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Abstract 
 
The bottleneck model of congestion with endogenous scheduling has become a standard tool of 
transportation economics. It provides surprising insights about the time pattern of congestion, 
optimal pricing, and many distinct inefficiencies of unpriced equilibria including wrong 
departure order with heterogeneous preferences, wrong allocation of users across links of a 
network, and wrong order in which parking spaces are occupied. It illuminates the roles of 
travel-time reliability, traffic information, and extreme congestion (“hypercongestion”). It has 
been developed for use in practical network planning. Future use will probably emphasize 
greater realism, leading to more practical applications. 
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The Bottleneck Model: An Assessment and Interpretation 

Kenneth A. Small 

 

 The so-called “bottleneck model”, as formulated by Vickrey (1969) and elaborated 

especially in papers by Arnott, de Palma, and Lindsey (hereafter ADL),1 is arguably the most 

fundamental advance in congestion analysis since the static congestion model of Walters (1961). 

It has provided significant new insights and computational tools for understanding many features 

of congestion. These insights include the nature of time-of-day shifts (e.g. the “shifting peak” 

phenomenon), various inefficiencies in unpriced equilibria, the temporal pattern of optimal 

pricing, and some surprising effects of pricing on travel patterns and travel costs. The model 

sheds new light on such diverse matters as residential location, parking, metering to improve 

traffic flow, and agglomeration. It suggests fruitful ways to analyze travel-time reliability, and to 

understand a form of extreme congestion known as “hypercongestion”, in which traffic flow and 

speed covary positively. Furthermore, the model has a reduced form that is a special case of the 

Walters static model, making it possible to apply the many insights into congestion that have 

arisen from that more widely known approach. 

 In this brief review, I comment selectively on the nature and implications of this 

pioneering model, as well as its likely further use in research. Along the way, I consider how the 

model has shaped literature in economics and engineering, and how it is likely to do so in the 

future. 

 As part of a special issue honoring Richard Arnott, I cannot resist a personal note about 

how this model was developed. In the early 1980s, I was visited by Arnott, who enthusiastically 

described ambitious plans for collaboration with a visiting colleague and a former student (de 

Palma and Lindsey, respectively). He proceeded to outline a ten-year research program that 

would systematize the Vickrey model, create a transparent notation for it, provide an elegant 

derivation of key properties, and work out a number of generalizations. I could not imagine 

projecting a research agenda that far ahead, much less naming the collaborators; thus I tried to 

encourage him in the overall project while lowering his expectations to ones that seemed more 

1 The model was developed in a number of papers by ADL and others. Two of the most definitive early statements 
are ADL (1990, 1993a). 
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realistic. But his vision proved uncannily accurate: the resulting papers demonstrate these 

authors’ success in bringing Arnott’s (and perhaps Vickrey’s) initial ideas to fruition, as well as 

in developing numerous and sophisticated additional directions. And as we shall see, this 

progress has engaged many other talented researchers as well. 

 

1. The bottleneck model in essence 

 

 The model is a combination of two features, only one of which is indicated in its name. 

Congestion takes the form of queuing behind a simple deterministic bottleneck, usually 

interpreted as the entrance to a central business district (CBD). Demand results from a particular 

form of scheduling preferences: scheduling costs, which are piecewise linear in the discrepancy 

between desired and actual arrival time, are traded off against travel-time costs. 

 The supply side (i.e. congestion formation) accounts for the model’s name; but it is the 

demand side that is more central to its importance. This is because endogenous scheduling 

relaxes the fundamental limitation of static models and opens an entire realm of behavior 

(endogenous scheduling shifts) to new understandings.  

 It is also the demand side that is most manifestly unrealistic, at least in the model’s usual 

formulation. Demand consists of “α – β – γ” preferences, in which travelers trade off travel time, 

valued at α per unit, against scheduling inconvenience. For the latter, there is a single 

predetermined preferred time t* for arrival at the end of the bottleneck; deviations from arrival at 

t* result in scheduling costs equal to β per unit of arrival time if early (i.e. arrival prior to t*) and 

to γ per unit if late. Sometimes t* is replaced by an interval of indifference (as in Ben-Akiva et al. 

1984), with relatively minor effects on results. 

 What the “bottleneck” technology contributes is a practical way to close the model, 

thereby enabling equilibrium results to be computed, evaluated, and compared across different 

situations. This description of congestion has proven to be simpler and more amenable to 

analytical results than the flow-congestion approach pioneered by Henderson (1974) and updated 

by Chu (1995); flow congestion, while more flexible, creates a model that is exceedingly 

difficult to solve without making significant approximations such as that the speed for an entire 

trip depends on conditions at just one point in time. 
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 Numerical simulations of the bottleneck model typically rely on any of the numerous 

estimates of “value of time” for α, and on one of the few empirical estimates of scheduling 

parameters, typically that of Small (1982). Small’s results are often characterized in 

approximation as supporting ratios β/α=0.5 and γ/α=2. These estimates satisfy the condition 

β<α, which is important for existence of equilibria and thus is often assumed. 

 The assumption of a single universal preferred exit time from the bottleneck is curious. A 

moment’s thought suffices to realize that even if everyone wanted to be at work at the same time 

(itself a gross simplification), the diversity of destinations would prevent them from wanting to 

exit the bottleneck at the same time. Interestingly, this homogeneity assumption was not made in 

the seminal paper by Vickrey (1969), nor in an important generalization of it by Newell (1987).2 

Rather, Vickrey assumed a uniform distribution of t*, which does not greatly complicate the 

analysis. Why, then, did ADL and nearly all subsequent elaborations of the model choose to 

assume homogeneity in preferred arrival time?3 Probably because it facilitates easier and more 

transparent generalizations, for example to two bottlenecks in a network or to random capacity; 

and because it greatly simplifies welfare analysis, as it implies that everyone achieves the same 

utility in equilibrium. Thus the homogeneity simplification has a significant advantage for 

developing theory. Nevertheless I believe further progress will require its removal, especially for 

empirical application. It is encouraging that generalizations to more realistic distributions of 

preferred arrival times appear to be tractable, at least for the simplest versions of the model. 

 

2. Basic Insights 

 

 The model calls attention to several features of equilibria with traffic congestion, some of 

which are surprising and many of which survive, in modified form, when assumptions are 

relaxed. 

2 See Small and Verhoef (2007), Section 4.1.2. Other early derivations of certain properties include those in 
Hendrickson and Kocur (1981), Fargier (1983), Ben-Akiva et al. (1984), Daganzo (1985), and Braid (1989).  

3 A few authors have assumed stochastic rather than deterministic demand, which implies a different kind of 
heterogeneity in desired arrival time. These include Ben-Akiva et al. (1984), Ben-Akiva et al. (1986), and the 
developers of the METROPOLIS model discussed later in this paper. Stochastic demand greatly facilitates finding 
the unique equilibrium via an adjustment process. 
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 Time pattern of congestion. Perhaps the most fundamental feature is that the time pattern 

of congestion has a shape determined mainly by scheduling preferences. Bottleneck capacity 

affects the duration and severity of the congested period, but not the rate at which queuing time 

rises or falls. This result depends on an equilibrium condition. If users are competitive, in the 

sense of each taking the travel environment as given, then each user will choose a schedule that 

equates the marginal temporal variation in scheduling cost to that in travel-time cost. That is, 

departing a little earlier must produce changes in scheduling and travel-time costs that balance 

each other.4 For example, with α – β – γ preferences, a traveler arriving before t* will choose a 

particular departure time (i.e. time entering the queue) such that the marginal scheduling cost β 

of traveling still earlier is balanced by an identical marginal travel-time cost saving. Applying 

this condition at each point determines the shape of the function plotting travel delay against 

departure time: namely, it must rise with slope β/(α-β) and then fall with slope -γ/(α+γ).  

 Working backward from this and a consistency condition that everyone is accommodated 

yields the function describing the arrival rate over time. Note that the nature of congestion (the 

supply side) first enters the calculation in this consistency condition. The equilibrium is unique, 

as proved by Daganzo (1985) with a more general distribution of desired arrival times. 

 Costs of congestion. Even more surprising, in unpriced equilibrium the aggregate costs 

due to congestion—namely travel-time (queuing) and scheduling costs—are each completely 

independent of value of time α, so long as α is positive. If the value of time rises, departures 

become less clustered as travelers try harder to avoid congestion; but arrival times, which are 

constrained by bottleneck capacity, are unaffected and so are aggregate scheduling and travel-

time costs.  

 Furthermore, exactly half these aggregate costs are travel-time costs, the rest being 

scheduling costs—although this ratio is different for different individuals. So not only does the 

value of time have no effect on aggregate user cost of congestion, half of those costs are 

scheduling and thus not even measured directly by observing travel time. This is a drastic 

4 Here I adopt the terminology that is most common in the economics literature on this model, in which “departure” 
means departure from home, and “arrival” means arrival at work. Given the usual simplification of ignoring travel 
time to or from the bottleneck, this “departure time” is thus the time of arrival at the back of the queue, and “arrival 
time” is the time of departure from the bottleneck. Therefore, authors occasionally interchange the meanings of 
“departure” and “arrival” relative to that here and in all of ADL’s papers. One solution, adopted by Small and 
Verhoef (2007), is to call them “queue entry” and “queue exit,” respectively. 
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revision of intuition of and normal rhetoric regarding congestion, both of which focus on the cost 

of time wasted while driving slowly. Of course, the exact 50-50 split applies only in the simplest 

version of the model, but the fundamental point remains: observing travel time captures only one 

of two major sources of congestion cost. 

 Effects of pricing. Another insight is that optimal time-varying pricing completely 

eliminates travel-time costs, while having no effect on scheduling costs. It accomplishes this by 

using the toll to mimic the pattern of travel-time costs that would occur in unpriced equilibrium. 

The toll thereby maintains the equilibrium arrival pattern (which cannot be improved upon due to 

limited bottleneck capacity) with a price incentive instead of a travel-time incentive. This was 

the main point stressed by Vickrey (1969). Given the result stated in the previous paragraph, it 

implies that pricing reduces aggregate travel costs (travel time plus scheduling) by exactly half. 

 Note that with a pricing regime in place, a casual observer might falsely think that 

because there is no longer any congestion, pricing is no longer appropriate. This is yet another 

paradoxical implication of the bottleneck model, at variance with most static models.5 

 Static model as reduced form. Finally, consider the reduced form of the model in which 

an optimal time-varying congestion toll is applied; it has an arbitrary constant which can be 

chosen at any convenient value without affecting results, presuming the total number of travelers 

N is fixed. A natural choice sets the toll at zero outside the period of congestion, ensuring that it 

is continuous. The time-varying toll combines with time-varying scheduling cost to produce a 

constant generalized price (toll plus travel cost). This generalized price turns out to equal the 

marginal aggregate cost of adding another traveler to the system, given that the toll pattern is 

adjusted accordingly and that everyone then readjusts. This marginal aggregate cost is rising in 

total quantity demanded N: specifically, it is proportional to N. Thus, looked at in aggregate, the 

problem looks exactly like a static Walters model in which congestion technology has travel time 

rising proportionally to travel volume. Furthermore, the average level of the time-varying price 

in the bottleneck model is exactly the marginal-cost price called for in the static model. This 

5 There is one other such case, namely a static model based on deterministic bottleneck congestion. Then optimal 
pricing rations traffic flow to exactly the bottleneck capacity, so that no congestion occurs and yet marginal cost 
exceeds average cost because equilibrium occurs at a point where the marginal cost curve is vertical. 
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insight, due to ADL (1993a), links the dynamic and static models while generalizing the dynamic 

model to price-sensitive total demand.6  

 This finding implies that the self-financing theorem of Mohring and Harwitz (1962), 

derived from a static model, also applies here. Optimal pricing generates just enough revenue to 

cover long-run investment cost provided there are no economies or diseconomies of scale in 

providing capacity.7 

 Remarkably, the results of the two previous paragraphs apply even to a flat toll or an 

otherwise constrained time-varying toll, so long as the toll level can be chosen optimally. The 

reason is that the generalized price is constant in time, no matter what the pricing regime; so the 

price level can be set equal to the (constant) social marginal cost of adding a traveler to the 

system. 

 It is worth noting that with the recognition of realistic degrees of randomness in 

conditions or in decision-making criteria, neither the static nor dynamic equilibria described here 

will ever be realized precisely. As noted by de Palma et al. (1997), they are rather benchmarks 

which are useful so long as conditions change only slowly.  

 

3. Forms of inefficiency 

 

 One of the primary paths of model development has been to explore situations that 

produce additional margins of behavior for which private decisions may be inefficient. I discuss 

several of these situations in this section; see also ADL (1998) and de Palma and Fosgerau 

(2011). 

6 The generalization to elastic total demand was also done earlier by Ben-Akiva et al. (1986). 

7 More generally, with optimal pricing the ratio of revenue to capacity cost is equal to the elasticity of capital cost 
with respect to capacity. This result relies on the fact that bottleneck queuing meets a condition that may be viewed 
as constant returns to scale in producing congestion: namely, that equi-proportional changes in number of travelers 
and capacity do not affect travel time. See Small and Verhoef (2007), Sects. 5.1.1-5.1.2. 
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3.1. Heterogeneity in value of time and scheduling preferences 

 

 First, suppose there are two types of travelers, differing not in their desired arrival times 

(as discussed earlier) but in their scheduling cost and travel-time cost parameters (ADL 1988, 

1994; Small and Verhoef 2007, pp. 133-134). Specifically, suppose they differ in the value of 

time α and in the parameters β and γ that depict how utility varies with arrival time in the cases 

of early and late arrival, respectively. The discussion in the previous section implies that the 

equilibrium departure pattern will now have two different slopes where it rises, and two different 

slopes where it falls; the two groups of travelers will allocate themselves accordingly. Will the 

shape of this pattern be second-best optimal? (That is, will it maximize welfare given that 

queuing is not eliminated via pricing?) 

 Generally not. Travelers will sort themselves by their ratios β/α and γ/α, those with the 

lower ratios traveling toward the outside of the rush hour. But an omniscient planner would 

instead sort them by the absolute values of β and γ. If those two orderings differ, the departure 

order of the two groups in unpriced equilibrium is inefficient. As a result, optimal pricing not 

only eliminates all travel-time costs, it also reduces aggregate scheduling costs by inducing those 

with lower costs of schedule delay to choose arrival times farther from the (common) desired 

arrival time. 

 Welfare results are derived by ADL (1994) for several specific forms of parameter 

heterogeneity—e.g. in ratio γ/β or in desired arrival time t*—with an emphasis on the 

distribution of benefits from a toll or a capacity expansion. Heterogeneity in preference 

parameters is extended to continuous distributions by Newell (1987), by van den Berg and 

Verhoef (2011), and in the METROPOLIS model described in a subsequent section. 

 Remarkably, user heterogeneity by itself does not destroy the self-financing result for 

optimal tolls.8 However, self-financing no longer applies when heterogeneity is combined with a 

constraint on the time-varying toll, such as that it be a flat toll (Arnott and Kraus 1995, 1998). 

The reason is that a flat toll, combined with heterogeneous users, allows some queuing. The 

external cost of such queuing may vary by user type, and this destroys the self-financing result. 

8 This was earlier shown by Mohring (1970) in a static model, for the case of separate tolls for two time periods. 
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3.2. Networks 

 

 Instead of a single bottleneck, one might have two or more bottlenecks in series or 

parallel. For example, if travelers differ in which bottleneck(s) they pass on their journey to 

work, the equilibrium can be such that an upstream bottleneck is actually helpful in alleviating 

the consequences of non-optimal departure times of those using a downstream bottleneck. Two 

different configurations with this property are studied by Kuwahara (1990) and ADL (1993b). In 

both, aggregate travel costs can sometimes be reduced by purposefully restricting the upstream 

flow or the downstream queue priority. This situation is an example of a Braess paradox, in 

which building or expanding a link in the network can raise aggregate congestion costs. It also 

illustrates a potential value of entry-ramp metering—completely aside from the usual motivation 

of stabilizing flow through the bottleneck. 

 The situation is even more interesting if there is also heterogeneity in user-cost 

parameters. ADL (1992) consider two user groups and two bottleneck in parallel. They show that 

equilibrium may be any of three types: the two user groups can travel together (sharing both 

roads), they can be partially separated (one group using one road, the other dividing among the 

two roads), or they can be fully separated. Similarly, the optimum may be any of these same 

three types; but the configuration of an equilibrium need not match that of the corresponding 

optimum. Thus, yet another welfare gain from pricing or some other intervention may be to 

better allocate diverse users across the two parallel roads. 

 Parallel bottlenecks provide an opportunity to study tolled express lanes, the primary 

form of congestion pricing in the United States. Braid (1996) obtains the second-best optimal 

time-varying toll on one bottleneck when a parallel bottleneck is unpriced. Bernstein and Muller 

(1993) focus on the policy tradeoff between extracting revenue from the tolled bottleneck (e.g. to 

facilitate privatization) versus operating it efficiently—the latter usually calls for a toll much 

smaller than the revenue-maximizing one. Van den Berg and Verhoef (2011) consider 

continuously parameterized heterogeneity and focus on the distribution of benefits from such 

second-best pricing. They find that users are no longer indifferent between the equilibrium and 

priced situations (when revenues are not returned to them)—in fact, a majority benefit from 
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pricing in numerical simulations. Generally, these authors find that second-best pricing produces 

a pattern of benefits quite different from that obtained in static models. 

 Yang and Meng (1998) analyze a more general network of bottlenecks, with travelers 

distributed among various origins and destinations. Those in each origin-destination pair have 

α – β – γ scheduling preferences with parameters unique to that destination. The authors find the 

system optimum for such a situation, along with required tolls, by applying network tools to a 

“space-time expanded network.” It seems that this approach could identify many practical 

situations where optimal pricing takes interesting and unexpected forms. 

 This literature generally assumes a “vertical queue,” i.e. it ignores any consequences of 

the spatial extent of a queue—in particular, it does not allow for “spillback” in which a queue at 

one intersection interferes with traffic through another. An exception is the METROPOLIS 

model reviewed in Section 4. Another approach to dealing with spillbacks, which can be 

especially virulent forms of congestion, is to model them aggregately, a topic considered in 

Section 3.6.  

 

3.3. Residential location 

 

 In the basic bottleneck model, an optimal time-varying price produces no change in 

utility or behavior, prior to redistribution of revenues. Therefore, any changes in residential 

location or other land-use incentives would come only from such redistribution. Arnott (1998) 

formalizes this result in the context of two locations, a suburb and a downtown area. 

 But when the spatial extent of trips is more varied, more can be said. Fosgerau and de 

Palma (2012) extend the bottleneck model to incorporate a non-zero free-flow time to the 

bottleneck, the free-flow time being heterogeneous and interpreted as an indicator of residential 

distance from a central bottleneck. Importantly, they also use a more general model of 

preferences, in which utility is a general concave function of departure time and arrival time. 

They show that under reasonable conditions, travelers sort themselves such that those living 

farthest away arrive latest. The optimal price removes the queue, and it preserves this sorting. 

However, it does not preserve the actual clock times of arrivals. Nor does it leave all travelers 

indifferent: on the contrary, those living farthest away benefit and those living closer are hurt, 

prior to redistribution of revenues. This occurs because the arrival period shifts earlier, which 
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disadvantages those who previously arrived early in order to beat the queue (they live close by), 

but helps those who previously arrived at the end of the rush hour (they live far away). This 

result could affect the politics of introducing time-varying pricing at a point, or on a cordon, that 

is crossed by travelers from varied distances. 

 What about the other direction of causation: can scheduling behavior influence land-use 

decisions? Gubins and Verhoef (2014) consider this question within a version of the model in 

which scheduling preferences arise because spending time at different locations creates different 

rates of utility acquisition.9 Specifically, they use a particular form of utility that produces 

α – β – γ preferences: namely, spending time at home produces utility at a constant rate α, but 

spending time at work produces utility at rates that jump from (α–β) to (α+γ); the jump occurs at 

the desired arrival time. They then generalize these preferences so that the utility of spending 

time at home depends positively on the size of one’s residential lot, which is determined 

endogenously using the monocentric city structure that is standard in urban modeling. They then 

embed these preferences (summarized by X, the total subutility achieved from time spent at 

home and work) within an overall Cobb-Douglas utility function that also depends on numéraire 

consumption Q: specifically, U=XbQ(1-b). These modifications alter the usual first-order 

conditions relating travel time T or toll τ (in an equilibrium or optimum, respectively) to arrival 

time ta. In the standard model, those conditions are, in the case of early arrivals: 

 

  
α
β

=
∂
∂

at
T

; βτ
=

∂
∂

at
⋅ 

 

But in the extended model, the parameters on the right-hand sides of these expressions depend on 

lot size L. Furthermore, the derivative in the second expression acquires an additional factor 

accounting for the difference between subutility X and overall utility U. The result is: 
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T

a α
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=
∂
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∂
∂

1
)(βτ  

9 This insightful interpretation and generalization of preferences is postulated by Vickrey (1973) and developed 
thoroughly by Tseng and Verhoef (2008). Among other implications, this formulation causes value of time to vary 
by time of day in all but very special cases such as when it reduces to α – β – γ preferences. 
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where quantities β(L) and α(L) express the implications of lot-size dependence for the disutilities 

of early arrival and of time spent traveling, respectively. Since X and Q are solutions to the 

consumer’s choice problem, and thus also vary, this formulation introduces two changes to the 

equilibrium conditions; both cause the marginal effects of arrival time to no longer be constant, 

implying that travel time and optimal toll are no longer piecewise-linear functions of clock time.  

 Another result from the Gubins-Verhoef model is that introducing congestion pricing 

causes lot size L to expand, because pricing permits more time to be spent at home and this 

enhances the incentive for a larger lot. This means that introducing pricing will cause the city to 

expand, becoming less dense—the exact opposite of the result when the usual static model of 

congestion is applied to a monocentric city. This also occurs using a more general formulation of 

utility (Fosgerau and Kim 2014).  

 One important feature of the static model is suppressed in the usual bottleneck 

formulation of dynamic congestion: namely, some congestion may also occur on the road 

connecting further-out locations to the bottleneck. In that case, an optimal toll pattern would 

penalize travel from such locations in order to reduce outlying congestion, presumably causing 

the city to become more compact just as in the static monocentric model. On the other hand, 

work locations are partially decentralized in reality, and pricing may make them spread out more, 

taking residences with them. Thus it remains to be seen what will be the balance of centralizing 

and decentralizing tendencies from pricing once these and other realistic features of urban 

structure are considered. 

 

3.4 Parking 

 

 Parking has been studied by introducing another distance into the model. ADL (1991a) 

use a setup in which travel through a bottleneck is followed by a choice of where to park, 

whether close to or far from the (common) destination. They show that the unpriced equilibrium 

is inefficient in the order in which parking spaces are occupied. In equilibrium, under reasonable 

conditions, the first travelers to pass through the bottleneck choose the spaces closest to the 

CBD. This causes later arrivals to have to allow extra time for a longer walk from parking space 

to CBD. This in turn shifts the entire travel pattern earlier than it needs to be. An optimal 
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allocation instead has the earliest travelers park farthest from the CBD, so that parking spaces fill 

from the outside in.10 

 This optimum cannot be achieved with time-varying pricing of the bottleneck alone. 

Instead, it also requires a parking-price schedule that makes close-in spaces more expensive. 

This schedule is quite simple: it is piecewise linear with a steep slope for early arrivals, a less 

steep one for late arrivals.  

 By contrast, a parking-price schedule alone, even when it does not vary over time, can 

induce substantial queue reduction while also inducing the correct parking order. In fact, it can 

eliminate the queue entirely, although doing so is not second-best optimal because the steep 

parking-price schedule would induce people to arrive too early in order to get cheaper parking 

spaces. The second-best optimal parking-price schedule (conditional on no road pricing) is 

intractable to derive, but an intuitive schedule is presented by ADL (1991a) which, in numerical 

simulations, performs comparably to and often better than a policy of road pricing alone. It 

vastly outperforms parking fees set competitively by private operators. Furthermore, as the 

authors note, if only one of the two kinds of pricing is to be adopted, a spatially varying parking 

price has considerable administrative advantages, is less likely to be regressive in impact, and is 

a more familiar policy relative to a congestion toll. 

 This model is remarkable in that the analytic framework of the bottleneck model carries 

over quite intuitively, albeit with some additional complexity, to the simultaneous analysis of 

congestion and parking. Other work on parking suggests that this will not be the case when other 

aspects of parking, such as cruising to find an open parking space, are taken into account. 

 One may also ask whether a time-varying parking fee, unrelated to distance, might 

substitute for an optimal toll. Fosgerau and de Palma (2012) show that such a fee, when 

constrained to be non-decreasing in arrival time, can reduce queuing and shorten its duration but 

cannot eliminate queuing entirely. In the case of α – β – γ preferences, the fee achieves a welfare 

gain that is a fraction β/(β+γ) of the maximum welfare gain from an optimal toll. Queuing can be 

completely eliminated, however, if an evening commute is considered, with parking fee also 

depending on evening departure time and with sufficient dependence (e.g. via fixed work-day 

10 Recall that schedule delay costs for early arrivers are linear in arrival time. If they were a convex function instead, 
this conclusion would be modified. 
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duration) between the morning and evening commutes. This is one of the very few results in the 

literature to consider the morning and evening commutes simultaneously, and suggests that such 

consideration may turn up interesting new possibilities for welfare-enhancing policies. 

 There are many such other aspects of parking: duration, search, information, reserved 

permits, and imperfect competition among private providers, to name a few. Search for parking, 

known as cruising, interacts especially strongly with congestion (Arnott and Inci 2006) and is 

often credited with responsibility for a large portion of downtown travel times. A thorough 

review of the economics of parking is carried out by Inci (2014). In general, results in parking 

models seem sensitive to the specific assumptions made about these features as well as about 

congestion technology. While the bottleneck model is one useful way to view parking, it is far 

from the only one and it is not yet clear whether any one approach will prove more generally 

useful than others.  

 

3.5. Reliability and information 

 

 When capacity or other factors affecting speed are uncertain, travelers are subjected to 

unreliability: that is, they cannot predict precisely how long their trip will take. In a model with 

endogenous scheduling, this greatly complicates the decision process because travelers must now 

consider not just the most likely travel cost but an expectation of travel cost over varying 

conditions. Indeed, the most prominent theoretical model of how consumers value reliability 

applies the same α – β – γ preferences as those used in the bottleneck model.11 

 Since reliability involves lack of information about how a stochastic process is realized, 

its analysis naturally invites considering the effects of information provision. Travelers may 

obtain partial or full information about travel conditions before or during a trip, with different 

effects on their choices. This creates a rich environment for considering all kinds of information 

technologies. It also invites consideration of the adjustment process, as travelers respond to new 

conditions and/or information through trial, error, and learning; and of how the fraction of 

11 Noland and Small (1995). Fosgerau and Karlström (2010) show how to calculate results for a quite general 
distributions of the uncertain travel time. Fosgerau and Engelson (2011) extend the theory to scheduling preferences 
arising from different rates of utility acquisition at different locations. For reviews of reliability, see Li et al. (2010) 
and Small (2012). 
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travelers who receive information affects the adjustment process and the ultimate equilibrium. 

For example, day-to-day adjustment has been studied both theoretically and in driver simulation 

laboratories (de Palma et al. 1997; Mahmassani and Jayakrishnan 1991). Needless to say, studies 

of these phenomena have major implications for the economics of advanced traveler information 

systems. 

 Given α – β – γ preferences as a tool to derive aversion to unreliability, adding bottleneck 

queuing is one natural way to complete a model of how reliability develops in equilibrium. 

Doing so can be quite enlightening. Fosgerau (2010) uses the bottleneck to explain rigorously 

what has been observed empirically by Small et al. (2005): namely, that unreliability does not 

track congestion exactly over the course of a rush hour, but rather peaks later and lasts well 

beyond the time when congestion has dissipated. This turns out to be important for empirically 

disentangling the disutilities of congestion and of unreliability.  

 ADL (1991b) are able to obtain strong and apparently robust results regarding 

information provision.12 They use a setup where drivers can choose between two parallel 

bottlenecks on their way to work, each with stochastic capacity. Expected travel costs are found 

to rise with the variance of capacities, as intuition suggests. However, costs vary in complex 

ways with the amount of information provided. Full information is beneficial, but partial 

information may be harmful by causing drivers to switch to a time or route with a smaller 

expected cost but a greater social marginal cost. For example, as shown explicitly by 

Mahmassani and Jayakrishnan (1991), drivers may over-react by switching in large numbers to a 

less congested route, causing it to become more congested than the route they are switching 

from.13 

 

3.6. Hypercongestion 

 

 It is possible for types of traffic equilibria to occur in which flow rates vary inversely 

with incoming traffic volume, a situation known as “hypercongestion.” The inefficiency of 

12 Similar results are obtained ADL (1999), who also derive implications of both reliability and information for 
optimal capacity provision. 

13 In addition drivers may become oversaturated with information and make bad decisions, even for themselves, as a 
result: see Ben-Akiva et al. (1991). 
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congestion is then especially great because the capacity of the system is effectively reduced just 

when it is most needed. Small and Chu (2003) argue that hypercongestion is inherently dynamic 

because it is unstable, existing only as a temporary situation due to a surge in demand. Thus, it is 

natural to analyze it using a dynamic model. 

 A few papers have used the bottleneck model for this purpose, by postulating that 

bottleneck capacity varies inversely with the length of the queue.14 Indeed, such a model is 

essentially equivalent to the kind of “macroscopic fundamental diagram” analyzed by Carlos 

Daganzo and several coauthors, in which a functional relationship between speed and density 

applies to areawide averages within a downtown area.15 Details depend on specific assumptions 

made about queuing; but all analyses agree that an optimal price would eliminate the queue and 

thus maintain capacity at its highest possible level, thereby eliminating multiple sources of 

inefficiency. 

 The treatment of a variable-capacity bottleneck by Fosgerau and Small (2013) is closest 

to the original bottleneck model, in that it assumes a first-in-first-out (FIFO) queuing discipline. 

While FIFO is usually a realistic assumption, it is not necessarily so when “capacity” refers to a 

macroscopic property of an area containing a dense street network. However, it is made more 

realistic in this model because the length of the queue affects bottleneck capacity, and therefore 

later entrants to a queue can affect the delay experienced by earlier entrants—just as in a real 

street network. In this respect, the FIFO assumption is perhaps less restrictive than assumptions 

made by other treatments of hypercongestion, which typically rely on flow congestion and so, as 

noted earlier, require that a given vehicle’s speed depends solely on the density of vehicles at a 

single point in time. 

 In equilibrium, the cumulative departure and arrival patterns generated by the Fosgerau-

Small model of variable bottleneck capacity resemble those from applications of the standard 

bottleneck model with heterogeneity. The welfare gains, however, can be dramatically greater 

because pricing can eliminate the periods of limited capacity. Furthermore, the model naturally 

accommodates an analysis of flow metering as an alternative policy. Effectively, metering 

14 Yang and Huang (1997), Geroliminis and Levinson (2009), Fosgerau and Small (2013). 

15 See especially Daganzo (2007) and Geroliminis and Daganzo (2008). Small and Chu (2003) also define a 
macroscopic fundamental diagram, although without using that terminology, and Ardekani and Herman (1987) 
estimate one empirically. 
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consists of moving part of the queue outside the area where it affects capacity. This draws 

attention to the tradeoff, in determining metering policies, between the advantages of 

maintaining full bottleneck capacity and the costs of maintaining a separated queue, which may 

require some very expensive storage space. 

 

3.7. Other topics 

 

 Insights from the bottleneck model extend to many other areas of inquiry. I will just 

mention three here.  

 Airport runways. Airplanes are subject to queuing for takeoff and landing slots, due to 

limited runway capacity. A prominent line of analysis postulates bottleneck congestion in order 

to analyze such situations (Daniel 1995). One recent paper even addresses the effects of various 

policies using a model very similar to the “bottleneck model” of roadway congestion (Silva et al. 

2014).  

 Work hours. Travel patterns during morning and afternoon commuting hours can be 

interrelated through factors that influence the duration of a work day (Zhang et al. 2005). This 

implies a two-way causality between labor-market choices and scheduling choices. 

 Agglomeration. The advantages of having many people engaged simultaneously in 

activities is well recognized as an important part of urbanization and innovation. Fosgerau and 

Small (2014) make a case that this applies to both leisure and productive activities, and show that 

such agglomeration can endogenously produce the Vickrey-like scheduling preferences that are 

usually taken as exogenous. Furthermore, making preferences endogenous in this way results in 

the bottleneck model yielding quite different predictions. 

 All these topics can be analyzed with other models, but the bottleneck model has proven 

insightful for generating valuable and often unexpected insights. 

  

4. Applications to real networks: The METROPOLIS model 

 

 André de Palma and several colleagues have developed a model, known as 

METROPOLIS, whose applications to date have used the usual components of the bottleneck 

model, but applied separately to the various links in the network and to different origin-
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destination pairs. Thus there is heterogeneity in cost parameters, including desired arrival time. 

METROPOLIS also includes additive stochastic heterogeneity in the form of a continuous logit 

choice among departure times. De Palma et al. (1997) and De Palma and Marchal (2002) provide 

readable descriptions, including details on how it can be calibrated in order to analyze a real city. 

 The model is solved using microsimulation on the demand side, but like the bottleneck 

model itself is “mesoscopic” in its description of congestion: specifically, an individual vehicle’s 

speed depends on total number of vehicles ahead of it on the same link. The model does not 

require that this dependence be that of a point bottleneck, although the model’s developers have 

found that to be the form of congestion that works best. METROPOLIS also does not impose an 

analytical equilibrium as its solution; rather, it follows an iterative process based on a heuristic 

model of day-to-day behavioral adjustments, the latter informed by laboratory experiments.  

 METROPOLIS allows for a number of add-on functions such as response to uncertainty 

in and information about traffic. It has been calibrated for a few different cities or regions, 

including Geneva and Paris (De Palma et al. 1997, Saifuzzaman et al. 2012).  

 The model has also been applied to small artificial networks to study particular questions. 

Two studies by de Palma et al. (2005a, 2005b) illustrate this nicely. Both papers use the network 

structure to analyze toll cordons (where a toll is imposed when crossing a ring surrounding a 

CBD) and area charging (where a toll is imposed for any travel within the ring). They consider 

optimal tolls and two types of second-best tolls: a flat toll (just one level) and a step toll (two or 

more levels at different times). The first of these papers also considers a “third-best” policy, 

closely resembling policies actually used extensively in the United States, in which the toll is 

adjusted in order to just prevent queuing. The third-best policy is found to be very inefficient 

when implemented with flat tolls, in line with results by Small and Yan (1991) and Verhoef and 

Small (1994) using a static model; but it often performs quite well if implemented with dynamic 

tolls. 

 METROPOLIS has been implemented both with a “vertical” queue for each link, 

meaning the model does not account for the physical length of a queue, and with a “horizontal” 

queue in which case the queue can affect other links. This opens the possibility of using it to 

study hypercongestion. 

 

17 
 



5. What’s next? 

 

 The model reviewed here is a mature one, elaborated in many ways and widely known 

among specialists in transportation economics. Along with the static model of Walters (1961), it 

has become a standard tool for understanding congestion and predicting the results of policies or 

other factors related to it. What is the future of this line of analysis? What should it be? 

 The situation seems ripe for something with greater realism to take center stage in 

research: perhaps some alternative approach to hypercongestion. But the current bottleneck 

model is too well embedded and too important to intuition to simply fade away. Rather, we are 

more likely to see a process comparable to the displacement but not the replacement of the static 

model: the older model will remain an important base to which new results will be compared, 

and newer models will be more successful if they have the older one as a special case or as a 

reduced form. In this way, the rich set of insights the model has generated will continue to 

influence the thinking of transportation analysts, and will help them understand the underlying 

nature of new results. 

 At the same time, the current bottleneck model is likely to be developed so as to apply 

more accurately to real situations. As an example, Zhang et al. (2010) work out the results of a 

bottleneck whose capacity varies exogenously over time, in discrete steps. (Their paper does not 

address hypercongestion because capacity does not depend on flow rate or queue length.) This 

developmental process is analogous to the one by which various practical constraints have been 

added to the basic static model in order to analyze real-world pricing policies, generally within a 

“second-best” framework (Small and Verhoef 2007, Sect. 4.2). Thus, such development with the 

bottleneck model can be expected to further enrich the ability of transportation professionals to 

describe the results of real-world pricing proposals, especially their dynamic aspects. 

 By incorporating more realism, the bottleneck model will also continue to provide new 

theoretical insights, although these will be somewhat more specialized than up to now. It will 

gradually become more suitable for empirical work in economics and for planning applications. 

This will further increase its use in engineering, especially in practical design applications, and in 

analytical urban planning. Thus it is very likely that insights from the bottleneck model will 

influence urban design and transportation policy, as well as research in economics and 

transportation, for many years to come. 
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