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Abstract 

This paper discusses the conceptualization, measurement, and interpretation of centrality in affiliation 
networks. Although centrality is a well-studied topic in social network analysis, and is one of the most widely 
used properties for studying affiliation networks, virtually all discussions of centrality and centralization have 
concerned themselves with one-mode networks. Bonacich's work on simultaneous group and individual 
centralities is a notable exception (Social Networks, 1991, 13, 155-168). I begin by outlining the distinctive 
features of affiliation networks and describe four motivations for centrality indices in affiliation networks. I 
then consider properties of some existing centrality indices for affiliation networks, including the relationship 
between centralities for actors and events in these networks, and present a new conceptualization of centrality 
that builds on the formal properties of affiliation networks and captures important theoretical insights about the 
positions of actors and events in these networks. These centralities are then illustrated on Galaskiewicz's data 
on club and board memberships of a sample of corporate executive officers (Social Organization of an Urban 
Grants Economy. New York: Academic Press, 1985). The conclusion to this paper discusses strengths and 
weaknesses of centrality indices when applied to affiliation networks. © 1997 Elsevier Science B.V. 
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1. Affiliation networks 

Many social network relations consist of the linkages among actors through their joint 
participation in social activities or membership in collectivities. This common activity 
creates a network of ties among actors. Similarly, collectivities, communities, or social 
occasions are linked to each other through the multiple memberships of actors. Such 
networks of actors tied to each other through their participation in collectivities, and 
collectivities linked through multiple memberships of actors, are referred to as affiliation 
networks, membership networks, dual networks, or hypernetworks (Breiger, 1974, 1990; 
Seidman, 1981, 1985; McPherson, 1982; Wasserman and Faust, 1994). 

Formally, an affiliation network consists of two key elements: a set of actors and a 
collection of subsets of actors (called events). Thus, an affiliation network is a 
two-mode, non-dyadic network. The two modes are the set of actors and the set of 
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events. An affiliation network is non-dyadic because the affiliation relation relates each 
actor to a subset of events, and relates each event to a subset of actors. Affiliation 
networks have been referred to as dual networks because of the complementary 
perspectives through which actors are linked to each other as members of collectivities, 
and collectivities are linked to each other through shared members (Breiger, 1974, 
1990). 

Substantive examples of affiliation networks are widespread, and include, for exam- 
ple, interlocking boards of directors (Levine, 1972; Mariolis, 1975; Sonquist and 
Koenig, 1975; Mintz and Schwartz, 1981a,b; Allen, 1982; Mizruchi, 1982; Bearden and 
Mintz, 1987); memberships in voluntary organizations (McPherson, 1982); club mem- 
berships (Bonacich, 1978); social gatherings (Davis et al., 1941; Homans, 1950; Breiger, 
1974); ceremonial events attended by community members (Foster and Seidman, 1984; 
Schweizer et al., 1993); observations of informal social interactions (Bernard et al., 
1980, 1982; Freeman and Romney, 1987; Freeman et al., 1987; Freeman et al., 1989) 
and so on. Regardless of their substance, these applications share a formal similarity in 
that each consists of a set of actors and a collection of subsets of actors. 

In this paper I will use two examples of affiliation networks as illustrations. The first 
is a hypothetical affiliation network of six actors and three events from Wasserman and 
Faust (1994). The second example is a subset of the data collected by Galaskiewicz 
(1985) for his study of the urban grants economy in the Minneapolis-St. Paul area. This 
affiliation network consists of 26 corporate executive officers and their membership in 
15 clubs, boards of cultural organizations, and corporate boards. (See Galaskiewicz, 
1985; Wasserman and Faust, 1994, for further discussion of these data.) 

To illustrate an affiliation network, consider the hypothetical example of six actors 
and three events. The set of actors is denoted by ~ ' =  { n i , n  2 . . . . .  ng}, and the set of 
events is denoted by ~ ' =  { m i , m  2 . . . . .  mh}. There are g actors and h events. The 
affiliation network matrix for this example is presented in Table 1. This matrix, denoted 
by A = {aik}, shows the affiliation of the actors with the events. A '1 '  in row i, column 
k of A indicates that actor n i is affiliated with event m k. Table 2 gives the one-mode 
matrix of actor co-memberships. This matrix, denoted by X ~, indicates the number of 
memberships shared by each pair of actors. Table 3 gives the one-mode matrix of event 
overlaps, denoted by X ~', which gives the number of actors shared by each pair of 
events. 

Table 1 

Affi l iat ion ne twork  matr ix  

n 1 

/'12 

/'13 

n 5 

?16 

m I m 2 m 3 

1 0 1 
0 1 0 

0 1 1 

0 0 1 
1 1 1 

1 1 0 
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Table  2 

A c t o r  c o - m e m b e r s h i p  matr ix  

n I 

n 2 

/'13 

n 4 

1"/5 

n 6 

nl n2 n3 /'/4 n5 n6 

2 0 1 1 2 1 

0 1 1 0 1 1 

1 l 2 1 2 1 
1 0 1 1 l 0 
2 1 2 1 3 2 

l l 1 0 2 2 

As Breiger (1974) has noted, the affiliation matrix is related to the actor co-member- 
ship matrix and to the event overlap matrix through the following equations: 

X X = a a '  (1 )  

and 

X~r= A'A. (2)  

The affiliation network matrix uniquely determines both X ~r and X ~,  but the reverse is 
not true. A given actor co-membership matrix or event overlap matrix may be generated 
by a number of  different affiliation network matrices (Breiger, 1990). 

An affiliation network can also be represented as a bipartite graph (Wilson, 1982). In 
a bipartite graph nodes can be partitioned into two subsets and all lines are between 
nodes from different subsets. In the bipartite graph for an affiliation network the two sets 
of  nodes are the set of  actors, ~ ' ,  and the set of  events, ~ ' ,  so there are g + h nodes. 
Since the lines indicate ties of  affiliation they are always between actors and events. Fig. 
1 shows the hypothetical affiliation network as a bipartite graph. 

The bipartite graph can also be presented in a sociomatrix, denoted by X ~ r .  This 
matrix has g + h rows and columns indexing actors and events, and has the form: 

where actors occupy the first g rows and columns and events occupy the last h rows 
and columns. 

In studying an affiliation network one can look at properties of  actors in the 
one-mode relation of  actor co-memberships, properties of events in one-mode relation of 
event overlaps, or properties of  both actors and events in the two-mode affiliation 
relation. 

Table  3 

E v e n t  over lap  matr ix  

ml m2 m 3 

m t 3 2 2 

m 2 2 4 2 

m 3 2 2 4 
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72 2 ?~2 1 

~ 3  

7752 

n 4 

n 5  T?~3 

T~ 6 

Fig. 1. Bipartite graph of affiliation network. 

Centrality is one network property that frequently has been used to study actors or 
events in affiliation networks (Bonacich, 1972, 1991; Mariolis, 1975; Stokman, 1977; 
Bonacich and Domhoff, 1981; Mintz and Schwartz, 1981a,b; Mizruchi and Bunting, 
1981; Mariolis and Jones, 1982; Mizruchi, 1982, 1992; Rosenthal et al., 1985; Mizruchi 
et al., 1986; Fernandez and McAdam, 1988). However, virtually all analyses of 
centrality in affiliation networks neglect the inherent properties of these networks: the 
presence of two modes, the duality of actors and events, and the non-dyadic affiliation 
relation. In the following sections I address the issue of conceptualization and measure- 
ment of centrality in affiliation networks, with special attention to the interpretation of 
existing centrality measures as applied to affiliation networks and to possible future 
directions for developing centrality approaches that are especially appropriate for 
affiliation networks. 

2. Centrality 

The general notion of centrality encompasses a number of different aspects of the 
'importance' or 'visibility' of actors within a network. Discussions of centrality can be 
found in Freeman (1979), Knoke and Burt (1983), Friedkin (1991), Faust and Wasser- 
man (1992) and Wasserman and Faust (1994). In general, there are four common 
motivations for centrality in one-mode dyadic networks: 

actors are central if they are active in the network (motivating degree centrality); 
actors are central if they can contact others through efficient (short) paths (motivating 
closeness centrality); 

• actors are central if they have the potential to mediate flows of resources or 
information between other actors (motivating betweenness centrality); and 
actors are central if they have ties to other actors that are themselves central 
(motivating eigenvector centrality). 
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Freeman (1979) presents three sets of indices that formalize the ideas of degree 
(activity), closeness (efficiency), and betweenness (control) actor centrality and graph 
centralization. From a slightly different perspective, Friedkin (1991) reviews the theoret- 
ical basis for centrality measures within the framework of models of interpersonal 
influence. Within this framework he distinguishes between 'total', ' immediate',  and 
'mediative' effects centrality, roughly analogous to the total influence of an actor, an 
actor's closeness to others, and the betweenness of the actor. At the conclusion of his 
paper Friedkin cites Coombs's position on the theoretical basis for measurement and 
scaling models in general, commenting: 

Coombs reminds us that 'a measurement or scaling model is actually a theory 
about behavior, admittedly on a miniature level, but nevertheless theory' [Coombs, 
1964, p. 5]. By this criterion, every new proposal of a centrality measure presents 
new theoretical material. (Friedkin, 1991, p. 1498.) 

It is in this spirit that I intend to review centrality measures for affiliation networks. The 
theoretical foundations for affiliation networks as well as their formal properties differ in 
important ways from the more usual one-mode dyadic networks. Thus, centrality indices 
that have been developed for one-mode dyadic social networks may or may not be 
appropriate for studying affiliation networks. In addition, there may be theoretical 
insights gained from affiliation networks that will suggest new centrality approaches. 

In the next section I discuss four motivations for centrality in affiliation networks, 
with special attention to those features of affiliation networks that are distinctive and 
lead to centrality motivations that are different from centrality motivations for one-mode 
networks. 

3. Centrality motivations for affiliation networks 

This section presents four ideas that can motivate centralities in affiliation networks. 
Two of these ideas arise from the formal properties of affiliation networks (two-mode, 
non-dyadic networks), and two arise from empirical and theoretical insights suggested 
by researchers who have studied affiliation networks. The four ideas that I present below 
are: centralities for both actors and events, centralities for subsets of actors and/or  
subsets of events, the importance of linkages created by actors and events, and the 
importance of subset-superset relationships in actors' affiliations and events' member- 
ships. 

3.1. Centralities for  actors and events 

Since affiliation networks are two-mode networks, a complete analysis should give 
centrality indices for both actors and events. As we shall see below, calculating indices 
for both actors and events is straightforward. The important question is: what, if 
anything, is the relationship between the centralities of events and the centralities of the 
actors that belong to the events? Different authors have taken different perspectives on 
this question. In their discussion of the relationship between the centrality of corporate 
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boards and the centrality of  individuals who sit on the boards, Perrucci and Lewis (1989, 
p. 216) argue that 

These two networks can reveal considerable overlap in that the organizations that 
occupy central positions in their network are also those organizations that are the 
primary affiliations of  the leaders that hold central positions in their network. On 
the other hand, the two networks can be independent in that the central organiza- 
tions and the central leaders are drawn from two different subgroups. 

Perrucci and Lewis view the relationship between the centrality of  an actor and the 
centralities of  the events to which the actor belongs as an empirical question. In their 
view, a given network may or may not show any relationship between actor and event 
centralities. Bonacich (1991, p. 256) takes exactly the opposite position. He argues that 

Centrality involves . . .  the 'duality' of  groups and individuals. A central firm gets 
its central position from the board membership patterns of  its members . . . .  Dually 
a central individual should be one who belongs to a variety of important firms. 
One kind of centrality cannot be defined without reference to the other. 

Bonacich's  argument builds on the theoretically important duality in the relationship 
between actors and events. In keeping with this perspective, Bonacich (1991) presents a 
centrality measure for which the centrality of  an event is proportional to the sum of the 
centralities of the actors that are members of  the event, and the centrality of an actor is 
proportional to the sum of the centralities of  the events to which it belongs. I discuss this 
measure, eigenvector centrality, in detail below. 

Thus, the first important feature of  centralities for affiliation networks is that there 
should be centrality scores for both actors and events. Furthermore, there should be a 
clearly specifiable relationship between these quantities. 

3.2. Centralities f o r  subsets 

Another important feature of an affiliation network is that the affiliation relation is 
non-dyadic (Wilson, 1982; Seidman, 1985). Unlike a dyadic relation that links pairs of  
actors (and thus is binary), a non-dyadic relation links members of  subsets of arbitrary 
size (and is thus n-ary). The affiliation relation relates each event to a subset of actors 
and relates each actor to a subset of events. 

What does this imply for centralities in these networks? Existing centrality measures 
apply to one of  two levels: centrality indices for actors or centralization indices for 
whole networks (Freeman, 1979). But if we take seriously the idea that actors in 
affiliation networks are defined by the collection of  the events to which they belong and 
events are defined by their collection of  members (Simmel, 1955; Breiger, 1974), then 
the centrality of an actor should be a function of the collection of events to which it 
belongs and the centrality of  an event should be a function of the centrality of  its 
collection of  members. In contrast to a centrality index for a node in a graph, a centrality 
index for a collection of  nodes should quantify the importance of that collection within 
the entire graph. For example, a centrality index for an event in an affiliation network 
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should quantify the importance of the collection of actors belonging to that event. The 
idea is to extend centrality indices for individual nodes to centrality indices for 
collections of  nodes in a graph (or actors or events in an affiliation network). 

These proposals of  centralities for two modes and for subsets of  entities build on 
formal properties of affiliation networks. Next I discuss theoretical ideas and empirical 
insights that have been used to describe the ' importance'  of actors and events in 
affiliation networks, and which thus suggest theoretically and substantively grounded 
motivations for centralities in affiliation networks. 

3.3. Linkages between actors and events 

A theoretically important property of  an affiliation network is that actors create 
linkages between events and events create linkages between actors. Multiple member- 
ships of actors provide conduits for the flow of information between events or for the 
coordination of  activities between events. Events as collections of  actors provide the 
opportunity for contacts between actors, for sharing of information or other resources 
among actors, and facilitate formation of  pair-wise ties between actors (McPherson, 
1982; McPherson and Smith-Lovin, 1982). Bonacich and Domhoff  (1981) observe that 
" n o  groups are directly related to each other; they are only indirectly related to each 
other through individuals" (p. 178), and similarly "central individuals link groups 
which tend to be disjoint" (p. 179). 

The linking function of  actors and events means that an actor is central in an 
affiliation network if it creates ties between events and an event is central if it creates 
ties between actors. An actor that belongs only to one event creates no ties between 
events. Thus, an actor's multiple memberships contribute to its centrality because that 
actor creates linkages between events. It is not simply the number of  memberships that 
an actor has that is important. An actor that belongs to few events may nevertheless 
create a critical tie between two or more events that otherwise would not be linked. 
Similarly, an event is important because it creates linkages between its members. 
Although events with large membership lists create more ties between pairs of  actors 
than do events with small membership lists, it is not simply the size of  an event that is 
important. Even a small event may bring together actors that would not meet otherwise. 

Thus, the linkages between events created by actors' multiple affiliations, and the 
linkages between actors created by events' collections of  members are important 
considerations in determining the centrality of  both actors and events in an affiliation 
network. Actors are always between events and events are always between actors. This 
suggests that some form of betweenness centrality will be appropriate for studying 
affiliation networks. 

3.4. Subset-superset inclusions o f  actors and events 

A fourth distinctive motivation for centrality in affiliation networks arises from 
observations about the structure of  memberships in these networks. Memberships in 
affiliation networks can be viewed as patterns of  inclusions among events' membership 
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lists, as patterns of inclusions among actors' affiliations, or both (Bonacich, 1978). Here, 
we shall want to look not at the number of overlaps for events or co-memberships for 
actors, but at the patterns of inclusions among memberships. Specifically, a number of 
authors have observed that in terms of their participation in events, some actors' 
affiliations are included within the affiliations of other actors. This leads to the 
distinction between 'primary' and 'secondary' actors (Davis et al., 1941; Doreian, 
1979a,b; Freeman and White, 1993). Many of these insights have come from analyses of 
the data of Davis et al. (1941) on social activities of a community of Southern women. 
In their original analysis of these data, Davis et al. arrange the affiliation network matrix 
not only to highlight two 'cliques' of women, but also to indicate which women were 
primary and which were secondary within each 'clique'. In his reanalysis of these data 
using q-connectivity to locate cohesive subgroups, Doreian (1979a) finds essentially the 
same two subgroups that Davis et al. had found, and, moreover, he describes the internal 
structure of these subgroups. Doreian (1979a, pp. 224-225) comments that 

each of the subgroups can be viewed as having a core and a periphery, with higher 
connectivity within the core, lower connectivity with the periphery. 

Furthermore, Doreian identifies one of the women as a 'central core member' of one 
of the cliques based on her high level of connectivity to others. In their reanalysis of 
these data using Galois lattices (which I discuss below), Freeman and White (1993) 
specifically describe the nature of the internal structure of the subgroups. They observe 
that for secondary actors 

the events they attended are all subsets of the events attended by one or more 
primary actors. (p. 138.) 

Freeman and White also note that events' memberships can be characterized by 
similar subset-superset relationships. 

These observations suggest that centrality indices for affiliation networks should 
capture the subset-superset relationships in the affiliations of actors and events. The 
distinction between primary and secondary actors means that secondary actors are more 
likely to participate in events when primary actors are also present, and are unlikely to 
participate on their own. Primary actors, on the other hand, participate in events even 
when secondary actors are not present. The participation of secondary actors is condi- 
tional on the participation of primary actors, implying that the events to which secondary 
actors belong are a subset of the events to which primary actors belong (Freeman and 
White, 1993). In terms of centrality in affiliation networks, less central actors participate 
in events only in the presence of more central actors. Importantly, it is not simply the 
greater number of events to which more or less central actors belong, but the patterning 
of these events such that the events to which less central actors belong are a subset of 
the events to which more central actors belong (Bonacich, 1978). Similarly, one can 
consider the relative centrality of events using these ideas. Less central events have 
membership lists that are contained within the memberships of more central events. 
Again, it is not simply the size of the events that determines their centrality, but rather it 
is the patterning of memberships in these events that is important. 
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3.5. Summary 

In summary, the properties of affiliation networks suggest that centralities for these 
networks should do four things: 
1. give centrality indices for both actors and events; 
2. be extendable to subsets of actors and events; 
3. focus on the linkages between actors and events through overlapping memberships; 
4. capture subset-superset inclusion relations between actors and events. 

Analyses of affiliation networks have seldom used these ideas to study the centrality 
of actors and events in affiliation networks. Rather, more conventional centrality 
motivations for one-mode networks have been widely employed to study affiliation 
networks. 

In addition, virtually all analyses of affiliation networks study one-mode networks of 
actors or events derived from the original affiliation network. For example, many 
researchers have studied the affiliation of corporate executives with the corporate boards 
on which they sit. With the exception of Bonacich (1991) and Bonacich and Domhoff 
(1981), centrality analyses of these data always study either the board member ties of 
co-membership or the corporation ties of interlocking directorates, but do not study both 
simultaneously. 

Studying only a single mode from the two-mode network ignores the fundamental 
duality inherent in the affiliation relation. The relationship between the centrality of 
actors and the centrality of the events to which they belong, or the relationship between 
the centrality of events and the centrality of their members, cannot be studied directly by 
looking at the one-mode networks separately. 

In the next sections I consider five centrality indices: degree, eigenvector, closeness, 
betweenness, and flow betweenness. For each I describe the application of the index to 
affiliation network data and discuss the results with respect to the centrality motivations 
introduced above. 

4. Centralities for afrdiation networks 

A review of analyses of centrality in affiliation networks reveals that virtually all 
applications use one of two approaches to centrality: (1) some form of degree centrality 
or (2) some form of eigenvector centrality. I begin by discussing degree and eigenvector 
centrality, since they have been widely used to study centrality in affiliation networks. I 
then discuss closeness, betweenness, and flow betweenness centralities. As we shall see, 
calculating basic centrality measures for both actors and events in an affiliation network 
is straightforward. To study both actors and events one can analyze the bipartite graph 
using standard centrality approaches. An important issue for each measure is to specify, 
if possible, the relationship between actor and event centralities. 

Since centrality indices will be defined for several different kinds of graphs and 
networks (a one-mode dyadic network, a bipartite graph, a one-mode actor co-member- 
ship relation, or a one-mode event overlap relation) and indices will be presented for 
nodes in a graph, and for actors and events in affiliation networks, we shall need 
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notation that reflects these distinctions. CA(Q) will refer to centrality definition 'A '  for 
entity ' O ' .  For example, Cc(O) will refer to closeness centrality. The entity for which 
the centrality is defined can be an actor, denoted by n i, an event, denoted by m~, or a 
node in a generic graph, denoted Pi. In addition, when the centrality definition applies to 
a specific kind of relation or matrix (for example the bipartite graph, or the actor 
co-membership relation) I will use the following superscripts: JT~" for the bipartite 
graph, J/~ for the one-mode actor co-membership relation, and ~t" for the one-mode 
event overlap relation. Thus, CcH~{(ni)  will refer to the closeness centrality of an actor 
calculated on the bipartite graph. In the absence of a superscript, the definition refers to 
a one-mode dyadic graph or network. 

4.1. Degree centralities 

Degree centrality, denoted by CD(Pi), is one of the most straightforward centrality 
indices. In an affiliation network motivations for degree centrality are that actors are 
important because of their level of activity or the number of contacts that they have, and 
events are important because of the size of their memberships (Stokman, 1977; Mizruchi 
and Bunting, 1981; Mariolis and Jones, 1982; Fernandez and McAdam, 1988). 

In a graph for a single dichotomous relation, the degree of a node is the number of 
nodes adjacent to it. For a nondirectional relation the degree of a node is equal to the 
sum of the values in the row (or column) of the sociomatrix; Co(Pi ) = E g I Xi j"  In an 
affiliation network there are several ways to calculate degree centrality depending on 
whether one focuses on the bipartite graph (including both actors and events) or on the 
one-mode networks of actor co-memberships or event overlaps. Interpretations of the 
results will differ. 

First, focus on the bipartite graph in which both actors and events are represented as 
nodes and lines represent affiliation ties between actors and events. In the bipartite graph 
the degree centrality of an actor is the number of events with which it is affiliated and 
the degree centrality of an event is the number of actors affiliated with it. These 
quantities are also equal to the entries on the main diagonal of the actor co-membership 
matrix X yr (for actors) or the event overlap matrix X ~r (for events), or to the row total 
(for actors) or the column total (for events) of the affiliation matrix A. Thus, actor and 
event degree centralities in the bipartite graph are: 

g+h 

C ~ A ( l l i )  ~ ~ ik = X~i  = ai+ (4 )  
k=l  

g+h 

Co~'(mk) = E Xik --Xkk-- a+k. (5) 
i= l  

Although degree centrality is usually defined for dichotomous relations, there are also 
a number of ways to define degree-like centralities for the one-mode valued relations of 
actor co-memberships and event overlaps. Both of these are valued, nondirectional 
relations where the values indicate the number of co-memberships for pairs of actors or 
the number of overlaps for pairs of events. 
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Consider the entries in a given row (or column) of the actor co-membership matrix, 
X e". The number of non-zero off-diagonal entries in the row gives the number of 
distinct actors with which the actor shares any event in common. However, we can also 
define other possible degree-like measures for this relation. Suppose we take the sum of 
the entries in a row. For actors in the co-membership relation this degree centrality is: 

g 
./v jV C~(ni) = E Xi j  = Xi+" (6) 

j = l  

Interestingly, this quantity is equal to the sum of the sizes of the events to which the 
actor belongs: 

~ =  ~V'a+ (7) 
n i ~ m  k n i ~ m  k 

We can think of C~(n i) as the actor's total 'volume'  of activity. It is the number of 
contacts that an actor has with other actors, counting other actors each time they are 
encountered. 

For events, the similar degree centrality is equal to 

h 

(8) 
/ = 1  

This quantity can be thought of as the total participation of the actors that belong to the 
event, and is equal to the sum of the number of memberships for all actors in the event: 

C f f ( m k )  = Y'~ x f  = Y'~ a,+. (9) 
t~i~m k n iEm k 

If these centralities are calculated including the diagonal elements of X :r or X ~e, 
then they are also equal to the number of two-step walks from the actor or event node in 
the bipartite graph. 

Taken together, Eqs. (7) and (9) show that for the one-mode networks of actor 
co-memberships and event overlaps there is a specifiable relationship between an actor's 
centrality and the centrality of the events to which it belongs, and between an event's 
centrality and the centrality of its members: 

C~(n,) = ~_~ CD~(mk) (lO) 
niC m k 

C~(mk) = E C~ ' (n i )  . (11) 
n i E m  k 

The degree centrality of an actor is equal to the sum of the sizes of its events (the 
degrees of these events in the bipartite graph) and the degree centrality of an event is 
equal to the sum of the number of memberships of its actors (the degrees of these actors 
in the bipartite graph). 

Degree centrality indices for actors and events in the bipartite graph for the 
hypothetical example are presented in Table 4. Table 5 presents the degree centralities 
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Table 4 

Centrality of 
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actors and events in the bipartite graph 

Measure of centrality 

C~ ~" Ed(i,k) Ci ~.'~ CB ~"  C~f* C~ ~'~ 

n I 2 17 0 .4706 1.75 5 0 .286 

n 2 l 21 0 .3810  0.00 0 0 .154 

n 3 2 15 0 .5333 3.00 5 0 .309 

n 4 1 21 0 .3810 0.00 0 0 ,154 

n 5 3 13 0 .6154 6.50 3 0 A 4 0  

n 6 2 17 0 .4706 1.75 5 0 ,286 

m I 3 16 0 .5000  4.00 12 0,365 

m 2 4 14 0 .5714 10.50 19 0.428 

m 3 4 14 0 .5714 10.50 19 0.428 

Table 5 

Centrality measures for actors and events in one-mode networks 

Measure of centrality 

c ;  ~ c ;  ~b c~ ~°' c~." c ~  c ;  'a c ;  'b c ~  °1 c f  c ; '  

n I 

n2 

n 3 

n4  

n5 

n 6 

?n i 

m 2 

m 3  

5 7 0.33 7 0 .404 

3 4 0.00 4 0 .218 

6 8 1.17 10 0.437 

3 4 0.00 4 0 .218 

8 11 1.17 13 0 .622 

5 7 0.33 7 0 ,404 

4 7 0.00 2 0,515 

4 8 0.00 2 0 .606 

4 8 0.00 2 0 ,606 

aExcludes diagonal, blncludes diagonal. 

for the one-mode networks of actor co-memberships and event overlaps, calculated both 
with diagonal entries included and with diagonal entries excluded. 1 

A number of authors have used versions of degree centrality to study centrality in 
affiliation networks. Romney and Weller (1984) use this index to measure the overall 
level of  people's observed behavioral interaction in data from three groups studied by 
Bernard et al. (1980, Bernard et al., 1982). In their study of corporate interlock 
networks, Mariolis and Jones (1982) use this index as one measure of a firm's centrality, 
referring to it as 'the number of interlocks'. Similarly, in his study of delegations' 
co-sponsorship of bills within the United Nations, Stokman (1977) uses the number of 
co-sponsorship ties that a delegation has as an index of the delegation's centrality in the 
co-sponsorship network. 

Some authors have criticized degree centrality because it does not consider the 
centrality of the actors (or events) to which an actor (or event) is adjacent. According to 

l Centrality indices were calculated using UCINET IV (Borgatti et al., 1992). 
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this argument, two actors may be adjacent to the same number of others, but an actor is 
more central if it has ties to actors that themselves are quite central. One way to deal 
with this issue is to incorporate the centrality of the actors to which a given actor is 
adjacent into the centrality index. This is what eigenvector centrality does. 

4.2. Eigenvector centrality 

The rationale for eigenvector centrality in a one-mode network is that the centrality of 
an actor should be proportional to the strength of the actor's ties to other network 
members and the centrality of these other actors (Bonacich, 1972; Mizruchi, 1982; 
Mizruchi et al., 1986). Originally, Bonacich (1972) motivated this centrality index as a 
measure of popularity, related to the measures of relative standing or status proposed by 
Katz (1953) and Hubbell (1965). Recently, people have defended the use of this index as 
a measure of the extent to which actors are in a position to influence others in the 
network (Mizruchi and Bunting, 1981 ; Fernandez and McAdam, 1988; Friedkin, 1991). 
Friedkin (1991) describes this index as 'total effects centrality' in the context of network 
influence models. 

Eigenvector centrality is widely used in studies of interlocking corporate boards of 
directors (Mariolis, 1975; Mintz and Schwartz, 1981 a,b; Mizruchi and Bunting, 1981; 
Mariolis and Jones, 1982; Mizruchi, 1982; Roy, 1983; Rosenthal et al., 1985). For many 
of these researchers centrality is eigenvector centrality (Mariolis, 1975; Mintz and 
Schwartz, 1981a,b; Roy, 1983; Rosenthal et al., 1985). 

In this section I review eigenvector centrality in general and then show how the 
centrality indices for actors are related to the centrality indices for events in an 
affiliation network. 

Denoting the eigenvector centrality of node Pi in a one-mode network by CE(pi), 
eigenvector centrality is expressed as 

CE(P~) = CE(Pj)  xij. (12) 

The centrality of a node is proportional to the centrality of the nodes to which it is 
adjacent, weighted by the value of the tie between the nodes. 

Finding centrality values, CE(p) ,  that satisfy this equation for all nodes in a graph 
involves solving a system of simultaneous linear equations. This standard eigenvector- 
eigenvalue problem is expressed by the equation 

x c  = (13 )  

where X is a g × g sociomatrix, A is its largest eigenvalue, and c is a vector of 
centrality scores (the eigenvector corresponding to the largest eigenvalue). 

I will denote the vector of eigenvector centrality scores for actors by c ~r and the 
vector of eigenvector centrality scores for events by c ~'. One can find these scores by 
analyzing the one-mode actor co-membership matrix and the one-mode event overlap 
matrix: 

X~rc ~r =AA'c  ~r = A2c ~ (14) 

X~c~r= A'Ac~= A2c ~. (15) 
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Bonacich suggests that the scores be scaled so that EC~(ni )  2 = ECE~(mk) 2 = 1, though 
other scalings are possible. The actor and event eigenvector centralities are related to 
each other through the set of  equations: 

Ac X = Ac ~ (16) 

A'c ~r = Ac ~.  (17) 

Eqs. (16) and (17) show the duality of  actor and event centralities for the affiliation 
network. The centrality of an actor is proportional to the centralities of the events with 
which it is affiliated, and the centrality of an event is proportional to the centralities of 
its members. 

Bonacich (1991) shows that for an affiliation network one can find the actor and 
event centrality scores by analyzing a number of  different matrices. Specifically, one can 
analyze the affiliation network matrix, A, the pair of  one-mode matrices, X Jr and X '~r 
(Eqs. (14) and (15)), or the matrix for the bipartite graph, X ~r~. Analysis of  the bipartite 
graph is expressed in the equation: 

(Bonacich, 1991, p. 158). The generality of this approach is apparent in the fact that the 
eigenvector centrality scores from any of  these analyses are equivalent, once they are 
identically scaled. 

For eigenvector centralities there is a clear and specifiable relationship between the 
centralities for actors and the centralities for events. This relationship is more apparent if 
we rewrite Eqs. (16) and (17) in terms of  individual actor and event centrality indices. 
An actor's centrality is a function of  the centralities of the events to which it belongs: 

1 h 
C ~ ( n , )  = -~,~= C~(mk)  a,~. (19) 

Similarly, the centrality of  an event is a function of the centralities of  its members: 

1 g 
C~( ink) = ~ i ~  CEAr (1li) aik. (20) 

Eigenvector centrality explicitly incorporates the duality between actor and event 
centralities (Bonacich, 1991). This duality is expressed in the pairs of  Eqs. (16) and (17) 
or Eqs. (19) and (20) in which actors' centralities are proportional to the centralities of  
the events to which they belong, and events' centralities are proportional to the 
centralities of their members. 

A similar relationship between actor and event scores results from a correspondence 
analysis of the affiliation matrix, A (Bonacich, 1991; Wasserman and Faust, 1994). One 
of  the goals of correspondence analysis is to assign scores to the rows and columns of  a 
data array so that a row's  score is proportional to the weighted average of  the column 
scores and a column's score is proportional to the weighted average of the row scores; 
the weights are the relative frequencies in the columns or rows, respectively. For an 
affiliation network, an actor's score is proportional to the average of  the scores for the 
events with which it is affiliated and an event's score is proportional to the average of 
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the scores for the actors that belong to the event. Correspondence analysis of  an 
affiliation matrix, A, results in three sets of  information: 
• a set of  g actor scores on each of W dimensions {Ug w} for i =  1,2 . . . . .  g and 

w = 1 ,2 , . . . ,W;  
a set of  h event scores on each of W dimensions {v~w} for k =  1,2 . . . . .  h and 
w = 1,2 . . . . .  W, and 
a set of  W principal inertias {r/~2~} for w = 1,2 . . . . .  W. 

Correspondence analysis scores for rows (actors) and columns (events) are related to 
each other through the following equations: 

h 

TIwUiw E aik - -  Pkw 
k= 1 ai+ (21) 
g 

aik 
~w Pkw E Uiw. 

i= 1 a+k 

These row and column scores are found through a singular value decomposition of an 
appropriately scaled affiliation matrix: P~= {ai~ / ~ } .  Although the relationship 
between actor and event correspondence analysis scores, Eq. (21), appears similar to the 
relationship between actor and event eigenvector centrality scores, Eqs. (19) and (20), 
the resulting scores can be quite different. This difference is due to the fact that 
eigenvector centralities result from a decomposition of A whereas correspondence 
analysis scores result from a decomposition of  A. 

The eigenvector centralities for actors and events in the hypothetical example are 
presented in Table 4 (for the bipartite graph) and Table 5 (for the one-mode relations of  
actor co-memberships and event overlaps). To illustrate the duality of  actor and event 
eigenvector centralities, consider the eigenvector centrality of  n~. For the one-mode 
actor co-membership relation, h = 2.775 and C~r(nl)= 0.404. Actor nl is affiliated 
with events m 1 and m3, with centralities in the event overlap relation of C~(m~)  = 0.515 
and CEae(m3 ) = 0.606. Thus, n l ' s  centrality is equal to 

(0 .515) (1)  + (0 .606) (0)  + (0 .606) (1)  
0.404 = 2.775 (22) 

A number of  people have argued that the magnitudes of  eigenvector centralities for 
events in the event overlap relation are undesirably affected by differences in the sizes 
of  events (Mariolis, 1975; Mizruchi and Bunting, 1981; Mariolis and Jones, 1982; 
Mizruchi, 1982; Bonacich, 1991). Thus, they argue, steps should be taken to remove this 
effect. Two approaches have been proposed: (1) standardize the event overlap measure 
x ~  prior to analysis, or (2) remove from the centrality index that component which is 
due to the degree (i.e. the size) of  the event. 

The first way to accommodate different event sizes is to standardize the entries in the 
event overlap matrix, X ~e, prior to finding eigenvector centralities. Mariolis (1975) 
suggests that standardized values X * ~ = {x~( } be defined as: 

. ~¢" Xk~¢/ (23) 
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Since x ~  and x f f  are the sizes of events m k and m I respectively, this standardization 
takes event sizes into account by dividing the measure of overlap by the square root of 
the product of  the event sizes. However, Bonacich (1991) demonstrates that this 
standardization fails to remove size differences. Moreover, the event eigenvector 
centralities from this standardized overlap measure will not be identical to event 
eigenvector centralities for the bipartite graph, unless entries in X~¢~ are also appropri- 
ately standardized. The appropriate standardization defines a new affiliation network 
matrix A * = {a/k} where ai~ = aik / v"a+k. The new sociomatrix for the bipartite graph, 
X * ~'g, then has the form 

A ~ t  " 

The event eigenvector centralities for X * ~~" will be identical to the event eigenvector 
centralities for X * ~', once they are scaled as described above. However, the actor 
eigenvector centralities from X * ~A will not be identical to actor eigenvector centrali- 
ties from X x,  Thus, by standardizing X ~" to ' remove '  differences in event sizes, one 
loses the important duality between actor and event centralities. 

A second way to deal with differences in event sizes exploits information about the 
components of the eigenvector centrality index. Bonacich (1991) shows that this index is 
the sum of a weighted series of  components, each of which quantifies the contribution to 
the overall centrality of the node due to paths of  length 1,2 . . . . .  ~ from the node. One 
can remove the effect of  event sizes by ' removing'  the component of  centrality due to 
paths of  length 1 (the size of the even0. The advantage of this approach is that one can 
analyze the bipartite graph and obtain both actor and event centrality scores, thus 
maintaining the duality between actor and event centralities. 

One potentially undesirable feature of eigenvector centralities for studying affiliation 
networks is that actors that belong to a single event (and thus create no ties between 
events) and events that have only a single member (and thus create no ties between 
actors) can have non-zero eigenvector centrality. For example, in the hypothetical 
affiliation network, n 2, which belongs to only one event, has eigenvector centrality of  
0.154. This is due to the centrality that actors and events derive from their ties to others 
that are central. Non-zero centrality is inconsistent with the theoretical argument that 
actors in affiliation networks are central to the extent that they link events, and events 
are central to the extent that they link actors. However, it is consistent with the 'status' 
or 'popularity'  motivation for this index that central actors derive their centrality 
through their ties to central actors. 

Both degree centrality and eigenvector centrality have been widely used to study 
affiliation networks. However, only Bonacich and Domhoff  (1981) and Bonacich (1991) 
consider both actor and event centralities and the relationship between them. In the next 
sections I discuss centralities that were not designed to study affiliation networks and 
have not been used to analyze these networks. 

4.3. Closeness centrality 

Closeness centrality is based on the geodesic distances between nodes in a graph, and 
is not applicable to valued relations. Thus, I will restrict my attention to closeness 
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centralities for the bipartite graph. The basis for the closeness centrality index is the 
average geodesic distance that a node is from all other nodes in the graph. Thus it begins 
with the 'farness'  of  a node from other nodes in the graph. Distances between nodes are 
summarized in the matrix D = {d(i,j)}, where the entry in cell (i,j) of this matrix is the 
geodesic distance from node i to node j. In other words, it is the length of  any shortest 
path between the nodes. Since the bipartite graph is nondirectional, the distance from i 
to j is the same as the distance from j to i, and D is symmetric. 

In general, c!oseness centrality, Cc(Pi), is the inverse of  the average geodesic 
distance between the node and all other nodes in the graph, and is calculated as 

= - g _  . ( 2 5 )  

If  the graph is disconnected, then closeness centrality is undefined, since some pairs of  
nodes are unreachable and the distance between them is infinite. 

The numerator of  Eq. (25) is the sum of the distances from node i to all other nodes 
in the graph. For an actor in an affiliation network this is the distance from the actor to 
other actors plus the distance from the actor to all events. However, since the affiliation 
network is a bipartite graph, actors are only adjacent to events, and all paths emanating 
from an actor must first pass through the events to which the actor belongs. Similarly, 
since events are only adjacent to actors, all paths from events must pass through the 
actors that are their members. 

Consider the relationship between the closeness centrality of  an actor and the 
closeness centralities of  the events to which the actor belongs, and the relationship 
between the closeness centrality of  an event and the closeness centralities of  its actors. 
First focus on the distances from an actor in the bipartite graph as a function of  the 
distances from the events to which it belongs. The distance from node i representing an 
actor to any node j (either actor or event) is d(i,j) = 1 + min~ d(k,j), for event nodes k 
adjacent to i. Given this property, the numerator of  Eq. (25) for the closeness centrality 
of  an actor in the bipartite graph can be expressed as a function of  the distances from the 
actor's events, k: 

g+h g+h g+h 

_2,d(ij) = 2 [ l  +mind( ,j) l =g+ h - l +  ~mind(k,j) (26) 
j =  j =  k j = l  k 

for k adjacent to i, and j not equal to i. Combining Eqs. (25) and (26) gives the 
following expression for the closeness centrality of  an actor as a function of  the geodesic 
distances from its events to other actors and events: 

Xj~,hmink d(k,j) -' 
C~r(ni) = I + (27) 

g + h - 1  

for events k adjacent to actor i. Thus, the closeness centrality of  an actor is a function of  
the minimum distances from any of  its events to other actors and events in the bipartite 
graph. 
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Similarly, the closeness centrality of  an event is a function of the minimum distances 
from its actors to other actors and to other events. Eq. (27) can be written for events as: 

~ig=~minj d(i, j)  -1 
= 1 + - ( 2 8 )  

g + h - I  

for actors i adjacent to event k. 
The combination of  Eqs. (27) and (28) shows that there is a clear relationship 

between the closeness centralities of actors and the closeness centralities of events in an 
affiliation network. The closeness centrality of  an actor is a function of  the minimum 
distances to its events, and the closeness centrality of an event is a function of  the 
minimum distances to its actors. 

Table 4 gives the closeness centralities for actors and events in the bipartite graph for 
the hypothetical example. 

4.4. Betweenness centrality 

Betweenness centrality for a one-mode dyadic network focuses on the extent to which 
actors sit on geodesic paths between other pairs of  actors (Freeman, 1979). Since 
calculating betweenness centrality requires considering all geodesics in a graph, it 
seems unlikely that it will be possible to express the betweenness of  a node in a graph 
(an actor or event in an affiliation network) as a function simply of the betweenness of 
the nodes to which it is adjacent. Nevertheless, this section presents some informal 
observations about the relationship between actor and event betweenness centralities in 
affiliation networks. Betweenness centrality is defined for dichotomous, nondirectional 
relations, so I will concentrate betweenness of  actors and events in the bipartite graph 
for the affiliation network. However, at the end of  this section I consider what would 
happen if one were to analyze the one-mode relations of  actor co-memberships or event 
overlaps. 

An intermediate step in calculating betweenness centrality is to find the 'partial 
betweenness' of nodes in the network (Freeman, 1979). Node pi 's  partial betweenness 
counts the number of pairs of other nodes whose geodesic(s) contain node Pi. If  there is 
more than one geodesic between a given pair of nodes, then pi receives fractional credit, 
where the fraction is reciprocal of the number of geodesics between the pair. Let gjk be 
the number of  geodesics between pj and Pk, and let gj~(p~) be the number of  geodesics 
between pj and Pk that contain Pi. If  all geodesics are equally likely, then the 
probability that a geodesic between pj and p~ contains node pi is equal to gak(P)/gik" 
The betweenness centrality of  node p~, denoted by CB(p~), is defined as the sum of 
these quantities across all pairs of nodes: 

CB( Pi) = E gjk( Pi) (29) 
j < k gjk  

For a graph with g nodes, C~(pi) reaches its maximum value of  ( g -  1 ) ( g -  2 ) / 2  
when node pg is on geodesics between all other pairs of nodes. 

Returning to an affiliation network, recall that linkages between pairs of actors are 
always through actors' participation in events, thus events are always on geodesics 
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between actors. Similarly, linkages between pairs of  events are always through the joint 
memberships of  actors, thus actors are always on geodesics between events. Consider 
the relationship between the betweenness centrality of  an actor and the betweenness 
centrality of  the events with which it is affiliated, and the relationship between the 
betweenness centrality of  an event and the betweenness of  its members. 

In calculating the betweenness centrality of an event, rn k, in an affiliation network, 
focus on the collection of  actors that belong to that event. Event m~ is on a geodesic 
between all pairs of  actors that are members of  it. Since event m k has a+k members, 

2 pairs of  actors that have a geodesic that contains m k. If  a given pair of  there are a+ 
j r =  1) then m~ is on the only actors, (ni,nj),  only shares event rn k in common (thus xij 

geodesic between them, and mk's betweenness is incremented by 1. Actually, n i and nj 
/r memberships, thus mk's betweenness is incremented by 1/x i~  for each pair share xij 

of  actors (ni ,n  j) in m k. Thus, a portion of  the betweenness centrality of  event m k can be 
expressed in terms of  the number of co-memberships of  pairs of  its members as: 

1 1 
-~ E j r -  (30) 

ninjE mk Xij 

From this we see that an event gains betweenness centrality to the extent that pairs of its 
members meet only in that event. 

In addition, an event gains betweenness centrality if an individual actor belongs only 
to that event. In that case, all geodesics from such an actor must contain the event. Since 
there are g + h nodes (actors and events) in the affiliation network, an event gains 
g + h - 2 betweenness 'points '  for each of  its members that belongs to no other event. 
This quantity is not independent of  the count in Eq. (30). 

These observations suggest that the betweenness centrality of  an event increases to 
the extent that its members belong to no other events. Since such single-membership 
actors are not between any pairs of  events, an event gains betweenness centrality if it 
contains 'non-central '  actors. Also, the betweenness centrality of  an event increases to 
the extent that pairs of  actors share only that event in common. 

Similar properties of  betweenness centrality hold for actors. An actor gains g + h - 2 
betweenness centrality 'points '  if it is the only member of  an event. An actor gains 
l / x f t  betweenness 'points '  for all pairs of  events to which it belongs. 

Betweenness centralities for the actors and events in the bipartite graph for the 
hypothetical example are presented in Table 4. Notice that Cs(n 2) = CB(n 4) = 0.00 
since actors n 2 and n 4 each belong to only one event, and thus create no linkages 
between either actors or events. 

As mentioned above, betweenness centrality is defined for networks in which 
relations are dichotomous and nondirectional. However, sometimes it is tempting to 
analyze valued nondirectional relations by dichotomizing the original values and analyz- 
ing the new dichotomous relation. For example, one could define a dichotomous actor 
co-membership relation, ,-d(0, where 

{~ if ~e 0 ~:~°' = xij = (31) 
- ' J  i f  xij  > O. 
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a. Dichotomous actor co-membership relation 

712 2 

b. Dichotomous event overlap relation 

Fig. 2. Graphs for dichotomous one-mode relations. 

In this dichotomous relation actors are adjacent if they ever belong to the same event. 
This relation has been defined by Seidman (1985, p. 368) as the 'q-overlap graph',  
where actors are adjacent if they share at least q events, and q = 1. Doreian (1969) 
presents a similar idea for valued graphs. One could also define a dichotomous event 
overlap relation x ~  0' where 

if = 0 

xS,°'= if x 5  > 0. 
(32) 

In this dichotomous relation events are adjacent if they share any actor in common. 
Stokman (1977) describes either of these relations as creating a new graph by 'induc- 
tion' where nodes in the new graph are adjacent if they are adjacent to the same node in 
the original graph. 

Graphs for these two dichotomous relations for the hypothetical example are pre- 
sented in Fig. 2 Notice that the graph for the dichotomous event overlap relation is 
complete (all events are adjacent) since each pair of events shares at least one actor. 
Since the graph is complete there is no differentiation among events; all are equally 
central in this graph. In contrast, the actor co-membership graph is not complete (some 
pairs of actors never belong to the same event). 

What happens if we now find actor and event betweenness centralities, C~ o~ (n i) and 
C~°'(mi ), for these relations? These centralities are presented in Table 5. Several points 
are important to note about these results. First, as anticipated above, all events in this 
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example have equal betweenness centrality for the dichotomous one-mode network of  
event overlaps. In contrast, in the bipartite graph, events m 2 and m 3 are clearly more 
central than is event m 1. The dichotomous event overlap relation lacks information 
about the number of  actors shared by pairs of  events, and thus lacks information about 
the number of  geodesics between events. Second, notice that for the dichotomous actor 
co-membership relation, actors n 2 and 174 have betweenness centrality equal to 0. These 
actors are adjacent to other actors on this relation but they are not on geodesics between 
them. Actors n 2 and rt 4 are each affiliated with only a single event. Thus, if one of  these 
'single-membership' actors is adjacent to two other actors (for example, n 2 is adjacent 
to n 5 and n 6) those two actors must be adjacent to each other since all three must 
belong to the single event to which the 'single-membership' actor belongs. Actors that 
belong to only one event cannot be on geodesics between other actors. 

These observations about betweenness centrality in affiliation networks are informal. 
Clearly, it remains for further research to express the exact relationship between actor 
and event betweenness centrality. 

4.5. Flow betweenness centrality 

Recently, Freeman et al. (1991) have proposed an extension of  betweenness centrality 
that is applicable to valued relations. For a pair of  actors, the value of  the relation might 
be "their  amount of  interaction, the time they spend in one another's company, the 
range of  different social settings in which they in t e rac t . . . "  (Freeman et al., 1991, p. 
145). Thus, this approach is clearly applicable to one-mode relations of actor co-mem- 
berships or event overlaps. 

Flow betweenness centrality extends betweenness centrality in two ways. First it 
considers all paths between nodes, rather than just geodesics. Second, it is appropriate 
for both graphs and valued graphs in which larger values indicate stronger ties between 
actors. Values in the graph are considered to represent the potential for ' f low'  of  
information or resources between nodes, with the following constraints. First, the flow 
between a pair of  adjacent nodes, .f~j, is constrained to be less than or equal to the value 
of  the tie between the nodes: f,.j _< x~. Second the flow 'into' a node is equal to the flow 
'out of '  the node. The fact that this approach focuses on the betweenness of nodes in a 
graph and can be used to study valued relations suggests that it should be quite 
appropriate for studying centrality in affiliation networks. 

To define the flow betweenness centrality of node Pi, one considers the extent to 
which the maximum flow between other pairs of  nodes in the graph depends on paths 
that include node pl. Roughly, the flow centrality index for a node in a valued graph 
quantifies the extent to which flow between other pairs of nodes in the graph would be 
reduced if that node were removed from the graph. Defining F~(p~) as the amount of  
flow between nodes Pk and p~ that passes through Pi, the flow betweenness centrality 
of  p~ is defined as the total flow between all pairs of  nodes that depends on node Pi. 
The flow betweenness for node p~, denoted by CF(P~), is calculated as: 

CF(p~) = ~2 F, . , (p , ) .  (33) 
k<l  
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This index is described in detail in Freeman et al. (1991). Flow betweenness may be 
calculated for the one-mode networks of actor co-memberships and event overlaps, or 
for the bipartite graph. 

Table 4 presents flow betweenness for actors and events in the bipartite graph. Table 
5 presents results for the one-mode networks of  actor co-memberships and event 
overlaps. Two results are worth noting in these tables. First, notice that actors n 2 and n 4 
which each belong to only a single event have flow betweenness centralities equal to 
zero in the bipartite graph, but have flow centralities equal to four in the actor 
co-membership relation. In the one-mode network these actors cannot reside on geodesics 
between other actors, but they can reside on paths between other actors. Since flow 
betweenness considers ' f lows'  along all paths (not just geodesics), actors that belong to 
a single event can have non-zero flow betweenness in the one-mode actor co-member- 
ship relation. 

A second puzzling result is seen in Table 4. Notice that for the bipartite graph actor 
n 5 (which is affiliated with all three events) has flow betweenness centrality equal to 
three, but actors n~ and n 3 (which are each affiliated with two events) have centralities 
equal to five. However, looking at either the bipartite graph (Fig. 1) or the affiliation 
network matrix (Table 1), we see that the events to which actors n~ and n 3 belong are 
subsets of  the events to which n 5 belongs; n~ and n 3 are never in an event unless n 5 is 
also a member. This anomalous result deserves further investigation. 

5. Extensions 

The centrality approaches discussed so far (degree, eigenvector, closeness, between- 
ness, and flow betweenness) were all designed for one-mode networks. As we have 
seen, all can be used to study affiliation networks by analyzing the bipartite graph. In 
this section I present two possible extensions of  centrality using Galois lattices and 
graph covers. Both of  these approaches are designed to study two-mode data, both focus 
on subsets and relations between subsets, and both allow insights into the difference 
between 'pr imary '  and 'secondary'  actors and events. Thus, these extensions incorporate 
the distinctive features of  affiliation networks and might lead to centrality approaches 
that more naturally capture important features of  these networks. 

5.1. Galois lattices 

Patterns of inclusion and overlap in events' memberships and in actors' affiliations 
are theoretically and empirically important components of actor and event centrality. As 
an early attempt to capture these relationships, Bonacich (1978) proposed using homo- 
morphisms of Boolean algebras. The resulting homomorphisms were represented as 
lattices showing unions and intersections of events' members (with respect to a subset of 
actors), or of  actors' affiliations (with respect to a subset of events). As noted by 
Bonacich, the height of  an event or an actor in the lattice is related to its relative 
centrality. Bonacich's  representation nicely shows the structure of inclusions among 
actors or among events, but it is limited in that it requires two separate representations 
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(one for actors and one for events). In addition, it captures only a portion of the 
inclusions among actors and events because the lattice for actors is constructed with 
respect to only a subset of events, and the lattice for events is constructed with respect to 
only a subset of  actors. A Galois lattice provides a more appropriate approach since a 
single representation presents patterns of inclusions for all actors and events simultane- 
ously. 

Galois lattices have only recently been used to study affiliation networks (Schweizer,  
1991; Freeman and White, 1993; Wasserman and Faust, 1994), though applications to 
other kinds of  data are more widespread. General discussions of  Galois lattices can be 
found in Birkhoff  (1940) and Wille (1984). 

A Galois lattice represents the relationship between two sets of  objects in terms of  
inclusion mappings between subsets of  objects from each set. For an affiliation network 
we have the two sets: A / =  {n I,n2 . . . . .  ng} and ~¢.= {m l,m 2 . . . . .  mh}. We also have the 
affiliation relation, denoted by a ,  from JV to A ' ,  where n i a m  k if n i ' is  affiliated with'  
m k. Thus n i a m  k if actor n i belongs to event m,.  The inverse relation, a - I ,  is a 
mapping from ~"  to A r, where m k a  In  i if event m,  includes actor ni. 

Extending the relations a and a - r  from individual actors and events to subsets of  
actors and events, we get two complementary mappings: 1' from subsets of actors to 
subsets of  events and $ from subsets of events to subsets of  actors. The ~' mapping 
maps a subset of  entities in JV" to a subset of  entities in ~ ' .  For subsets ~/'s c Ar and 

~ ' s  ~Z/ ,  we define ~/V s 1" -Z/s if  nio~m k for all n i EJUS, and m k ~ , .  For an affiliation 
network, the $ mapping maps a subset of  actors to the subset of events attended by all 
of  the actors in that subset. 

The dual mapping, $, goes from subsets of  ~"  to subsets of  A r. For  subsets ~A/~. c A/  

and l~'s c ~ ' ,  we define ~ f s S A / s  if  m k a - l n i  for all n i ~ J / s  and mk~/Z/s. In an 
affiliation network the ,1. mapping maps a subset of  events to the subset of  actors all of  
which attend all events in the subset. 

A Galois lattice represents the relation between the sets JV and ~¢" in terms of the $ 
and $ mappings between subsets of  entities from each set. A Galois lattice is presented 
in a diagram in which points represent entities or subsets of  entities from the two sets, 
and lines represent subset-superset  relations in the following way. There is a line or 
sequence of  lines in the diagram ascending from object n~ e S"  to object m k evg/ if 
nio~m k, and there is a line or sequence of  lines descending from object m k ~ g "  to object 
n i ~ / "  i f  m k o ~ - l n l .  

Fig. 3 presents the Galois lattice for the hypothetical example of  six actors and three 
events (this figure is adapted from Wasserman and Faust, 1994, p. 333). In this figure an 
ascending line or sequence of lines connects each actor to the subset of  events with 
which it is affiliated and a descending line or sequence of lines connects each event to 
the actors that are affiliated with it. One can also look at lines or sequences of  lines 
between actors or between events. A line or sequence of  lines ascending from actor n i to 
actor nj m e a n s  that the events to which actor t/j belongs are a subset of  the events to 
which actor ni belongs. Similarly, a line or sequence of  lines descending from event m k 
to event m~ means that the actors that are affiliated with event m t are a subset of  the 
actors that are affiliated with event m k. 

Viewing centrality in terms of  subset -superset  relations, actors that are relatively low 
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~4 
T~  3 

~2 5 

•2 

Tt2 2 

/2 6 

Fig. 3. Galois lattice for hypothetical example. 

in the diagram are relatively more central than are actors that are relatively high in the 
diagram. Similarly, events that are relatively high in the diagram are relatively more 
central than are events that are relatively low in the diagram (Freeman and White, 1993), 
For the hypothetical example in Fig. 3, actor n 5 is the most central actor, followed by 
n~, n 3, and n6; n 4 and n 2 are least central. In this example the events are indistinguish- 
able in terms of  their centrality. 

A Galois lattice is especially appropriate for studying affiliation networks because it 
explicitly represents the non-dyadic relation of  inclusion between subsets of entities 
from the two modes. Furthermore, it represents an aspect of centrality in these networks, 
the subset-superset inclusions between actors and events, that is not represented by 
other centrality approaches. Freeman and White (1993) use Galois lattices in their 
reanalysis of the data of Davis et al. (1941) on Southern club women. Their results 
clearly showed which actors and events were primary and which were secondary in 
terms of  the upward containment structure for actors and the downward containment 
structure for events. 

5.2. Graph covers 

The idea of graph covers was introduced by Seidman (1985) to formalize the extent 
to which actors potentially have access to information about different kinds of structural 
features of  an affiliation network. An actor that is located in such a way that it can 'see'  
important features of other actors' membership patterns (such as pair-wise attendances 
or cohesive subgroups) might be well located to initiate or coordinate actions within the 
network. Seidman uses the idea of  a graph cover to formalize exactly what features of  an 
affiliation network an actor or a set of actors 'sees' .  

We begin with a hypergraph ~ ( J , ~ ' )  consisting of a set of  points JK and a set of 
edges ~ ' ,  where each edge is a subset of points from ~ ' .  For an affiliation network it 
seems natural to start with the set of points being the set of actors, X ,  and the set of  
edges being the set of  events, ~ ' .  (We could also reverse the roles of  X and .~" and 
have the dual hypergraph ~ *  (~/,~¢').) We next define a duality function, 6(n i) for 
points. This duality function is a mapping from point n i to the set of  all edges with 
which it is incident. In an affiliation network, this function for actors maps the actor to 
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the set of  all events with which it is affiliated. Formal ly  we can express this duality 
function as 

6 ( n i )  = {m k ~ ' l n  i ~ ink}. (34)  

Using the notation from Galois lattices (above), 6(n, )  is the subset of events ~¢'s for 
which nicem k. 

Seidman (1985) then uses this duality function to define two different kinds of  graph 
covers: a strict coL'er and a wide cover. A set is a wide (or strict) cover (as defined 
below) of  some set of objects o~', where the objects are a specified set of  entities. For 
example,  the set ~ might be a subset of  actors {n~,nz,n 3} or it might be a subset of 
pairs of  actors {(n 1,n2),(nl,n3),(nz,n3)}. 

In general, for some set of  objects d ,  a set J//~ is a wide cover of ,ae if  the union of  
the duals of  elements of  d is included in the union of  the duals of  elements of  J ! / .  
Formally,  for object set ~¢ (a set of  actors), j /F  is a wide cover of  ~ if 

U U 8(,,,). (35) 
a~A niece" ~ 

Since the duality function 6(a) maps an actor to the set of events with which it is 
affiliated, for a subset of actors the union of these mappings is the collection of  all 
events with which any actor in the subset is affiliated. Consider the case in which 
X = J ,  (a subset of  actors). Another subset of  actors, X s, is a wide cover of  J t  if 
some actor in A/I,, was present at each and every event at which any actor from ~ was 
present. The events to which members of @ belong are a subset of  the events to which 
members of A/" s belong. If  J ~  consists of a single actor, J//'s = {ni}, then n i is a wide 
cover of  the set of  all actors that were never present unless n i was present. 

To illustrate, in the hypothetical affiliation network of  six actors and three events, n 5 
is a wide cover of  the set consisting of the remaining five actors, {n~,n 2,n3,n 4,n6}; n 3 is 
a wide cover of  the se t  {n2 ,n4} ;  n 6 is a wide cover of  {nz}; and n I is a wide cover of  
{n4}. The set {nl,n 6} is a wide cover of  the set {n2,nz}. 

The second kind of graph cover is a strict couer. A strict cover is more general than 
a wide cover. For  object set ~¢ (a set of  actors), JYs is a strict cover of d if there exists 
some ni ~ ~ such that 

6 ( n i )  ~ 6 ( a )  -¢:Q. (36)  
a~S¢" 

This means that for each object a ~ d there exists some /7 i E "//#s such that the dual of  a 
intersects the dual of  n,. In an affiliation network, ~ ,  is a strict cover of sg if, for every 
actor in J ,  some actor in J//~ belongs to some event with that actor. To illustrate, for 

the hypothetical example n 6 is a strict cover of  {nl,n2,n3,ns}. 
Every wide cover is a strict cover, but the reverse is not true. In an affiliation 

network, if  JK, is a wide cover of  s~¢, some actor from ~1/'~ is present each and every 
time any member  of  sg is present. In other words, a member of  J is never in an event 
unless a member  of  JK s is also present. In contrast, if ~//s is a strict cover of  ,~, then 
each member  of  o~ must belong to at least one event with some member  of  ~4/i~, though 
members of  s¢ might belong to events where no member  of  Jf'~ is present. 

Returning to the Galois lattice diagram for an affiliation network, we see that a single 
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actor, n i, is a wide cover of  the set of all actors that reside on lines ascending from it. 
The events to which any of these other actors belong are a subset of the events to which 
n i belongs. A set of actors is a wide cover of  that set of actors that reside on lines 
ascending from any of  the actors in the set. A single actor is a strict cover of the set of  
all actors with which it is ever a co-member.  In the Galois lattice this is the set of  all 
actors from which lines intersect either ascending or descending lines from n i at any 
point before the topmost  point in the diagram. Any subset of actors is a strict cover of 
the set of  all actors that ever belonged to any event with any actor in the set. In the 
Galois lattice this is the set of  all actors whose lines (ascending or descending) intersect 
a line from any member of the cover subset of  actors, before the topmost  point in the 
diagram. 

Seidman (1985) elaborates in detail how graph covers can be used to study structural 
features of  hypergraphs by varying the definition of  the elements of  5g. For example, if 
5a¢ consists of a set of pairs of actors, then a wide cover of  5~' is a set of actors that are 
always present at any event at which any pair of actors in 5g is present. 

5.3. Summary 

Both the Galois lattice and the concept of graph covers nicely present subset -superset  
relationships among actors and events. This subset -superset  relation is exactly the 
centrality idea of  primary and secondary actors, as suggested by Davis et al. (1941), 
Doreian (1979a) and Freeman and White (1993). The Galois lattice incorporates the 
duality in the relation between actors and events in a single representation and makes the 
relative centrality of actors and events quite apparent in their vertical positions in the 
diagram. The distinction between primary events and actors and secondary events and 
actors is easily seen in the relative vertical positions of  actors and events and in the 
patterns of inclusions among them. 

The concept of  graph cover formalizes the idea of  the ' importance '  of an actor (or a 
subset of  actors) in terms of  the ' v i ew '  that the actor has of  the network. One might 
think of a graph cover in terms of  the kind and extent of  information about an affiliation 
network that is available to an actor or to a subset of  actors. An actor that 'covers '  a 
large number of  other actors, or ' covers '  a large portion of  the co-memberships between 
pairs of actors potentially has access to information about those features of  the network. 

Both Galois lattices and graph covers provide a set of  concepts for thinking about 
centrality in affiliation networks that is not provided by any of  the other centrality 
indices. Both are naturally appropriate for two-mode non-dyadic networks and focus on 
subset -superset  relations between actors a n d / o r  events in a way that captures theoreti- 
cal and empirical insights about the relative importance of  actors in these networks. 

Neither the Galois lattice nor the formalism of  a graph cover provides an index or 
quantification of  actors'  or events '  centrality. One possibil i ty would be to define a new 
relation between actors based on subset -superse t  relationships between their member-  
ships. For example, one could define Xij = 1 if 6(n j )  c t ~ ( n i )  , and xij = 0 otherwise. 
The quantity E j x q  would give the number of  actors for which n~ is a wide cover, while 
S, jxj~ would give the number of actors that are wide covers of  n~. Exploring other 
possible indices is a fruitful arena for further research. 

Now let us turn to another illustration. 
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6 .  A n o t h e r  e x a m p l e  

A s  a n o t h e r  e x a m p l e ,  c o n s i d e r  t he  a f f i l i a t i on  n e t w o r k  o f  c l u b  a n d  b o a r d  m e m b e r s h i p s  

o f  c o r p o r a t e  e x e c u t i v e  o f f i c e r s  s t u d i e d  b y  G a l a s k i e w i c z  ( 1 9 8 5 )  as  p a r t  o f  h i s  e x t e n s i v e  

r e s e a r c h  on  the  u r b a n  g r an t s  e c o n o m y  in M i n n e a p o l i s - S t . P a u l .  I wi l l  f o c u s  on  a s u b s e t  o f  

26 C E O s  a n d  15 c l u b s / b o a r d s  f r o m  G a l a s k i e w i c z ' s  da ta .  T h e  a f f i l i a t ion  n e t w o r k  m a t r i x  

fo r  th is  e x a m p l e  is p r e s e n t e d  in  T a b l e  6. C e n t r a l i t i e s  fo r  C E O s  and  fo r  t he  b o a r d s / c l u b s  

a re  in T a b l e  7 ( fo r  the  b ipa r t i t e  g r a p h )  a n d  T a b l e  8 ( f o r  t he  o n e - m o d e  re la t ions ) .  

Ove r a l l  t h e r e  is c o n s i d e r a b l e  a g r e e m e n t  a m o n g  the  cen t r a l i t y  m e a s u r e s  in the i r  

i d e n t i f i c a t i o n  o f  w h i c h  c l u b s  a n d  C E O s  are  r e l a t i ve ly  cen t ra l .  T a b l e s  9 - 1 1  p r e s e n t  

c o r r e l a t i o n  m a t r i c e s  fo r  t he  f ive  cen t r a l i t y  i nd ices ,  c a l c u l a t e d  o n  the  b ipa r t i t e  g r a p h  

( i n c l u d i n g  all n o d e s ,  a n d  fo r  c l u b s  a n d  C E O s  s e p a r a t e l y )  a n d  on  the  o n e - m o d e  r e l a t i ons  

o f  c l u b  o v e r l a p s  a n d  a c t o r  c o - m e m b e r s h i p s .  T h e  c o r r e l a t i o n s  b e t w e e n  the  m e a s u r e s  o f  

c e n t r a l i t y  fo r  the  c l u b s  in the  b ipa r t i t e  g r a p h  r a n g e  f r o m  a l o w  o f  0 .890  to  a h i g h  o f  

0 .992  w i t h  a m e d i a n  o f  0 .968;  fo r  C E O s  in  the  b ipa r t i t e  g r a p h  the  r a n g e  is f r o m  0.041 to 

0 .867  w i t h  a m e d i a n  o f  0 ,643.  F o r  the  o n e - m o d e  re l a t ions ,  the  c o r r e l a t i o n  b e t w e e n  the  

c e n t r a l i t y  m e a s u r e s  fo r  c l u b s  r a n g e s  f r o m  0 .918  to 0 .993  w i t h  a m e d i a n  o f  0 .954 ,  a n d  fo r  

C E O s  the  r a n g e  is f r o m  0 .348  to 0 .989  w i t h  a m e d i a n  o f  0 .711.  It a p p e a r s  tha t  t h e r e  is 

Table 6 
Affiliation network matrix for CEOs and clubs 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 l 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 l 0 0 0 0 0 0 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 
1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 l 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 1 l 1 0 1 
0 l 1 0 0 1 0 0 0 0 0 0 1 0 1 
0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 
0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 
0 0 0 1 0 0 0 0 1 0 0 1 1 0 l 
1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 I 0 0 0 0 0 0 1 
0 1 1 0 0 l 0 0 0 0 0 0 0 0 1 
1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 
0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 
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Table 7 
Centrality of CEOs and clubs in the bipartite graph 

Measure of centrality 

Cff ~" ~d(i,k) C~, ~" C~ ~" C~ ~" C~ ~ 

m 1 3 112 35.71 5.53 0.057 49 
m 2 l 1 90 44.44 52.57 0.276 235 
m 3 22 62 64.52 374.10 0.476 527 
m 4 12 84 47.62 139.41 0.236 271 
m 5 3 112 35.71 3.91 0.064 64 
m 6 4 110 36.36 5.76 0.102 60 
m 7 4 114 35.09 12.61 0.049 125 
m s 4 110 36.36 13.16 0.068 106 
m 9 6 104 38.46 17.13 0.114 156 
into 3 116 34.48 5,32 0.037 79 
mlt 4 110 36.36 5.52 0.118 45 
ml2 5 108 37.04 11.01 0.120 98 
m13 5 106 37.74 12.56 O. 119 100 
mr4 3 122 32.79 2.63 0.057 85 
ml5 9 94 42.55 37.77 0.237 146 
n I 3 89 44.94 9.36 0.126 7 
n 2 3 93 43.01 20.88 0.090 58 
n3 2 97 41.24 3.46 0.091 14 
n 4 3 95 42.11 3.24 0.151 5 
n 5 3 95 42.11 14.37 0.099 50 
n 6 3 97 41.24 11.75 0.123 38 
n 7 4 87 45.98 36.34 0.132 58 
n s 3 117 34.19 9.09 0.049 59 
n 9 4 111 36.04 17.55 0.061 93 
nl0 2 97 41.24 3.12 0.090 6 
nit 3 95 42.11 7.21 0.132 8 
n12 2 119 33.6• 3.02 0,043 23 
n13 4 87 45,98 23.26 0.136 43 
n 14 7 81 49,38 49.62 0.241 52 
n15 5 91 43.96 18.19 0.184 39 
hi6 5 91 43.96 35.86 O. 149 79 
nl 7 6 89 44.94 34.20 O. 197 75 
n 18 5 91 43.96 24.93 0.126 35 
n j9 5 85 47.06 44.54 O. 142 64 
n2o 5 85 47.06 23.79 0.205 27 
n21 3 89 44.94 14.25 0.119 23 
n22 3 93 43.01 11.12 0.119 25 
nz~ 4 93 43.01 10.11 0.166 26 
n24 5 85 47.06 37.87 O. 169 61 
n25 3 95 42.11 5.75 0.133 16 
n26 3 95 42.11 6.08 O. 133 16 

g r ea t e r  c o n s i s t e n c y  a c r o s s  cen t ra l i ty  m e a s u r e s  in the  iden t i f i ca t ion  o f  cen t ra l  c l u b s  t han  

in the  iden t i f i ca t ion  o f  cen t ra l  C E O s .  

W e  can  a l so  l o o k  at the  r e l a t i o n s h i p  b e t w e e n  cen t ra l i ty  m e a s u r e s  fo r  the  b ipa r t i t e  

g r a p h  and  fo r  the  o n e - m o d e  n e t w o r k s .  T a b l e  12 p r e s e n t s  the  c o r r e l a t i o n  b e t w e e n  each  
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Table 8 

Centrality measures for CEOs and clubs in one-mode networks 

185 

Measure of centrality 

c ~  ~ c ~  b c ~  °' c ~  c ~  

m I 11 14 1.85 0.080 55 
m 2 36 47 4.07 0.391 122 
m 3 62 84 10.70 0.673 280 

m 4 38 50 6.97 0.333 200 
m 5 10 13 1.09 0.091 35 
m 6 15 19 1.27 0.144 52 

m 7 9 13 0.70 0.070 45 
m 8 11 15 2.10 0.096 49 

m 9 16 22 1.99 0.162 51 

mlo 8 11 0.95 0.052 41 

m ll 18 22 1.51 O. 167 55 

ml2 18 22 0.29 0.170 51 
ml3 18 23 2.11 0.169 57 

mr4 8 11 0.17 0.080 28 

m15 34 43 3.24 0.336 106 
n I 37 40 3.85 O. 178 407 
n 2 26 29 2.60 O. 127 278 
n 3 25 27 O. 15 O. 128 248 

n 4 39 42 0.15 0.213 337 
n 5 27 30 O. 15 O. 140 274 

n 6 33 36 0.00 O. 174 312 

n 7 37 41 3.85 0.187 392 
n 8 16 19 O. 13 0.069 207 

n 9 18 22 0.43 0.086 206 

njo 26 28 0.15 0.127 269 

nlj 36 39 0.15 0.187 345 
nl2 14 16 0.13 0.061 172 

n13 39 43 3.85 O. 192 429 

n14 61 68 3.85 0.341 586 
nj5 46 51 0.15 0.261 406 

n16 39 44 1.09 0.211 387 
nl 7 48 54 O. 15 0.278 431 

nl8 32 37 3.09 0.178 294 
n19 42 47 3.85 0.201 504 

n2o 53 58 3.85 0.289 483 

n21 35 38 3.85 0.168 388 
rt22 32 35 1.24 0.168 301 

n23 42 46 0.15 0.235 354 
nz4 45 50 3.85 0.239 437 

n25 35 38 0.15 0.188 323 
n26 35 38 O. 15 O. 188 324 

aExcludes diagonal, blncludes diagonal. 

kind of centrality index calculated on the bipartite graph and on the one-mode relation, 
for CEOs and clubs separately. For example, the first line in the body of the table gives 
the correlation between the degree centralities for CEOs and for clubs in the bipartite 
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Table 9 
Correlations between centrality 
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measures: clubs and CEOs in the bipartite graph 

C J  C# ~" C J  C[ ~' 

c ~  
All nodes 0.694 
Clubs 0.992 
CEOs 0.627 
c ~  ~ 
All nodes 0.928 0.752 
Clubs 0.948 0.968 
CEOs 0.867 0.659 

cF'  
All nodes 0.889 0.872 
Clubs 0.980 0.967 
CEOs 0.780 0.823 

All nodes 0.938 0.485 
Clubs 0.977 0.969 
CEOs 0.572 0.041 

0.816 
0.890 
0.576 

0.892 0.696 
0.960 0.921 
0.696 0.045 

Table 10 
Correlations between centrality measures: one-mode matrix of club overlaps 

c~ c l  c~ c[ 
C ~  0.958 
C~ r 0.937 0.954 
Cff 0.993 0.930 0.918 
C ~  0.959 0.954 0.985 0.936 

Table 11 
Correlations between centrality measures: one-mode matrix of CEO co-memberships 

c~ c~ c[ c{ 
C ~  0.734 
C~" 0.449 0.687 
C ~  0.989 0.664 0.348 
C ~  0.942 0.788 0.641 0.888 

Table 12 
Correlations between centralities for the bipartite graph and the one-mode relations, for CEOs and clubs 

Centrality measure CEOs Clubs 

Degree 0.767 0.979 
Betweenness a 0.634 0.946 
Eigenvector 1.000 1.000 
Flow 0.137 0.944 

aBetweenness centralities for dichotomized one-mode relation. 
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Fig. 4. Galois lattice for CEOs and clubs. 

graph and in the one-mode actor co-membership relation (the CoX~(ni) and the C~(n i) 
and the Co~(m~) and the C~(mk)). For these data, there is greater discrepancy for 
actors (the CEOs) than for events (the clubs) between the centralities from the bipartite 
graph and the centralities from the one-mode relation. 

Fig. 4 presents the Galois lattice for the CEOs and clubs. 2 First, consider the relative 
centrality of the clubs. Clubs 3 and 4 are the only clubs whose memberships contain the 
memberships of other clubs (club 4 contains clubs 1 and 10; club 3 contains clubs 2, 5, 
6, 11 and 14). Clubs 3 and 4 are located toward the top of the diagram in Fig. 4 and the 
containments are indicated by the lines descending from these clubs. More complicated 
patterns of containment are present among the CEOs. CEO 14 contains 25, 26 and 20 
(who in turn contains 4); 15 contains 23 and 25; 17 contains 26 (who in turn contains 3); 
8 contains 12; 11 contains 10; 13 contains l (who in turn contains 10); 19 contains both 
1 and 12; and 16 contains 6. This suggests at least three levels of centrality for CEOs. 
The most central CEOs are 8, 11, 13, 14, 15, 16, 17 and 19; second are l, 6, 12, 20, 23, 
25 and 26; and at the third level are 3, 4 and 23. The memberships of the remaining 
CEOs are not included within the memberships of others, nor do they include others, 
thus, their centrality relative to others cannot be determined using this approach. Further 
analyses show that other indices of centrality for the CEOs are consistent with these 
three levels in the Galois lattice. CEOs in the first level have higher centrality on other 
indices than do CEOs in the second level. CEOs in the second level have higher 
centrality values than do the CEOs in the third level. CEOs whose centrality is 

2 This figure was produced using the program DIAGRAM (Vogt and Bliegener, 1990). 
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indeterminate in the Galois lattice have moderate to high levels of centrality on other 
centrality indices. 

In conclusion, let us consider some of the strengths and weaknesses of centrality 
indices for studying affiliation networks. 

7. Discussion 

The introduction to this paper presented four ideas that might motivate centrality 
approaches that would be especially appropriate for affiliation networks. Let us now 
consider existing centrality indices and possible extensions in light of these ideas. 

First, it is important to have centrality scores for both actors and events in an 
affiliation network. This is not a problem for any of the approaches, since all can be 
used to analyze the bipartite graph. However, because of the duality in the relationship 
between actors and events, we might hope that the centralities of actors should be related 
in specifiable ways to the centralities of the events with which they are affiliated, and 
similarly the centralities of events should be related in specifiable ways to the centrali- 
ties of the actors they include. These relationships hold for degree centralities calculated 
on the one-mode networks of actor co-memberships and event overlaps (Eqs. (10) and 
(11)), for closeness centrality in the bipartite graph (Eqs. (27) and (28)), and for 
eigenvector centralities in the bipartite graph or in the pair of one-mode matrices (Eqs. 
(16) and (17) or Eqs. (19) and (20)). Relationships between actor and event centralities 
are not as straightforward for betweenness centrality and flow betweenness centrality. 

A second feature of affiliation networks is that the affiliation relation is non-dyadic, 
and thus focuses on subsets. To what extent do centralities in affiliation networks allow 
us to quantify the centrality of a subset of actors or a subset of events? In one sense, any 
index for which an actor's centrality is a function of the centralities of its events, or an 
event's centrality is a function of the centralities of its members, does capture the 
centralities of subsets. An actor' s centrality is a function of the centrality of the subset of 
events to which it belongs. An event's centrality is a function of the subset of actors 
belonging to it. As noted above, these properties hold for degree, closeness, and 
eigenvector centralities, but not for betweenness and flow betweenness. 

A third important theoretical property of an affiliation network is that actors create 
linkages between events and events create linkages between actors. Central actors should 
link events and central events should link actors. Theoretically, actors that do not link 
events, and events that do not link actors, should not be considered central. The property 
of linkages among actors and/or  events seems most naturally embodied in betweenness, 
flow betweenness, and eigenvector centrality, but is also most problematic for these 
approaches. Part of the problem is that misleading results arise when one analyzes the 
one-mode relations of actor co-memberships or event overlaps. These relations lack 
important information about the pattern of affiliation ties. When used to analyze the 
bipartite graph, betweenness centrality and flow betweenness centrality give centralities 
equal to zero for actors that belong only to one event and to events with only a single 
member, as desired. However, eigenvector centrality gives non-zero values to such 
actors and events, even in the bipartite graph. This property is consistent with the 
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intuitive motivation for eigenvector centrality that a node ' s  centrality is a function of  the 
centralities of the nodes to which it is adjacent, but is inconsistent with the idea that 
centrality in affiliation networks is a result of  the linkages created by actors and events. 

The fourth empirical ly and theoretically important aspect of  centrality in an affiliation 
network is the subset -superset  (i.e. inclusion) relationships between actors '  affiliations 
and events '  memberships.  These relationships capture the distinction between 'p r imary '  
and ' secondary '  actors and events observed by numerous researchers. However,  this 
distinction is not quantified by any of the existing centrality indices reviewed here. 
Subset -superse t  relationships are nicely displayed in the Galois lattice and are formal- 
ized by the idea of  graph covers. Developing a centrality index based on these inclusion 
relations seems like a fruitful area for future research. 

A final practical note is in order. Seidman (1981) discusses the misleading conclu- 
sions that can result when one studies one-mode networks of actor co-memberships or 
event overlaps for an affiliation network. Specifically, he demonstrates that cliques of  
actors in the co-membership relation (or events in the overlap relation) are not 
necessarily complete subgraphs in the affiliation relation. Thus, one is not necessarily 
just if ied in drawing conclusions about collections larger than pairs from the one-mode 
relations. As we have seen, similar cautions are in order for centrality analyses of  the 
one-mode networks derived from the affiliation network. In going from the affiliation 
relation to either the actor co-membership relation or the event overlap relation, one 
loses information about the patterns of  affiliation between actors and events. Thus, one 
needs to be cautious when interpreting centralities for these one-mode relations. 
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