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Abstract

Within the context of general relativity, the Heraclitus asymmetry
property requires that no distinct pair of spacetime events have the same
local structure (Manchak and Barrett 2023). Here, we explore Heraclitus-
maximal worlds – those which are “as large as they can be” with respect to
the Heraclitus property. Using Zorn’s lemma, we prove that such worlds
exist and highlight a number of their properties. If attention is restricted
to Heraclitus-maximal worlds, we show a sense in which observers have
the epistemic resources to know which world they inhabit.

1 Introduction

Within the context of general relativity, Leibnizian metaphysics seems to de-
mand that worlds are “maximal” with respect to a variety of spacetime proper-
ties (Geroch 1970; Earman 1995). Here, we explore maximal worlds with respect
to the “Heraclitus” asymmetry property which demands that no distinct pair
of spacetime events have the same local structure (Barrett and Manchak 2023).
We will show that Heraclitus-maximal worlds exist and that every Heraclitus
world is contained in some Heraclitus-maximal world. This amounts to a type
of compatibility between the Leibnizian and Heraclitian demands. We then go
on to show a sense of incompatibility between these demands and the existence
of non-isomorphic but “observationally indistinguishable” worlds introduced by
Glymour (1972, 1977) and Malament (1977).

Our discussion in this paper synthesizes three separate literatures: the physics
and philosophy of spacetime symmetry and structure (Weyl 1952; Stein 1967;
Earman 1989; Dasgupta 2016; Barrett 2018; North 2021), and the modal struc-
ture of spacetime, especially with respect to Leibnizian maximality (Penrose
1969; Geroch 1970; Clarke 1993; Earman 1995; Manchak 2016; Krasnikov 2018);
the possibility of cosmic underdetermination (Glymour 1977; Malament 1977;
Manchak 2009; Norton 2011; Butterfield 2014; Belot 2023). We will see that
the three subjects interact in fruitful ways. It is also somewhat remarkable that

∗We wish to thank David Malament and two anonymous referees for a number of helpful
comments.
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almost none of the technical details of general relativity will be needed in what
follows. For the most part, proofs come down to basic set theory including
simple applications of Zorn’s lemma.

2 Sub-worlds and Isomorphisms

One starts with the collection U of models of (standard) general relativity.
This is the collection of smooth, connected, Hausdorff manifolds equipped with
a smooth, Lorentzian metric which is assumed to be time-orientable (Hawking
and Ellis 1973). In what follows, we shall refer to elements of U as “worlds”
although it is important to recognize that, strictly speaking, such elements are
mere mathematical models of worlds – geometric objects – and not worlds them-
selves.1 Only two foundational notions will be needed in much of what follows:
sub-worlds and isomorphisms. With these notions, one can define Heraclitus-
maximal worlds and explore their basic properties. A third foundational notion
– the past of an event – is a special type of sub-world needed later on to discuss
the epistemic issues.

Consider sub-worlds first. The manifold structure of a worldW ∈ U includes
a manifold topology on W . Any spacetime region O ⊆ W which is both open
and connected in the manifold topology on W inherits a manifold and metric
structure from W . This O then counts as a world in its own right: O ∈ U .
Call such a region O ⊆ W a sub-world of the world W . One can show that
sub-worlds of any world W ∈ U can be arbitrarily small in the sense that for
any open set S ⊆W however small, there exists a sub-world O of W which fits
inside S. Sub-worlds can also be big in the sense that a world W always counts
as a sub-world of itself.

Now consider isomorphisms. We say worlds W1,W2 ∈ U are isomorphic
if there is a bijection ψ : W1 → W2 such that both it and its inverse preserve
all manifold and metric structure. In the natural way, isomorphisms between
worlds gives rise to an equivalence relation ∼ on U ; for any worlds W1,W2 ∈
U , the equivalence classes [W1], [W2] ∈ U /∼ are such that [W1] = [W2] if
and only if W1 and W2 are isomorphic (see Hawking and Ellis 1973, p. 56).
In what follows, equivalence classes of isomorphic worlds will prove useful to
consider in applying Zorn’s lemma (Wald 1984, p. 263; Sbierski 2016, p. 305).
But we emphasize that no philosophical assumptions are made or needed here
concerning the “equivalence” or “identity” of isomorphic worlds.2

For any worlds W1,W2 ∈ U , an isomorphic embedding is an injective
map θ : W1 →W2 which preserves all manifold and metric structure in the sense
that θ[W1] is a (not necessarily proper) sub-world of W2 which is isomorphic
to W1. For any worlds W1,W2 ∈ U , we say W2 is a (not necessarily proper)

1For a recent discussion on the distinction between general relativistic models and the
worlds they represent, see Fletcher (2020), Roberts (2020), and Bradley andWeatherall (2020).

2Various assumptions of this kind are sometimes called “Leibniz equivalence” in the hole
argument literature (see Earman and Norton 1987; Belot 2017; Weatherall 2018; Roberts
2020).

2



extension of W1 if there is an isomorphic embedding θ : W1 → W2. Let ≤
be the relation on U /∼ such that [W1] ≤ [W2] if and only if any element of
[W2] is an extension of any element of [W1]. This relation is clearly reflexive
and transitive but, somewhat surprisingly, it fails to be a partial order since it
is not anti-symmetric: there are worlds W1,W2 ∈ U such that [W1] ≤ [W2] and
[W2] ≤ [W1] and yet [W1] 6= [W2] (Geroch 1970, p. 276).

To see this, start with a two-dimensional Minkowski world M ∈ U in stan-
dard (t, x) coordinates (Hawking and Ellis 1973, p. 118). This is the world
of special relativity. Now consider the sub-world M0 ⊂ M which is the t > 0
portion of M . Also consider the sub-world M0 − {e} ⊂M where e is the event
(1, 0) ∈M0. It is immediate that M0 is an extension of its sub-world M0−{e};
just consider the inclusion map from the latter to the former. Because of the
symmetries of the two worlds, the other direction also holds. To see this, con-
sider the map θ : M0 →M0−{e} defined by θ(t, x) = (t+ 1, x); it is an isomor-
phic embedding (see Figure 1). So [M0] ≤ [M0 − {e}] and [M0 − {e}] ≤ [M0].
But [M0] 6= [M0 − {e}] since M0 is not isomorphic to M0 − {e} due to the
“missing” event e (the former world is topologically simply connected while the
latter is not).

Figure 1: The world M0 − {e} can be isomorphically embedded into M0 using
the inclusion map. The world M0 can be isomorphically embedded into the
region above the dotted line in M0 − {e}.

Given that the relation ≤ on U /∼ fails to be a partial order, it has become
customary to work with the collection of all “framed” worlds when exploring
maximality issues (Geroch 1970; Earman 1995; Krasnikov 2018). One frames
a world by associating with it an orthonormal basis of vectors at some event.
This additional structure requires that isomorphic embeddings that preserve
the frame are unique; one can then construct a partial order on the collection
of equivalence classes of framed worlds. Zorn’s lemma is used to secure the
existence of a maximal framed extension for any given framed world. One then
“throws away” the frames to deduce the existence of a maximal world for any
given world. Employing framed worlds is certainly a useful workaround when it
is needed. But as we will see below, it is not necessary to introduce and remove
structure in this way when one limits attention to Heraclitus worlds. Within
that context, isomorphic embeddings are unique and therefore the relation ≤
defined above counts as a partial order on the collection of equivalence classes
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of Heraclitus worlds.

3 Heraclitus Worlds

One can use the notions of sub-worlds and isomorphisms to define the Heraclitus
asymmetry property (Manchak and Barrett 2023).

Definition. A worldW ∈ U is Heraclitus if, for any distinct events e1, e2 ∈W
and any sub-worlds O1, O2 ⊆ W containing e1 and e2 respectively, there is no
isomorphism ψ : O1 → O2 such that ψ(e1) = e2.

In a Heraclitus world, no distinct events have the same local structure –
each event is unlike every other. One might say of such a world that one
cannot step twice into the same river. Heraclitus worlds are completely devoid
of symmetries. Not only does a Heraclitus world fail to have non-trivial global
symmetries in the sense that the only isomorphism from it to itself is the identity
map, such a world also fails to have non-trivial local symmetries in the sense
that no distinct points have isomorphic local neighborhoods. The Heraclitus
asymmetry property allows one to prove a variety of uniqueness results. For
example, one can show a sense in which, if Heraclitus worlds share the same
“local” properties (see the definition in Section 5), they must share all properties
– they are isomorphic (Manchak and Barrett 2023). Another related example
will be given below concerning observationally indistinguishable worlds.

We know that Heraclitus worlds exist (Manchak and Barrett 2023). Con-
sider three basic properties of Heraclitus worlds which will be used frequently
in what follows.

(H1) Any sub-world of a Heraclitus world is a Heraclitus world. This is im-
mediate from the definition of a Heraclitus world.

(H2) Isomorphic embeddings among Heraclitus worlds are unique. To see
this, consider isomorphic embeddings θ1, θ2 : W1 → W2 where W1 and W2 are
Heraclitus worlds. If there were an event e ∈ W1 such that θ1(e) 6= θ2(e), then
there would be an isomorphism ψ : θ1[W1]→ θ2[W1] given by ψ = θ2 ◦ θ−11 such
that ψ(θ1(e)) = θ2(e). So W2 would fail to be Heraclitus: a contradiction.

(H3) A Heraclitus world cannot properly extend itself (i.e. any world isomor-
phic to it). To see this, suppose there are isomorphic Heraclitus world W1 and
W2 such that W2 properly extends W1. So there must be distinct isomorphic
embeddings from W1 to W2: one proper and one not. But this contradicts (H2).

Consider the collection H ⊂ U of Heraclitus worlds. We find that the
relation ≤ defined above on U /∼ counts as a partial order when restricted to
H /∼. Reflexivity and transitivity are inherited from the relation ≤ on U /∼.
We need only show antisymmetry. Suppose [W1] ≤ [W2] and [W2] ≤ [W1] for
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some worlds W1,W2 ∈H . If [W2] 6= [W1], then W1 and W2 are not isomorphic.
In that case, then since [W1] ≤ [W2] and [W2] ≤ [W1], each world is a proper
extension of the other. So each world counts as a proper extension of itself which
is impossible given (H3). So [W1] = [W2] and ≤ is a partial order on H /∼.
We note here that considering equivalence classes is crucial in establishing the
antisymmetry needed for the partial order. Any world W1 ∈ U is isomorphic
to some non-identical W2 ∈ [W1]. So W1 can be isomorphically embedded into
W2 and vice versa even though W1 6= W2.

Since ≤ is a partial order on H /∼, we will eventually be able to use Zorn’s
lemma to show the existence of a Heraclitus world which is maximal with re-
spect to that property. To do this, we first need the following.

Lemma 1. Any sub-collection of H /∼ which is totally ordered by ≤ has an
upper bound in H /∼.

Proof. Let {Xi} be a collection of equivalence classes of worlds in H /∼ which
is totally ordered by ≤. Associate for each equivalence class Xi a representa-
tive world Wi ∈ Xi using the axiom of choice. Whenever i ≤ j, we have an
isomorphic embedding θij : Wi → Wj . From (H2), the embedding is unique.
Following Hawking and Ellis (1973, p. 249), construct a world W by taking the
“union” of all of the worlds Wi such that whenever i ≤ j, each event e ∈ Wi is
identified with the event θij(e) ∈ Wj .

3 The manifold and metric structure on
the world W are induced from all of the worlds Wi. Since [Wi] ≤ [W ] for all i,
we are done once we verify that W ∈H .

Suppose W /∈ H . So there are sub-worlds O1, O2 ⊆ W containing distinct
events e1, e2 respectively and an isomorphism ψ : O1 → O2 such that ψ(e1) = e2.
We know there is some world Wi such that e1, e2 ∈Wi. Let U1 = O1 ∩Wi and
let U2 = ψ[U1]. Although the sub-world U1 is contained in Wi, the sub-world
U2 may not be. So consider the sub-world V2 = U2 ∩Wi and the sub-world
V1 = ψ−1[V2]. Now it follows that V1, V2 ⊆ Wi. The isomorphism defined by
restricting the domain of ψ to V1 maps the event e1 to e2 which contradicts the
Heraclitus property of Wi. So W ∈H .

One naturally wonders: how “physically reasonable” are Heraclitus worlds?
As we shall see, there exist two-dimensional Heraclitus worlds with well-behaved
local and causal structure in the sense that they are globally hyperbolic, vacuum
solutions of Einstein’s equation which therefore necessarily satisfy all energy
conditions (see the discussion after Proposition 5). But it is unknown if there are
such worlds that are four-dimensional (see Manchak and Barrett 2023). Because
of their asymmetries, Heraclitus worlds are difficult to construct. Even so, such
worlds may be turn out to be “generic” among all worlds in U . Indeed, this is
the case for worlds with Riemannian geometry (Sunada 1985, Hebda 2010).

In what follows, let R ⊆ U represent a collection of “physically reasonable”
worlds. One can naturally consider the following asymmetry condition on such

3Although Hawking and Ellis (1973) consider the “union” of worlds, strictly speaking, a
direct limit is taken. See Geroch (1970) and Wong (2013) for details.
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a collection.

(Heraclitus) R ⊆H .

Of course, the (Heraclitus) condition may fail – say, if the collections R and
H are disjoint. In this paper, we simply explore the logical consequences if
(Heraclitus) were to hold.

4 Heraclitus-Maximal Worlds

Let us now turn to the task of defining a collection of worlds that are maximal
with respect to the Heraclitus asymmetry property. Once again, we need only
consider the notions of sub-worlds and isomorphisms to do this. In the natural
way, any property of worlds gives rise to a collection P ⊆ U of worlds with
the property. Following Geroch (1970), we will identify properties of worlds
with their associated sub-collections. We are now in a position to formulate the
notion of maximality with respect to arbitrary properties.

Definition. For any property P ⊆ U , a world in P is P-maximal if it has
no proper extensions in P.

A P-maximal world is one that is “as large as it can be” with respect to
the property P ⊆ U . Leibnizian metaphysics seems to demand that worlds
be maximal with respect to a variety of properties. Consider, for example, any
world W ∈ U and any spacetime event e ∈W . The region W −{e} counts as a
proper sub-world of W . So the world W −{e} fails to be U -maximal and would
therefore seem to be metaphysically unacceptable: “for the Creative Force to
actualize a proper subpart of a larger spacetime would seem to be a violation
of Leibniz’s principles of sufficient reason and plenitude” (Earman 1995, p. 32).
Following this line, it has become dogma that any physically reasonable world
must be a U -maximal world (Clarke 1993). But this dogma is empirically
unverifiable (see Proposition 4 below) and it also has the potential to clash with
other properties of interest. Suppose, for example, that one is also committed
to the position that all reasonable worlds must have property P ⊂ U . One has
no a priori assurance that P-maximality implies U -maximality. Indeed, for a
variety of properties of interest, one can find worlds in P which can be properly
extended but only by the “unreasonable” worlds in U −P (Manchak 2021).
It would therefore be a mistake to consider such worlds physically unreasonable
on maximality grounds as the dogma requires.

Given the situation, it seems appropriate to explore Leibnizian maximality
not just with respect to the collection of worlds U but also with respect to a
variety of sub-collections P ⊆ U . A revised form of the dogma requires that a
collection of physically reasonable worlds R ⊆ U be such that no world in R
can be properly extended by a world in R. This revised dogma can certainly
be called into question (see Proposition 4). Indeed, it is unclear whether R-
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maximality is a stable property of worlds (Manchak 2023). But it proves quite
useful to explore the strength of this revised dogma; consider the following max-
imality condition.

(Leibniz) Any world in R is R-maximal.

In what follows, we will be interested in exploring collections R ⊆ U that
are physically reasonable under the supposition that they satisfy both (Hera-
clitus) and (Leibniz). We see immediately that if R = H , then (Heraclitus)
is satisfied but (Leibniz) is not. This follows since H contains proper sub-
worlds of Heraclitus worlds which, from (H1), are Heraclitus worlds themselves.
Such sub-worlds are worlds in H that fail to be H -maximal. Now consider
the collection H ∗ ⊂ H of H -maximal worlds. Such worlds cannot be prop-
erly extended while still retaining the Heraclitus property. We shall see below
that H ∗ is non-empty. Here, we verify that both (Heraclitus) and (Leibniz)
are satisfied if R = H ∗. Showing the former is immediate since H ∗ ⊂ H .
Consider the latter. Let W1 be any world in H ∗ and suppose it fails to be
H ∗-maximal. So W1 has a proper extension W2 ∈ H ∗ ⊂ H . Since W2 is
Heraclitus and properly extends W1, it follows that W1 /∈H ∗: a contradiction.
So any world in H ∗ is H ∗-maximal, i.e. any Heraclitus-maximal world is also a
(Heraclitus-maximal)-maximal world. So (Leibniz) is also satisfied by R = H ∗.

Aside from H ∗, there are a number of other non-empty collections R ⊆ U
that also satisfy both (Heraclitus) and (Leibniz). It is not difficult to verify
that any collection R ⊆H ∗ will do. But one can also find example collections
which are disjoint from H ∗. Consider any proper sub-world W of any Heraclitus
world and let R = {W}. From (H1), W is a Heraclitus world. So (Heraclitus)
is true for the property {W}. From (H3), W cannot properly extend itself.
So (Leibniz) is also true for {W} even though W is not a Heraclitus-maximal
world.

We now show that H ∗ is non-empty. Since we know that Heraclitus worlds
exist, we are done if we can show the following general result: any Heraclitus
world has a Heraclitus-maximal extension. The analogous statement with re-
spect to the collection U has long been used to underpin the Leibnizian dogma
mentioned above; using Zorn’s lemma, one can show that any world in U has
a U -maximal extension (Geroch 1970).4 One might be tempted to conclude
that similar results can be obtained for any physically reasonable property. But
things are not so simple. For some causal properties, Zorn’s lemma cannot be
applied and things are left unsettled (Low 2012). For other properties, including
the “big bang” property, the analogous statement comes out as false (Manchak
2016). Fortunately, Lemma 1 ensures that things are straightforward with re-
spect to the Heraclitus asymmetry property; using Zorn’s lemma, we obtain the

4It is an open question whether this foundational statement or Proposition 1 below remain
true if Zorn’s lemma is not invoked. Recently some work has been done to “dezornify” certain
results concerning the existence of “maximal Cauchy developments” (Wong 2013; Sbierski
2016). But such results depend crucially on the property of global hyperbolicity which is not
assumed to hold here.
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following proposition.

Proposition 1. Any world in H has an H -maximal extension.

Proof. Let W be a world in H . Let E ⊂ H be the collection of extensions of
W in H . Since H /∼ is a partial order, so is E /∼. Consider any collection of
equivalence classes of worlds in E /∼ which is totally ordered by ≤. By Lemma
1, this collection has an upper bound X ∈H /∼. Since [W ] ≤ X, we know that
any world in X counts as an extension of W . So X ∈ E /∼. By Zorn’s lemma,
there is a maximal element X∗ ∈ E /∼. So for any world W ∗ ∈ X∗ we see that
W ∗ is an H -maximal extension of W .

Corollary 1. An H -maximal world exists.

5 Can One Know One’s World?

The metric structure of a world W ∈ U includes its causal structure. One can
use the causal structure to define, for each event e ∈W , a sub-world P (e) ⊆W
called the (timelike) past of e (Hawking and Ellis 1973, p. 183). Under the basic
assumption that events outside of P (e) cannot be empirically observed from e,
we are able to define a notion of observationally indistinguishable worlds (Mala-
ment 1977).

Definition. A world W1 ∈ U is observationally indistinguishable from a
world W2 ∈ U if, for each event e1 ∈ W1, there is an event e2 ∈ W2 such that
the pasts P (e1) and P (e2) are isomorphic.

The definition seems to be a “straightforward rendering of conditions un-
der which observers could not determine the spatio-temporal structure of the
universe” (Malament 1977, p. 69). We note here that, although the conditions
specified in the definition seem to be sufficient for a type of cosmic underdeter-
mination, they do not seem to be necessary. We will return to this point in the
next section.

Note that the relation of observational indistinguishability among worlds is
reflexive and transitive but fails to be symmetric: if a world W1 is observa-
tionally indistinguishable from a world W2, it does not necessarily follow that
W2 is observationally indistinguishable from W1. Of course, one could consider
a stronger symmetric version of observational indistinguishability which does
count as an equivalence relation among worlds. An even stronger symmetric
version is defined using the pasts of all observer world-lines instead the pasts of
all events (Glymour 1972, 1977). We consider the weaker of the three notions
here in part because it is still strong enough to signal an underdetermination
problem for observers. Moreover, the weaker definition will also allow us to prove
the strongest possible uniqueness result below concerning Heraclitus-maximal
worlds.

8



The notion of observational indistinguishability defined gives rise to a general
epistemic predicament: modulo modest assumptions, any world is observation-
ally indistinguishable from some other (non-isomorphic) world. To state this
result, a few definitions will be useful. Let us say that worlds W1,W2 ∈ U
are locally isomorphic if, for each event e ∈ W1, there is a sub-world O1 in
W1 containing e that is isomorphic to some sub-world O2 in W2, and, corre-
spondingly, with the roles of W1 and W2 interchanged. Now say that a property
of worlds P ⊆ U is local if, for any locally isomorphic worlds W1,W2 ∈ U ,
we have: W1 ∈ P if and only if W2 ∈ P. On this definition, one can verify
both the Heraclitus property and U -maximality come out as global (non-local)
properties. Now, let us say that a world W ∈ U has a God point if there is an
event e ∈ W such that P (e) = W . If a world has a God point, then from that
event all events are empirically accessible; an observer can, in principle, see the
entire world. Any world W with a God point e permits a type of “time travel”
since all events – even those in the future of e – must be in the past of e. We
can now formulate a general underdetermination result (Manchak 2009).

Proposition 2. If W1 ∈ U does not have a God point, then there is a non-
isomorphic world W2 ∈ U such that W1 is observationally indistinguishable
from W2 and the worlds share all local properties.

The proposition shows a sense in which (unless one’s world has quite strange
causal structure) one cannot know which world one inhabits. Moreover, the epis-
temic predicament persists even if one fixes all local properties. The result has
been discussed in a variety of philosophical contexts including those related to
induction, scientific realism, and determinism (Norton 2011; Butterfield 2014;
Belot 2023). One common response to the result calls into question the physical
significance of worlds built in the proof (Cinti and Fano 2021); indeed, a “stu-
pendous ‘cut-and-paste’ construction” (Butterfield 2012, p. 59) is used whereby
an infinite number of copies of the original world are strung together like a
clothesline to form the observationally indistinguishable counterpart worlds (cf.
Malament 1977). As such, these worlds would seem to be “irrelevant monstrosi-
ties by the standards of working cosmologists” (Belot 2023, p. 147).

One principled way to rule out the clothesline construction would be to iden-
tify various physically reasonable collections of worlds such that, when attention
is restricted to these collections, no epistemic predicament arises. We know this
can be done if stronger versions of observational indistinguishability are em-
ployed and attention is restricted to certain highly symmetric worlds (Glymour
1977; Belot 2023). Here we show that, even under a weak notion of observa-
tional indistinguishability, a general uniqueness result can still be realized for
any collection R ⊆ U whatsoever that satisfies the (Heraclitus) and (Leibniz)
conditions.

Proposition 3. Let R ⊆ U be any collection satisfying (Heraclitus) and
(Leibniz). For all W1,W2 ∈ R, we have: W1 is observationally indistinguishable
from W2 if and only if W1 is isomorphic to W2.
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Proof. Let R ⊆ U be any collection satisfying (Heraclitus) and (Leibniz) and
consider any worlds W,W ′ ∈ R. It follows immediately from the definitions
that if W and W ′ are isomorphic, then each world must be observationally in-
distinguishable from the other. Suppose W is observationally indistinguishable
from W ′. Since R satisfies (Heraclitus), we know that W and W ′ are Heraclitus.
From (H1), we know any sub-worlds of W and W ′ are also Heraclitus. From
(H2), we know that any isomorphic embeddings among such worlds are unique.
We will exploit this property often in what follows.

For each p ∈ W , use the axiom of choice to fix a q ∈ W such that p ∈ P (q)
and define Op to be the sub-world P (q). Since W is observationally indis-
tinguishable from W ′, for each event p ∈ W , we can fix an isomorphism
ψp : Op → O′p where O′p is some sub-world of W ′. From (H2), we know that
for any p, q ∈ W , we have ψp = ψq on the region Op ∩ Oq. It follows that the
unique map ψ :

⋃
Op →W ′ defined such that ψ|Op

= ψp for all p ∈W must be
smooth (see O’Neill 1983, p. 5). Since W =

⋃
Op, we can restrict the range on

ψ to construct a smooth surjective map ψ′ : W → ψ[W ].
Next we show that ψ′ is injective and therefore a smooth bijection. Let

p, q ∈ W and suppose that ψ′(p) = ψ′(q). It follows that ψp(p) = ψq(q) where
ψp : Op → O′p and ψq : Oq → O′q are the isomorphisms associated with p and
q. So ψ−1p : O′p → Op and ψ−1q : O′q → Oq are isomorphisms. From (H2), we
know that ψ−1p = ψ−1q on the region O′p ∩O′q which contains ψ′(p) = ψ′(q). So
ψ−1p (ψp(p)) = ψ−1q (ψq(q)) and therefore p = q. So ψ′ is injective and therefore
a smooth bijection.

Next we show that ψ′−1 is smooth. Let p, q ∈ W and consider the iso-
morphisms ψ−1p : O′p → Op and ψ−1q : O′q → Oq. From (H2), we know that
ψ−1p = ψ−1q on the region O′p ∩ O′q. Since ψ′ is surjective, it follows that⋃
O′p = ψ[W ]. So ψ′−1 :

⋃
O′p → W is the unique map defined such that

ψ′−1|O′
p

= ψ−1p for all p ∈ W . It follows that ψ′−1 must be smooth (see O’Neill

1983, p. 5). So ψ′ : W → ψ[W ] is a smooth bijection with a smooth inverse: a
diffeomorphism. Since ψ′ is constructed using the isomorphisms ψp : Op → O′p
for all p ∈ W , one can verify that this diffeomorphism ψ′ preserves all metric
structure and therefore counts as an isomorphism.

Since ψ′ : W → ψ[W ] is an isomorphism, it follows that ψ : W → W ′ is
an isomorphic embedding. So W ′ is an extension of W . Because R satisfies
(Leibniz), we know W ′ cannot be proper extension of W since this would imply
that W is not R-maximal. So W and W ′ are isomorphic.

The proposition provides one with a principled way to respond to the un-
derdetermination result given in Proposition 2. If the worlds constructed in its
proof are to be dismissed as “irrelevant monstrosities” by working cosmologists,
then such a dismissal can now be justified by appeal to the conditions (Heracli-
tus) and (Leibniz). Given a Heraclitus world W1, the former condition rules out
the clothesline construction of an observationally indistinguishable counterpart
world W2 which is Heraclitus; one cannot string together an infinite number of
copies of W1 to construct W2 without introducing symmetries into the world.
Because isomorphic embeddings among Heraclitus worlds are unique given (H2),
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and since the the past P (e) of each event e ∈W1 must be isomorphically embed-
ded into the observationally indistinguishable counterpart W2, one can “glue”
all of the isomorphic embeddings together to form a single unique isomorphic
embedding of all of world W1 into world W2. So the (Heraclitus) condition alone
is enough to show that W2 must be an extension of W1. The (Leibniz) condition
can then be invoked to rule out the possibility that W2 is a proper extension of
W1. This shows that the two worlds must be isomorphic.

Proposition 3 is quite general in the sense that the epistemic predicament
dissolves for any collection of worlds R ⊆ U that satisfy (Heraclitus) and (Leib-
niz). We have already shown the existence of a number of distinct collections
of worlds which satisfy these conditions including the non-empty collection H ∗

of Heraclitus-maximal worlds. So we have the following instantiation of Propo-
sition 3.

Corollary 2. Heraclitus-maximal worlds (which exist) are observationally in-
distinguishable if and only if they are isomorphic.

Stepping back, we see that much depends on the conditions of (Heraclitus)
and (Leibniz). Indeed, one could interpret Proposition 3 as showing just how
strong the conditions are. And these conditions can be called into question via
a strengthening of Proposition 2. Consider the following.

Proposition 4. If W1 ∈ U does not have a God point, then there is a non-
isomorphic world W2 ∈ U such that (i) W1 is observationally indistinguishable
from W2, (i) W1 and W2 share all local properties, (iii) W2 fails to be U -
maximal, and (iv) W2 fails to be Heraclitus.

The proof for (i)-(iii) is given in Manchak (2011) via the clothesline con-
struction while (iv) follows easily since, as mentioned above, such a construction
introduces symmetries into world W2 which are inconsistent with the Heracli-
tus property. Proposition 4 can be interpreted as saying that, not only is it
impossible to know what world one inhabits, one cannot even know that one’s
world is Heraclitus or maximal (under the usual definition) through empirical
observations. Moreover, such an epistemic predicament persist even if one fixes
all local properties. Given the situation, one may want to be open to the fail-
ure of the (Heraclitus) and (Leibniz) conditions. If so, one can understand the
work in this section neutrally as amounting to a type of no-go result: a certain
type of underdetermination is incompatible with the (Heraclitus) and (Leibniz)
conditions. But as we will see in the next section, (Heraclitus) and (Leibniz) do
not rule out other types of underdetermination.

6 Varieties of Underdetermination

So far, we have considered a certain type of cosmic underdetermination that
can arise relative to a particular definition of observationally indistinguishable
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worlds. As we have mentioned, stronger notions of observational indistinguisha-
bility could have also been considered (Glymour 1972, 1977; Malament 1977).
These notions would have resulted in stronger forms of underdetermination also
inconsistent with the (Heraclitus) and (Leibniz) conditions. But this does not
mean that these two conditions are incompatible with all types of physically
significant underdetermination. If a world W has no non-isomorphic observa-
tionally indistinguishable counterpart world, then there is a sense in which the
collective information that all individuals in W have together is sufficient to
determine which world they inhabit, but that determination may be beyond the
observational reach of any one individual in W (Malament, private communica-
tion). We will use this idea to make precise collective vs. individual notions of
underdetermination. We will also keep track of a distinction between universal
vs. existential types of underdetermination. We go on to show that while some
types of underdetermination are ruled out by the (Heraclitus) and (Leibniz)
conditions, others are not.

A collection of worlds R ⊆ U could be such that all – or merely some – of its
worlds inherit a collective type of underdetermination. Consider the following
conditions.

(∀ Collective UD) R is non-empty and for each world W1 ∈ R, there is a
non-isomorphic world W2 ∈ R such that W1 is observationally indistinguishable
from W2.

(∃ Collective UD) For some world W1 ∈ R there is a non-isomorphic world
W2 ∈ R such that W1 is observationally indistinguishable from W2.

Clearly, any collection R ⊆ U that satisfies (∀ Collective UD) also satisfies
(∃ Collective UD). The implication does not go in the other direction in the
sense that there are some collections R ⊆ U that satisfy (∃ Collective UD) but
not (∀ Collective UD). Indeed, U satisfies (∃ Collective UD) given Proposition
2 but not (∀ Collective UD) given that it contains a U -maximal world with a
God point. Such a world is observationally indistinguishable only from worlds
isomorphic to it. Proposition 3 can now be recast as the following no-go result.

Corollary 3. No collection of worlds R ⊆ U satisfies (Heraclitus), (Leibniz),
and (∃ Collective UD). Thus, no collection of worlds R ⊆ U satisfies (Heracli-
tus), (Leibniz), and (∀ Collective UD).

While the conditions (Heraclitus), (Leibniz), and (∃ Collective UD) cannot
be satisfied by any collection of worlds, any two can be for some non-empty
R ⊆ U . We have already seen that if R is the the collection H ∗ of Heraclitus-
maximal worlds, then it satisfies (Heraclitus), (Leibniz) but not (∃ Collective
UD). It proves instructive to work through the other two cases. Consider any
Heraclitus world W1 without a God point. Such worlds exist; see the example
in Manchak and Barrett (2023). For any event e ∈ W1, the past P (e) is a
proper sub-world W1 – call it W2. From (H1), we know W2 is a Heraclitus
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world. And the two worlds are not isomorphic since, if they were, then W2

would properly extend itself which is impossible given (H3). Because the past
of any event in W2 is contained in W1, it follows that W2 is observationally
indistinguishable from W1. So the collection of worlds R = {W1,W2} satisfies
(Heraclitus) and (∃ Collective UD). Of course R fails to satisfy (Leibniz) since
W2 is not R-maximal.

Now consider the other case. Consider any U -maximal world W1 without a
God point (e.g. the Minkowski world). There is a non-isomorphic U -maximal
world W2 such that W1 is observationally indistinguishable from W2 (Manchak
2011, p. 418). So the collection R = {W1,W2} satisfies (∃ Collective UD).
Since any U -maximal world must be a R-maximal world, we see that R satis-
fies (Leibniz) as well. But since the existence of W2 is given via the clothesline
construction, we see that R fails to satisfy (Heraclitus). Stepping back, these
two examples show a compatibility between (∃ Collective UD) and either (Her-
aclitus) or (Leibniz). One wonders if similar compatibility results follow for (∀
Collective UD) and either (Heraclitus) or (Leibniz).

We now turn to a type of underdetermination relative to the individual ob-
server. Some worlds W are such that every individual in W , even if she lives
forever, experiences observational horizons in the sense that she will never “see”
some regions of W (Rindler 1956). Indeed, this is true of the de Sitter world –
an important standard model of cosmology (Hawking and Ellis 1973). The de
Sitter world is highly symmetric on a global, matter-averaged scale. But one
can imagine worlds with causal structures similar to the de Sitter world which
are also Heraclitus at a fine-grained scale. Indeed, we will construct below a
collection of such worlds that, despite Corollary 3, are fully consistent with (Her-
aclitus), (Leibniz), and two types of individual underdetermination. Consider
the following conditions on a collection of worlds R ⊆ U (cf. Butterfield 2014.
p. 60).

(∀ Individual UD) R is non-empty and for each world W1 ∈ R, each event
e1 ∈ W1 is such that there is a non-isomorphic world W2 ∈ R with event
e2 ∈W2 such that P (e1) and P (e2) are isomorphic.

(∃ Individual UD) For some world W1 ∈ R, each event e1 ∈W1 is such that
there is a non-isomorphic world W2 ∈ R with event e2 ∈ W2 such that P (e1)
and P (e2) are isomorphic.

Clearly, any collection R ⊆ U that satisfies (∀ Individual UD) also satisfies
(∃ Individual UD). In addition, we see that (∀ Collective UD) implies (∀ In-
dividual UD); and (∃ Collective UD) implies (∃ Individual UD). There are no
other implication relations among the four conditions in the sense that one can
find a counterexample in the form of some collection R ⊆ U . The collection
U satisfies (∃ Individual UD) and (∃ Collective UD) but neither (∀ Individual
UD) nor (∀ Collective UD); the collection R constructed in Proposition 5 below
is such that it satisfies (∀ Individual UD) and (∃ Individual UD) but neither (∀
Collective UD) nor (∃ Collective UD). The entire situation is represented in the
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diagram below. Arrows correspond to implication relations; if two conditions
in the diagram are not connected by an arrow (or series of arrows), then the
corresponding implication relation does not hold.

(∀ Collective UD)

(∃ Collective UD) (∀ Individual UD)

(∃ Individual UD)

We now show that the (Heraclitus) and (Leibniz) conditions are not strong
enough rule out either type of individual underdetermination. Consider the fol-
lowing.

Proposition 5. There is a collection of worlds R ⊆ U satisfying (Heraclitus),
(Leibniz), and (∀ Individual UD). Thus, there is a collection of worlds R ⊆ U
satisfying (Heraclitus), (Leibniz), and (∃ Individual UD).

Proof. We will construct a collection R = {W1, ...,W4} with the desired prop-
erties where each of the worlds in the collection is a certain sub-world of a
given Heraclitus world. Let H be the Heraclitus world in (t, x) coordinates con-
structed in Manchak and Barrett (2023). We note that H is conformally flat
and thus has the same local causal structure as the Minkowski world. For each
i = 1, ..., 4, let Si be the t > 10 portion of the past P (12, 2i). One can verify
that the union S1 ∪ ... ∪ S4 is a sub-world of H; call this world W (see Figure
2). It is important to note that for any i = 1, ..., 4, any event e ∈ Si is such that
P (e) ⊆ Si. Now let ei = (11, 2i) for i = 1, ..., 4. We now construct four worlds
as follows (see Figure 2).

W1 = W − {e1, e2}
W2 = W − {e3, e4}
W3 = W − {e2, e3}
W4 = W − {e1, e4}

The collection of worlds R = {W1, ...,W4} satisfies (Heraclitus) since each
world is a sub-world of a Heraclitus world. To see that (Leibniz) holds, consider
any world, say W1. The world W1 cannot be isomorphically embedded into W2
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Figure 2: The world W and four of its sub-worlds W1, ...,W4.

or W3 since the event e3 ∈ W1 is missing in those worlds; and W1 cannot be
isomorphically embedded into W4 since the event e4 ∈ W1 is missing in that
world. So W1 is R-maximal. The cases for worlds W2, W3, and W4 are handled
similarly. We also find that R satisfies (∀ Individual UD) as well. Consider
again the world W1 and any event e ∈ W1. Since e ∈ Si for some i = 1, ..., 4,
we know P (e) ⊆ Si. If e is in the S1 region of W1, then P (e) has an isomorphic
counterpart in the S1 region of W4; if e is in the S2 region of W1, then P (e) has
an isomorphic counterpart in the S2 region of W3; if e is in the S3 region of W1,
then P (e) has an isomorphic counterpart in the S3 region of W4; if e is in the
S4 region of W1, then P (e) has an isomorphic counterpart in the S4 region of
W3. The cases for worlds W2, W3, and W4 are handled similarly. So R satisfies
(Heraclitus), (Leibniz), (∀ Individual UD), and thus (∃ Individual UD).

A few notes about the worlds constructed in the proof above. One could
have employed a more complicated construction where certain notches are re-
moved from W instead of points so as to ensure that the worlds are extremely
causally well-behaved in the sense of being “globally hyperbolic” (Hawking and
Ellis 1973). Given the presence of observational horizons, such worlds have
causal structures very similar to that of the de Sitter world (see Earman 1995,
p. 131). Moreover, we note that an underdetermination problem would also
have arisen even if we had we defined the (∀ Individual UD) and (∃ Individ-
ual UD) conditions using the pasts of observer world-lines instead the pasts
of events (cf. Glymour 1977). Finally, given that the worlds constructed are
two-dimensional, they already have an extremely well-behaved local structure
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in the sense that they are vacuum solutions of Einstein’s equation (Fletcher
et al. 2018). Stepping back, it is it hard to see what conditions, in addition
to (Heraclitus) and (Leibniz), could be strong enough to secure a no-go result
concerning individual underdetermination. One could perhaps object that the
collection R = {W1, ...,W4} is artificially small in some sense. But we now
use an application of Zorn’s lemma to show that any collection of worlds that
satisfies (Heraclitus), (Leibniz), and either (∀ Individual UD) or (∀ Individual
UD) can be “extended” so as to be maximal with respect to the joint satisfac-
tion of these conditions. This shows a type of second order satisfaction of the
Leibnizian demands.

Consider the power collection P(U ). Any second order property of collec-
tions of worlds gives rise to a collection R ⊆ P(U ) of collections of worlds with
the property. We can partially order P(U ) by the ⊆ relation. For any collec-
tions R,R′ ∈ P(U ), we say that R′ is a (not necessarily proper) extension
of R if R ⊆ R′. For any second order property R ⊆ P(U ), we say that a
collection R ∈ R is R-maximal if it has no proper extensions in R. One has a
general question: which second order properties R ⊆ P(U ) are such that any
collection in R has an R-maximal extension? Some cases are trivial to settle.
Consider the collection H ⊂ P(U ) of all collections of worlds satisfying the
(Heraclitus) condition. Any collection of worlds in H has an H-maximal exten-
sion: the collection H of all Heraclitus worlds. The four underdetermination
conditions are handled similarly. Consider (∀ Collective UD) for example. Let
C ⊂ P(U ) be the collection of all collections of worlds satisfying the (∀ Collec-
tive UD) condition. One can verify that the union

⋃
C satisfies (∀ Collective

UD) as well and therefore counts as a C-maximal extension for any collection of
worlds in C.

The (Leibniz) case is a bit more interesting. Consider the collection L ⊂
P(U ) of all collections of worlds satisfying the (Leibniz) condition. The union⋃
L is too big to satisfy (Leibniz). To see this, consider any Heraclitus world

W1 and any of its proper sub-worlds W2. As we have seen, the collections {W1}
and {W2} satisfy (Leibniz). So W1,W2 ∈

⋃
L which implies that

⋃
L does

not satisfy (Leibniz). But now consider any collection T ⊂ L totally ordered
by the ⊆ relation. The union

⋃
T is an upper bound for T . It also satisfies

(Leibniz). If it didn’t, there would be worlds W1,W2 ∈
⋃
T such that one is

a proper extension of the other. But this cannot be since it implies that W1

and W2 can be found in some collection in T and all such collections satisfy
(Leibniz). From Zorn’s lemma, it now follows that any collection in L has an
L-maximal extension. A similar argument shows the following. (It is an open
question whether Zorn’s lemma is needed here.)

Proposition 6. Let R ⊂ P(U ) be the collection of all collections of worlds
satisfying (Heraclitus), (Leibniz), and either of the following: (∀ Individual UD)
or (∃ Individual UD). Then any collection R ∈ R has an R-maximal extension.
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7 Conclusion

Here, we have introduced the notion of Heraclitus-maximal worlds within the
context of general relativity. Heraclitus worlds are characterized by an asymme-
try property: no distinct events in a world have the same structure. Leibnizian
metaphysics is often deployed to consider worlds which are maximal with re-
spect to their properties. A Heraclitus-maximal world is a world that is “as
large as it can be” with respect to the Heraclitus property. We have investi-
gated some basic properties of Heraclitus-maximal worlds. In particular, we
have shown that they exist and that any Heraclitus world can be extended to a
Heraclitus-maximal world. Finally, we have considered the following question:
can one know which world one inhabits? For collections of worlds satisfying
the (Heraclitus) and (Leibniz) conditions, there are senses of underdetermina-
tion in which the answer must be yes (universal and existential collective types)
and others in which the answer can be no (universal and existential individual
types).

We close with a question. As we have seen, the results here depend very little
on the structure of general relativity. Consider any spacetime theory given by
a collection of worlds where each world is represented by a manifold with some
geometric structure defined on it. For example, consider a classical spacetime
theory of this type (Malament 2012). In the natural way, one can define sub-
worlds and isomorphisms between worlds in this theory. With these notions, one
can go on to define Heraclitus-maximal worlds and explore their basic properties.
One can also articulate the analogs of the conditions (Heraclitus) and (Leibniz).
The relation of observational indistinguishability among worlds and the various
types of underdetermination conditions can also be introduced and explored.
One wonders: do the results considered here carry over to the new context?
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301-329.

[37] Stein, H. (1967), “Newtonian Space-Time,” Texas Quarterly, 10: 174-200.

[38] Sunada, T. (1985), “Riemannian Coverings and Isospectral Manifolds,”
Annals of Mathematics, 121: 169-186.

[39] Weatherall, J. (2018), “Regarding the ‘Hole Argument”’, The British Jour-
nal for the Philosophy of Science, 69: 329-350.

[40] Weyl, H. (1952), Symmetry, Princeton: Princeton University Press.

[41] Wong, W. (2013), “A Comment On the Construction of the Maximal Glob-
ally Hyperbolic Cauchy Development,” Journal of Mathematical Physics, 54:
113511.

20


