
Kenneth A. Small, “Fundamentals of Economic Demand Modeling” DRAFT   July 1, 2005 

Fundamentals of Economic Demand Modeling: Lessons from Travel Demand Analysis 
 

Kenneth A. Small 
University of California at Irvine 

  

REVISED July 4, 2005 

 

Forthcoming as Chapter 9 of: 

Decision-Based Design: Making Effective Decisions in Product and Systems Design, Wei Chen, 
Kemper Lewis, and Linda C. Schmidt, editors, ASME Press. 
 

 

 

Abstract 
 
This chapter presents essential methods developed in transportation economics and travel 
demand analysis, and describes how they are used to measure the economic value that consumers 
place on product characteristics. The chapter focuses primarily on discrete-choice models 
estimated using data on individual consumers. It develops such models from a random utility 
framework, derives the familiar probit and logit models including multinomial logit, and 
provides examples of models developed for real transportation analysis. The chapter also 
presents more advanced discrete-choice models including generalized extreme value and mixed 
logit. Recent developments in stated-preference data and panel data are described. The use of 
such models for design is illustrated by a theoretical and empirical review of the value of time 
and reliability in urban travel. 
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Nomenclature 
 
cdf Cumulative distribution function 
Di Alternative-specific dummy variable for alternative i 
djn Choice variable (=1 if decision-maker n chooses alternative j) 
E Expectation 
G Function for generating GEV models of discrete choice 
GEV Generalized extreme value 
 
Ir Inclusive value for alternative group r 
iid Identically and independently distributed 
J Number of dependent variables (aggregate models) or alternatives (disaggregate 

models) 
Jr Number of alternatives in alternative group r 
 
L Leisure 
L(⋅) Log-likelihood function 
log Natural logarithm 
N Number of people; Number of vehicles in queue 
n indexes single individual consumer 
P Choice probability 
PL Probability of being late 
R Number of “replications” (random draws) in simulated probability 
 
sn Vector of socioeconomic or other characteristics of decision-maker n 
SDE Schedule delay early = work start time minus early actual arrival time 
SDL Schedule delay late = late actual arrival time minus work start time 
T Time spent in activities; Travel Time (usually in-vehicle) if used as scalar without sub- 

or super-scripts 
T0 Out-of-vehicle travel time 
TF Free-flow travel time 
TR Random component of travel time 
Tw Time spent at work (in value-of-time analysis) 
 
t Time of arrival 
t* Desired time of arrival 
td Departure time 
 
 
U Utility function 
V Indirect utility function 
vR Value of reliability 
vT Value of time (usually in-vehicle time) 
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W Welfare measure 
w Wage rate (in travel-demand analysis); 
X Generalized consumption good (numeraire) 
x Consumption vector 
Y Unearned income 
y Generalized argument for function G generating GEV models  
z Independent variables for travel-demand models 
 
αi Alternative-specific constant for alternative i in discrete-choice indirect utility function; 
 value of travel time in reliability analysis 
β Parameter vector in discrete-choice indirect utility function (in travel-demand analysis); 
 value of early-arrival time (in reliability analysis) 
γ Value of late-arrival time (in reliability analysis) 
γi Coefficient of an independent variable interacted with an alternative-specific constant 

for alternative i in discrete-choice utility function 
  
εi Stochastic term for alternative i in discrete-choice indirect utility function  
θ Value of late arrival (in reliability analysis) 
λ Marginal utility of income 
µ Scale parameter for probability density function (in discrete-choice analysis) 
ρ Parameter of GEV functions (in discrete-choice analysis) 
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Fundamentals of Economic Demand Modeling: Lessons from Travel Demand Analysis 
 

Kenneth A. Small 
University of California at Irvine 

 

In order to design facilities or products, one must know how and under what circumstances they 

will be used. In order to design them cost-effectively, one must also know how specific features 

are valued by users. These requirements can be met by applying tools of economic demand 

analysis. 

 This chapter illustrates the use of economic demand tools by providing a detailed account 

of their use in the field of urban transportation, where many of them were in fact first developed. 

Transportation applications include many design decisions, often at the level of an entire system 

such as a public mass transit network. The design elements that can be addressed using 

transportation demand analysis include speed, frequency, reliability, comfort, and ability to 

match people’s desired schedules. 

 The chapter begins (Section 9.1) with conventional aggregate approach to economic 

demand, and then moves to disaggregate models (Section 9.2), also known as "behavioral" 

because they depict decision-making process by individual consumers. Some specific examples 

(Section 9.3) and more advanced topics (Sections 2.4) are then discussed. Finally, Section 9.5 

analyzes two behavioral results of travel-demand studies that are especially important for design, 

namely travelers’ willingness to pay for travel-time savings and improved reliability. 

  

9.1 Aggregate Models 

 

In standard economic analysis of consumer demand, the aggregate demand for some product is 

explained as a function of variables that describe the product or its consumers. For example, total 

transit demand in a city might be related to the amounts of residential and industrial 

development, the average transit fare, the costs of alternative modes, some simple measures of 

service quality, and average income. 

 In one type of study, known as cross-sectional, one examines influences on travel 

behavior by looking at variations across cities or across locations within a city. An example is 

the analysis by Kain and Liu (2002) of mode share to work in Santiago, Chile. The share is 
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measured for each of 34 districts and its logarithm is regressed on variables such as travel time, 

transit availability, and household income. 

 Sometimes there are many cases of zero reported trips by a given mode between a pair of 

zones, making ordinary regression analysis invalid. This illustrates a pervasive feature of travel-

demand analysis: many of the variables to be explained have a limited range. For this reason, 

travel-demand researchers have contributed importantly to the development of techniques to 

handle limited dependent variables (McFadden, 2001). We note here one such technique that is 

applicable to aggregate data. 

 Suppose the dependent variable of a model can logically take values only within a certain 

range. For example, if the dependent variable x is the modal share of transit, it must lie between 

zero and one. Instead of explaining x directly, we can explain the logistic transformation of x as 

follows: 

 εβ +′=

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log  (9.1) 

where β is a vector of parameters, z is a vector of independent variables, and ε is an error term 

with infinite range. Equivalently, 
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This is an aggregate logit model for a single dependent variable. 

 In many applications, several dependent variables xi are related to each other, each 

associated with particular values zi of some independent variables. For example, xi might be the 

share of trips made by mode i, and zi a vector of service characteristics of mode i. A simple 

extension of equation (9.2) ensures that the shares sum to one: 
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where J is the number of modes.  

 In another type of study, known as time-series, one looks instead at variations over time 

within a single area. Several studies have examined transit ridership using data over time from a 

single metropolitan area or even a single transit corridor – for example Gómez-Ibáñez (1996) for 

Boston. Time-series studies are sensitive to the tendency for unobserved influences to persist 
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over time, a situation known as auto-correlation in the error term. One may also postulate 

“inertia” by including among the explanatory variables one or more lagged values of the variable 

being explained. For example, Greene (1992), using US nationwide data, considers the 

possibility that once people have established the travel patterns resulting in a particular level of 

vehicle-miles traveled, they change them only gradually if conditions such as fuel prices 

suddenly change. From the coefficients on the lagged dependent variables, one can ascertain the 

difference between short- and long-run responses. 

 It is common to combine cross-sectional and time-series variation, so that individual 

consumers analysis units are observed repeatedly over time. The resulting data are called panel 

data or longitudinal data (Kitamura, 2000). For example, Voith (1997) analyzes ridership data 

from 118 commuter-rail stations in metropolitan Philadelphia over the years 1978–91 to 

ascertain the effects of level of service and of demographics on rail ridership. Studies using panel 

data need to account for the fact that, even aside from autocorrelation, the error terms for 

observations from the same location at different points in time cannot plausibly be assumed to be 

independent. Neglecting this fact will result in unnecessarily imprecise and possibly biased 

estimates. Several approaches are available to account for this panel structure, the most popular 

being to estimate a “fixed effects” model, in which a separate constant is estimated for every 

location. 

  

9.2 Disaggregate Models 

 

An alternative approach, known as disaggregate or behavioral travel-demand modeling, is now 

far more common for travel demand research. Made possible by micro data (data on individual 

consumers), this approach explains behavior directly at the level of a person, household, or firm. 

When survey data are available, disaggregate models are statistically more efficient in using such 

data because disaggregate models take account of every observed choice rather than just 

aggregate shares; this enables them to take advantage of variation in behavior across individuals 

that may be correlated with variation in individual conditions, whereas such variations are 

obscured in aggregate statistics. Disaggregate models are also based on a more satisfactory 

microeconomic theory of demand. Most such models analyze choices among discrete rather than 
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continuous alternatives and so are called discrete-choice models. Train (2003) provides a 

thorough treatment. 

 

9.2.1 Basic Discrete-Choice Models 

The most widely used theoretical foundation for these models is the additive random-utility 

model of McFadden (1973). Suppose a consumer n facing discrete alternatives j=1,...,J chooses 

the one that maximizes utility as given by 

 ( ) jnnjnjn szVU εβ += ,,  (9.4) 

where V(⋅) is a function known as the systematic utility, zjn is a vector of attributes of the 

alternatives as they apply to this consumer, sn is a vector of characteristics of the consumer 

(effectively allowing different utility structures for different groups of consumers), β is a vector 

of unknown parameters, and εjn is an unobservable component of utility which captures 

idiosyncratic preferences. Ujn and V(⋅) implicitly incorporate a budget constraint, and thus are 

functions of income and prices as well as product quantities and attributes; in economics 

terminology, such a utility function is called indirect to distinguish it from the direct or primal 

dependence of preferences on those quantities and attributes. Ujn and V(⋅) are also conditional on 

choice j. For these reasons they are known as conditional indirect utility functions. 

 The choice is probabilistic because the measured variables do not include everything 

relevant to the individual's decision. This fact is represented by the random terms εjn. Once a 

functional form for V is specified, the model becomes complete by specifying a joint cumulative 

distribution function (cdf) for these random terms, F(ε1n,...,εJn). Denoting V(zjn,sn,β) by Vjn, the 

choice probability for alternative i is then 
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where Fi is the partial derivative of F with respect to its i-th argument. (Fi is thus the probability 

density function of εin conditional on the inequalities in the middle row of (9.5).) 
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 Suppose F(⋅) is multivariate normal. Then (9.5) is the multinomial probit model with 

general covariance structure. However, neither F nor Fi can be expressed in closed form; instead, 

equation (9.5) is usually written as a (J-1)-dimensional integral of the normal density function. In 

the special case where the random terms are identically and independently distributed (iid) with 

the univariate normal distribution, F is the product of J univariate normal cdfs, and we have the 

iid probit model, which still requires computation of a (J-1)-dimensional integral. For example, 

in the iid probit model for binary choice (J=2), (9.5) becomes 

 
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nn
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1  (9.6) 

where Φ is the cumulative standard normal distribution function (a one-dimensional integral) and 

σ is the standard deviation of ε1n-ε2n. In equation (9.6), σ cannot be distinguished empirically 

from the scale of utility, which is arbitrary; for example, doubling σ has the same effect as 

doubling both V1 and V2. Hence it is conventional to normalize by setting σ=1. 

 The logit model (also known as multinomial logit or conditional logit) arises when the J 

random terms are iid with the extreme-value distribution (also known as Gumbel, Weibull, or 

double-exponential). This distribution is defined by 

 [ ] ( )x
jn ex µε −−=< expPr  (9.7) 

for all real numbers x, where µ is a scale parameter. Here the convention is to normalize by 

setting µ=1. With this normalization, McFadden (1973) shows that the resulting probabilities 

calculated from (9.5) have the logit form: 
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This formula is easily seen to have the celebrated and restrictive property of independence from 

irrelevant alternatives: namely, that the odds ratio (Pin/Pjn) depends on the utilities Vin and Vjn 

but not on the utilities for any other alternatives. This property implies, for example, that adding 

a new alternative k (equivalent to increasing its systematic utility Vkn from -∞ to some finite 

value) will not affect the relative proportions of people using previously existing alternatives. It 
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also implies that for a given alternative k, the cross-elasticities ∑logPjn/∑logVkn are identical for 

all j≠k: hence if the attractiveness of alternative k is increased, the probabilities of all the other 

alternatives j≠k will be reduced by identical percentages. The binary form of (9.8) is: 

 ( )[ ]{ } 1
21exp1 −−−+= nnin VVP . 

 It is really the iid assumption (identically and independently distributed error terms) that 

is restrictive, whether or not it entails independence of irrelevant alternatives. Hence there is no 

basis for the widespread belief that iid probit is more general than logit. In fact, the logit and iid 

probit models have been found empirically to give virtually identical results when normalized 

comparably (Horowitz, 1980).1 Furthermore, both probit and logit may be generalized by 

defining non-iid distributions. In the probit case the generalization uses the multivariate normal 

distribution, whereas in the logit case it can take a number of forms to be discussed in Section 

9.4. 

 As for the functional form of V, by far the most common is linear in unknown parameters 

β. Note that this form can easily be made nonlinear in variables just by specifying new variables 

equal to nonlinear functions of the original ones. For example, the utility on mode i of a traveler 

n with wage wn facing travel costs cin and times Tin could be: 

 ( ) 2
321 / ininninin TTwcV βββ ++⋅= . (9.9) 

This is non-linear in travel time and in wage rate. If we redefine zin as the vector of all such 

combinations of the original variables (zin and sn in eqn 9.4), the linear-in-parameters 

specification is simply written as 

 inin zV β ′=  (9.10) 

where β′ is the transpose of column vector β. 

 

                                                 
1 Comparable normalization is accomplished by dividing the logit coefficients by π/√3 in order to give the utilities the 
same standard deviations in the two models. In both models, the choice probabilities depend on (β/σε), where σε2 is the 
variance of each of the random terms εin. In the case of probit, the variance of ε1n-ε2n, 2σε2, is set to one by the 
conventional normalization; hence PROBIT

εσ =1/√2. In the case of logit, the normalization µ=1 in equation (9.7) implies 

that εin has standard deviation LOGIT
εσ =π/√6 (Hastings and Peacock, 1975, p. 60). Hence to make logit and iid probit 

comparable, the logit coefficients must be divided by PROBITLOGIT
εε σσ /  = π/√3 = 1.814. 
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9.2.2 Estimation 

For a given model, data on actual choices, along with traits zjn, can be used to estimate the 

parameter vector β in (9.10) and to carry out statistical tests of the assumed error distribution and 

the assumed functional form of V. Parameters are usually estimated by maximizing the log-

likelihood function: 

 ∑∑
= =

=
N

n

J

i
inin PdL

1 1
)(log)( ββ  (9.11) 

where N is the sample size. In this equation, din is the choice variable, defined as 1 if consumer n 

chooses alternative i and 0 otherwise, and Pin(β) is the choice probability. 

 A correction to (9.11) is available for choice-based samples, i.e., those in which the 

sampling frequencies depend on the choices made. (For example, transportation mode choice 

might be estimated from data arising from roadside surveys and surveys taken on transit 

vehicles.) The correction simply multiplies each term in the second summation by the inverse of 

the sampling probability for that sample member (Manski and Lerman, 1977). 

 One of the major attractions of logit is the computational simplicity of its log-likelihood 

function, due to taking the logarithm of the numerator in equation (9.8). With V linear in β, the 

logit log-likelihood function is globally concave in β, so finding a local maximum assures 

finding the global maximum. Fast computer routines to do this are widely available. 

 It is possible that the likelihood function is unbounded in one of the coefficients, making 

it impossible to maximize. This happens if one includes a variable that is a perfect predictor of 

choice within the sample. For example, suppose one is predicting car ownership (yes or no) and 

wants to include among variables sn in (9.4) a dummy variable for high income. If it happens that 

within the sample everyone with high income owns a car, the likelihood function increases 

without limit in the coefficient of this dummy variable. We might solve the problem by 

respecifying the model with more broadly defined income groups or more narrowly defined 

alternatives. Alternatively, we could postulate a linear probability model, in which probability 

rather than utility is a linear function of coefficients; this model has certain statistical 

disadvantages but is simple and may be adequate with large samples. 

 

9.2.3 Data 
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 Some of the most important variables for travel demand modeling are determined 

endogenously within a larger model of which the demand model is just one component. With 

aggregate data, the endogeneity of travel characteristics is an important issue for obtaining valid 

statistical estimates. Fortunately, endogeneity can usually be ignored when using disaggregate 

data because, from the point of view of the individual consumer, the travel environment does not 

depend appreciably on that one individual’s choices. 

 Nevertheless, measuring the values of attributes zin, which typically vary by alternative, is 

more difficult than it may first appear. How does one know the traits that a traveler would have 

encountered on an alternative that was not in fact used?  One possibility is to use objective 

estimates, such as the engineering values produced by network models of the transportation 

system. Another is to use reported values obtained directly from survey respondents. Each is 

subject to problems. Reported values measure people's perceptions of travel conditions, which, 

even for alternatives they choose regularly, may differ from the measures employed in policy 

analysis or forecasting. Worse still, reported values may be systematically biased so as to justify 

the choice, thereby exaggerating the advantages of the alternative chosen and the disadvantages 

of other alternatives. 

 The data described thus far measure information about revealed preferences (RP), those 

reflected in actual choices. There is growing interest in using stated preference (SP) data, based 

on responses to hypothetical situations (Hensher, 1994). SP data permit more control over the 

ranges of and correlations among the independent variables, and they also can elicit information 

about potential travel options not now available. It is still an open question how accurately they 

described what people really do. This is a very common dilemma in studies intended for use in 

engineering design, which have no choice but to rely on SP data if they concern product 

characteristics not available in actual situations. 

 It is possible combine data from both revealed and stated preferences in a single 

estimation procedure in order to take advantage of the strengths of each (Louviere and Hensher, 

2001). So long as observations are independent of each other, the log-likelihood functions simply 

add. To prevent SP survey bias from contaminating inferences from RP, it is recommended to 

estimate certain parameters separately in the two portions of the data: namely, the scale factors µ 

for the two parts of the sample (with one but not both normalized), any alternative-specific 

constants, and any critical behavioral coefficients that may differ. The log-likelihood function 
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(9.11) then breaks into two terms, one for RP observations and one for SP observations, with 

appropriate constraints among the coefficients in the two parts and with one part multiplied by a 

relative scale factor to be estimated. 

 

9.2.4 Interpreting Coefficient Estimates 

It is useful for interpreting empirical results to note that a change in β′zin in (9.10) by an amount 

of ±1 increases or decreases the relative odds of alternative i, compared to each other alternative, 

by a factor exp(1)=2.72. Thus a quick gauge of the behavioral significance of any particular 

variable can be obtained by considering the size of typical variations in that variable, multiplying 

it by the relevant coefficient, and comparing with 1.0. 

 The parameter vector may contain alternative-specific constants for one or more 

alternatives i. That is, the systematic utility may be of the form 

. z +  = V          iniin βα ′  (9.12) 

Since only utility differences matter, at least one of the alternative-specific constants must be 

normalized (usually to zero); that alternative then serves as a “base alternative” for comparisons. 

Of course, using alternative-specific constants makes it impossible to forecast the result of 

adding a new alternative unless there is some basis for a guess as to what its alternative-specific 

constant would be. 

 Equation (9.12) is really a special case of (9.10) in which one or more of the variables Z 

are alternative-specific dummy variables, Dk, defined by k
jnD =1 if j=k and 0 otherwise (for each 

j=1,…,J). (Such a variable does not depend on n.) In this notation, parameter αi in (9.12) is 

viewed as the coefficient of variable Di included among the z variables in (9.10). Such dummy 

variables can also be interacted with (i.e., multiplied by) any other variable, making it possible 

for the latter variable to affect utility in a different way for each alternative. All such variables 

and interactions may be included in z, and their coefficients in β, thus allowing (9.10) still to 

represent the linear-in-parameters specification. 

  The most economically meaningful quantities obtained from estimating a discrete-choice 

model are often ratios of coefficients. By interacting the variables of interest with socioeconomic 

characteristics or alternative-specific constants, these ratios can be specified quite flexibly so as 

to vary in a manner thought to be a priori plausible. A particularly important example in 
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transportation is the ratio of coefficients of time and money, often called the value of travel-time 

savings, or value of time for short. It represents the monetary value that the traveler places on an 

incremental time saving. Similarly, a per-unit value can be placed any product attribute that 

consumers care about: for example, interior capacity of a vehicle, throughput rate of a 

communications device, or resolution of a visual display. 

 The value of time in the model (9.9) is 

 n
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which varies across individuals since it depends on wn and Tin. 

 As a more complex example, suppose we extend equation (9.9) by adding alternative-

specific dummies, both separately (with coefficients αi) and interacted with travel time (with 

coefficients γi): 

 ( ) iniininniniin TTTwcV γβββα +++⋅+= 2
321 /  (9.14) 

where one of the αi and one of the γi are normalized to zero. This yields the following value of 

time applicable when individual n chooses alternative i:  

 n
iin

inT wTv ⋅



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
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=

1

32 2)(
β

γββ . (9.15) 

Now the value of time varies across modes even with identical travel times, due to the presence 

of γi. In the same way, the value consumers place on a specified increase in resolution of a visual 

display could depend on the income (or any other characteristic) of the individual and on the 

particular model or display type selected. 

 Confidence bounds for a ratio of coefficients can be estimated by standard 

approximations for transformations of normal variates.2 Or they can be estimated using a Monte 

Carlo procedure: take repeated random draws from the distribution of β (which is estimated 

along with β itself), and then examine the resulting values of the ratio in question. The empirical 

distribution of these values is an estimate of the actual distribution of the ratio, and one can 

                                                 
2 Letting vT=β2/β1, the standard deviation σv of vT obeys the intuitive formula: (σv/vT)2 ≅ (σ1/β1)2 + (σ1/β1)2 – 
2σ12/(β1β2), where σ1 and σ2 are the standard deviations of β1 and β2 and σ12 is their covariance. 
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describe it in any number of ways including its standard deviation. As another example, the 5th 

and 95th percentile values of those values define a 90 percent confidence interval for β. See Train 

(2003, ch. 9) for how to take such random draws. 

 

9.2.5 Randomness, Scale of Utility, Measures of Benefit, and Forecasting 

The variance of the random utility term in equation (9.4) reflects randomness in behavior of 

individuals or, more likely, heterogeneity among observationally identical individuals. Hence it 

plays a key role in determining how sensitive travel behavior is to observable quantities such as 

price, service quality, and demographic traits. Little randomness implies a nearly deterministic 

model, one in which behavior suddenly changes at some crucial switching point (for example, 

when transit service becomes as fast as a car). Conversely, if there is a lot of randomness, 

behavior changes only gradually as the values of independent variables are varied. 

 When the variance of the random component is normalized, however, the degree of 

randomness becomes represented by the inverse of the scale of the systematic utility function. 

For example, in the logit model (9.8), suppose systematic utility is linear in parameter vector β as 

in (9.10). If all the elements of β are small in magnitude, the corresponding variables have little 

effect on probabilities so choices are dominated by randomness. If the elements of β are large, 

most of the variation in choice behavior is explained by variation in the observable variables. 

Randomness in individual behavior can also be viewed as producing variety, in aggregate 

behavior. 

 It is sometimes useful to have a measure of the overall desirability of the choice set being 

offered to a consumer. Such a measure must account both for the utility of the individual choices 

being offered and for the variety of choices offered. The value of variety is directly related to 

randomness because both arise from unobserved idiosyncrasies in preferences. If choice were 

deterministic, the consumer would care only about the traits of the best alternative; improving or 

offering inferior alternatives would have no value. But with random utilities, there is some 

chance that an alternative with a low value of Vin will nevertheless be chosen; so it is desirable 

for such an alternative to be offered and to be made as attractive as possible. A natural measure 

of the desirability of choice set J is the expected maximum utility of that set, which for the logit 

model has the convenient form: 
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where γ=0.5772 is Euler’s constant (it accounts for the nonzero mean of the error terms εj in the 

standard normalization). (Here we have retained the parameter µ, rather than normalizing it, to 

make clear how randomness affects expected utility.) When the amount of randomness is small 

(large µ), the summation on the right-hand side is dominated by its largest term (let's denote its 

index by j*); expected utility is then approximately ρ⋅log[exp(Vj*/ρ)] = Vj*, the utility of the 

dominating alternative. When randomness dominates (small µ), all terms contribute more or less 

equally (let's denote their average utility value by V); then expected utility is approximately 

µ-1⋅log[J⋅exp(µV)] = V+µ-1⋅log(J), which is the average utility plus a term reflecting the 

desirability of having many choices. 

 Expected utility is, naturally enough, directly related to measures of consumer welfare. 

Small and Rosen (1981) show that, in the absence of income effects, changes in aggregate 

consumer surplus (the area to the left of the demand curve and above the current price) are 

appropriate measures of welfare even when the demand curve is generated by a set of individuals 

making discrete choices. For a set of individuals n characterized by systematic utilities Vjn, 

changes in consumer surplus are proportional to changes in this expected maximum utility. The 

proportionality constant is the inverse of λn, the marginal utility of income. Thus a useful welfare 

measure for such a set of individuals, with normalization µ=1, is: 

 ∑
=

=
J

j
jn

n

VW
1

)exp(log1
λ

. (9.17) 

(The constant γ drops out of welfare comparisons so is omitted here.) Because portions of the 

utility Vi that are common to all alternatives cannot be estimated from the choice model, λn 

cannot be estimated directly. However, typically it can be determined from Roy's Identity: 

 
in

in

in
n c

V
x ∂

∂
⋅−=

1λ  (9.18) 

where xin is consumption of good i conditional on choosing it among the discrete alternatives. In 

the case of commuting-mode choice, for example, xin is just the individual's number of work trips 

per year (assuming income and hence welfare are measured in annual units). 
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 Once we have estimated a disaggregate travel-demand model, we face the question of 

how to predict aggregate quantities such as total transit ridership or total travel flows between 

zones. Ben-Akiva and Lerman (1985, chap. 6) discuss several methods. The most 

straightforward and common is sample enumeration. A sample of consumers is drawn, each 

assumed to represent a subpopulation with identical observable characteristics. (The estimation 

sample itself may satisfy this criterion and hence be usable as an enumeration sample.) Each 

individual's choice probabilities, computed using the estimated parameters, predict the shares of 

that subpopulation choosing the various alternatives. These predictions can then simply be 

added, weighting each sample member according to the corresponding subpopulation size. 

Standard deviations of forecast values can be estimated by Monte Carlo simulation methods. 

 

9.2.6 Ordered and Rank-Ordered Models 

Sometimes there is a natural ordering to the alternatives that can be exploited to guide 

specification. For example, suppose one wants to explain a household’s choice among owning no 

vehicle, one vehicle, or two or more vehicles. It is perhaps plausible that there is a single index 

of propensity to own many vehicles, and that this index is determined in part by observable 

variables like household size and employment status. 

 In such a case, an ordered response model might be assumed. In this model, the choice of 

individual n is determined by the size of a “latent variable” ,*
nnn zy εβ +′= with choice j 

occurring if this latent variable falls in a particular interval [µj-1,µj] of the real line, where µ0=–∞ 

and µJ=∞. The interval boundaries µ1,...,µJ–1 are estimated along with β, except that one of them 

can be normalized arbitrarily if β′zn contains a constant term. The probability of choice j is then 

 )()(]Pr[ 11 njnjjnnjjn zFzFzP βµβµµεβµ ′−−′−=<+′<= −−  (9.19) 

where F(⋅) is the cumulative distribution function assumed for εn. In the ordered probit model 

F(⋅) is standard normal, while in the ordered logit model it is logistic, i.e. ( )[ ] 1exp1)( −−+= xxF . 

Note that all the variables in this model are characteristics of individuals, not of the alternatives, 

and thus if the latter information is available this model cannot easily take advantage of it. 

 In some cases the alternatives are integers indicating the number of times some random 

event occurs. An example would be the number of trips per month by a given household to a 

particular destination. For such cases, a set of models based on Poisson and negative binomial 
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regressions is available (Washington, Karlaftis, and Mannering, 2003). In other cases, 

information is available not only on the most preferred alternative, but on the individual’s 

ranking of other alternatives. Efficient use can be made of such data through the rank-ordered 

logit model, also called “expanded logit” (Hausman and Ruud, 1987).  

 

9.3 Examples of Disaggregate Models 

 

Discrete-choice models have been estimated for nearly every conceivable travel situation. In this 

section we present two examples. 

 

9.3.1 Mode Choice 

A series of models explaining choices of automobile ownership and commuting mode in the San 

Francisco Bay area were developed as part of planning for the Bay Area Rapid Transit System, 

which opened in 1975. One of the simplest explains only the choice among four modes: (1) auto 

alone, (2) bus with walk access, (3) bus with auto access, and (4) carpool (two or more 

occupants). The model's parameters are estimated from a sample of 771 commuters to San 

Francisco or Oakland who were surveyed prior to opening of the Bay Area Rapid Transit 

system.3 

 Mode choice is explained by three independent variables and three alternative-specific 

constants. The three variables are: cin/wn, the round-trip variable cost (in US $) of mode i for 

traveler n, divided by the traveler's post-tax wage rate (in $ per minute); Tin, the in-vehicle travel 

time (in minutes); and o
inT , the out-of-vehicle travel time including walking, waiting, and 

transferring. Cost cin includes parking, tolls, gasoline, and maintenance. The estimated utility 

function is: 

 V =  –0.0412⋅c/w –0.0201⋅T –0.0531⋅To –0.89⋅D1 –1.78⋅D3 –2.15⋅D4 (9.20) 

  (0.0054) (0.0072) (0.0070) (0.26) (0.24) (0.25) 

where the subscripts denoting mode and individual have been omitted, and standard errors of 

coefficient estimates are given in parentheses. Variables Dj are alternative-specific dummies. 

                                                 
3 This is the "naive model" reported by McFadden et al. (1977, pp. 121-123). 
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 This utility function is a simplification of (9.14) (with β3=γi=0), except that travel time is 

broken into two components, T and To. Adapting (9.15), we see that the "value of time" for each 

of these two components is proportional to the post-tax wage rate: specifically, the estimated 

values of in-vehicle and out-of-vehicle time are 49 percent and 129 percent of the after-tax wage. 

The negative alternative-specific constants indicate that the hypothetical traveler facing equal 

times and operating costs by all four modes will prefer bus with walk access (mode 2, the base 

mode); probably this is because each of the other three modes requires owning an automobile, 

which entails fixed costs not included in variable c. The strongly negative constants for bus with 

auto access (mode 3) and carpool (mode 4) probably reflect unmeasured inconvenience 

associated with getting from car to bus stop and with arranging carpools. 

 The model’s fit could undoubtedly be greatly improved by including automobile 

ownership, perhaps interacted with (D1+D3+D4) to indicate a common effect on modes that use 

an automobile. However, there is good reason to exclude it because it is endogenous—people 

choosing one of those modes for other reasons are likely to buy an extra car as a result. This in 

fact is demonstrated by the more complete model of Train (1980), which considers both choices 

simultaneously. The way to interpret (9.20), then, is as a “reduced-form” model that incorporates 

implicitly the automobile ownership decision. It is thus applicable to a time frame long enough 

for automobile ownership to adjust to changes in the variables included in the model. 

 

9.3.2 Choice of Free or Express Lanes 

Lam and Small (2001) analyze data from commuters with an option of paying to travel in a set of 

express lanes on a very congested freeway. The data set contains cross-sectional variation in the 

cost of choosing the express lanes because the toll depends on time of day and on car occupancy, 

both of which differ across respondents. Travel time also varies by time of day, fortunately in a 

manner not too highly correlated with the toll. The authors construct a measure of the 

unreliability of travel time by obtaining data on travel times across many different days, all at the 

same time of day. After some experimentation, they choose the median travel time (across days) 

as the best measure of travel time, and the difference between 90th and 50th percentile travel 

times (also across days) as the best measure of unreliability. This latter choice is based on the 

idea that people are more averse to unexpected delays than to unexpected early arrivals. 
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 The model explains a pair of related choices: (1) whether to acquire a transponder 

(required to ever use the express lanes), and (2) which lanes to take on the day in question. A 

natural way to view these choices is as a hierarchical set, in which the transponder choice is 

governed partly by the size of the perceived benefits of being able to use it to travel in the 

express lanes. As we will see in the next section, a model known as “nested logit” has been 

developed precisely for this type of situation, and indeed Lam and Small estimate such a model. 

As it happens, though, they obtain virtually identical results with a simpler “joint logit” model in 

which there are three alternatives: (1) no transponder; (2) have a transponder but travel in the 

free lanes on the day in question; and (3) have a transponder and travel in the express lanes on 

the day in question. The results of this model are:4 

    V = –0.862⋅Dtag +0.0239⋅Inc⋅Dtag –0.766⋅ForLang⋅Dtag –0.789⋅D3 
  (0.411) (0.0058) (0.412) (0.853) 

  –0.357c –0.109⋅T –0.159⋅R +0.074⋅Male⋅R + (other terms). (9.21) 
  (0.138) 0.056) (0.048) (0.046) 

Here Dtag≡D2+D3 is a composite alternative-specific dummy variable for those choices involving 

a transponder, or “toll tag”; its negative coefficient presumably reflects the hassle and cost of 

obtaining one. Getting a transponder is apparently more attractive to people with high annual 

incomes (Inc, in $1000s per year) and less attractive to those speaking a foreign language 

(dummy variable ForLang). The statistical insignificance of the coefficient of D3, an alternative-

specific dummy for using the express lanes, suggests that the most important explanatory factors 

are included explicitly in the model. 

 The coefficients on per-person cost c, median travel time T, and unreliability R can be 

used to compute dollar values of time and reliability. Here we focus on two aspects of the 

resulting valuations. First, reliability is highly valued, achieving coefficients of similar 

magnitudes as travel time. Second, men seem to care less about reliability than women; their 

value is only 53 percent as high as women’s according to the estimates of the coefficient of 

unreliability (-0.159 for women, -0.159+0.074 = -0.085 for men). (A qualification to this is that 

the difference, i.e. the coefficient of Male⋅R, is not quite statistically significant at a 10-percent 

significance level.) Several studies of this particular toll facility have found women noticeably 

                                                 
4 This is a partial listing of the coefficients in Lam and Small (2001), Table 11, Model 4b, with coefficients of T and 
R divided by 1.37 to adjust travel-time measurements to the time of the survey, as described on their p. 234 and 
Table 11, note a. Standard errors are in parentheses. 
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more likely to use the express lanes than men, and this formulation provides tentative evidence 

that the reason is a greater aversion to the unreliability of the free lanes. 

 

9.4 Advanced Discrete-Choice Modeling 

 

9.4.1 Generalized Extreme Value Models 

Often it is implausible that the additive random utility components εj be independent of each 

other, especially if important variables are omitted from the model's specification. This will 

make either logit or iid probit predict poorly. 

 A simple example is mode choice among automobile, bus transit, and rail transit. The two 

public-transit modes are likely to have many unmeasured attributes in common. Suppose a 

traveler initially has available only auto (j=1) and bus (j=2), with equal systematic utilities Vj so 

that the choice probabilities are each one-half. Now suppose we want to predict the effects of 

adding a type of rail service (j=3) whose measurable characteristics are identical to those for bus 

service. The iid models would predict that all three modes would then have choice probabilities 

of one-third, whereas in reality the probability of choosing auto would most likely remain near 

one-half while the two transit modes divide the rest of the probability equally between them. The 

argument is even stronger if we imagine instead that the newly added mode is simply a bus of a 

different color: this is the famous "red bus, blue bus" example. 

 The probit model generalizes naturally, as already noted, by allowing the distribution 

function in equation (9.5) to be multivariate normal with an arbitrary variance-covariance matrix. 

It must be remembered that not all the elements of this matrix can be distinguished (identified, in 

econometric terminology) because, as already noted, it is only the (J-1) utility differences that 

affect behavior.5 

 The logit model generalizes in a comparable manner, as shown by McFadden (1978, 

1981). The distribution function is postulated to be Generalized Extreme Value (GEV), given by 

 [ ]),...,(exp),...,( 1
1

JeeGF J
εεεε −−−=  

                                                 
5 The variance-covariance matrix of these utility differences has (J-1)2 elements and is symmetric. Hence there are only 
J(J-1)/2 identifiable elements of the original variance-covariance matrix, less one for utility-scale normalization 
(Bunch, 1991). 



Kenneth A. Small, “Fundamentals of Economic Demand Modeling” DRAFT   July 1, 2005 

 18

where G is a function satisfying certain technical conditions. Logit is the special case G(y1,...,yJ) 

= y1+...+yJ. 

 The best known GEV model, other than logit itself, is nested logit, also called structured 

logit or tree logit. In this model, certain groups of alternatives are postulated to have correlated 

random terms. This is accomplished by grouping the corresponding alternatives in G in a manner 

we can illustrate using the auto-bus-rail example, with auto the first alternative: 

 ( )ρρρ /1
3

/1
21321 ),,( yyyyyyG ++= . (9.22) 

Here ρ is a parameter between 0 and 1 that indicates the degree of dissimilarity between bus and 

rail; more precisely, 21 ρ−  is the correlation between ε1 and ε2 (Daganzo and Kusnic, 1993). 

The choice probability for this example may be written: 

 )|()( )( riri BiPBPP ⋅=  (9.23) 
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where B1={1} and B2={2,3} are a partition of the choice set into groups; r(i) indexes the group 

containing alternative i; and Ir denotes the inclusive value of set Br, defined as the logarithm of 

the denominator of (9.25): 

)/exp(log ρj
Bj

r V = I          
r

∑
∈

. (9.26) 

When ρ=1 in this model, ε2 and ε3 are independent and we have the logit model. As ρ↓0, ε2 and 

ε3 become perfectly correlated and we have an extreme form of the “red bus, blue bus” example, 

in which auto is pitted against the better (as measured by Vi) of the two transit alternatives; in 

this case ρI1 Ø V1 and ρI2 Ø max{V2, V3}. 
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 The model just described can be generalized to any partition {Br,r=1,…,R} of 

alternatives, and each group Br can have its own parameter ρr in equations (9.22)-(9.26), leading 

to the form: 
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This is the general two-level nested logit model. It has choice probabilities (9.23)-(9.26) except 

that the index s in the denominator of (9.24) now runs from 1 to R. The welfare measure for the 

two-level nested logit model is: 

 ∑ ⋅=
r

rr IW )exp(log1 ρ
λ

 (9.28) 

where again λ is the marginal utility of income. 

 In nested logit, {Br} is an exhaustive partition of the choice set into mutually exclusive 

subsets. Therefore equation (9.25) is a true conditional probability, and the model can be 

estimated sequentially: first estimate the parameters (β/ρ) from (9.25), use them to form the 

inclusive values (9.26), then estimate ρ from (9.24). Each estimation step uses an ordinary logit 

log-likelihood function, so it can be carried out with a logit algorithm. However, this sequential 

method is not statistically efficient and is rarely used today. Several studies show that maximum-

likelihood estimation gives more accurate results (Brownstone and Small, 1989). 

 A different direction for generalizing the logit model is to maintain independence 

between error terms while allowing each error term to have a unique variance. This is the 

heteroscedastic extreme value model of Bhat (1995); it is a random-utility model but not in the 

GEV class, and its probabilities cannot be written in closed form so require numerical 

integration. Other extensions of the logit model are described by Koppelman and Sethi (2000). 

 

9.4.2 Combined Discrete and Continuous Choice 

In many situations, the choice among discrete alternatives is made simultaneously with some 

related continuous quantity. For example, a household's choice of type of automobile to own is 

closely intertwined with its choice of how much to drive. Estimating equations to explain usage, 

conditional on ownership, creates a sample selection bias (Heckman, 1979): for example, people 

who drive a lot are likely to select themselves into the category of owners of nice cars, so we 
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could inadvertently overstate the independent effect of nice cars on driving. A variety of methods 

are available to remove this bias, as described in Train (1986, chap. 5) and Washington et al. 

(2003, ch. 12). 

 More elaborate systems of equations can be handled with the tools of structural 

equations modeling. These methods are quite flexible and allow one to try out different patterns 

of mutual causality, testing for the presence of particular causal links. They are often used when 

large data sets are available describing mutually related choices. Golob (2003) provides a review. 

 

9.4.3 Disaggregate Panel Data 

Just as with aggregate data, data from individual respondents can be collected repeatedly over 

time. A good example is the Dutch Mobility Panel, in which travel-diary information was 

obtained from the same individuals (with some attrition and replacement) at ten different times 

over the years 1984-1989. The resulting data have been widely used to analyze time lags and 

other dynamic aspects of travel behavior (Van Wissen and Meurs, 1989). 

 The methods described earlier for aggregate panel data are applicable to disaggregate 

data as well. In addition, attrition becomes a statistical issue: over time, some respondents will be 

lost from the sample and the reasons need not be independent of the behavior being investigated. 

The solution is to create an explicit model of what causes an individual to leave the sample, and 

to estimate it simultaneously with the choice process being considered. Pendyala and Kitamura 

(1997) and Brownstone and Chu (1997) analyze the issues involved. 

 

9.4.4 Random Parameters and Mixed Logit 

In the random utility model of (9.4)-(9.5), randomness in individual behavior is limited to an 

additive error term in the utility function. Other parameters, and functions of them, are 

deterministic: that is, the only variation in them is due to observed variables. Thus for example, 

the value of time defined by (9.13) varies with observed travel time and wage rate but otherwise 

is the same for everyone. 

 Experience has shown, however, that parameters of critical interest to transportation 

policy vary among individuals for reasons that we do not observe. Such reasons could be missing 

socioeconomic characteristics, personality, special features of the travel environment, and data 
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errors. These, of course, are the same reasons for the inclusion of the additive error term in utility 

function (9.4). So the question is, why not also include randomness in the other parameters? 

 The only reason is tractability, and that has largely been overcome by advances in 

computing power. Consider first how one could allow a single parameter in the logit model to 

vary randomly across individuals. Suppose we specify a distribution, such as normal with 

unknown mean and variance, for the parameter in question. The overall probability is then 

determined by embedding the integral in (9.5) within another integral over the density function 

of that distribution. This simple idea has been generalized to allow for general forms of 

randomness in many parameters, including alternative-specific constants, leading to a many-

dimensional integral. Nevertheless the model is tractable because the outer integration (over the 

distribution defining random parameters) can be performed using simulation methods based on 

random draws, while the inner integration (that over the remaining additive errors εjn) is 

unnecessary because, conditional on the values of random parameters, it yields the logit formula 

(9.8). The model is called mixed logit because the combined error term has a distribution that is a 

mixture of the extreme value distribution with the distribution of the random parameters. 

 Writing this out explicitly, the choice probability conditional on random parameters is 
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Let f(β|Θ) denote the density function defining the distribution of random parameters, which 

depends on some unknown “meta-parameters” Θ (such as means and variances of β). The 

unconditional choice probability is then simply the multi-dimensional integral: 

 ∫ Θ⋅= βββ dfPP inin )|(| . (9.30) 

Integration by simulation consists of taking R random draws βr, r=1,…,R, from distribution 

f(β|Θ), calculating Pin|β each time, and averaging over the resulting values: 
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Doing so requires, of course, assuming some trial value of Θ, just as calculating the usual logit 

probability requires assuming some trial value of β. Under reasonable conditions, maximizing 

the likelihood function defined by this simulated probability yields statistically consistent 

estimates of the meta-parameters Θ. Details are provided by Train (2003). 
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 Brownstone and Train (1999) demonstrate how one can shape the model to capture 

anticipated patterns by specifying which parameters are random and what form their distribution 

takes – in particular, whether some of them are correlated with each other.6 In their application, 

consumers state their willingness to purchase various makes and models of cars, each specified to 

be powered by one of four fuel types: gasoline (G), natural gas (N), methanol (M), or electricity 

(E). Respondents were asked to choose among hypothetical vehicles with specified characteristics. 

A partial listing of estimation results is as follows: 

 V = -0.264⋅[p/ln(inc)] + 0.517⋅range + (1.43+7.45φ1)⋅size + (1.70+5.99φ2)⋅luggage 

  + 2.46φ3⋅nonE +1.07φ4⋅nonN + (other terms) 

where p (vehicle price) and inc (income) are in thousands of dollars; the range between refueling 

(or recharging) is in hundreds of miles; luggage is luggage space relative to a comparably sized 

gasoline vehicle; nonE is a dummy variable for cars running on a fuel that must be purchased 

outside the home (in contrast to electric cars); nonN is a dummy for cars running on a fuel stored at 

atmospheric pressure (in contrast to natural gas); and φ1-φ4 are independent random variables with 

the standard normal distribution. All parameters shown above are estimated with enough precision 

to easily pass tests of statistical significance. 

 This model provides for observed heterogeneity in the effect of price on utility, since it 

varies with income. It provides for random coefficients on size and luggage, and for random 

constants as defined by nonE and nonN. This can be understood by examining the results term by 

term. 

 The terms in parentheses involving φ1 and φ2 represent the random coefficients. The 

coefficient of size is random with mean 1.43 and standard deviation 7.45. Similarly, the coefficient 

of luggage has mean 1.70 and standard deviation 5.99. These estimates indicate a wide variation in 

people's evaluation of these characteristics. For example, it implies that many people (namely, 

those for whom φ2<-1.70/5.99) actually prefer less luggage space; presumably they do so because a 

smaller luggage compartment allows more interior room for the same size of vehicle. Similarly, 

                                                 
6 The following simplified explanation is adapted from Small and Winston (1999). 
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preference for vehicle size ranges from negative (perhaps due to easier parking for small cars) to 

substantially positive. 

 The terms involving φ3 and φ4 represent random alternative-specific constants with a 

particular correlation pattern, predicated on the assumption that groups of alternatives share 

common features for which people have idiosyncratic preferences – very similar to the rationale for 

nested logit. Each of the dummy variables nonE and nonN is simply a sum of alternative-specific 

constants for those car models falling into a particular group. The two groups overlap: any 

gasoline-powered or methanol-powered car falls into both. If the coefficients of φ3 and φ4 had 

turned out to be negligible, then these terms would play no role and we would have the usual logit 

probability conditional on the values of φ1 and φ2. But the coefficients are not negligible, so each 

produces a correlation among utilities for those alternative in the corresponding group. For 

example, all cars that are not electric share a random utility component 2.46φ3, which has standard 

deviation 2.46 (since φ3 has standard deviation one by definition). Thus the combined additive 

random term in utility (including the random constants), εin+2.46φ3n⋅nonEi+1.07φ4n⋅nonNi, exhibits 

correlation across those alternatives i representing cars that are not electric. A similar argument 

applies to φ4, which produces correlation across those alternatives representing cars that are not 

natural gas. Those alternatives falling into both nonE and nonN are even more highly correlated 

with each other. Note that because the distributions of φ3 and φ4 are centered at zero, this combined 

random term does not imply any overall average preference for or against various types of 

vehicles; such absolute preferences are in fact included in other terms. 

 The lesson from this example is that mixed logit can be used not only to specify 

unobserved randomness in the coefficients of certain variables, but also to mimic the kinds of 

correlation patterns among the random constants for which the GEV model was developed. Indeed, 

McFadden and Train (2000) show that it can closely approximate virtually any choice model based 

on random utility. 

 

9.5 Value of Time and Reliability  

 

Among the most important quantities inferred from travel demand studies are the monetary 

values that people place on saving various forms of travel time or improving the predictability of 
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travel time. The first, loosely known as the value of time (VOT), is a key parameter in cost-

benefit analyses that measure the benefits brought about by transportation policies or projects. 

The second, the value of reliability (VOR), also appears important, but accurate measurement is 

a science in its infancy. The benefits or losses due to changes in time and reliability are normally 

captured as part of consumer surplus, for example that given by (9.17), so long as they are part of 

the demand model. However, it is often enlightening to separate them explicitly. 

 

9.5.1 Value of Time 

The most natural definition of value of time is in terms of compensating variation. The value of 

saving a given amount and type of travel time by a particular person is the amount that person 

could pay, after receiving the saving, and be just as well off as before. This amount, divided by 

the time saving, is that person’s average value of time saved for that particular change. 

Aggregating over a class of people yields the average value of time for those people in that 

situation. The limit of this average value, as the time saving shrinks to zero, is called the 

marginal value of time, or just “value of time;” by definition, it is independent of the amount of 

time saving. It was defined empirically in equation (9.13). 

 Value of time may depend on many aspects of the trip-maker and of the trip itself. To 

name just a few, it depends on trip purpose (e.g. work or recreation), demographic and socio-

economic characteristics, time of day, physical or psychological amenities available during 

travel, and the total duration of the trip.  There are two main approaches to specifying a travel-

demand model so as to measure such variations. One is known as market segmentation: the 

sample is divided according to criteria such as income and type of household, and a separate 

model is estimated for each segment. This has the advantage of imposing no potentially 

erroneous constraints, but the disadvantage of requiring many parameters to be estimated, with 

no guarantee that these estimates will follow a reasonable pattern. The second approach uses 

theoretical reasoning to postulate a functional form for utility that determines how VOT varies. 

This approach often builds on a framework due to Becker (1965), in which utility is maximized 

subject to a time constraint. Becker's theory has been elaborated in many directions, most of 

which predict some relationship between value of time and the wage rate. For example, the 

theory of Oort (1969) predicts that the value of time will exceed the wage rate if time spent at 
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work is enjoyed relative to that spent traveling, and fall short of it if the opposite is true. Thus the 

value of time, even for non-work trips, depends on conditions of the job.  

 These theories can provide guidance about how to specify the systematic utilities Vk in a 

discrete choice model. Suppose, for example, one believes that work is disliked (relative to 

travel), that its relative marginal disutility is a fixed fraction of the wage rate. Then the value of 

time is a fraction of the wage rate, as for example with specification (9.9) with β3=0. 

Alternatively, one might think that work enjoyment varies nonlinearly with the observed wage 

rate: perhaps negatively due to wage differentials that compensate for working conditions, or 

perhaps positively due to employers’ responses to an income-elastic demand for job amenities. 

Then the value of time is a nonlinear function of the wage rate, which could suggest using (9.9) 

with a non-zero term β3. 

 

9.5.2 Value of Reliability 

It is well known that uncertainty in travel time, which may result from congestion or poor 

adherence to transit schedules, is a major perceived cost of travel. A parallel with other types of 

products is fairly obvious: uncertainty in how well a product will perform the desired function 

will reduce its value to the user . 

 How can reliability be captured in a theoretical model of travel?  Adapting Noland and 

Small (1995), we can begin with a model of trip-scheduling choice, in which trip cost depends on 

the degree of adherence to a desired time of arrival at work. Define schedule delay, SD, as the 

difference (in minutes, rounded to nearest five minutes) between the arrival time represented by 

a given alternative and the official work start time t*. Define "Schedule Delay Late" as 

SDL=Max{SD,0} and "Schedule Delay Early" as SDE=Max{–SD,0}. Define a "late dummy," DL, 

equal to one for the on-time and all later alternatives and equal to 0 for the early alternatives. 

Define T as the travel time (in minutes) encountered at each alternative. Suppose, then, that trip 

cost is a linear function of these variables: 

 DLSDLSDETTtC rd ⋅+⋅+⋅+⋅= θγβα),(  (9.31) 

where α≡vT/60 is the per-minute value of travel time, β and γ are per-minute costs of early and 

late arrival, and θ is a fixed cost of arriving late. The functional notation C(td,Tr) is to remind us 

that each of the components of trip cost depends on the departure time, td, and a random 

(unpredictable) component of travel time, Tr≥0. Our objective is to measure the increase in 
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expected cost C due to the dispersion in Tr, given that td is subject to choice by the traveler. 

Letting C* denote this expected cost after the user chooses td optimally, we have 

  [ ] [ ]L
d

rd
d

PSDLESDEETEMinttCEMinC
tt

⋅+⋅+⋅+⋅== θγβα )()()(),(*  (9.32) 

where E denotes an expected value taken over the distribution of Tr, and where PL≡E(DL) is the 

probability of being late. This equation can form the basis for specifying the reliability term in a 

model like (9.21). 

 To focus just on reliability, let’s ignore congestion for now by assuming that E(T) is 

independent of departure time. Remarkably, the optimal value of td then does not depend on the 

distribution of Tr, provided that its probability density is everywhere finite. To find this optimal 

departure time, let f(Tr) be the distribution function, and let Tf be value of travel time when Tr=0. 

The next to last term in the square brackets of (9.32) can then be written as 
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where fTtt −≡ *~  is the time the traveler would depart if Tr were equal to zero with certainty. 

Differentiating yields: 
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where *
LP  is the optimal value of the probability of being late.7 Similarly, differentiating the term 

involving β in (9.32) yields ( )*1 LP−⋅− β . Finally, differentiating the last term yields -θf0 where 

f0≡ )~( *
dttf −  is the probability density at the point where the traveler is neither early nor late. 

Combining all three terms and setting them equal to zero gives the first-order condition for 

optimal departure time: 

 
γβ
θβ
+
+

=
0

* fPL . (9.33) 

                                                 
7 The term “0” in this equation arises from differentiating the lower limit of integration:  

[ ] [ ]
dr ttTrrddd TftTtdtttd −=⋅−+⋅−− ~)()~(/)~(  =1⋅0=0. 
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In general this does not yield a closed-form solution for *
dt  because f0 depends on *

dt . However, 

in the special case θ=0, it yields )/(* γββ +=LP , a very intuitive rule for setting departure time 

that is noted by Bates et al. (2001, p. 202). The rule balances the aversions to early and late 

arrival. 

 The cost function itself has been derived in closed form for two cases: a uniform 

distribution and an exponential distribution for Tr. In the case of a uniform distribution with 

range b, (9.33) again simplifies to a closed form: 

 
( )
γβ

θβ
+

+
=

bPL
/* . 

The value of C* in this case is given by Noland and Small (1995) and Bates et al. (2001). In the 

special case θ=0, it is equal to the cost of expected travel time, α⋅E(T), plus the following cost of 

unreliability: 

 
2
bvR ⋅








+

=
γβ

βγ  . (9.34) 

The quantity in parentheses is a composite measure of the unit costs of scheduling mismatch, 

which plays a central role in the cost functions considered in the next chapter. Thus (9.34) 

indicates that reliability cost derives from the combination of costly scheduling mismatches and 

dispersion in travel time. 

 More generally, we can see from (9.32) that whatever the form of the distribution of 

uncertain travel time, expected trip cost will increase with dispersion in that distribution. 

Furthermore, if γ>β and/or if θ is large, both of which are confirmed by the empirical findings of 

Small (1982), expected cost will be especially sensitive to the possibility of values of Tr high 

enough to make the traveler late even though td is chosen optimally. Therefore the cost of 

unreliability depends especially on the upper tail of the distribution of uncertain travel times. 

This property was used in creating the reliability variable in the study by Lam and Small (2001) 

described earlier. 

 In a similar manner, the reliability of a products design may need to be measured 

primarily by one part of the distribution of random events associated with the product’s 

functioning. If a boat rudder bends under certain wave conditions, this may reduce its efficiency, 

with some minor loss of value; whereas if it bends so far as to break, the loss is much greater. 
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9.5.3 Empirical Results 

Research has generated an enormous literature on empirical estimates of value of time, and a 

much smaller one on value of reliability. Here we rely mainly on reviews of this literature by 

others. 

 Reviewing studies for the UK, Wardman (1998, Table 6) finds an average VOT of 

£3.58/hour in late 1994 prices, which is 52% of the corresponding wage rate.8 Gunn (2001) find 

that Dutch values used by planners in the late 1980s track British results (by household income) 

quite well; however, he also finds a substantial unexplained downward shift in the profile for 

1997, possibly resulting from better in-vehicle amenities. Transport Canada (1994) and US 

Department of Transportation (1997) recommend using a VOT for personal travel by automobile 

equal to 50 percent of the gross wage rate. A French review by the Commissariat Général du 

Plan (2001, p. 42) finds VOT to be 59 percent of the wage on average for urban trips. Finally, a 

Japanese review suggests using 2,333 yen/hour for weekday automobile travel in 1999, which 

was 84 percent of the wage rate.9 

 There is considerable evidence that value of time rises with income but less than 

proportionally. The easiest way to summarize this issue is in an elasticity of value of time with 

respect to income. Wardman (2004), using a formal meta-analysis, finds that elasticity to be 0.72 

when income is measured as gross domestic product per capita. Wardman’s (2001) meta-analysis 

focuses on how value of time depends on various trip attributes. There is a small positive 

relationship (elasticity 0.13) with trip distance, a 16 percent differential between commuting and 

leisure trips, and considerable differences across modes, with bus riders having a lower than 

average value and rail riders a higher than average value – possibly due to self-selection by 

speed.  Most important, walking and waiting time are valued much higher than in-vehicle time – 

a universal finding conventionally summarized as 2 to 2-1/2 times as high, although Wardman 

finds them to be only 1.6 times as high. 

 One unsettled methodological issue is an apparent tendency for SP data to yield 

considerably smaller values of time than RP data. Brownstone and Small (2005) find that SP 

                                                 
8 Mean gross hourly earnings for the UK were £6.79 and £7.07/hour in spring 1994 and 1995, respectively. Source: 
National Statistics Online (2004, Table 38). 

9 Japan Research Institute Study Group on Road Investment Evaluation (2000), Table 3-2-2, using car occupancy of 
1.44 (p. 52). Average wage rate is calculated as cash earnings divided by hours worked, from Japan Ministry of 
Health, Labour and Welfare (1999). 
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results for VOT are one-third to one-half the corresponding RP results. One possible explanation 

for this difference is hinted at by the finding from other studies that people overestimate the 

actual time savings from the toll roads by roughly a factor of two; thus when answering SP 

survey questions, they may indicate a per-minute willingness to pay for perceived time savings 

that is lower than their willingness to pay for actual time savings. If one wants to use a VOT for 

purposes of policy analysis, one needs it to correspond to actual travel time since that is typically 

the variable considered in the analysis. Therefore if RP and SP values differ when both are 

accurately measured, it is the RP values that are relevant for most purposes. 

 From this evidence, it appears that the value of time for personal journeys is almost 

always between 20 and 90 percent of the gross wage rate, most often averaging close to 50 

percent. Although it varies somewhat less than proportionally with income, it is close enough to 

proportional to make its expression as a fraction of the wage rate a good approximation and more 

useful than expression as an absolute amount. There is universal agreement that value of time is 

much higher for travel while on business, generally recommended to be set at 100 percent of 

total compensation including benefits. The value of walking and waiting time for transit trips is 

probably 1.6 to 2.0 times that of in-vehicle time, not counting some context-specific disutility of 

having to transfer from one vehicle to another. 

 There has been far less empirical research on value of reliability (VOR). Most of it has 

been based on SP data, for at least two reasons: if is difficult to measure unreliability in actual 

situations, and unreliability tends to be correlated with travel time itself. However, a few recent 

studies, including Lam and Small (2001), have had some success with RP data. Brownstone and 

Small (2005) review several such studies in which unreliability is defined as the difference 

between the 90th and 50th percentile of the travel-time distribution across days, or some similar 

measure; in those studies, VOR tends to be of about the same magnitude as VOT. One of those 

studies, using data from the high-occupancy toll (HOT) lane on State Route 91 in the Los 

Angeles region, finds that roughly two-thirds of the advantage of the HOT lane to the average 

traveler is due to its lower travel time and one-third is due to its higher reliability.10 In 

prospective studies of a possible £4 cordon toll for Central London, May, Coombe and Gilliam 

(1996) estimate that reliability would account for 23 percent of the benefits to car users. 

                                                 
10 An updated version of that study is Small, Winston, and Yan (2005). 
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9.6 Conclusions 

The methods discussed here have spread far beyond transportation to applications in labor 

economics, industrial organization, and many other fields. The field of marketing has taken them 

up with special vigor, adapting and refining them to match the kinds of data often elicited in 

marketing surveys. Some of the refinements involve more sophisticated models, sometimes 

made feasible by large volumes of data. Others involve stated preference (SP) methodology, 

which is prevalent in marketing studies. Researchers have paid considerable attention to using 

information on the demand for product characteristics to forecast the reaction to new products. 

 In these and other ways, methods from travel demand analysis can bring information to 

bear on how consumers value the characteristics under consideration in design problems, and 

how the demand for products will depend on those design decision. There is ample room for 

specialists in design to both use and contribute to the tools described here. 
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