N, g) is such that, for
any point p € H*(X), the region I~ (p) is just D(X) = N.

Returning to the vacuum case, the Taub-NUT and four-dimensional Mis-
ner examples can be ruled out in different ways. For example, Geroch and
Horowitz (1979, p. 288) suggest that we limit attention to initial data sets
(X, h, ) for which ¥ is non-compact. Wald (1984, p. 305) focuses on the fact
that all known potential counterexamples seem to violate strong causality on
the Cauchy horizon H*(X). So his version of the vacuum cosmic censorship
conjecture comes out as: the (Censorship) condition is true for the collection
(Str) C % of all strongly causal spacetimes. This formulation is a bit con-
servative since all known potential counterexamples not only violate strong
causality on the Cauchy horizon HT(X) but also the weaker distinguishing
condition. So in the spirit of Wald’s approach, one could formulate a general
version of the cosmic censorship conjecture as: the (Censorship) condition is
true for all & C % such that & C (Dist).

More than forty years on, Wald’s formulation of the cosmic censorship
conjecture is still open which highlights its “enduring significance” (Lesourd
and Minguzzi, 2022, p. 2). Because there exist extensions to Misner space-
time satisfying the causality condition (one is depicted in Figure 12.11), we
know that not only is (Censorship) false for the collection % but also for
any & C % such that (Caus) C . This includes the collection (Chron)
of all chronological spacetimes. Finally, we say a word about the collection
(GH) of all globally hyperbolic spacetimes. We have already seen a number
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Figure 12.12: Any collection & C % such that (Caus) C & renders (Cen-
sorship) false. It is unknown if any subcollection of (Dist) satisfies (Censor-
ship).

of examples of maximal developments that can be extended by a globally hy-
perbolic spacetime (recall Figures 12.4, 12.8, and 12.9). The move to consider
only suitable initial data sets excludes all of these examples, and presumably
ensures that (Censorship) is true for the collection (GH). But since this does
not follow easily, we will consider the question open (see Figure 12.12).

What about local properties? Because the Taub-NUT and Misner exam-
ples are members of the collection (Vac) of all vacuum solutions, we see that
(Censorship) will be false for any collection & C % such that (Vac) C Z.
This includes all the collections defined via the various local energy condi-
tions: (DEC), (SEC), (WEC), (NEC) (see Figure 12.13).

One way to rule out potential counterexamples to cosmic censorship would
be to focus on their special status, especially with respect to symmetries. Per-
haps there are no “generic” violations to the conjecture? Unfortunately, “it
is difficult to give a precise definition of the term “generic” (Wald, 1984, p.
304). But suppose a % -suitable initial set (3, h, 7) is such that its associated
% -maximal developments is % -extendible. It may be that an appropriate
perturbation of (X, h, 7) will produce a % -suitable initial set (X, A/, ') result-
ing in an associated %/ -maximal development that is % -maximal. Indeed,
there are some limited results that show a sense in which this is the case for
Misner spacetime (Denaro and Dotti, 2015).
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Figure 12.13: Any collection & C % such that (Vac) C & renders (Cen-
sorship) false. This includes all the collections defined via the various energy
conditions: (DEC), (SEC), (WEC), (NEC).

An altogether different — and more general — way of approaching the prob-
lem would be to move to a reduced possibility space & C % by requiring
some form of spacetime asymmetry. One wonders, for example, if the col-
lection (Her) of all Heraclitus spacetimes satisfies (Censorship). A similar
question arises for the collection (LG) of all locally giraffe spacetimes. What
about the weaker asymmetry conditions? Recall that (Determinism) is false
for any collection & such that (Gir) C & C (PR)U(F P) where (PR), (FP),
and (Gir) are the collections of all spacetimes that satisfy, respectively, the
point rigid, fixed point, and giraffe asymmetry conditions. Since (Censorship)
is a stronger condition than (Determinism), this means that (Censorship) is
also false for any collection & such that (Gir) C & C (PR) U (FP) (see
Figure 12.14).

12.7 Conclusion

Stepping back, we have seen that dynamical support for a relativized ver-
sion of the dogma of spacetime maximality must come in two parts: In
order to secure Z-maximality, a collection &2 C % must satisfy (Censor-
ship) which presupposes that (Determinism) is already satisfied. None of the
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Figure 12.14: It is an open question whether (Censorship) is true for the
collections (LG) or (Her). (Censorship) is false for any collection &2 such
that (Gir) C & C (PR)U (FP).

collections under consideration here is known to satisfy (Censorship). The
(Determinism) condition is true for all & C % such that (Vac) C &2. This
captures a general sense in determinism holds in general relativity. But any
such collection & must necessarily violate (Censorship) since it contains the
“physically unreasonable” Taub-NUT and Misner examples. One might try
moving to a reduced possibility space & C (Vac). But a version of the
subcollection problem then threatens since there are examples of collections
P C (Vac)N(GH) that fail to satisfy (Determinism) and thus fail to satisfy
(Censorship) as well.

Perhaps the best route forward is the one suggested by Wald (1984, p.
305): use a causal condition to find an appropriate “physically reasonable”
collection &2 that satisfies both (Determinism) and (Censorship). If the
causal condition is too weak (e.g. chronology or causality), then (Censor-
ship) is not satisfied. If the the causal condition is too strong (e.g. global
hyperbolically), then the significance of (Censorship) becomes trivial: one
seeks to show — not assume — that all physically reasonable spacetimes are
globally hyperbolic. More promising are the intermediate causal conditions.
The collections (Dist), (Str), or (Stab) all satisfy (Determinism) and they
may also satisfy (Censorship) as well.

But even if it turns out that one of these collections does satisfy the
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(Censorship) condition, spacetime maximality relative to such a collection
follows only after a type of circular logic is employed. As we have seen, two
forms of spacetime maximality relative to a collection & are presupposed in
order to secure a &-maximality: one form which assumes that an initial data
set (3, h, m) is Z-suitable which requires that (X, h) is “as large as it can be”
as a Riemannian manifold and a second form in which a dynamical version
of the principle of sufficient reason is used to select, among all possible Z-
developments of (X, h, ), the unique &?-maximal development. But to rule
out a &-development of (X, h, 7) that fails to be a #-maximal development
is “to rule out one way Nature might, consistently with all of the known laws
of GTR, continue to evolve things across H"(X). What then is to say that
She cannot proceed this way?” (Earman, 1995, p. 98).



Chapter 13

Branching

13.1 Introduction

So far, we have followed standard practice by considering the collection % to
be the collection of “all” possible spacetimes. But any number of spacetime
conditions could be relaxed so as to move to an expanded possibility space
which contains % as a subcollection. For example, one area of research
concerns “spacetimes” (M, g) where the metric g is required to be continuous
but not smooth (Dafermos, 2003). Within this context, there is no guarantee
that a % -maximal spacetime is also “maximal” relative to the expanded
possibility space. But recently, it has been shown that some well-behaved
spacetimes (e.g Minkowski, Schwarzchild) do count as maximal even under
the more liberal understanding (Sbierski, 2018). A number of maximality
questions arise in this framework which will not be explored here. Instead,
we shift attention to another common way to expand the collection % : relax
the Hausdorff condition to allow for “branching” spacetimes of a certain kind.

In what follows, we will examine non-Hausdorff spacetimes — especially
their maximality properties. We will begin with a look at the rationale
behind the Hausdorff condition which primarily concerns the preservation
of determinism within general relativity (Hajicek, 1971; Earman, 2008). No
spacetime is “maximal” if all non-Hausdorff spacetimes are permitted; events
can always be pasted onto any given spacetime to construct a larger one.
Thus, a collection of not necessarily Hausdorff spacetimes has no hope of
satisfying conditions like (Determinism). But we emphasize that if attention
is restricted to spacetimes that are permitted to be non-Hausdorff but not

221



CHAPTER 13. BRANCHING 222

permitted to have a type of “branching curve,” then a number of surprising
results follow. In particular, we will emphasize that the (Existence) condition
is satisfied (Clarke, 1976) and we show that the (Determinism) condition is
satisfied as well. Moreover, this expanded possibility space seems to arise
“naturally” from considerations of spacetime maximality (Geroch, 1968).

13.2 Why Hausdorft?

Recall that a topological space Hausdorff if there exist disjoint neighbor-
hoods of any distinct points. We have already considered an example of a
one-dimensional “branching line” manifold that fails to be Hausdorff (recall
Figure 2.8). The example can be easily adapted to construct a non-Hausdorff
spacetime. Consider two copies (My,n;) and (Ms,n2) of two-dimensional
Minkowski spacetime in standard (¢, ) coordinates. Next, identify the point
(t1, 1) € My with the point (t9, z5) € My if and only if (¢1, 1) = (t2, z2) and
t1,to < 0. One can verify that the resulting structure M counts as manifold
(Hicks, 1965). A metric 7 is induced on M in the natural way to produce
branching Minkowski spacetime. We see that (M,n) is non-Hausdorff
since the distinct points p; = (0,21) and py = (0, x2) fail to have disjoint
neighborhoods if 21 = x5 (see Figure 13.1).

M-| MZ

Figure 13.1: Branching Minkowski spacetime is non-Hausdorff since the dis-
tinct points p; and p, fail to have disjoint neighborhoods.
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Why is it standard practice to suppose that spacetime is Hausdorff? Most
texts provide no justification whatsoever for the condition (Earman, 2008;
Luc, 2020). In those texts that do, often only a sentence or two are devoted
to the task. We find, for example, the suggestion that a non-Hausdorff space-
time “would perhaps violate what we mean physically by ‘distinct events’ ”
(Geroch and Horowitz, 1979, p. 218). But this statement is puzzling since
the Hausdorff condition is just one of many separation conditions that one
could insist upon. For example, the slightly weaker “17” separation condi-
tion on a topological space (X, T) requires that for any point p € X, the
set {p} is closed. It turns out that all manifolds — Hausdorff or not — sat-
isfy the T condition automatically. Perhaps this is enough to ensure that
events are physically distinct? Penrose (1979) has suggested that dropping
the Hausdorff condition may actually improve our modeling of spacetime
events — especially the physics of time-asymmetry. For him, the pull toward
the non-standard picture is sufficiently strong that a mantra must be in-
troduced: “I must therefore return firmly to sanity by repeating to myself
three times: ‘spacetime is a Hausdorff differentiable manifold; spacetime is a
Hausdorff...”!” (Penrose, 1979, p. 595).

Another common reason for excluding non-Hausdorff spacetimes concerns
the failure of familiar notions of “determinism” within general relativity (Ha-
jicek, 1971, p. 79). In particular, failing to rule out such spacetimes seems to
result in a type of “non-uniqueness of dynamical evolution” (Earman, 2008,
p. 201). Ultimately, this indeterminism follows from the innumerable ways
in which any spacetime can be “extended” if manifolds are not required to
be Hausdorff. We now turn to an investigation of the maximality properties
of spacetime within this more permissive context.

Let (NNH) be the collection of all spacetimes that are not necessarily
Hausdorff, i.e. spacetimes defined as usual except the Hausdorff requirement
is relaxed. In the natural way, we can expand the scope of the second-order
maximality conditions we have been considering, e.g. (Determinsm), so as
to apply to all collections & C (NNH). We begin with an investigation
as to whether the collection (NN H) itself satisfies any of these conditions.
We find that it generally fails to do so and this captures a sense in which
(NN H) has maximality properties quite unlike any spacetime collection we
have encountered so far.
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13.3 Non-Hausdorftf Extendibility

In the natural way, we can generalize the definitions of Z?-spacetimes,
(proper) P-extensions, and Z-maximal spacetimes to apply to all collec-
tions & C (NNH). A number of radical maximality results follow easily
from a simple construction that that starts with any spacetime in (NNH)
and produces a (NN H )-extension. Let (M, g) be any (NN H)-spacetime
(Hausdorff or not) and let p be any point in M. We now construct a
spacetime (M’ ¢') which is just like (M, g) except that the point p is
“doubled” in a non-Hausdorff way. To do this, just consider two copies
(M, g1) and (M, g1) of the spacetime (M, g) and, for any point ¢ € M, let
q1 and ¢y be the associated points in M; and M, respectively. Now let the
non-Hausdorff spacetime (M’, ¢') be the result of identifying ¢; with ¢ for
all points ¢ # p in M. From this, it follows that any spacetime (M, g) in
(NNH) is (NN H)-extendible. So we have a sense in which “there is then
no limit to the extent to which additional branches can be grafted onto the
space-time” (Clarke, 1976, p. 18).

The fact that there do not exist (VN H)-maximal spacetimes implies that
all of the second-order maximality conditions are not satisfied by (NN H) if
their scope is appropriately extended. In particular, (Equivalence), (Ex-
istence), (Observation), and (Stability) are all easily seen to be false for
(NNH). The (Determinism) condition is also not satisfied by (NN H) which
implies that (Censorship) is not satisfied as well. To see this, let (M,n) be
four-dimensional Minkowski spacetime in standard (¢,z,y,z) coordinates.
Let (X, h, ) be the initial data set induced on the on the t = —1 surface X
and let ((N, g),S,1) be any (NN H)-development of (X, h, 7). We see that
((N,g),S,1) cannot be a (NN H)-maximal development of (X, h, 7) since it
can be properly extended by the (NN H)-development ((N’,g’), S, 1) where
(N',¢") is constructed by taking (N,g) and non-Hausdorflly “doubling” a
point p to the future of S as outlined above. One can check that (N, ¢’)
counts as a globally hyperbolic spacetime. So (Determinism) is false for
(NN H) because of existence problems that arise well before one can even con-
sider the “non-uniqueness of dynamical evolution” (Earman, 2008, p. 201).

We mention here one other sense in which determinism can fail in the non-
Hausdorff context. Recall that a spacetime (M, g) is rigid if, for any isometry
f M — M and any open set O C M, if f acts as the identity on O, then
it is the identity map. We have seen that any spacetime in the collection %
counts as rigid (Halvorson and Manchak, 2022). This captures a basic sense
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o C.)

Figure 13.2: The non-Hausdorff spacetime (M, g) fails to be rigid. The map
f that acts as the identity on the open region M — {p, ¢} and exchanges the
points p and ¢ is a hole-diffeomorphsim and an isometry.

of determinism for the standard collection % since fixing the symmetries of
spacetime in an arbitrary small region fixes them everywhere in a unique
way. Another way to put the point: a hole diffeomorphism can never be a
spacetime symmetry within the standard context. This all changes when the
Hausdorff condition is relaxed. Let (M, g) be any non-Hausdorff spacetime
with points p, ¢ € M that fail to have disjoint neighborhoods. One can show
(M, g) fails to be rigid by letting f : M — M be the map that acts as the
identity on the open region M — {p, ¢} and exchanges the points p and ¢ (see
Figure 13.2). One can show that this f counts as a hole-diffeomorphsim as
well as an isometry (Manchak and Barrett, 2023). So we have another sense
in which determinism is satisfied for % but not for (NNH).

13.4 Bifurcating Curves

We have just seen that the collection (NNH) has some wild extendibility
properties. It turns out that there is a natural way to domesticate this
collection by moving to a particular subcollection & C (NN H) in which (i)
a certain type of non-Hausdorff behavior is still permitted and yet (ii) the
maximality properties of & are very similar to the standard collection % .
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Following Hajicek (1971), we say a manifold M has a bifurcating curve
if there is a pair of (smooth) curves A; : [0,1] — M (i = 1,2) for which
A1(s) = 72(s) whenever s € (0,k) and yet (k) # Aa(k) for some k € (0, 1].
In the natural way, let us say that a spacetime has a bifurcating curve if its
underlying manifold does. Any spacetime with a bifurcating curve must nec-
essarily be non-Hausdorff. The branching Minkowski spacetime constructed
above is one such example. To see this, take each copy (M;,n;) of standard
Minkowski spacetime for ¢ = 1,2 and consider the curves A; : [0, 1] — M; de-
fined by setting A(s) = (=14 2s,0). When the ¢ < 0 regions of (My,n;) and
(Ms, m2) are identified to produce the branching Minkowski spacetime (M, 1),
we find a bifurcating curve: Ai(s) = A\y(s) for all s < 1/2 but A1(s) # Aa(s)
for all s > 1/2 (see Figure 13.3).

M1 MZ

Figure 13.3: The curves curves A; and Ay agree in the t < 0 portion of
branching Minkowski spacetime but diverge thereafter.

Some have suggested that an observer traveling along a birfucating curve
“would be very uncomfortable” (Hawking and Ellis, 1973, p. 174). In line
with our discussion of determinism in the previous section, others have noted
problems for free falling observers: how would they “know which branch
of a bifurcating geodesic to follow?” (Earman, 2008, p. 200) Still others
maintain that spacetimes with bifurcate curves should not necessarily be
considered “too pathological for any physical interpretation” (Miller, 1973,
p. 468). In any case, a good deal of problems often associated with non-
Hausdorff spacetimes can be eliminated if bifurcating curves are prohibited.
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Let (NBC) C (NN H) be the collection of all spacetimes with no bifurcating
curves. We now show that there are spacetimes in the collection (N BC') but
not in the collection % .

We start with Misner spacetime (M, g1) and its “reverse twisted” variant
(Ms, g2) (recall Section 6.6). Here, M; = M, is the cylinder R x S in (¢,0)
coordinates. Let O; C M; and Oy C M, be the t < 0 of regions of each space-
time. Recall that in Misner spacetime (M, g1), one family of complete null
geodesics run along the cylinder. In the region O; there is another family of
incomplete null geodesics that spirals around the cylinder, approaching but
never reaching ¢ = 0. Similar behavior is exhibited in the reverse twisted Mis-
ner variant (Ms, go) except that the incomplete null geodesics spiral around
the cylinder in the opposite direction. We have seen how there is an isometry
f : O1 — O, that maps the twisted null geodesics in O; to the untwisted null
geodesics in Oy where they can be extended across ¢ = (. But in the process,
this isometry f maps the untwisted null geodesics in Oy to the twisted null
geodesics in Oy where they cannot be so extended (see Figure 13.4)

f \4
~— 5
b
fo)\z :f°>\1

Figure 13.4: The isometry f untwists the null geodesic A; so that the geodesic
f o A1 can be extended across t = 0. But this isometry also maps the null
geodesic Ay to the twisted geodesic f o Ay which cannot be so extended.

If one limits attention to the collection %, there is no way to extend both
families of null geodesics across ¢ = 0 in either of the Misner spacetime vari-
ants. But this can be done if a non-Hausdorff “branching Misner” spacetime
is permitted. To construct this model, just identify each point p € O; in
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Misner spacetime (M, g;) with the point f(p) € O, in reverse twisted Mis-
ner spacetime (My, g2). The resulting structure (M, g) is non-Hausdorff since
one can show that for any point ¢; on the t = 0 portion of My, there will be
a corresponding point gs on the t = 0 portion of My such that ¢; and ¢ fail
to have disjoint neighborhoods (see Figure 13.5). But remarkably, one finds
that the branching Misner spacetime has no bifurcating curves (Hawking and
Ellis, 1973, p. 174).

d:

Figure 13.5: The branching Misner spacetime is non Hausdorff since any
neighborhoods of the points ¢; and ¢ must overlap in the ¢ < 0 region
(depicted here in a symmetric way).

13.5 Non-Hausdorff Maximality

Let (NBC) C (NNH) be the collection of not necessarily Hausdorff space-
times that have no bifurcating curves. The non-Hausdorff branching Mis-
ner example shows that (NBC) is strictly larger than the collection % .
Since (standard) Misner spacetime is %/-maximal but can be extended by
the branching Misner variant, we see that (Equivalence) is false for the col-
lection (NBC'). But as we will now see, the collections (NBC') and % have
quite similar maximality properties in the sense that they give the same
verdict for all of the other second-order conditions we have been considering.
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We know that some non-Hausdorff spacetimes in the collection (NNH)
have underlying manifolds that fail to be second countable. To see this, just
consider a version of branching Minkowski spacetime where, instead of just
two branches, there are uncountably many. But when attention is restricted
to the subcollection (NBC) of spacetimes without bifurcating curves, we
find that spacetime manifolds must be necessarily be second countable just
as they are in the standard collection % (Clarke, 1976). This fact (along
with Zorn’s lemma) allows one to show something remarkable (Clarke, 1976):
any (NBC')-extendible spacetime has a (NBC)-maximal extension. This
amounts to a significant generalization of the (Geroch, 1970b) existence re-
sult that is foundational to the metaphysical justification of spacetime max-
imality.

We note that just as the %/-maximal spacetimes are, in general, highly
non-unique, so are (N BC')-maximal spacetimes. For example, Misner space-
time has a wide variety (N BC)-maximal extensions Rieger (2024). One that
was first introduced by Geroch (1968, p. 463-464) shows that the branch-
ing Misner spacetime considered above is actually (NBC')-extendible. One
can construct the (VBC)-maximal extension to this spacetime by pasting
in a “top” branch — another copy of the ¢ < 0 portion Misner but with
opposite time orientation (see Figure 13.6). From the “bottom” branch, a
future-directed timelike geodesic can pass through the t = 0 boundary of
the one of the “side” branches (but not both) depending on which way the
bottom branch is twisted up. The geodesic will travel some distance into the
side branch before then spiraling around the cylinder back toward the ¢ =0
boundary. If the side branch is then reverse twisted, this spiraling geodesic
can again be extended through the t = 0 boundary but this time into the top
branch. The curious causal structure of this (/N BC')-maximal spacetime can
perhaps be best understood as the result of removing the origin from two-
dimensional Minkowski spacetime and then identifying points in a particular
way (Hawking and Ellis, 1973, p. 172-174).

The Clarke (1976) result shows that the collection (N BC) satisfies (Ex-
istence). What about the other second-order conditions concerning space-
time maximality? The (Observation) condition comes out as false since the
“chain construction” outlined in Section 10.3 can be used to produce, from
a given (N BC')-spacetime, an observationally indistinguishable counterpart
spacetime that is (NBC)-extendible. Whether the (Stability) condition is
satisfied by (NBC') an open question just as it for the collection % . Let us
now turn to the (Determinism) and (Censorship) conditions.
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Figure 13.6: A “top” branch is added to branching Misner spacetime to
produce an (N BC')-maximal extension.

The branching Minkowski example counts as globally hyperbolic and
therefore shows that non-Hausdorff spacetimes in (NNH) can be causally
well-behaved. This possibility is closed off when one moves to the subcol-
lection (NBC) C (NNH). Indeed, a general result from Clarke (1976)
shows that any strongly causal spacetime in (N BC') must be Hausdorff, i.e.
it must be in the standard collection %. So we find that the causal mis-
behavior present in the branching Misner example is representative of all
non-Hausdorff spacetimes in (NBC). (One wonders if the result can be gen-
eralized: must any distinguishing spacetime in (N BC') also be Hausdorff?)

The Clarke (1976) result can be used to show that (Determinism) is true
for (NBC'). Let (M, g) be any four-dimensional globally hyperbolic vacuum
solution in the collection (NBC') and let ¥ be any three-dimensional, con-
nected spacelike surface in M. Since (M, g) is globally hyperbolic, it must
be strongly causal. So because this spacetime is in the collection (NBC'), we
know from the Clarke (1976) result that (M, g) must be Hausdorff. It fol-
lows that ¥ must also be Hausdorff. Let (X, h, 7) be the induced initial data
set and let ((M',¢'),S",¢') be any (NBC)-development of (X, h, 7). Since
(M, ¢"),5",¢) is a (NBC)-development, it must be globally hyperbolic
and thus strongly causal. So again by the Clarke (1976) result we know that
(M',q"),S", 9" is a % -development of (3, h, 7). By the Choquet-Bruhat and
Geroch (1969) result, there is a %/-maximal development ((M”,g"),S", ")
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of (X, h, ) that is unique up to isometry. Since all (N BC')-developments of
(3, h,m) are % -developments, we know that the %/-maximal development
((M",¢"),5",¢") cannot be extended by a (NBC')-development, i.e. it is an
(N B(C')-maximal development for the initial data set (X, h, 7) that is unique
up to isometry. So (Determinism) is true for (NBC) just as it is for % .

Finally, let us consider the (Censorship) condition. As we have seen,
the collection % renders this condition false since it contains the four-
dimensional Misner and Taub-NUT spacetimes. Since these spacetimes are
in the collection (NBC) as well, we know that the (Censorship) condition
is also false for (NBC). Recall the influential formulation of the cosmic
censorship conjecture due to Wald (1984) that the collection (Str) C % of
all strongly causal spacetimes in % renders (Censorship) true. Because of
the Clarke (1976) result, we see that the collection of all (Str)x C (NBC)
of all strongly causal spacetimes in (NBC') is such that (Str)x = (Str). So
the Wald (1984)formulation of cosmic censorship naturally carries over to
the new context.

13.6 Conclusion

In all previous chapters, we have considered the maximality properties of
various reduced possibility spaces & C % . Here, for the first time, we have
considered enlarged possibility spaces & D % instead. Two have been the
focus: (i) the collection (NN H) which is defined like % except that the
Hausdorff condition on spacetime manifolds is dropped and (ii) the collec-
tion (NBC) which is defined like % except that the Hausdorff condition is
replaced with a weaker condition that prohibits bifurcating curves on space-
time manifolds. We have seen that the collection (NN H) of non necessarily
Hausdorff spacetimes has maximality properties quite unlike any spacetime
collection we have encountered so far. Because any (NN H)-spacetime fails
to be (NN H)-maximal, it follows that none of the second-order maximality
conditions are satisfied. The fact that conditions like (Existence) and (Deter-
minism) are false for (NN H) gives a sense of the wild nature of this collection.
The indeterminism property in particular “has led general relativists to shun
non-Hausdorff spacetimes that involve non-Hausdorfl branching” (Earman,
2008, p. 200).

But we have also emphasized that non-Hausdorff behavior can be tamed:
the move from (NN H) to the collection (N BC) results in maximality prop-
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erties very similar to the standard collection %/. In particular, the results
by Clarke (1976) establish that (Existence) and (Determinism) are both true
for (NBC'). Moreover, we are now in a position to see how non-Hausdorff
behavior can arise naturally from considerations of spacetime maximality
within the context of (NBC). Because (Determinism) is true for this collec-
tion, we see that initial data associated with the ¢ < 0 portion of standard
four-dimensional Misner spacetime is guaranteed to have an (N BC')-maximal
development (M, g) that is unique up to isometry. This spacetime (M, g) is
% -extendible and therefore (IVBC')-extendible. Because (Existence) is true
for (NBC'), we know that (M, g) can be extended to some (/N BC')-maximal
spacetime (recall Figure 13.6). This spacetime, although non-Hausdorff, can
therefore be considered a “natural extension” to (M, g) (Geroch, 1968, p.
465).



Chapter 14

Conclusion

We have noted that work in global spacetime structure is largely an activity
of careful collection. Instead of key theorems, the field is characterized by a
vast number of smaller results. Such results have limited significance when
taken in isolation but can be bundled together to shed light on deep questions.
Here, we have engaged in a systematic collection of modal results having to
do with the maximality properties of spacetime. From the work primarily
done in Part I, we have identified twenty different possibility spaces & of
physical interest. These concern the first-order local, causal, asymmetry, and
branching properties of spacetime. The work done in Part II identifies six
second-order conditions on such possibility spaces &2 that, if satisfied, speak
in favor of spacetime Z-maximality. These second-order conditions mirror
foundational results and conjectures of standard general relativity, e.g. the
Geroch (1970b) theorem showing the existence of maximal spacetimes. In
this chapter, we collect together what is known and also what is unknown
concerning the associated 20 x 6 = 120 precise statements concerning the
maximality of spacetime.

We begin by listing the six second-order maximality conditions all in one
place. We then briefly review their significance and note which of the condi-
tions are satisfied by the collection % of all standard spacetimes. In the next
few sections, we review the basic definitions of the first-order local, causal,
asymmetry, and branching properties we have considered. We record which
of them satisfy which of the six second-order maximality conditions and note
any open questions. A penultimate section reviews a special “subcollection
problem” that has reoccured throughout our investigation. The problem
shows the various limitations to the following of line of argument: if a given
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possibility space & has certain maximality properties, then those properties
automatically “transfer down” to any reduced possibility space Z C &. In
the final section, we give a general assessment of the results.

14.1 Maximality Conditions

Consider the following six second-order conditions on a collection & C % .

(Equivalence) Any Z-spacetime is -maximal if and only if it is
2 -maximal.

(Existence) Any Z-extendible &-spacetime has a &?-maximal exten-
sion.

(Observation) There are Z-spacetimes without god point that are
only observationally indistinguishable from “-spacetimes that are
P-maximal.

(Stability) The collection of Z-maximal spacetimes is C* stable for
some k > 0 relative to Z2.

(Determinism) For every Z-development of any initial data set, there
is a -maximal development of the same initial data set that is
unique up to isometry.

(Censorship) The collection & satisfies (Determinism) and, in addi-
tion, the &-maximal development of any &?-suitable initial data set
is a Z-maximal spacetime.

The (Equivalence) condition captures a sense in which #-maximality is
equivalent to % -maximality, i.e. the standard definition of spacetime maxi-
mality. It was conjectured by Geroch (1970b) that a number of collections &
satisfy (Equivalence). If so, this would greatly simplify the study of space-
time maximality. On the other hand, if (Equivalence) is false for a collection
2, this demonstrates that the modal structure of spacetime works differently
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than it does in the standard possibility space % with respect to spacetime
maximality. This means that a careful study of #-maximality must be initi-
ated in order to better understand this property within the possibility space
. Of course, it is trivial that the standard collection % satisfies (Equiva-
lence).

The (Existence) condition is a generalized statement of the foundational
result of Geroch (1970b) which shows that (Existence) is satisfied by the
standard collection 7. Upon this result rests a general metaphysical justifi-
cation for the spacetime maximality condition via the Leibnizian principles
of sufficient reason and plenitude (Earman, 1989, p. 161). If (Existence)
were false for any collection &, this metaphysical justification would face
significant difficulties in getting off the ground.

The (Observation) condition captures a weak sense in which observers
in some spacetimes in & can determine that they inhabit a Z?-maximal
spacetime via empirical observations. If (Observation) is not satisfied by a
collection &, then (setting aside spacetimes with god point) every observer
in every &-spacetime inherits an cosmic underdetermination problem with
respect to Z-maximality. A conjecture due to Malament (1977b) implies
that (Observation) is false for the standard collection % and this conjecture
was later shown to be correct (Manchak, 2009a, 2011).

The (Stability) condition captures a weak sense in which the -
maximality of spacetime is a stable property relative to &2. It has been
argued that “in order to be physically significant, a property of space-time
ought to have some form of stability, that is to say, it should be a property
of ‘nearby’ space-times” (Hawking and Ellis, 1973, p. 197). So if (Stability)
is not satisfied by a collection &, then &-maximality would seem to be a
physically insignificant property. It is unknown if the standard collection %
satisfies (Stability).

The (Determinism) and (Censorship) conditions provide a type of dy-
namical justification for the Z2-maximality of spacetime. The (Determinism)
condition is a generalized statement of the foundational result of Choquet-
Bruhat and Geroch (1969) which shows that (Determinism) is satisfied by
the collection % . If (Determinism) is true for a collection &, then any initial
data that can develop into a spacetime in & must have a “maximal” such
development spacetime in & that is unique up to isometry. This maximal
development is not necessarily a &-maximal spacetime but this latter prop-
erty is guaranteed if the stronger (Censorship) condition is also true for &.
The (Censorship) condition is known to be false for the standard collection
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% but the cosmic censorship conjecture of Penrose (1979) holds that the
condition will be true for any “physically reasonable” collection &2. We see
that if either the (Determinism) or (Censorship) were false for a collection
2, there would be gaps in the dynamical justification for the &?-maximality
of spacetime.

14.2 Local Properties

Recall that a spacetime property &2 C % is local if, for any pair of locally
isometric spacetimes (M, g), (M’ ¢") € %, we have (M, g) € & if and only
if (M',¢) € &. Let (M,g) be a spacetime and let T' be its associated
energy momentum tensor representing the distribution and flow of matter.
A number of local properties of spacetime amount to constraints on 7.

The spacetime (M, g) is a vacuum solution of Einsten’s equation if T’
vanishes at each point in M. The weak energy condition requires that
for any timelike vector v at any point p € M, we have T'(v,v) > 0. This
requires that the energy density of matter as determined by an observer
with tangent v is never negative. The strong energy condition is satisfied
when a certain effective energy density as determined by any observer is never
negative. This requires that “gravitation is attractive” in some sense. The
weak and strong energy conditions are independent in the sense that neither
implies the other. The dominant energy condition can be thought of as
prohibiting the flow of matter in a spacelike direction. The dominant and
strong energy conditions are independent but dominant does imply weak.
All three conditions imply the null energy condition which requires that,
for any null vector v at any point p € M, we have T'(v,v) > 0. This doesn’t
have much significance physically but is a simple condition to work with that
is useful to have around as a minimal constraint. On the other extreme, the
condition of being a vacuum solution is quite strong as it implies all four
energy conditions.

Let (NEC),(WEC),(SEC),(DEC) C % be the collections of all space-
times satisfying, respectively, the null, weak, strong, and dominant energy
conditions. Let (Vac) C % be the collection of vacuum solutions. The
second-order maximality properties of these first-order local properties of
spacetime are summarized in Table 14.1.
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(NEC) (WEC) (SEC) (DEC) (Vac)
(Equivalence) X X X X ?
(Existence) v v v v v
(Observation) X X X X X
(Stability) 7 ? ? ? ?
(Determinism) v v v v v
(Censorship) X X X X X

Table 14.1: Second-order maximality properties of various first-order local
properties of spacetime.

14.3 Causal Properties

Among the global (i.e. mnon-local) properties of spacetime, the hierarchy
causal properties is perhaps most central. Let (M, g) be a time-orientable
spacetime. The spacetime is chronological if it contains no closed timelike
curves (CTCs). This is equivalent to the condition that, for any point p € M,
the timelike past I~ (p) does not contain p. The spacetime (M, g) is causal
if there are no closed causal curves. This means that, for any point p € M,
the region J*(p) N J~(p) is the singleton set {p} where J*(p) and J(p)
are, respectively, the causal past and future of p. If, for any distinct points
p,q € M, the timelike pasts are futures or these points are also distinct, i.e.
I~ (p) # I (q) and I*(p) # I (q), then (M, g) is distinguishing.

The spacetime (M, g) satisfies strong causality if, for each event p € M
and any neighborhood O of p, there is a smaller neighborhood U C O of
p such that no future-directed causal curve that begins in U and leaves it,
ever returns. A spacetime (M, g) satisfies the stable causality condition
if it admits a global time function, i.e. a smooth function ¢ : M — R such
that for any distinct points p,q € M, if p € J~(q), then t(p) < t(q). This
is equivalent to the condition that there is a C° fine neighborhood of (M, g)
which contains only chronological spacetimes. Finally, the spacetime (M, g)
satisfies the global hyperbolicity condition, if it is causal and causally
compact, i.e. the region J(p) N J(q) is compact for all p,q € M. This is
equivalent to the existence of a Cauchy surface, i.e. a closed, achronal set
S C M such that the domain of dependence D(S) is all of M.

These conditions form a hierarchy of causal properties: global hyperbolic-
ity implies stable causality; stable causality implies strong causality; strong
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causality implies distinguishing; distinguishing implies causality; causality
implies chronology. None of the implication relations run in the other di-
rection. Let (Chron), (Caus), (Dist), (Str), (Stab), (GH) C % be the col-
lections of spacetimes satisfying, respectively, the chronology, causality, dis-
tinguishing, strong causality, stable causality, and global hyperbolicity con-
ditions. The second-order maximality properties of these first-order causal
properties of spacetime are summarized in Table 14.2.

(Chron) (Caus) (Dist) (Str) (Stab) (GH)
(Equivalence) ? X X X X X
(Existence) v v ? ? ? ?
(Observation) X X X X X ?
(Stability) ? ? ? ? ? ?
(Determinism) v v v v v v
(Censorship) X X ? ? ? ?

Table 14.2: Second-order maximality properties of various first-order causal
properties of spacetime.

14.4 Asymmetry Properties

One would expect that a “generic” spacetime counts as asymmetric various
senses. A hierarchy of conditions captures these senses. The conditions turn
out to be quite fruitful to consider in discussions of spacetime maximality.
Let (M,g) be a spacetime. It is rigid if, for any isometry f : M — M
and any non-empty open set O C M, if f acts as the identity on O, then
it is the identity map. Every standard spacetime is rigid though violations
of rigidity occur in every non-Hausdorff spacetime. The spacetime (M, g)
is point rigid if, for any point p € M and any isometry f : M — M, if
f(p) = p, then f must be identity map. The spacetime has a fixed point if,
for some point p € M, any isometry f: M — M is such that f(p) = p.

The point rigid and fixed point conditions are independent. They have
limited physical significance but prove useful to consider as minimal asym-
metry constraints. The conjunction of these two conditions is equivalent to
perhaps the most widely considered asymmetry property in the literature:
the absence of a non-trivial isometry f : M — M. A spacetime with this
property is called giraffe. The rigid, point rigid, fixed point, and giraffe
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conditions all concern global asymmetries. Two stronger conditions concern
local asymmetries. The spacetime (M, g) is locally giraffe if given any con-
nected open set O C M, the spacetime (O, g) is giraffe. Any locally giraffe
spacetime must be giraffe but nice vice versa. Finally, the spacetime (M, g)
is Heraclitus if, for any distinct points p,q € M and any neighborhoods O,
and O, of these points respectively, there is no isometry f : O, — O, such
that f(p) = ¢. In a Heraclitus spacetime, each event is (locally) unlike any
other. This condition is equivalent to the requirement that, for any open sets
U,V C M and any isometry f: U — V', we have U = V and f is the identity
map. Any Heraclitus spacetime must be locally giraffe but not vice versa.
Let (PR),(FP),(Gir),(LG), (Her) C % be the collections of spacetimes
satisfying, respectively, the point rigid, fixed point, giraffe, locally giraffe,
and Heraclitus conditions. The second-order maximality properties of these
first-order causal properties of spacetime are summarized in Table 14.3.

(PR) (FP) (Gir) (LG) (Her)
(Equivalence) X X X ? ?
(Existence) ? ? ? ? v
(Observation) X X X X v
(Stability) ? ? ? ? ?
(Determinism) X X X ? ?
(Censorship) X X X ? ?

Table 14.3: Second-order maximality properties of various first-order asym-
metry properties of spacetime.

14.5 Branching Properties

One can also explore the second-order maximality properties of non-standard
first-order properties &2 that contain % as a subcollection. One such non-
standard property allows for “branching” spacetimes of a certain type. Let
(M, g) be a spacetime as defined in the standard way except that the man-
ifold M need not satisfy the usual Hausdorff condition, i.e. there exist
disjoint neighborhoods of any distinct points p,q € M. A violation of the
Hausdorff condition signals the presence of at least two distinct “branches”
of a spacetime event. We say a (not necessarily Hausdorff) spacetime (M, g)
has a bifurcating curve if there is a pair of smooth curves A; : [0,1] — M
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(1 = 1,2) for which A\;(s) = 72(s) whenever s € (0, k) and yet A\ (k) # Ao(k)
for some k € (0,1]. If a spacetime has a bifurcating curve, then it is non-
Hausdorff but not the other way around.

Let (NNH) be the collection of all spacetimes that are not necessarily
Hausdorff and let (NBC) C (NN H) be the collection of spacetimes without
bifurcating curves. The second-order maximality properties of these first-
order branching properties of spacetime are summarized in Table 14.4.

(NNH) (NBO)
(Equivalence) X X
(Existence) X v
(Observation) X X
(Stability) X ?
(Determinism) X v
(Censorship) X X

Table 14.4: Second-order maximality properties of various first-order branch-
ing properties of spacetime.

14.6 Subcollection Problem

So far, we have reviewed the second-order maximality properties of 19 first-
order properties relating to the local, causal, asymmetry, and branching
structures of spacetime. We now consider one final first-order property
(Sub) C % concerning the “subcollection problem” that has come up re-
peatedly throughout our investigation. This problem calls into question the
significance of any isolated results obtained so far as well as any that may be
secured in the future.

Consider the second-order (Stability) condition as an example. It is un-
known whether this condition is satisfied by any of the first-order spacetime
properties we have investigated. But suppose (Stability) is true for some
spacetime property — say the collection (Vac) of vacuum solutions. This
collection (Vac) surely contains “physically unreasonable” spacetimes, e.g.
Minkowski spacetime with the word “Leibniz” removed from the spacetime
manifold (recall Figure 8.2). So one would like assurance that (Stability)
is true not just for the collection (Vac) but also for any reduced possibility
P C (Vac) including all those that are more “physically reasonable” in some
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sense. But we have highlighted that such a general result cannot be. One
can artificially construct example subcollections (Vac) that fail to satisfy the
(Stability) condition. One could, perhaps, try to be even more restrictive by
considering the collection (Vac) N (GH) of globally hyperbolic vacuum solu-
tions. Suppose that collection renders (Stability) true. Well, now the subcol-
lection problem manifests itself all over again. The collection (Vac) N (GH)
surely contains “physically unreasonable” spacetimes, e.g. the t < 0 portion
of Minkwoski spacetime in which notches have been removed that spell out
the word “Leibniz” in Morse code (see Figure 14.1). So one would like assur-
ance that (Stability) is true not just for the collection (Vac) N (GH) but also
for any reduced possibility space & C (Vac)N(GH). But we know that such
a general result is not possible since we can construct example subcollections
of (Vac) N (GH) that fail to satisfy the (Stability) condition.

Figure 14.1: A globally hyperbolic vacuum solution in which the removed
notches spell out the word “Leibniz” in Morse code.

Stepping back, it would seem that in order to rule out a spacetime like the
one in Figure 14.1, one would need to invoke an “no-hole” condition of some
kind (e.g. hole-freeness, local maximality, geodesic completeness). All such
conditions are at least as strong as %/-maximality which, in turn, implies
Z-maximality. So invoking a no-hole condition is tantamount to requiring
Z-maximality itself — the very property under investigation. In this way, any
future results established concerning (Stability) will come with quite limited
significance.
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A version of the subcollection problem occurs for each of the six second-
order maximality conditions. For each such condition, we have exhibited
some subcollection & C (Vac) N (GH) which renders the condition false. It
is not difficult to show that one can “combine” some of these subcollections
to form a single collection (Sub) C (Vac) N (GH) which renders all six con-
ditions false in one fell swoop. Let &, C (Vac) N (GH) be the collection
mentioned above that shows (Stability) false. This is a collection “rolled up”
two-dimensional Minkowski spacetimes which have been truncated in various
ways (recall Section 11.7). One can show that &) fails to satisfy (Equiva-
lence) and (Observation) as well. Now let &2 C (Vac) N (GH) be the col-
lection of all spacetimes that are the —k < t < k portion of four-dimensional
Minkowski spacetime for some positive real number k. This collection that
shows (Determinism) false and hence (Censorship) as well. It is easy to see
that it doesn’t satisfy (Existence) either. Now let (Sub) C (Vac) N (GH) be
the union &1 U &;. One can easily verify that this collection (Sub) fails to
satisfy all six second-order maximality conditions (see Table 14.5).

(Sub)

(Equivalence)
(Existence)
(Observation)
(Stability)
(Determinism)
(Censorship)

SRR

Table 14.5: Second-order maximality properties of a collection of globally
hyperbolic vacuum solutions.

The collection (Sub) C (Vac) N (GH) surely counts as a “physically
unreasonable” possibility space. It amounts to a second-order analog to
the “cut and paste” examples that proved to be indispensable tools in the
early work on global spacetime structure (Penrose, 1972; Hawking and Ellis,
1973). Within that context, it was widely acknowledged that the constructed
examples were not to be considered physically reasonable. Rather, they
served another purpose entirely (Geroch and Horowitz, 1979, p. 221):

“The spacetimes which result from these constructions are, in
almost every case, physically unrealistic for various reasons. The
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point of the construction, however, is not normally to construct
physically realistic cosmological models, but rather to demon-
strate by means of some example that a certain assertion is false,
or that a certain line of argument cannot work.”

The second-order example (Sub) C (Vac) N (GH) demonstrates that the
following line of argument does not work: if a given possibility space &2 has
certain maximality properties, then those properties automatically transfer
down to any reduced possibility space #Z C & (including all those that
qualify as “physically reasonable” in some sense).

14.7 Summary of Results

Table 14.6 at the end of this section collects together everything that is known
and unknown concerning the six second-order maximality properties of all
twenty first-order properties of spacetime. Taken together, the 120 entries
seem to indicate a significant lack of clarity with respect to the dogma of
spacetime maximality. This lack of clarity comes in three types.

(i) There is a lack of clarity given that 39 precise questions remain un-
settled. Of these, most concern the (Stability) condition which ensures that
spacetime maximality is a physically significant property in this sense: all
spacetimes that are “nearby” a maximal spacetime are also maximal. Very
little is known concerning the stability of spacetime maximality. A number
of other open questions concern the (Existence) and (Censorship) conditions
which are central to the general and dynamical forms of Leibnizian justifica-
tion for the maximality dogma. One would like to get a better grip on the
behavior of various causal and asymmetry properties with respect to these
two conditions. The cosmic censorship conjecture of Penrose (1979) has
received an enormous amount to attention. Less studied is whether the Ge-
roch (1970b) maximality existence result continues to hold relative to various
spacetime properties of interest.

(ii) There is a lack of clarity given that, of the 81 settled questions, 25
results speak in favor of the dogma of spacetime maximality while 56 speak
against. Of course, not all questions are all of equal importance. But a
murky picture emerges from a number of different angles. Many of the results
against the dogma concern the (Equivalence) condition which underscores
the need for a careful study of spacetime maximality outside of the standard
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context. A pair conjectures of Geroch (1970b) are still open concerning the
satisfaction of (Equivalence) by the collection of all vacuum solutions or the
collection of all chronological spacetimes. A number of other results against
the dogma concern the (Observation) condition showing a generic sense in
which observers inherit a cosmic underdetermination problem with respect
to spacetime maximality (Malament, 1977b; Manchak, 2009a, 2011).

A person in favor of the dogma might point out that none of these re-
sults speak directly to the metaphysical issues that are central to the usual
justification for spacetime maximality. But even setting aside the results
concerning the (Equivalence) and (Observation) conditions, one still finds a
mixed picture. Most properties satisfy the (Determinism) condition showing
an analog to the Choquet-Bruhat and Geroch (1969) result. Most properties
also satisfy the (Existence) condition showing analogues to the maximality
existence result of Geroch (1970b). But most results concerning (Censorship)
count against the dogma although there are many open questions including a
formulation of the Penrose (1979) cosmic censorship conjecture due to Wald
(1984). Recall that (Censorship) is necessary for the dynamical justification
for spacetime maximality to go through.

(iii) There is a lack of clarity given that the subcollection problem obscures
the significance of the results that we do have. For example, the positive
results concerning (Existence) and (Determinism) are all secured relative to
possibility spaces that contain “physically unreasonable” spacetimes. The
subcollection problem shows that there is no assurance that when one moves
to a more appropriate reduced possibility space, similar positive results are
maintained. Moreover, this subcollection problem cannot be overcome by
restricting attention to highly exclusive local and global properties, i.e. the
collection of globally hyperbolic vacuum solutions. Versions of the problem
reappear within that context as well. Indeed, one can construct a collection
globally hyperbolic vacuum solutions that fails to satisfy all six of the second-
order maximally conditions. Invoking a no-hole global spacetime condition
is of no help since it is tantamount to imposing spacetime maximality by fiat
(Earman, 1995, p. 98).
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standard collection: %

vacuum solution: (Vac)

dominant energy condition: (DEC)
strong energy condition: (SEC)
weak energy condition: (W EC)
null energy condition: (NEC')
global hyperbolicity: (GH)

stable causality: (Stab)

strong causality: (Str)
distinguishing: (Dist)

causality: (Caus)

chronology: (Chron)

Heraclitus: (Her)

locally giraffe: (L G)

giraffe: (Gir)

fixed point: (F'P)

point rigid: (PR)

no bifurcating curves: (NBC)

not necessarily Hausdorff: (NNH)
subcollection: (Sub) C (Vac)N(GH)

MK N KKK e NSNS NSNS S S S A A A (Determinism)

PP D K 0 0 K R K K 4 K 4 K| (Equivalence)
KN D 0 AN N Y e SN S A 4| (Existence)

DU D N 0 4 4 4 4 4 4| (Observation)
P 0 D 0 0 e 0 e D 0 0 0w | (Stability)

PP P K K0 0 4 0 0 0 4 4 4 < 4 4| (Censorship)

Table 14.6: Second-order maximality properties of various first-order prop-
erties of spacetime.
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