
Representations with Thresholds & 
Representation of Choice Probabilities�

Chapters 16 and 17�



•  n : a standard cup of coffee 
containing n granules of sugar�

•  Given any two cups, m & n, the 
subject expresses preference for 
one over the other or an 
indifference relation between 
them.�

•  The subject cannot distinguish 
between  n and n+1 by taste for 
any n.  So (n ~ n +1).�

•  But for some k, the subject isn’t 
indifferent between n and n + k.�

•  Therefore, ~ cannot be transitive.�

•  But   is expected to be.�

•  How do we represent this? �

The Basic Problem�



16: REPRESENTATIONS WITH THRESHOLDS�

Definition 1 (p. 303): Suppose  and ~ are binary relations on 
A, where A is non-empty �



Definition 2 (p. 305): Let  be an asymmetric binary relation 
on A. Α pair of real-valued functions <ϕ--,δ--> on A is an Upper-
Threshold Representation iff�

•  δ-- is nonnegative for all a, b, c, in A �

•  If a  b, then ϕ--(a) ≥ ϕ--(b) + δ--(b)�

•  If ϕ--(a) > ϕ--(b) + δ--(b), then a  b.�

•  If ϕ--(a) = ϕ--(b), then a  c iff b  c. �
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Definition 2 (continued): <ϕ--,δ--> on A is a Lower-Threshold 
Representation iff�

•  δ-- is nonpositive �

•  If a  b, then ϕ--(a) ≤ ϕ--(b) + δ--(b)�

•  If ϕ--(a) < ϕ--(b) + δ--(b), then a
  b.�

•  If ϕ--(a) = ϕ--(b), then a
  c iff b  c. �
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Definition 2 (continued): <ϕ, δ--,δ--> on A is a Two-Sided 
Threshold Representation iff�

•  < ϕ, δ--> is an upper-threshold representation�

•  < ϕ, δ--> is a lower-threshold representation 
•  a ~ b then ϕ(a) lies in the interval [ϕ(b) + δ--(b), ϕ(b) + δ--(b)]�

Definition 2 (continued): <ϕ--, δ--> is said to be Strong iff iv 
holds. <ϕ--, δ--> is said to be Strong* iff iv* holds. �

(iv) a  b iff ϕ--(a) > ϕ--(b) + δ--(b) �
(iv*) a  b iff ϕ--(a) ≥ ϕ--(b) + δ--(b) �

(same idea for lower and two-sided representations) 



Definition 3 (p.307): Let  be an asymmetric binary relation 
on A.  The Upper Quasiorder induced by , Q– and the Lower 
Quasiorder induced by , Q–- are defined as follows:  �

•  (a Q– b) iff for all c in A, if b  c then a  c. �

•  (a Q– b) iff for all c in A, if c  a then c  b.�

We define the I relation in terms of Quasiorders…�

1.  (a I— b) iff (a Q– b) and (b Q– a) �

   In other words, (b  c iff a  c)�

2. Same thing for I–  �



Theorem 1 (p. 307)�

If < A,  > has an upper threshold representation, then the 
upper quasiorder induced by  is connected.  So it is a weak 

order. �
•  In layman’s terms, if, in our 

structure, preference implies the 
sort of function we described, 
then the way in which the 
elements of preference pairs 
relate to a third element is 
connected. So we get a weak 
order. Bam! 



Definition 4 (p.309): Suppose  is an irreflexive binary relation 
on A.  < A,  > is an Interval Order iff�

•  For all a, b, c, d, in A, If a  c and b  d, then either a  d or 
b  c  �
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Theorem 2 (p. 310) 

•  If  is binary on A and is 
asymmetric, then the upper 
quasiorder and the lower 
quasiorder are connected and 
equivalent. �

•  Furthermore, having one of 
these connected quasiorders 
plus asymmetry is equivalent to 
something being an interval 
order.�

•  What this means is that 
transitivity of  falls out of the 
definition of interval order.�

•  Wait for it… 



Definition 5 (P. 310): Suppose <A,  > is an interval order. 
Then it is a Semiorder iff�

•  For all a, b, c, d in A, If a  b and b  c, then either a  d or 
d  c �

•  This may look trivial (because it looks like we’re only saying that d 
falls somewhere on this line), but it is not.�

•  Suppose you’re standing at c trying to judge the ordering: 
obviously a  c and not: d  c �

•  Now hang out at a.  a  b but not: a  d   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What we’ve learned so far…�

•  A necessary condition for the construction of a one-sided threshold 
representation of  is that < A,  > is an interval order.�

•  A necessary condition for the construction of a two-sided threshold 
representation of  is that < A,  > is an semiorder. �

And now we come to…�

•  A necessary condition for the construction of the set of equivalence 
classes for a two-sided threshold representation is that they contain a 
finite or countable order-dense subset.�

•  But is this enough?  Can we construct a threshold representation for 
any interval order or semiorder whose equivalence classes have a 
countable order-dense subset?�

•  Yes we can!�



Definition 7 (P. 315): Suppose <ϕ, δ--,δ--> is a two-sided 
threshold representation of < A,  >. It is said to be Tight iff�

•  For all a, b, c in A,�
1.  If a I b then ϕ(a) = ϕ(b)�

2.  δ--(a) = sup {ϕ(a′) - ϕ(a) | a′ ∈ A and a′ ~ a}�
3.  δ--(a) = inf {ϕ(a′) - ϕ(a)| a′ ∈ A and a′ ~ a}�
Key points about Tight Representations�

-The order induced by ϕ is the maximal ordering compatible with . 
(coarsest ordering)�

-The threshold of delta is as small in absolute value as it can 
be. �



Theorem 11 (p. 320) 
•  Theorem 11 officially gives us 

uniqueness and existence!�

•  To get this, we have to 
assume…�

•  ϕ is dense on an interval�

•  δ--(ϕ) is continuous and 
bounded away from 0 on that 
interval�

•  Monotonicity (i.e. ϕ + δ is a 
strictly increasing function of ϕ �

•  Wait for it…�



Definition 11 (P. 337): Let P be a binary probability function 
on A x A.  For all a, b, c, d in A:�

•  P has Weak Stochastic Transitivity iff:�

  if P (a, b) ≥ ½ and P (b, c) ≥ 1/2 , then P (a, c) ≥ ½ �

•  P has Weak Independence iff:�

  if P (a, c) > P (b, c), then P (a, d) ≥ P (b, d)    �

•  P has Strong Stochastic transitivity iff�

  If P (a, b) ≥ ½ and P (b, c) ≥ ½, then P (a, c) ≥ max [P (a, b), P (b, c)     



17: REPRESENTATION OF CHOICE PROBABILITIES 

•  Choose the option that 
maximizes.�

•  Problem: If we choose to 
maximize, how do we explain 
our inconsistent choices?�

•  Choice probabilities are the 
function of two arguments, an 
option and a set of options.�

•  Given option set B and option  
a ∈ B, the probability of 
choosing a if B is the set of 
feasible options is P (a, B).  



Definition 1 (p.384):                                             
< A, M, P > is a Structure of Choice Probabilities iff:�

•  A is a set.�
–  It comprises all objects in the domain that we’re looking at.�

•  M is also a set.�
–  It is nonempty and finite�

–  It has 2A members (the set of characteristic functions of subsets of 
A).�

•  P is a real-valued function with the following features…�



Definition 1 (continued):                                                        
< A, M, P > is a Structure of Choice Probabilities iff 

•  Dom(P)= {(a, B) | a ∈ B ∈ M}�

•  P(a, B) ≥ 0�

•  ∑b∈ B P (b, B) = 1 �

•  Furthermore…�

•  < A, M, P> is finite iff A is finite�

•  <A, M, P> is closed iff�

– A is finite�

– M={B ⊂ A | B ≠ ∅ }�



Definition 2 (P. 388):                                          
<A, M, P> is a Pair Comparison Structure iff:�

•  <A, M, P> is a structure of choice probability�

•  M is a reflexive binary relation on A�

e.g. if our parameters are P (a, b), then, since M is reflexive, P (a, 
a) = ½.   �

*Notation note: instead of writing (a, b) ∈ M, we write aMb. They will 
all be in pairs�

•   M is a symmetric binary relation of A�

–  aMb implies bMa�

•  <A, M, P>  is complete iff M = A x A �



Definition 3 (p. 389):                                            
Let <A, M, P>  be a complete structure of pair comparison (so, 
M = A x A), and P(a, b) ≥ ½ and P(b, c) ≥ ½:�

Weak Stochastic Transitivity (WST) �

   holds iff P (a, c) ≥ ½ �

           This means that if a /~ b, b /~ c, then a /~ c �
Moderate Stochastic Transitivity (MST) �

   holds iff P (a, c) ≥ min [P (a, b), P (b, c)]�

Strong Stochastic Transitivity (SST) �

   holds iff P(a, c) ≥ max [P (a, b), P (b, c)]�

Strict Stochastic Transitivity (ST) �

   holds iff SST holds and a strict inequality in the hypotheses implies a 
strict inequality in the conclusion. �



Definition 4 (390):                                            
A complete structure of pair comparison satisfies the 
Strong-Utility Model iff:�

•  There exists a real-valued function ϕ on A such 
that for all a, b, c, d ∈ A:�

ϕ(a) - ϕ(b) ≥ ϕ(c) - ϕ(d) iff P (a, b) ≥ P (c, d)�

* P (a, b) ≥ P (c, d) iff ab /~ cd �



Definition 5 (p. 390):�

A structure of pair comparison <A, M, P> is a Complete 
Difference Structure iff:�
•  M = A x A (same as completeness for pair comparison 

structures)�
•  The Monotonicity and the Solvability axioms hold.�
•  The Monotonicity Axiom: �
–  If P (a, b) ≥ P (a′, b′) and P (b, c) ≥ P (b′, c′), then P (a, 

c) ≥ P (a′, c′).�
–  if either antecedent inequality is strict, the conclusion is also 

strict.�

•  The Solvability Axiom:�
–  For any t ∈ (0, 1) that satisfies P (a, b) ≥ t ≥ P (a, d), there 

exists c ∈ A, such that P (a, c) = t. �



Theorems 1 & 2 p. 391-2) 

Theorem 1 

•  If < A, M, P > is a COMPLETE 
difference structure, then we 
can get a function that takes 
us from A onto some real 
interval.�

•  This function is unique up to a 
positive linear transformation. 

Theorem 2 

•  If < A, M, P > is a LOCAL 
difference structure, then we 
can get a function that takes 
us from A onto some real 
interval.�

•  This function is unique up to a 
positive linear transformation. 



Definition 6 (p. 392): a /~ b iff aMb and P (a, b) ≥ ½. A 
pair comparison structure <A, M, P> is a Local Difference 
Structure iff, for all a, a′, b, b′, c, c′ ∈ A: �
•  The following Axioms hold:�

1. Comparability: Any two elements that are bounded from above 
or below by the same third element are comparable�

2. Monotonicity: same as before, except adding M’s (thereby 
restricting the domain of P)�

3. Solvability: same as before, except adding M’s�

4. Connectedness: Any two nonequivalent elements of A are 
connected either by an increasing or a decreasing sequence, 
but not both.�



Definition 7 (p. 394): A complete pair comparison structure 
<A, M, P> with A = A1 x … x An is an Additive-Difference 
Structure iff, for all a, a′, b, b′, c, c′, d, d′ ∈ A: �
•  The following axioms hold:�

1.  Independence: Primes and not primes agree on one component. 
And the pairs: (a, c), (a′, c′), (b, d), (b′, c′) agree on all others.�

   P (a, b) ≥ P (a`, b`) iff P (c, d) ≥ P (c`, d`)�

1.  Monotonicity: Same as before, except now we are supposing that 
a, a`, b, b`, c, c` coincide on all but one factor.�

2.  Solvability: Same as before, except that c coincides with b and d 
on any factor on which they coincide�

3.  The Thomsen Condition: cancellation stuff�



Theorems 3 & 4 (p. 395‐7) 

•  Theorem 3 just tells us that we 
get a representation theorem 
for additive difference 
structures.�

•  But intransitive preferences can 
survive Theorem 3 (see P. 
398-9)�

•  So we introduce Theorem 4, 
which gets rid of intransitive 
preferences.�

•  And everyone is happy�



Definition 8 (p. 410):�

A closed structure of choice probabilities <A, M, P> satisfies 
Simple Scalability iff:�
•  There exists a real-valued ϕ on A & a family of real-valued 

functions {Fβ}�

•  2 ≤ β ≤ α, (the cardinality of A is at least as big as the 
cardinality of B, which is at least as big as 2)�

•  For any B = {a, b, …, h} ⊆ A, with P (a, B) ≠ 1, the following 
holds: �

-- -P (a, B) = Fβ [ϕ(a), ϕ(b), …, ϕ(h)]�



Definition 9 (p. 411):                                            
A closed structure of choice probabilities satisfies         
Order-independence iff:�

•  For all a, b ∈ B – C and c ∈ C:�
P (a, B) ≥ P (b, B) iff P (c, C ∪ {a}) ≤ P (c, C ∪ {b})�

•  (So long as the choice probabilities on either side of the inequality are 
not both 0 and 1.)�

•  Let’s say a = red ball, b = black ball, and B = urn of red, black, and 
yellow balls. C = the set of yellow balls�

•  P (a, B) ≥ P (b, B) means that there are at least as many red balls in 
the urn as there are black (maybe more).�

•  P (c, C ∪ {a}) ≤ P (c, C ∪ {b}) says that the probability we choose a 
yellow ball given all the black balls and the yellow balls is at least as 
great as the probability of choosing a yellow given all the reds and 
yellows.�

•  This makes sense, since there are at least as many red balls than black 
ones.�



Definition 10 (p. 414): A closed structure of choice 
probabilities satisfies the Strict-Utility Model iff:�

•  There exists a positive real-valued function ϕ �

•   on A such that for all a ∈ B ⊆ A:�

 P (a, B) =  ϕ (a) ÷  ∑b ∈ B ϕ(b) �



Definition 11 (p. 415):                                            
A closed structure of choice probabilities satisfies the Constant-
Ratio Rule iff:�

•  For all a, b ∈ B ⊆ A, the following holds:�

     P (a, b) ÷ P (b, a) = P (a, B) ÷ P (b, B) �

(assuming that the denominators don’t vanish)�

•  Tells us that the strength of preference for a over b (the ratio) is 
unaffected by the other alternatives.�

•  This is a notch up from the independence of irrelevant alternatives, 
which only tells us that the ordering of probabilities is unaffected by 
the alternatives.�



Definition 12 (p. 416):�
A closed structure of choice probabilities satisfies the Choice 
Axiom iff, for all C ⊆ B ⊆ A:�

•  P (C, A) = P (C, B) x P (B, A)�

 (where P (B, A) ≠ 0 for all B ⊆ A)�

A 

B 

C 



Theorem 6 & 8 (p. 416 & 418) 

•  If we have a closed structure of 
choice probabilities where the 
probability of a single event is 
neither zero or one, and some 
other stuff is true,  then the 
strict utility model is satisfied if 
the constant ratio rule or the 
choice axiom holds.�

•  8 gives necessary and sufficient 
conditions for getting a strict 
utility model of binary form.�

•  Gives us the product rule: a  
b  c  a/ a  c  b  a 



Definition 13 (p. 421):�

A closed structure of choice probabilities satisfies a Random 
Utility Model iff there exists a collection U = {Ua | a ∈ A} of 
jointly distributed random variables, such that for all a ∈ B �

P(a, B) = Pr (Ua = max {Ub | b ∈ B})  �



Definition 14 (p. 423): A closed structure of choice probabilities 
satisfies Nonnegativity iff for any a ∈ A and B0, B1, …, Bn ⊂ A 
•  The probability of any event, a, given a subset of B, B0, subtracted by 

the probability of a, given all even combinations of subsets of B, plus 
the probability of a, given all odd combinations of subsets of B, is 
greater than or equal to zero.�

Cool Stuff about Nonnegativity… 

•  Nonnegativity is equivalent to the random-utility model whenever A contains 
4 or fewer elements. �

•  Regularity says that the choice probability can’t be increased by enlarging 
the offered set.�

•  When n=1, nonnegativity reduces to P (a, B) ≥ P (a, B ∪ C)�
•  Nonegativity is both necessary and sufficient for the representation of 

choice probabilities by a random-utility model. �



Definition 19 (p. 436): An Elimination Structure is quadruple < A, 
M, P, Q > where < A, M, P > is a closed structure of choice 
probabilities, and Q = {QB | B ⊆ A} is the corresponding family of 
transition probability functions. QB ∈ Q  is a mapping from 2B onto 
[0, 1] satisfying i-iii (in book). �

•  Given some set B, one selects a nonempty subset of B.  Call this 
C.  The probability with which one chooses C is QB(C). �

•  We select a subset of C, call this D.  The probability of choosing D 
is QC(D), and we keep doing this over and over again until the 
subset eventually consists of a single alternative. �

•  i just says that will QB(B) only ever equal one when we’ve gotten 
to a single alternative.�

•  ii says that when we sum up all of the C’s and multiply them by 
the probability their probabilities given B, this equals one.�

•  iii says that P (a, B) is the absorbing probability of the Markov 
Chain. P (a, B) equals one times the probability of a, given Ci. �



Definition 20 (p. 437): An Elimination Structure < A, M, P, Q > satisfies 
a Random-Elimination Model iff there exists a random vector U defined on 
A which satisfies that satisfies i and ii. 

•  i says that the probability that utility of a = the utility of b ≠ 1, for 
any two elements in A.�

•  ii says that where c and d are elements of C and b is an element of 
B that is not in C, the probability of choosing subset C from B equals 
the probability that the utility of c equals the utility of d and that the 
utility of d and c are each greater than the utility of b. �

*A random elimination model is Boolean iff the components of U are all 0 
or 1. 



Definition 21 (p. 437-8): A closed structure of choice probabilities 
satisfies Proportionality iff there exists a family Q = {QB | B ⊆ A} 
of functions such that (i) and (ii). 

•  (i) just says that our structure is an elimination structure.�

•  (ii) says that for all D, C ⊆ B ⊆ A, the ratio of the probability 
of choosing C to choosing D, given B is equal to the ratio of the 
probability of choosing C to D, given A, when we multiply the 
probability of C, given A, by the sum of the C’s that intersect 
with B, and likewise, we multiply the probability of D given A by 
the sum of all the Ds that intersect with B.�

•  The only other conditions are that the denominations are 
positive and that if one denominator goes away, so do the 
other.  This is an equality after all… 



Definition 22 (p. 440): A closed structure of choice 
probabilities satisfies the Model of Elimination-by-Aspects iff 
there exists a positive-valued function, f, defined on A` - A0, 
such that for all a ∈ B ⊆ A…. (see book) 
•  The idea is that each alternative consists of a collection of aspects.�

•  There is a utility scale defined over all of these aspects. �

•  At each stage in the process, one selects an aspect with a probability 
proportional to its utility.�

•  Selecting this aspect eliminates all the alternatives that don’t include 
it.�

•  This process continues until there is only a single alternative left. 

The EBA model, the Boolean random-elimination model, and the 
proportionality condition are all equivalent! (Theorem 16). 



The End 



Definition 6 (P. 312): Suppose  and R are binary relations on 
A and  is asymmetric. R is Upper Compatible with  iff�

•  For every a, b, c in A, aRb and b  c imply a  c �

Definition 6 (continued): Suppose  and R are binary relations on A and 
 is asymmetric. R is Lower Compatible with  iff�

•  For every a, b, c in A, aRb and c  a imply c  b�

* R is fully compatible with  iff it is both upper and lower compatible 
with  �



Definition 10 (P. 333): Suppose 1 and 2 are asymmetric 
relations on A. They satisfy upper- (and lower-) interval 
homogeneity iff�

•  For all a, b, c, d in A, whenever a 1 c and b 2 d, then either   
a 2 d or b 1 c (a 1 d or b 2 c)   



Definition 8 (P. 317): Suppose < A,  > is a one-sided threshold 
representation.  It is said to be Monotonic iff�

•  ϕ + δ is a strictly increasing function of ϕ . 

Definition 9 (P. 332): Suppose 1, 2 are asymmetric relations 
on A, and ϕ, δ1, δ2 are real-valued functions on A. < ϕ, δ1, 
δ2 > is a Homogeneous, Upper Representation of < A, 1, 2 
> iff�

•  < ϕ, δi > is an upper representation of < A, i  >, i = 1, 2.�

•  (Same deal for homogeneous lower and homogeneous two-sided 
representations.) 



Definition 12 (P. 338): P satisfies Interval Stochastic 
Transitivity iff�

•  max [P (a, d), P (b, c)] ≥ min [P (a, c), P (b, d)]�


