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Cultural Consensus Theory (CCT)
Initially developed by Romney, Batchelder, Weller in 1980s.
E.g. Romney et al (1986, Am. Anth.)

Intuition: ‘Test Theory Without an Answer Key’.

Multiple informants’ responses to questions.

Data aggregation (‘answer key’) and informant calibration
(competence, bias).

CCT-related models for different question formats, e.g.,

É True/False, Multiple-Choice E.g. Romney et al (1986, Amer. Anth.)

É Continuous Batchelder et al (2010, Adv. Soc. Comp.)

É Ranked items Romney et al (1987, Am. Beh. Scientist)

É Directed graphs Butts (2003, Soc. Net.), Batchelder et al (1997, J. Math.

Soc.; 2009, Soc. Comp. & Beh. Mod.)

3 / 26



Why would one want to aggregate graphs where there might be
some objectively true graph? This is the same question as for
aggregating in any CCT-type situation.
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Graph Aggregation

We ask informants to provide edge values in various types of
graphs.

Social network applications:

É Friendship/advice networks (e.g. informants report on ties in
their own social network).

É Covert networks (e.g. informants report on ties between
others).
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Imposing Constraints on Graphs

For example,

É Total order: If a ≤ b and b ≤ a then a = b (antisymmetry);
If a ≤ b and b ≤ c then a ≤ c (transitivity);
a ≤ b or b ≤ a (totality).

É Equivalence (set partition): a ∼ a (reflexivity);
If a ∼ b then b ∼ a (symmetry);
If a ∼ b and b ∼ c then a ∼ c (transitivity).

É Structural balance (two-cell partition): A two-cell equivalence
relation, but with some history in the literature of social
dynamics. Cartwright, Harary (1956, Psych. Rev.)
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Key Idea

We hypothesize that the consensus graph satisfies a particular
constraint, but we do not presume that each informant’s response
satisfies the constraint due to error and/or lack of knowledge.
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Our Constraint: Balance

Some notation:

M informants, indexed by i .

V is the set of vertices (corresponds to node items).

N vertices, indexed by j , k ε V.

E is the set of undirected edges (corresponds to item-pair
questions).

�

N
2

�

edges, indexed by {jk} ε E , and {jk} = {kj}.
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Balanced Graph
Let G = (V, E) be a simple, undirected, complete graph.

Let Σ = (G , σ), be a signed graph, where
σ : E → {−,+}.

Σ is balanced

É iff the product of edge signs is positive along
every cycle.

É iff V can be partitioned into complementary
cells, A and Ac , such that ∀ j , k ε V:
É σ({jk}) = +, if j , k ε A,
É σ({jk}) = +, if j , k ε Ac ,
É σ({jk}) = −, otherwise.

That is, two-cell equivalence relations induce
a balanced graph.
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Tie Model I

Consensus partition W (with its logical complement, W),

W k =

�

1 if vertex k ε A,
0 if vertex k ε Ac .

Z is the matrix of all (coded) edge signs on the consensus graph,

Z jk =

�

1 if W j = W k ,
0 if W j 6= W k .

= 1− (W j −W k)2
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Tie Model II

Observed data, X, is an informant × vertex × vertex array,

X i ,jk =

¨

1 if informant i reports edge {jk} is positive,

0 if informant i reports edge {jk} is negative.

Informants’ competences (probabilities of knowing the sign of an
edge) is the vector D.

Informants’ guessing biases (probabilities of reporting an unknown
edge is positive) is the vector g.
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Tie Model III

High Threshold Signal Detection Model,

Pr(X i ,jk = 1|Z jk = 1,D i , g i ) = (1−D i )gi + D i

Pr(X i ,jk = 1|Z jk = 0,D i , g i ) = (1−D i )gi

Thus, the probability of any individual response,

Pr
�

X i ,jk | Z jk ,D i , g i
�

= [(1−D i )gi + D i ]
X i ,jkZ jk [(1−D i )gi ]

X i ,jk (1−Z jk )

[(1−D i )gi ]
(1−X i ,jk)Z jk [(1−D i )gi ]

(1−X i ,jk)(1−Z jk)

With conditionally independent responses (across edges), the
likelihood is a big product,

L (X|Z,D,g) =
M
∏

i=1

N
∏

k=2

k−1
∏

j=1

Pr
�

X i ,jk |Z jk ,D i , g i

�
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Bayesian Inference Using MCMC Sampling

Priors are uninformative (flat):

É For partition: W k ∼ Bernoulli(1/2) means two vertices just as
likely to be in the same cell as different cells.

É For an informant’s competence and bias: D i ∼ Unif (0, 1) and
g i ∼ Unif (0, 1).

Markov Chain Monte Carlo sampler:

É Metropolis step for partition, W, means we only sample
balanced Z.1

É Metropolis-Hastings step for each D i and g i .

1W, W are unidentified, but Z is identified.
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Simulated Data

Simulated response data according to response model.

Applied sampler to estimate generating parameters.

Recovery of W, D, g.

9000 iterations, 1000 burned, thinning interval of 8.
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Obtaining Real Data

We wanted to have tie data with a known ground truth, but this
was hard to find.

We created ‘tie data’ using nodal attributes of the graph.

Two surveys:

É 5 basketball players, 5 baseball players (vertices);
‘Play same sport?’ (edges).

É 5 Arizona cities, 5 New Mexico Cities (vertices);
‘In same state?’ (edges).

15 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states

Roswell, Taos ×
· · ·
Taos, Carlsbad ×
· · ·
Roswell, Carlsbad ⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

16 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states
Roswell, Taos ×

· · ·
Taos, Carlsbad ×
· · ·
Roswell, Carlsbad ⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

17 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states
Roswell, Taos ×
· · ·
Taos, Carlsbad ×

· · ·
Roswell, Carlsbad ⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

18 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states
Roswell, Taos ×
· · ·
Taos, Carlsbad ×
· · ·
Roswell, Carlsbad

⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

19 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states
Roswell, Taos ×
· · ·
Taos, Carlsbad ×
· · ·
Roswell, Carlsbad ⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

20 / 26



Survey Design Issues

Complete design involves
�

N
2

�

questions.

Want to avoid logical inference from cycles, e.g. σ({AB}) = +
and σ({BC}) = + implies σ({AC}) = +.

Example
Edge Same state Diff states
Roswell, Taos ×
· · ·
Taos, Carlsbad ×
· · ·
Roswell, Carlsbad ⇒ ×

Need to sequence questions to avoid logical inferences, or make
them less likely.

21 / 26



How to avoid logical inferences, or make them less likely?

Special order of pairwise questions for N = 10:

É ‘Front-load’ questions that complete fewer and larger cycles,
‘back-load’ questions that complete more and smaller cycles.

É Separates questions into three phases, based on potential for
balance computation. (1-10, 11-25, 26-45)

Missing data handled in the likelihood function by setting

Pr
�

X i ,jk = missing | Z jk ,D i , g i

�

= 1.

É By design, if discarding later-phase questions.

É Accidental, for a skipped question.
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Ball Players Survey Results

Data: 5 of 855 edges blank.
Elicited confidences:

Don’t know 516
Unsure 179
Certain 148

N/A 12

Correctly recovered true partition.
Mean marginal W, Q1-10:

( 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 )
Mean marginal W, Q1-45:

( 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 )
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Figure: Marginal posterior D, Q1-10
(top), Q1-45 (bottom).
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Conclusions

We think we have a good working model for tie-based responses.

Unfortunately, our experimental data involved nodal-based
responses.

If one knows Hank Aaron is a baseball player in one dyad, she will
know it in all dyads involving Aaron.

We need a better model for nodal-based responses.

We need good data for tie-based responses.
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A nodal model we are now working with assumes that an informant
either knows or doesn’t know the type of each node, and knows
the tie iff she knows both nodes, otherwise a guess is made.

This nodal model implies that tie responses are not conditionally
independent, given the parameters.

This makes the MCMC sampler more complicated. Basically, data
augmentation based on each informant’s subset of known nodes is
needed.

We are working on the sampler for the nodal model and looking for
tie-based response data.
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Thanks!
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Appendix
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Simulated Data Parameter Recovery I

Tests:

É Perfectly correct informants ⇒ correct W, high D i , uniform
g i ; confirmed.

É Perfectly wrong informants ⇒ unchanged W, low D i , g i

approach (number of negative edges / number of positive
edges) = 25/45 = 0.5555; confirmed.

28 / 26



Simulated Data Parameter Recovery II

É Fixed W, ranges of D and g.
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Simulated Data Parameter Recovery III

É Various W, ranges of D and g.
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Figure: Recovery plots, range W and range D, G
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Simulated Data Parameter Recovery IV

1 0000000000 0 0.1 0.015 0.035 0.16 0.105 0.12 0.04 0 0.015
2 0000000000 0 0 0 0 0 0 0 0 0 0
3 0000000001 0 0 0 0 0 0 0 0 0 1
4 0000000001 0 0 0 0 0 0 0 0 0 1
5 0000000011 0 0 0 0 0 0 0 0 1 1
6 0000000011 0 0 0 0 0 0 0 0 1 1
7 0000000111 0 0 0 0 0 0 0 1 1 1
8 0000000111 0 0 0 0 0 0 0 1 1 1
9 0000001111 0 0 0 0 0 0 1 1 1 1

10 0000001111 0 0 0 0 0 0 1 1 1 1
11 0000011111 0 0 0 0 0 1 1 1 1 1
12 0000011111 0 0 0 0 0 1 1 1 1 1

Table: Generating partitions with their per-cell marginal mean posterior.
Possible evidence of the bias towards equal size cells.
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Survey design problem I

Logic could only be used (correctly) when the question is a pair
that closes a cycle on a graph of pairs presented in the survey, up
to this question.

Suppose it is harder for the informant to maintain logical
consistency for questions that close larger cycles, based on
minimum closed cycle length.
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Survey design problem mitigation I

For Phase 1, present 9 + 1 directed pairs. The minimum cycle
length is size 10 after 10 are presented.
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Survey design problem mitigation II

Phase 2 closes minimum cycles of length 4, “quads”. Present 15 of
these quads to bring the total to 25.
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Survey design problem mitigation III

Phase 3 pairs complete the design, 20 more are added, each closing
minimum cycles of length 3, “triads”.
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Nodal Model Graphical Model

See the text for specific distributions. Circular nodes are continuous, square

nodes are discrete. D ik is double-circle is deterministic. X i ,jk is bold, an

observed datum (all other parameters are latent).

β
k

α
i

D
ik

K
ik

W
k

X
i,jk

g
i

i = 1, ..., M

k = 1, ..., N

j = 1, ..., N
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Survey Items I

Player City TruePartition

David Robinson Tucson 0
Julius Erving Flagstaff 0
Moses Malone Kingman 0
Wilt Chamberlain Scottsdale 0
Bill Russell Prescott 0
Ernie Banks Taos 1
Willie Mays Las Cruces 1
Reggie Jackson Los Alamos 1
Andre Dawson Carlsbad 1
Mo Vaughn Roswell 1
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