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Abstract

Here, we outline the basic structure of relativistic spacetime and record
a number of facts. We then consider a distinction between local and global
spacetime properties and provide important examples of each. We also ex-
amine two clusters of global properties and question which of them should
be regarded as physically reasonable. The properties concern “singulari-
ties” and “time travel” and are therefore of some philosophical interest.

1 Introduction

The study of global spacetime structure is a study of the more foundational
aspects of general relativity. One steps away from the details of the theory and
instead examines the qualitative features of spacetime (e.g. its topology and
causal structure).

We divide the following into three main sections. In the first, we outline the
basic structure of relativistic spacetime and record a number of facts. In the
second, we consider a distinction between local and global spacetime properties
and provide important examples of each. In the third, we examine two clusters
of global properties and question which of them should be regarded as physically
reasonable. The properties concern “singularities” and “time travel” and are
therefore of some philosophical interest.

2 Relativistic Spacetime

We take a (relativistic) spacetime to be a pair (M, gab). Here M is a smooth,
connected, n-dimensional (n ≥ 2) manifold without boundary. The metric gab
is a smooth, non-degenerate, pseudo-Riemannian metric of Lorentz signature
(+,−, ...,−) on M .1

∗I am grateful to Bob Batterman, Erik Curiel, David Malament, and Jim Weatherall for
comments on a previous draft.

1In what follows, the reader is encouraged to consult Hawking and Ellis (1973), Geroch
and Horowitz (1979), Wald (1984), Joshi (1993), and Malament (2011).
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2.1 Manifold and Metric

Let (M, gab) be a spacetime. The manifold M captures the topology of the
universe. Each point in the n-dimensional manifold M represents a possible
event in spacetime. Our experience tells us that any event can be characterized
by n numbers (one temporal and n − 1 spatial coordinates). Naturally, then,
the local structure of M is identical to Rn. But globally, M need not have the
same structure. Indeed, M can have a variety of possible topologies.

In addition to Rn, the sphere Sn is certainly familiar to us. We can construct
a number of other manifolds by taking Cartesian products of Rn and Sn. For
example, the 2-cylinder is just R1×S1 while the 2-torus is S1×S1 (see Figure 1).
Any manifold with a closed proper subset of points removed also counts as a
manifold. For example, Sn − {p} is a manifold where p is any point in Sn.

Figure 1: The cylinder R1 × S1 and torus S1 × S1.

We say a manifold M is Hausdorff if, given any distinct points p, p′ ∈ M ,
one can find open sets O and O′ such that p ∈ O, p′ ∈ O′, and O ∩ O′ = ∅.
Physically, Hausdorff manifolds ensure that spacetime events are distinct. In
what follows, we assume that manifolds are Hausdorff.2

We say a manifold is compact if every sequence of its points has an accu-
mulation point. So, for example, Sn and Sn × Sm are compact while Rn and
Rn × Sm are not. It can be shown that every non-compact manifold admits a
Lorentzian metric. But there are some compact manifolds which do not. One
example is the manifold S4. Thus, assuming spacetime is four dimensional, we
may deduce that the shape of our universe is not a sphere. One can also show
that, in four dimensions, if a compact manifold does admit a Lorentzian metric
(e.g. S1 × S3), it is not simply connected. (A manifold is simply connected if
any closed curve through any point can be continuously deformed into any other
closed curve at the same point.)

We say two manifolds M and M ′ are diffeomorphic if there is a bijection
ϕ : M → M ′ such that ϕ and ϕ−1 are smooth. Diffeomorphic manifolds have
identical manifold structure and can differ only in their underlying elements.

The Lorentzian metric gab captures the geometry of the universe. Each
point p ∈ M has an associated tangent space Mp. The metric gab assigns a
length to each vector in Mp. We say a vector ξa is timelike if gabξ

aξb > 0, null
if gabξ

aξb = 0, and spacelike if gabξ
aξb < 0. Clearly, the null vectors create a

2See Earman (2008) for a discussion of this condition.
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double cone structure; timelike vectors are inside the cone while spacelike vectors
are outside (see Figure 2). In general, the metric structure can vary over M as
long as it does so smoothly. But it certainly need not vary and indeed most
of the examples considered below will have a metric structure which remains
constant (i.e. a flat metric).

Figure 2: Timelike, null, and spacelike vectors fall (respectively) inside, on, and
outside the double cone structure.

For some interval I ⊆ R, a smooth curve γ : I → M is timelike if its
tangent vector ξa at each point in γ[I] is timelike. Similarly, a curve is null
(respectively, spacelike) if its tangent vector at each point is null (respectively,
spacelike). A curve is causal if its tangent vector at each point is either null or
timelike. Physically, the worldlines of massive particles are images of timelike
curves while the worldlines of photons are images of null curves. We say a curve
γ : I →M is not maximal if there is another curve γ′ : I ′ →M such that I is a
proper subset of I ′ and γ(s) = γ′(s) for all s ∈ I.

We say a spacetime (M, gab) is temporally orientable if there exists a contin-
uous timelike vector field on M . In a temporally orientable spacetime, a future
direction can be chosen for each double cone structure in way that involves no
discontinuities. A spacetime which is not temporally orientable can be easily
constructed by taking the underlying manifold to be the Möbius strip. In what
follows, we will assume that spacetimes are temporally orientable and that a
future direction has been chosen.3

Naturally, a timelike curve is future-directed (respectively, past-directed) if all
its tangent vectors point in the future (respectively, past) direction. A causal
curve is future-directed (respectively, past-directed) if all its tangent vectors ei-
ther point in the future (respectively, past) direction or vanish.

Two spacetimes (M, gab) and (M ′, g′ab) are isometric if there is a diffeomor-
phism ϕ : M → M ′ such that ϕ∗(gab) = g′ab. Here, ϕ∗ is a map which uses
ϕ to “move” arbitrary tensors from M to M ′. Physically, isometric spacetimes
have identical properties. We say a spacetime (M ′, g′ab) is a (proper) extension
of (M, gab) if there is a proper subset N of M ′ such that (M, gab) and (N, g′ab|N )

3See Earman (2002) for a discussion of this condition.
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are isometric. We say a spacetime is maximal if it has no proper extension. One
can show that every spacetime which is not maximal has a maximal extension.

Finally, two spacetimes (M, gab) and (M ′, g′ab) are locally isometric if, for
each point p ∈M , there is an open neighborhood O of p and an open subset O′

of M ′ such that (O, gab|O) and (O′, g′ab|O′) are isometric, and, correspondingly,

with the roles of (M, gab) and (M ′, g′ab) interchanged. Although locally isomet-
ric spacetimes can have different global properties, their local properties are
identical. Consider, for example, the spacetimes (M, gab) and (M ′, g′ab) where
M = S1 × S1, p ∈ M , M ′ = M − {p}, and gab and g′ab are flat. The two are
not isometric but are locally isometric. Therefore, they share the same local
properties but have differing global structures (e.g. the first is compact while
the second isn’t). One can show that for every spacetime (M, gab), there is a
spacetime (M ′, g′ab) such that the two are not isometric but are locally isometric.

2.2 Influence and Dependence

Here, we lay the foundation for the more detailed discussion of causal structure
in later sections. Consider the spacetime (M, gab). We define the two-place
relations � and < on the points in M as follows: we write p� q (respectively,
p < q) if there exists a future-directed timelike (respectively, causal) curve from
p to q. For any point p ∈M , we define the timelike future (domain of influence)
of p, as the set I+(p) ≡ {q : p � q}. Similarly, the causal future (domain of
influence) of p is the set J+(p) ≡ {q : p < q}.

The causal (respectively, timelike) future of p represents the region of space-
time which can be possibly influenced by particles (respectively, massive parti-
cles) at p. The timelike and causal pasts of p, denoted I−(p) and J−(p), are
defined analogously. Finally, given any set S ⊂ M , we define I+[S] to be the
set ∪{I+(p) : p ∈ S}. The sets I−[S] and J+[S], and J−[S] are defined anal-
ogously. We shall now list a number of properties of timelike and causal pasts
and futures.

For all p ∈ M , the sets I+(p) and I−(p) are open. Therefore, so are I+[S]
and I−[S] for all S ⊆ M . However, the sets J+(p), J−(p), J+[S] and J−[S]
are not, in general, either open or closed. Consider Minkowski spacetime4 and
remove one point from the manifold. Clearly, some causal pasts and futures will
be neither open nor closed.

By definition, I+(p) ⊆ J+(p) and I−(p) ⊆ J−(p). And it is clear that if
p ∈ I+(q), then q ∈ I−(p) and also that if p ∈ I−(q), then q ∈ I+(p). Analogous
results hold for causal pasts and futures. We can also show that if either (i)
p ∈ I+(q) and q ∈ J+(r) or (ii) p ∈ J+(q) and q ∈ I+(r), then p ∈ I+(r).
Analogous results hold for the timelike and causal pasts. From this it follows
that I+(p) = J+(p), I−(p) = J−(p), İ+(p) = J̇+(p), and İ−(p) = J̇−(p).5

4Minkowski spacetime (M, gab) is such that M = Rn, gab is flat, and there exist no
incomplete geodesics (defined below). See Hawking and Ellis (1973).

5In what follows, for any set S, the sets S, Ṡ, and int(S) denote the closure, boundary,
and interior of S respectively.
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Because future-directed casual curves can have vanishing tangent vectors, it
follows that for all p, we have p ∈ J+(p) and p ∈ J−(p). Of course, a similar
result does not hold generally for timelike futures and pasts. But there do
exist some spacetimes such that, for some p ∈ M , p ∈ I+(p) (and therefore
p ∈ I−(p)). Gödel spacetime is one famous example (Gödel 1949).

We say the chronology violating region of a spacetime (M, gab) is the (nec-
essarily open) set {p ∈ M : p ∈ I+(p)}. We say a timelike curve γ : I → M
is closed if there are distinct points s, s′ ∈ I such that γ(s) = γ(s′). Clearly,
a spacetime contains a closed timelike curve if and only if it has a non-empty
chronology violating region. One can show that, for all spacetimes (M, gab),
if M is compact, the chronology violating region is not empty (Geroch 1967).
The converse is false. Take any compact spacetime and remove one point from
the underlying manifold. The resulting spacetime will contain closed timelike
curves and also fail to be compact.

Figure 3: Cylindrical Minkowski spacetime containing a closed causal curve (e.g
the dotted line) but no closed timelike curves.

We define a causal curve γ : I →M to be closed if there are distinct points
s, s′ ∈ I such that γ(s) = γ(s′) and γ has no vanishing tangent vectors. It is
immediate that closed timelike curves are necessarily closed causal curves. But
one can find spacetimes which contain the latter but not the former. Consider,
for example, Minkowski spacetime (M, gab) which has been “rolled up” along
one axis in such a way that some null curves but no timelike curves are permitted
to loop around M (see Figure 3). Other conditions relating to “almost” closed
causal curves will be considered in the next section.

Finally, we say the spacetimes (M, gab) and (M, g′ab) are conformally related
if there is a smooth, strictly positive function Ω : M → R such that g′ab = Ω2gab
(the function Ω is called a conformal factor). Clearly, if (M, gab) and (M, g′ab)
are conformally related, then for all points p, q ∈ M , p ∈ I+(q) in (M, gab) if
and only if p ∈ I+(q) in (M, g′ab). Analogous results hold for timelike pasts
and causal futures and pasts. Thus, the causal structures of conformally related
spacetimes are identical.
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A point p ∈ M is a future endpoint of a future-directed causal curve γ :
I → M if, for every neighborhood O of p, there exists a point s′ ∈ I such that
γ(s) ∈ O for all s > s′. A past endpoint is defined analogously. For any set
S ⊆M , we define the future domain of dependence of S, denoted D+(S), to be
the set of points p ∈M such that every causal curve with future endpoint p and
no past endpoint intersects S. The past domain of dependence of S, denoted
D−(S), is defined analogously. The entire domain of dependence of S, denoted
D(S), is just the set D−(S) ∪D+(S). If “nothing can travel faster than light”,
there is a sense in which the physical situation at every point in D(S) depends
entirely upon the physical situation on S.

Clearly, we have S ⊆ D+(S) ⊆ J+[S] and S ⊆ D−(S) ⊆ J−[S]. Given any
point p ∈ D+(S), and any point q ∈ I+[S] ∩ I−(p), we know that q ∈ D+(S).
An analogous result holds for D−(S). One can verify that, in general, D(S) is
neither open nor closed. Consider Minkowski spacetime (M, gab). If S = {p} for
any point p ∈ M , we have D(S) = S which is not open. If S = I+(p) ∩ I−(q)
for any points p ∈M and q ∈ I+(p), we have D(S) = S which is not closed.

A set S ⊂M is a spacelike surface if S is a submanifold of dimension n− 1
such that every curve in S is spacelike. We say a set S ⊂ M is achronal if
I+[S]∩ S = ∅. One can show that for an arbitrary set S, İ+[S] is achronal. In
what follows, let S be a closed, achronal set. We have D+(S)∩I−[S] = D−(S)∩
I+[S] = ∅. We also have int(D+(S)) = I−[D+(S)] ∩ I+[S] and the analogous
result for D−(S). Finally, we have int(D(S)) = I−[D+(S)] ∩ I+[D−(S)] =
I+[D−(S)] ∩ I−[D+(S)].

We say a closed, achronal set S is a Cauchy surface if D(S) = M . Physically,
conditions on a Cauchy surface S (necessarily a submanifold of M of dimension
n−1) determine conditions throughout spacetime (Choquet-Bruhat and Geroch
1969). Clearly, if S is a Cauchy surface, any causal curve without past or future
endpoint must intersect S, I+[S], and I−[S]. One can verify that Minkowski
spacetime admits a Cauchy surface.

We define the future Cauchy horizon of S, denotedH+(S), as the setD+(S)−
I−[D+(S)]. The past Cauchy horizon of S is defined analogously. One can ver-
ify that H+(S) and H−(S) are closed and achronal. The Cauchy horizon of S,
denoted H(S), is the set H+(S)∪H−(S). We have H(S) = Ḋ(S) and therefore
H(S) is closed. Also, a non-empty, closed, achronal set S is a Cauchy surface if
and only if H(S) = ∅.

The edge of a closed, achronal set S ⊂ M is the set of points p ∈ S such
that every open neighborhood O of p contains a point q ∈ I+(p), a point r ∈
I−(p), and a timelike curve from r to q which does not intersect S. A closed,
achronal set S ⊂M is a slice if it is without edge. It follows that every Cauchy
surface is a slice. The converse is false. Consider Minkowski spacetime with
one point removed from the manifold. It certainly admits a slice but no Cauchy
surface (see Figure 4). Of course, not every spacetime admits a slice. For a
counterexample, consider any spacetime which has a chronology violating region
identical to its manifold.
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S

Figure 4: Minkowski spacetime with one point removed contains a slice S but
no Cauchy surface. The region above the dotted line is not part of D(S).

3 Spacetime Properties

We say a property P on a spacetime is local if, given any two locally isometric
spacetimes (M, gab) and (M ′, g′ab), (M, gab) has P if and only if (M ′, g′ab) has
P . A property is global if it is not local. Below, we will introduce and classify
a number of spacetime properties of interest.

3.1 Local Properties

The most important local spacetime property is that of being a “solution” to
Einstein’s equation. There are a number of ways one can understand this prop-
erty and we shall investigate each of them in what follows.

Let (M, gab) be a spacetime. Associated with the metric gab is a unique
(torsion-free) derivative operator ∇a such that ∇agbc = 0. Given a smooth
curve γ : I → M with tangent field ξa, we say a vector ηa, defined at every
point in the range of γ, is parallelly transported along γ if ξb∇bηa = 0 (see
Figure 5). We say a smooth curve γ : I → R is a geodesic (i.e. non-accelerating)
if its tangent field ξa is such that ξb∇bξa = 0. Given any point p ∈M , there is
some neighborhood O of p such that any two points q, r ∈ O can be connected
by a unique geodesic contained entirely in O. Such a neighborhood is said to
be convex normal.

The derivative operator ∇a can be used to define the Riemann curvature
tensor. It is the unique tensor Rabcd such that for all ξa, Rabcdξ

b = −2∇[c∇d]ξa.6

A metric gab on M is flat if and only if its associated Riemann curvature tensor
Rabcd vanishes everywhere on M . The tensors Rabcd and Rabcd have a number
of useful symmetries: Rab(cd) = 0, Ra[bcd] = 0, ∇[nR

a
|b|cd] = 0, Rab(cd) = 0,

Ra[bcd] = 0, R(ab)cd = 0, and Rabcd = Rcdab.
We define the Ricci tensor Rab to be Rcabc and the scalar curvature R to be

Raa. The Einstein tensor Gab is then defined as Rab− 1
2Rgab. It plays a central

6In what follows, square brackets denote anti-symmetrization. Parentheses denote sym-
metrization. See Malament (2011).

7



p

 

ηa

γ

Figure 5: The vector ηa is parallelly transported along a closed curve γ. Note
that the vector returns to the point p orientated differently.

role in what follows. One can verify that ∇aGab = 0.
We suppose that the entire matter content of the universe can be character-

ized by smooth tensor fields on M . For example, a source-free electromagnetic
field is characterized by an anti-symmetric tensor Fab on M which satisfies
Maxwell’s equations: ∇[aFbc] = 0, ∇aFab = 0. Other forms of matter, such as
perfect fluids and Klein-Gordon fields, are characterized by other smooth tensor
fields on M .

Associated with each matter field is a smooth, symmetric energy-momentum
tensor Tab on M . For example, the energy-momentum tensor Tab associated
with an electromagnetic field Fab is FanF

n
b+ 1

4gab(F
nmFnm). Note that Tab is a

function not only of the matter field itself but also of the metric. Other matter
fields, such as those mentioned above, will have their own energy-momentum
tensors Tab.

Fix a point p ∈ M . The quantity Tabξ
aξb at p represents the energy den-

sity of matter as given by an observer with tangent ξa at p. The quantity
T abξ

b − Tnbξ
nξbξa at p represents the spatial momentum density as given by

the same observer at p. We require that any energy-momentum tensor satisfy
the conservation condition: ∇aTab = 0. Physically, this ensures that energy-
momentum is locally conserved.

Finally, we come to Einstein’s equation: Gab = 8πTab.
7 It relates the curva-

ture of spacetime with the matter content of the universe. In four dimensions,
Einstein’s equation can be expressed as Rab = 8π(Tab − 1

2Tgab) where T = T aa.
Of course, any spacetime (M, gab) can be thought of as a trivial solution

to Einstein’s equation if Tab is simply defined to be 1
8πGab. Note that Tab

automatically satisfies the conservation condition since ∇aGab = 0. But, in
general, the energy momentum tensor defined in this way will not be associated
with any known matter field. However, if the Tab so defined is also the energy
momentum tensor associated with a known matter field (or the sum of two

7Here, we drop the cosmological constant term −Λgab sometimes added to the left side of
the equation for some Λ ∈ R. For more on this term, see Earman (2001).
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or more energy momentum tensors associated with known matter fields) the
spacetime is an exact solution. We say an exact solution is also a vacuum
solution if Tab = 0. And, in four dimensions, one can use the alternate version
of Einstein’s equation to show that Tab = 0 if and only if Rab = 0.

Between trivial and exact solutions, there are the constraint solutions. These
are spacetimes whose associated energy-momentum tensors (defined via Ein-
stein’s equation) satisfy one or more conditions of interest. Here, we outline
three. We say Tab satisfies the weak energy condition if, for any future-directed
unit timelike vector ξa at any point in M , the energy density Tabξ

aξb is not
negative.

We say Tab satisfies the strong energy condition if, for any future-directed
unit timelike vector ξa at any point in M , the quantity (Tab − 1

2Tgab)ξ
aξb is

not negative. The strong energy condition can be interpreted as the require-
ment that a certain effective energy density is not negative. Note that, in four
dimensions, the strong energy condition is satisfied if and only if the (timelike)
convergence condition, Rabξ

aξb ≥ 0, is also satisfied. This latter condition can
be understood to assert that gravitation is attractive in nature.

Finally, we say Tab satisfies the dominant energy condition if, for any future-
directed unit timelike vector ξa at any point in M , the vector T abξ

b is causal
and future-directed. This last condition can be interpreted as the requirement
that matter cannot travel faster than light. Indeed, if Tab vanishes on some
closed, achronal set S ⊂M and satisfies the dominant energy and conservation
conditions, then Tab vanishes on all of D(S) (Hawking and Ellis 1973). Clearly,
the dominant energy condition implies (but is not implied by) the weak energy
condition.

One can show that being a trivial, exact, or vacuum solution of Einstein’s
equation is a local spacetime property. In addition, being a constraint solution
is also a local spacetime property if the constraint under consideration is one of
the three energy conditions considered here.

3.2 Global Properties

A large number of important global properties concern either “causal structure”
or “singularities”. Here we investigate them.

There is a hierarchy of conditions relating to the causal structure of space-
time.8 Each condition corresponds to a global spacetime property (the property
of satisfying the condition). We say a spacetime satisfies the chronology con-
dition if it contains no closed timelike curves (equivalently, p /∈ I+(p) for all
p ∈ M). A spacetime satisfies the causality condition if there are no closed
causal curves (equivalently, J+(p) ∩ J−(p) = {p} for all p ∈M). As mentioned
previously, causality implies chronology but the implication does not run in
the other direction (see Figure 3). The next few conditions serve to rule out
“almost” closed causal curves.

8Although we only consider a small handful here, there are an infinite number of conditions
in the causal hierarchy (Carter 1971).
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We say a spacetime (M, gab) satisfies the future distinguishability condition
if there do not exist distinct points p, q ∈M such that I+(p) = I+(q). The past
distinguishability condition is defined analogously. One can show that a space-
time (M, gab) satisfies the future (respectively, past) distinguishability condition
if and only if, for all points p ∈ M and every open set O containing p, there
is an open set V ⊂ O also containing p such that no future (respectively, past)
directed causal curve that starts at p and leaves V ever returns to V . We say
a spacetime satisfies the distinguishability condition if it satisfies both the past
and future distinguishability conditions.

Future or past distinguishability implies causality. But the converse is not
true. Of course, distinguishability implies past (or future) distinguishability.
But one can certainly find spacetimes which satisfy future (respectively, past)
distinguishability but not past (respectively, future) distinguishability (Hawking
and Ellis 1973).

Consider two distinguishing spacetimes (M, gab) and (M ′, g′ab) and a bi-
jection ϕ : M → M ′ such that for all p, q ∈ M , p ∈ I+(q) if and only if
ϕ(p) ∈ I+(ϕ(q)). One can show (Malament 1977) that ϕ is a diffeomorphism
and ϕ∗(gab) = Ω2g′ab for some conformal factor Ω : M ′ → R. Thus, if the
causal structure of spacetime is sufficiently well-behaved, that structure alone
determines the shape of the universe as well as the metric structure up to a
conformal factor.

We say a spacetime satisfies the strong causality condition if, for all points p ∈
M and every open set O containing p, there is an open set V ⊂ O also containing
p such that no causal curve intersects V more than once. If a spacetime (M, gab)
satisfies strong causality, then, for every compact set K ⊂ M , a causal curve
γ : I → K must have future and past endpoints in K. Thus, in a strongly causal
spacetime, an inextendible causal curve cannot be “imprisoned” in a compact
set. Clearly, strong causality implies distinguishability. One can show that the
implication does not run in the other direction (Hawking and Ellis 1973).

A spacetime (M, gab) satisfies the stable causality condition if there is a
timelike vector field ξa on M such that the spacetime (M, gab + ξaξb) satisfies
the chronology condition. Physically, even if the light cones are “opened” by
a small amount at each point, the spacetime remains free of closed timelike
curves. We say a spacetime (M, gab) admits a global time function if there is
a smooth function t : M → R such that, for any distinct points p, q ∈ M , if
p ∈ J+(q), then t(p) > t(q). The function assigns a “time” to every point in M
such that it increases along every (non-trivial) future-directed causal curve. An
important result is that a spacetime admits a global time function if and only
if it satisfies stable causality (Hawking 1969). One can also show that stable
causality implies strong causality but the converse is false (see Figure 6).

The remaining causality conditions not only require that there be no almost
closed causal curves but, in addition, that there be limitations on the kinds of
“gaps” in spacetime (Hawking and Sachs 1974).

We say a spacetime (M, gab) satisfies the causal continuity condition if it
satisfies distinguishability and, for all p, q ∈ M , I+(p) ⊆ I+(q) if and only if
I−(q) ⊆ I−(p). Physically, causal continuity ensures that points which are close
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Figure 6: Cylindrical Minkowski spacetime with three horizontal lines removed
as shown. The spacetime is strongly causal but not stably causal.

to one another do not have wildly different timelike futures and pasts. One
can show that causal continuity implies stable causality. The converse is not
true. A counterexample can be constructed by taking Minkowski spacetime
and excising from the manifold a compact subset with non-empty interior. The
resulting spacetime satisfies stable causality but not causally continuity.

A spacetime (M, gab) satisfies the causal simplicity condition if it satisfies
distinguishability and, in addition, for all p ∈ M , the sets J+(p) and J−(p)
are closed. One can show that causal simplicity implies causal continuity. The
converse is false since Minkowski spacetime with a point removed from the
manifold satisfies causal continuity but not causal simplicity.

Finally, we say a spacetime (M, gab) satisfies global hyperbolicity if it satisfies
strong causality and, in addition, for all p, q ∈ M , the set J+(p) ∩ J−(q) is
compact. A fundamental result is that a spacetime satisfies global hyperbolicity
if and only if it admits a Cauchy surface (Geroch 1970b). In addition, one can
show that the manifold of any spacetime which satisfies global hyperbolicity
must have the topology of R×Σ for any Cauchy surface Σ. Global hyperbolicity
implies causal simplicity but the converse is not true. Anti-de Sitter spacetime
is one counterexample (Hawking and Ellis 1973).

In sum, we have the following implications (none of which run in the other
direction): global hyperbolicity ⇒ causal simplicity ⇒ causal continuity ⇒
stable causality ⇒ strong causality ⇒ distinguishability ⇒ future (or past)
distinguishability ⇒ causality ⇒ chronology.

There are a number of senses in which a spacetime may be said to contain a
“singularity”.9 Here, we restrict attention to the most important one: geodesic
incompleteness. We say a geodesic γ : I →M is incomplete if it is maximal and
such that I 6= R. We say a future-directed maximal timelike or null geodesic
γ : I →M is future incomplete (respectively, past incomplete) if there is a r ∈ R
such that r > s for all s ∈ I. A past incomplete geodesic is defined analogously.

Naturally, a spacetime is timelike geodesically incomplete if it contains a
timelike incomplete geodesic. In a timelike geodesically incomplete spacetime,
it is possible for a non-accelerating massive particle to experience only a finite

9See Ellis and Schmidt (1977), Geroch, Liang, and Wald (1982), Clarke (1993), and Curiel
(1999) for details.
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amount of time. We can define spacelike and null geodesic incompleteness anal-
ogously. Finally, we say that a spacetime is geodesically incomplete if it is either
timelike, spacelike, or null geodesically incomplete.

If a spacetime has an extension, it is geodesically incomplete. The converse
is false. Consider Minkowski spacetime (M, gab) and let M ′ be the manifold
M − {p} for any p ∈ M . Let Ω : M ′ → R be a conformal factor which
approaches zero as the missing point p is approached. The resulting spacetime
(M ′,Ωgab|M ′) is maximal but contains timelike, spacelike, and null incomplete
geodesics. Other maximal spacetimes exist which are geodesically incomplete
and have a flat metric.10 In other words, one can have singularities without
any spacetime curvature at all. Since there are certainly flat spacetimes which
are geodesically complete (e.g. Minkowski spacetime), it follows that geodesic
incompleteness is a global property. We mention in passing that the property
of being maximal is also global.

Finally, one can show that timelike, spacelike, and null incompleteness are
independent conditions in the sense that there are spacetimes which are in-
complete in any one of the three types and complete in the other two (Geroch
1968). Additionally, one can show that compact spacetimes are not necessarily
geodesically complete (Misner 1963). These two results suggest that geodesic
incompleteness fails to mesh completely with our notion of a “hole” in spacetime.

4 Which Properties are Reasonable?

So far, we have provided examples of a number of spacetime properties. In this
section, we ask: Which properties are “physically reasonable”?

It is usually taken for granted that “the normal physical laws we determine
in our spacetime vicinity are applicable at all other spacetime points” (Ellis
1975). This assumption allows us to stipulate that the local property of being
a solution to Einstein’s equation is a physically reasonable one. And often this
means that we take the energy conditions as necessarily satisfied. However, some
have argued that even the energy conditions can be violated in some physically
reasonable spacetimes (Vollick 1997).

One global property which is usually taken to be physically reasonable is
that spacetime be maximal. Metaphysical considerations seem to drive the
assumption. One asks (Geroch 1970a), “Why, after all, would Nature stop
building our universe...when She could just as well have carried on?” Of course,
such reasoning can be questioned (Earman 1995).

What about the global properties concerning singularities and causal struc-
ture? Which of them are to be considered physically reasonable?

10Here is one example. Remove a point from R2 and take the universal covering space. Let
the resulting spacetime manifold have a flat metric.
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4.1 Singularities

Much of the work in global structure has concerned singularities. The task
has been to show, using fairly conservative assumptions, that all physically
reasonable spacetimes must be (null or timelike) geodesically incomplete. The
project has produced a number of theorems of this type. Here, we examine an
influential one due to Hawking and Penrose (1970).

Three preliminary conditions are crucial and each have been taken to be
satisfied by all (or almost all) physically reasonable spacetimes. We shall tem-
porarily adopt these background assumptions in what follows. The first is
chronology (no closed timelike curves). The second is the convergence condition
(Rabξ

aξa ≥ 0 for all unit timelike vectors ξa). Recall that the convergence con-
dition is satisfied in four dimensions if and only if the strong energy condition
is. In this section, we will restrict attention to four dimensional spacetimes.
The third is the generic condition – that each causal geodesic with tangent ξa

contains a point at which ξ[aRb]cd[eξf ]ξ
cξd 6= 0. Physically, the generic condition

requires that somewhere along each causal curve a certain effective curvature
is encountered. Although highly symmetric spacetimes may not satisfy the
generic condition (e.g. Minkowski spacetime) it is thought to be satisfied by all
sufficiently “generic” ones. Now, consider the following statement.

(S) Any spacetime which satisfies chronology, the convergence condition, the
generic condition, and , must be timelike or null geodesically
incomplete.

We seek to fill in the blank with physically reasonable “boundary” conditions
which make (S) true. Hawking and Penrose (1970) considered three of them (see
also Earman 1999).

First, if the boundary condition is the requirement that there exist a compact
slice, (S) is true. So, a “spatially closed” universe is singular if it is physically
reasonable. One can show that the existence of a compact slice is a necessary
condition for predicting future spacetime events (Manchak 2008). Thus, we have
the somewhat counterintuitive result that prediction is possible in a physically
reasonable spacetime only if singularities are present.11

Second, (S) is true if the boundary condition is the requirement that there ex-
ist a trapped surface. A trapped surface is a two-dimensional compact spacelike
surface T such that both sets of “ingoing” and “outgoing” future-directed null
geodesics orthogonal to T have negative expansion at T .12 Physically, whenever
a sufficiently large amount of matter is contained in a small enough region of
spacetime, a trapped surface forms (Schoen and Yau 1983).

Third, (S) is true if the boundary condition is the requirement that there
is a point p ∈ M such that the expansion along every future (or past) directed
null geodesic through p is somewhere negative. Physically, a spacetime which

11For a related discussion, see Hogarth (1997).
12The (scalar) expansion of a congruence of null geodesics is a bit complicated to define (see

Wald 1984). But one can get some some idea of the quantity by noting that the expansion of
a congruence of timelike geodesics with unit tangent field ξa is ∇aξa.
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satisfies this condition contains a contracting region in the causal future (or
past) of a point. It is thought that the observable portion of our own universe
contains such a region (Ellis 2007).

Additional examples of boundary conditions which make (S) true could be
multiplied (Senovilla 1998). And instead of boundary conditions, one can also
find causal conditions which make (S) true. We mention one here. It turns out
that (S) is true if the causal condition is the requirement that stable causality is
not satisfied (Minguzzi 2009). Thus, physically reasonable spacetimes (which are
assumed to be causally well behaved in the sense that they satisfy chronology)
are singular if they are not too causally well behaved. One naturally wonders
if it is possible for physically reasonable spacetimes to avoid singularities if the
chronology condition is dropped. But this seems unlikely (Tipler 1977, Kriele
1990).

A large number of physically reasonable spacetimes (including our own) seem
to satisfy at least one of the above mentioned boundary conditions and hence
contain singularities. And the worry has been that these singularities can be
observed directly – that they are “naked” in some sense. So, one would like to
show that all (or almost all) physically reasonable spacetimes do not contain
naked singularities. This is the “cosmic censorship” hypothesis. There are a
number of ways to formulate the hypothesis (Joshi 1993, Penrose 1999). Here,
we consider one.

γ

p

Figure 7: Minkowski spacetime with one point removed is nakedly singular. The
future incomplete geodesic γ, contained in the timelike past of p, approaches the
missing point.

We do not wish to count a “big bang” singularity as naked and therefore re-
strict attention to future (rather than past) incomplete timelike or null geodesics.
We say a spacetime (M, gab) is nakedly singular if there is a point p ∈M and a
future incomplete timelike or null geodesic γ : I →M such that the range of γ
is contained in I−(p) (see Figure 7).

One can show that a nakedly singular spacetime does not admit a Cauchy
surface (Geroch and Horowitz 1979). Thus, if all physically reasonable space-
times are globally hyperbolic, then the cosmic censorship hypothesis is true.
And Penrose (1969, 1979) has suggested that one might be able to show the
antecedent of this conditional. The idea would be to show that spacetimes
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which fail to be globally hyperbolic are unstable under certain types of pertur-
bations. However, such a claim is difficult to express precisely (Geroch 1971).
And although some evidence does seem to indicate that instabilities are present
in non-globally hyperbolic spacetimes (Chandrasekhar and Hartle 1982), still
other evidence suggests otherwise (Morris, Thorne, and Yurtsever 1988).

There is also an epistemological predicament at issue. An observer never
can have the evidential resources to rule out the possibility that his or her
spacetime is not globally hyperbolic – even under any assumptions concerning
local spacetime structure (Manchak 2011b). And how could we ever know that
all physically reasonable spacetimes are globally hyperbolic if we cannot even
be confident that our own spacetime is?

4.2 Time Travel

If the cosmic censorship hypothesis is false, there are physically reasonable
spacetimes which do not satisfy global hyperbolicity. Might there be some
physically reasonable spacetimes which do not even satisfy chronology? We
investigate the question here.

One way to rule out a number of chronology-violating spacetimes concerns
self-consistency constraints on matter fields of various types. Here, we examine
source free Klein-Gordon fields. Let (M, gab) be a spacetime. We say an open
set U ⊂ M is causally regular if, for every function ϕ : U → R which satisfies
∇a∇aϕ = 0, there is a function ϕ′ : M → R such that ∇a∇aϕ′ = 0 and
ϕ′|U = ϕ. We say (M, gab) is causally benign if, for every p ∈M and every open

set U containing p, there is an open set U ′ ⊂ U containing p which is causally
regular.

It has been argued that a spacetime which is not causally benign is not phys-
ically reasonable. We certainly know that every globally hyperbolic spacetime
is causally benign. But although some chronology violating spacetimes are not
causally benign, a number of others are (Yurtsever 1990, Friedman 2004).

Given the existence of causally benign yet chronology violating spacetimes,
another area of research seems fruitful to pursue. One wonders if chronology
violating region can, in some sense, be “created” by rearranging the distribution
and flow of matter (Stein 1970). In other words, can a physically reasonable
spacetime contain a “time machine” of sorts? Here, we examine one way of
formalizing the question given by Earman, Smeenk, and Wüthrich (2009).13

First, in order to count as a time machine, a spacetime (M, gab) must con-
tain a spacelike slice S ⊂ M representing a “time” before the time machine
is switched on. Second, the spacetime must also have a chronology violating
region V after the machine is turned on. So we require V ⊂ J+[S]. Finally, in
order to capture the idea that a time machine must “create” a chronology vio-
lating region, every physically reasonable maximal extension of int(D(S)) must
contain a chronology violating region V ′.14 Consider the following statement.

13See also Earman and Wüthrich (2010) and Smeenk and Wüthrich (2011).
14Here we abuse the notation somewhat. Properly, we require that every physically rea-
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(T) There is a spacetime (M, gab) with a spacelike slice S ⊂M and a chronol-
ogy violating region V ⊂ J+[S] such that every maximal extension of
int(D(S)) which satisfies contains some chronology violating re-
gion V ′.

We seek to fill in the blank with physically reasonable “potency” conditions
which make (T) true. And we know from counterexamples constructed by Kras-
nikov (2002) that (T) will be false unless there is a potency condition and this
condition limits spacetime “holes” in some sense.

But Hawking (1992) has suggested that limiting holes may not be enough.
Indeed, he conjectured that all physically reasonable spacetimes are “protected”
from chronology violations and provided some evidence for the claim. We say
H+(S) is compactly generated if all past directed null geodesics through H+(S)
enter and remain in some compact set. Any spacetime with a slice S such that
H+(S) is non-empty and compactly generated does not satisfy strong causality.
And Hawking showed there is no spacetime which satisfies the weak energy
condition which has a non-compact slice S such that H+(S) is non-empty and
compactly generated.

But some have argued that insisting on a compactly generated Cauchy hori-
zon rules out some physically reasonable spacetimes (Ori 1993, Krasnikov 1999).
And of course, a slice S need not be non-compact to be physically reasonable.
Thus, Hawking’s chronology protection conjecture remains an open question.

Are there any potency conditions which make (T) true? We say a space-
time (M, gab) is hole-free if, for any spacelike surface S in M there is no iso-
metric embedding θ : D(S) → M ′ into another spacetime (M ′, g′ab) such that
θ(D(S)) 6= D(θ(S)). Physically, hole-freeness ensures that, for any spacelike
surface S, the domain of dependence D(S) is “as large as it can be”. And
one can show that any spacetime with one point removed from the underlying
manifold fails to be hole-free. It has been argued that all physically reasonable
spacetimes are hole-free (Clarke 1976, Geroch 1977). And it turns out that (T)
is true if the potency condition is hole-freeness (Manchak 2009b). The two-
dimensional spacetime of Misner (1967) can be used to prove the result (see
Figure 8).

However, hole-freeness may not be a physically reasonable potency condi-
tion after all. Indeed, some maximal, globally hyperbolic models, including
Minkowski spacetime, are not hole-free (Manchak 2009a, Krasnikov 2009). But,
another more reasonable “no holes” potency condition can be used to make (T)
true: the demand that, for all p ∈ M , J+(p) and J−(p) are closed (Manchak
2011a). Call this condition causal closedness and recall that causal closedness
is used, along with distinguishability, to define causal simplicity.

Not only is causal closedness satisfied by all globally hyperbolic models,
including Minkowski spacetime, but it is also satisfied by many chronology vi-
olating spacetimes as well (e.g. Gödel spacetime, Misner spacetime). In this
sense, then, it is a more appropriate condition than hole-freeness. But is causal

sonable maximal extension of (int(D(S)), gab|int(D(S))) must contain a chronology violating
region V ′.
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S

Figure 8: Misner spacetime. Every maximal, hole-free extension of int(D(S))
(the region below the dotted line) contains some chronology violating region.

closedness satisfied by all physically reasonable spacetimes? The question is
open. So too is the question of which other potency conditions make (T) true.

5 Conclusion

Here, we have outlined the basic structure of relativistic spacetime. As we have
seen, general relativity allows for a wide variety of global spacetime properties
– some of them quite unusual. And one wonders which of these properties are
physically reasonable.

Early work focused on singularities. Initially, a number of results established
that all physically reasonable spacetimes are geodesically incomplete. Next, the
relationship between these singularities and determinism was investigated: Can
a physically reasonable (and therefore geodesically incomplete) spacetime fail
to be globally hyperbolic? The question remains open.

Recently, focus has shifted somewhat toward acausality: Can physically rea-
sonable spacetimes contain closed timelike curves? If so, can these closed time-
like curves be “created” in some sense by rearranging the distribution and flow
of matter? Again, these questions remain open.
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