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On the Existence of “Time Machines” in
General Relativity

John Byron Manchak†‡

Within the context of general relativity, we consider one definition of a “time machine”
proposed by Earman, Smeenk, and Wüthrich. They conjecture that, under their definition,
the class of time machine spacetimes is not empty. Here, we prove this conjecture.

1. Introduction. One peculiar feature of general relativity concerns the
existence of closed timelike curves in some cosmological models permitted
by the theory. In such models, a massive point particle may both com-
mence and conclude a journey through spacetime at one and the same
point. In this respect, these models allow for “time travel.”

Naturally, the existence of closed timelike curves in some relativistic
models prompts fascinating questions.1 One issue, recently addressed by
Earman, Smeenk, and Wüthrich (2009), concerns what it might mean to
say that a model allows for the operation of a “time machine” in some
sense.2 They propose a precise definition and then conjecture that, under
their formulation, there exist cosmological models that count as time
machines. In this article, we provide a proof of this conjecture.

2. Background Structure. We begin with a few preliminaries concerning the
relevant background formalism of general relativity.3 An -dimensional,n
relativistic spacetime (for ) is a pair of mathematical objectsn ≥ 2 (M, g ),ab

†To contact the author, please write to: Department of Philosophy, University of
Washington, Box 353350, Seattle, WA 98195-3350; e-mail: manchak@uw.edu.

‡I wish to thank John Earman, David Malament, Christopher Smeenk, and Christian
Wüthrich for helpful discussions on this topic.

1. For a thorough investigation of many of these questions, see Earman 1995.

2. See also Earman and Wüthrich 2004.

3. The reader is encouraged to consult Hawking and Ellis 1973 and Wald 1984 for
details. An outstanding (and less technical) survey of the global structure of spacetime
is given by Geroch and Horowitz 1979.
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TIME MACHINES 1021

where is a connected -dimensional manifold (without boundary) that isM n
smooth (infinitely differentiable) and is a smooth, nondegenerate, pseudo-gab

Riemannian metric of Lorentz signature defined on . Each(�, � , . . . , �) M
point in the manifold represents an “event” in spacetime.M

For each point the metric assigns a cone structure to the tangentp � M,
space Any tangent vector in will be timelike (if ),a a bM . y M g y y 1 0p p ab

null (if ), or spacelike (if ). Null vectors create thea b a bg y y p 0 g y y ! 0ab ab

cone structure; timelike vectors are inside the cone, while spacelike vectors
are outside. A time-orientable spacetime is one that has a continuous
timelike vector field on M. A time-orientable spacetime allows us to dis-
tinguish between the future and past lobes of the light cone. In what
follows, it is assumed that spacetimes are time orientable.

For some interval , a smooth curve is timelike if theI P � g : I r M
tangent vector at each point in is timelike. Similarly, a curve isay g[I ]
null (respectively, spacelike) if its tangent vector at each point is null
(respectively, spacelike). A curve is causal if its tangent vector at each
point is either null or timelike. A causal curve is future directed if its
tangent vector at each point falls in or on the future lobe of the light
cone. Given a point the causal future of (written ) is the�p � M, p J ( p)
set of points such that there exists a future-directed causal curveq � M
from to . Naturally, for any set define to be the set�p q S P M, J [S]

A chronology-violating region is the set of�∪{J (x) : x � S}. V P M
points such that there is a closed timelike curve through .p � M p

A point is a future endpoint of a future-directed causal curvep � M
if, for every neighborhood of , there exists a pointg : I r M O p t � I0

such that for all A past endpoint is defined similarly. Forl(t) � O t 1 t .0

any set , we define the past domain of dependence of S (writtenS P M
) to be the set of points such that every causal curve with�D (S) p � M

past endpoint and no future endpoint intersects . The future domainp S
of dependence of S (written ) is defined analogously. The entire�D (S)
domain of dependence of S (written ) is just the set .� �D(S) D (S) ∪ D (S)

A set is achronal if no two points in can be connected by aS O M S
timelike curve. A set is a slice if it is closed, achronal, and withoutS O M
edge. A set is a spacelike surface if is an ( )–dimensionalS O M S n � 1
submanifold (possibly with boundary) such that every curve in S is spacelike.4

Two spacetimes and are isometric if there is a diffeo-′ ′(M, g ) (M , g )ab ab

morphism such that . We say that a spacetime′ ′f : M r M f (g ) p gab ab*
is a (proper) extension of if there is a proper subset′ ′(M , g ) (M, g ) Nab ab

4. Allowing to have a boundary is nonstandard, but the formulation introduces noS
difficulties. In particular, one may consider initial data on and determine its domainS
of dependence . See Hawking and Ellis 1973, 201.D(S)
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1022 JOHN BYRON MANCHAK

of such that and are isometric. We say a spacetime′ ′M (M, g ) (N, g )ab abFN

is inextendible if it has no proper extension.

3. A Time Machine. In their recent (2009) paper, Earman et al. attempt
to clarify what it might mean to say that a time machine operates within
a relativistic spacetime. First, in order to count as a time machine, a
spacetime must contain a spacelike slice representing a “time”(M, g ) Sab

before the time machine is switched on. Next, they note that a time
machine should operate within a finite region of spacetime. Accordingly,
they require that the time machine region have compact closure.T O M
In addition, so as to guarantee that instructions for the operation of
the time machine (set on ) are followed, they require thatS T O

. Of course, the spacetime must also have a chronology-�D (S) (M, g )ab

violating region V to the causal future of the time machine region T.
Finally, in order to capture the idea that a time machine must “produce”

closed timelike curves, Earman et al. demand that every suitable extension
of contain a chronology-violating region . For them, a suitable′D(S) V
extension must be inextendible and satisfy a condition known as “hole
freeness.” This condition, introduced by Geroch (1977), essentially re-
quires that the domain of dependence of each spacelike surfaceD(S) S

be “as large as it can be.” Here, hole freeness serves to rule out extensions
of that fail to have closed timelike curves only because of the for-D(S)
mation of seemingly artificial “holes” in spacetime.5 Formally, we say a
spacetime is hole free if, for any spacelike surface in , there(M, g ) S Mab

is no isometric embedding into another spacetime′v : D(S) r M
such that . We can now state the definition′ ′(M , g ) v(D(S)) ( D(v(S))ab

of a time machine.

Definition. A spacetime is an ESW time machine if (i) there(M, g )ab

is a spacelike slice , a set with compact closure, andS O M T O M
a chronology-violating region such that and�V O M T O D (S)

and (ii) every hole-free, inextendible extension of�V O J [T ] D(S)
contains some chronology-violating region .′V

4. An Existence Theorem. With a definition in place, Earman et al. then
conjecture that, under their formulation, there exist spacetimes that count
as time machines. Here we prove this conjecture by showing that the well-

5. A result due to Krasnikov (2002) seems to indicate that, without the assumption
of hole freeness, one can always find extensions of bereft of closed timelike curves.D(S)
For a discussion of whether hole freeness is a physically reasonable condition to place
on spacetime, see Manchak 2009.
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TIME MACHINES 1023

known example of Misner spacetime satisfies the conditions of the defi-
nition.6 We have the following theorem.

Theorem 1. There exists an ESW time machine.

Proof. Let be Misner spacetime. So, and(M, g ) M p � # Sab

, where the points are identified withg p 2∇ t∇ J � t∇J∇ J, (t, J)ab (a b) a b

the points for all integers .(t, J � 2pn) n
Let be the spacelike slice . It can be easilyS {(t, J) � M : t p �1}

verified that Let be the compact�D (S) p {(t, J) � M : �1 ≤ t ! 0}. T
set So Note that the set�{(t, J) � M : t p �1/2}. T O D (S).

is a chronology-violating region. Call it V. Clearly,{(t, J) � M : t 1 0}
Thus, we have satisfied condition i of the definition of�V O J [T ].

an ESW spacetime. For future reference, let be the setN {(t, J) �
M : t ≤ 0}.

Now let be an inextendible extension of′ ′(M , g ) D(S) pab

that does not contain closed timelike curves. We{(t, J) � M : t ! 0}
show that it must fail to be hole free. Now, for every letk � [0, 2p],

be the null geodesic curve whose image is the setg {(t, J) �k

Now, for each , either has a futureM : J p k and �1 ! t ! 0}. k gk

endpoint or not. Clearly, for to be inextendible, there is′ ′p (M , g )k ab

some such that exists. Let K be the set of all the endpoints .k p pk k

We can extend the coordinate system used in Misner spacetime to a
neighborhood of . Under this coordinate system, we have′ ′K O M K

For future reference, let the set be de-′ ′K p {(t, J) � K : t p 0}. N
fined as ′{(t, J) � M : t ! 0 or (t, J) � K}.

Next, we show that, for any distinct points , if ,�u, v � K u � J (v)
then It suffices to show that, for some has�v � J (u). k � [0, 2p], gk

no future endpoint (in that case, cannot be a closed null curve).K
Assume that for all there is a future endpoint of ink � [0, 2p], p gk k

. We show a contradiction. Consider any point and a neigh-K p � Kk

borhood of Let be the function defined by′U O K p . f : U r �k k k k

Of course, when the domain of is′ a bf (t, J) p g (t, J)(�/�J) (�/�J) . fk ab k

restricted to the set of points where , then(t, J) � U t ≤ 0 f (t, J) pk k

The smoothness of ensures that the boundary conditions′t. gab

and are satisfied. Clearly then, theref (0, J) p 0 (�/�t)f (0, J) p 1k k

must be an such that for all Now let� f (t, J) 1 0 t � (0, � ].k k k

be the function defined by Note that the� : K r � �( p ) p � .k k

6. For details concerning Misner spacetime, including a diagram, see Hawking and
Ellis 1973, 171–174. Note, however, that because of the sign conventions used in that
reference, the diagram there is an upside down representation of the version of Misner
spacetime considered here.
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1024 JOHN BYRON MANCHAK

smoothness of allows us to choose our so that is a continuous′g � �ab k

function. Because is compact, takes on a minimum value (callK �
it ).7 Next, let be the set Clearly, on ,′ ′� V {(t, J) : 0 ! t ≤ � }. Vmin min

we have Now let be any point in , and′ a b ′g (�/�J) (�/�J) 1 0. w Vab

consider the curve through with tangent vector′ ag : I r V w y p
at every point. Because is contained entirely within , wea ′(�/�J) g V

know that Thus, is a closed timelike curve, and we have′ a bg y y 1 0. g

a contradiction. So, we now know that, for any distinct points
if then� �u, v � K, u � J (v), v � J (u).

Now let be a point in K. Without any loss of generality, weq
may assume that is the origin point Consider theq � K (0, 0).
spacelike surface in which is defined as the set′ ′S (M , g ),ab

Note that′{(t, J) � N : �2p ≤ t ≤ 0 and J p �t}. q � S.
Now, we show that Let be any point in We′D(S) P N . r D(S).

show that must also be in . It is easy to see that if ,′ �r N r � D (S)
then We turn to the other case: Assume′ � ′r � N . r � D (S). r � N .
We show a contradiction. If then every past inextendible�r � D (S),
timelike curve through must intersect 8 Since every past′r S. r � N ,
inextendible timelike curve through must intersect some . Sor s � K
we know that and Now let be the past� �s � I (r) s � D (S). l : I r K
inextendible null geodesic from with tangent 9 Note that theas (�/�J) .
image of is contained entirely within . (It cannot enter theg K t 1 0
region of for then must become spacelike. Similarly, cannot′K g g

enter the region of for then it must become timelike. So, it′t ! 0 K
must remain in the region, which by definition is just .) Ont p 0 K
pain of contradiction, must intersect Since is contained withinl S. l

, this means that . Because , this means that� �K q � J (s) s � I (r)
10 Since is open, we can find a point� � ′ �q � I (r). I (r) q � K ∩ J (q)

in the neighborhood of (distinct from ) such that ′ �q q q � I (r).
Clearly, we then can find a past-directed timelike curve from tor

that fails to intersect , and hence (no past-directed timelike′q q S

curve may enter and then leave the region of ). So, this means′t ! 0 M
that Now, let be the past inextendible null′ � ′ ′q � D (S). l : I r K
geodesic from with tangent On pain of contradiction,′ a ′q (�/�J) . l

must intersect . Since is contained entirely within , this means′S l K
that But we have shown above that, for any distinct points� ′q � J (q ).

if , then So, because are distinct� � ′u, v � K, u � J (v) v � J (u). q, q

7. See Wald 1984, 425.

8. A past inextendible timelike or null curve has no past endpoint.

9. For details concerning geodesics, see Wald 1984, 41–47.

10. See Hawking and Ellis 1973, 183.
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TIME MACHINES 1025

points in and we know that However, this′ � � ′K q � J (q), q � J (q ).
contradicts the fact that So,� ′ ′q � J (q ). D(S) P N .

Because and may be isometrically embedded, via′ ′D(S) P N N
the identity map, into Misner spacetime , we know that there(M, g )ab

exists an isometric embedding . It is easily verified thatv : D(S) r M
We have already shown that cannot be a closed nullD(v(S)) p N. K

curve. So clearly contains no closed null curves. Since′N D(S) P

there can be no closed null curves in and hence none in′N , D(S)
. But there is a closed null curve in . So Sov(D(S)) N v(D(S)) ( N.

This implies that is not hole free, and′ ′D(v(S)) ( v(D(S)). (M , g )ab

we are done. QED.

5. Conclusion. So we have shown one sense in which there exist “time
machines” within general relativity. We conclude with a few remarks about
other ways one might interpret the result presented here.

Following Earman et al. 2009, we have assumed that spacetime is hole
free and have then shown that certain initial conditions “force” the pro-
duction of closed timelike curves. But instead we may have taken for granted
that spacetime is free of closed timelike curves. In fact, this is routinely
done (e.g., the singularity theorems of Hawking and Penrose [1970] proceed
under this assumption). But then the logical structure of our result can be
reworked to show that certain initial conditions “force” the production of
“holes” in spacetime. So, in this way, the theorem demonstrates the existence
of “hole machines” rather than “time machines.”

We prefer to think of the theorem as a type of no-go result. It seems
that some initial conditions force us to give up either (i) our intuition that
spacetime is inextendible, (ii) our intuition that spacetime is hole free, or
(iii) our intuition that spacetime is free of closed timelike curves.
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