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MOTORISTS’ PREFERENCES FOR TRAVEL TIME

AND RELIABILITY”

BY KENNETH A. SMALL, CLIFFORD WINSTON, AND JIA YAN

STATED PREFERENCE SURVEY QUESTIONNAIRE

EIGHT HYPOTHETICAL COMMUTING SCENARIOS were constructed for respon-
dents who travel on SR91. Respondents who indicated that their actual com-
mute was less (more) than 45 minutes were given scenarios that involved trips
ranging from 20–40 (50–70) minutes. An illustrative scenario follows:

SCENARIO 1
Free Lanes Express Lanes

Usual Travel Time: Usual Travel Time:
25 minutes 15 minutes

Toll: Toll:
None $3.75

Frequency of Unexpected Delays Frequency of Unexpected Delays
of 10 minutes or more: of 10 minutes or more:

1 day in 5 1 day in 20
Your Choice (check one):

Free Lanes � Toll Lanes �

DERIVATION OF LIKELIHOOD FUNCTION

Let ψ1 represent the vector of all nonrandom parameters. Let Θk
i represent

the value of the random parameters (except ηki ) for individual i in subsam-
ple k; the parameters Θi ≡ (ΘBR

i �Θ
BS
i �Θ

C
i ) have a joint distribution with den-

sity function f (Θi|ψ2). Define the choice variable as ykit = 1 if the express lanes
are chosen and 0 otherwise. The likelihood function of our model is then
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where i runs through all individuals; k runs through the one or two samples
in which that individual appears; t runs through all responses for that in-
dividual and subsample (up to eight when k = SP and just one otherwise);
and P(ykit |ψ1�Θi), the individual’s conditional likelihood, takes the binary logit
form. With integration replaced by Monte Carlo simulation, we obtain the sim-
ulated likelihood function
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where Θr
i is a random draw from f (Θi|ψ2).

Lee (1992) and Hajivassiliou and Ruud (1994) show that under regularity
conditions, the parameter estimates obtained by maximizing the simulated
likelihood function are consistent when the number of replications rises at
any rate with the sample size, and are asymptotically normal and equivalent
to maximum likelihood estimates when the number of replications rises faster
than the square root of the sample size.

DESCRIPTIVE STATISTICS

Table A.I shows descriptive statistics, including some variables omitted from
the corresponding table in the paper. The distributions of the RP sample’s
commuting times and route share are close to the ones in the Cal Poly data and
in other survey data collected by University of California at Irvine in 1998 (Lam
and Small (2001)). Our sample’s median income (approximately $46,250) is
higher than the average incomes in the two counties where our respondents
lived ($36,189 and $39,729 in 1995, as estimated by the Population Research
Unit of the California Department of Finance).

We estimate the average wage rate to be about $23 per hour, as follows.
Data from the U.S. Bureau of Labor Statistics (BLS) for the year 2000 record
the mean hourly wage rate by occupation for residents of Riverside and San
Bernardino Counties. We combine the BLS occupational categories into six
groups that match our survey question about occupation, then assign to each
person in our sample the average BLS wage rate for that person’s occupational
group. We then add 10% to reflect the higher wages likely to be attracting these
people to jobs that are relatively far away.

In the Brookings RP sample, which contains information for multiple days,
choices do not vary much from day to day: 87% of respondents made the same
choice every day during the survey week and nearly all the others varied on
only one day. Nearly half of the Brookings RP respondents do not have a
transponder and thus have chosen in advance not to use the express lanes on
a given day. Among the 41 Brookings RP respondents who have a transpon-
der, 11 made different choices on different days; this amounts to 27% of those
with a transponder but only 13% from the entire Brookings RP sample. The
latter statistic is relevant for judging constancy of choice because we model
lane choice unconditionally on transponder (hence not getting a transponder
is a natural concomitant of a persistent decision to take the free lanes). Six of
those eleven respondents who varied their choice made trips on all five week-
days; four of the six chose the free lanes on all but one day, and one chose the
express lanes on all but one day, leaving only one who made a 3:2 split.

The Cal Poly sample is partly choice-based, some of it being obtained from
license-plate observations on SR91. However, its express-lane share is so simi-
lar to the Brookings sample, which is random, that correcting for choice-based
sampling makes virtually no difference to the estimation results. Time-of-day
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TABLE A.I

EXTENDED DESCRIPTIVE STATISTICS

Value or Fraction of Sample

Cal Poly RP Brookings RP Brookings SP

Route share
91X 0�26 0�25
91F 0�74 0�75

One-week trip pattern
Never use 91X 0�68
Sometimes use 91X 0�13
Always use 91X 0�19

Percent of trips by time period
4–5 am 0�11 0�15
5–6 am 0�22 0�13
6–7 am 0�23 0�26
7–8 am 0�20 0�21
8–9 am 0�14 0�15
9–10 am 0�10 0�10

Age of respondents
<30 0�11 0�12 0�10
30–50 0�62 0�62 0�64
>50 0�27 0�26 0�26

Sex of respondents
Male 0�68 0�63 0�63
Female 0�32 0�37 0�37

Household income ($)
<40,000 0�14 0�23 0�24
40,000–60,000 0�24 0�60 0�59
60,000–100,000 0�40 0�15 0�13
>100,000 0�22 0�02 0�04

Flexible arrival time
Yes 0�40 0�55 0�48
No 0�60 0�45 0�52

Trip distance (mi)
Mean 34�23 44�26 42�66
Standard deviation 14�19 26�90 27�38

Number of people in household
Mean 3�53 2�91 3�44
Standard deviation 1�51 1�63 1�55

Number of respondents 438 84 81
Number of observations 438 377 633

patterns in the Cal Poly data are also similar to those in the Brookings RP
sample, as are most other observables including age and sex.
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CONSTRUCTION OF RP VARIABLES ON TRAVEL-TIME
SAVINGS AND RELIABILITY

Travel times on the free lanes (91F) were collected on 11 days: first by the
California Department of Transportation on October 28, 1999 (six weeks be-
fore the first wave of our survey) and then by us on July 10–14 and Septem-
ber 18–22, 2000 (which are the time periods covered by two later waves of our
survey).

Data were collected from 4:00 to 10:00 am on each day, for a total of
210 observations yi of the travel-time savings from using the express lanes at
times of day denoted by xi� i = 1� � � � �210. Our objective is to estimate the
mean and quantiles of the distribution (across days) of travel time y con-
ditional on time of day x. To do so, we use nonparametric methods of the
class of locally weighted regressions: specifically, the form known as local lin-
ear fit. For each value of x on a prechosen grid, it estimates a linear function
yi = a + b(xi − x) + εi in the region [x − h�x + h], where h is a bandwidth
chosen by the investigator. It does so by minimizing a loss function g(·) of the
deviations between observed and predicted y .

Denote the pth quantile value of y , given x, by qp(x). Following Koenker
and Bassett (1978), we estimate it with the local linear quantile regression

q̂p(x)= arg min
a

n∑
i=1

gp[yi − a− b(xi − x)] ·K
[
xi − x
h

]
�(A1)

where n is the total number of observations and gp[·] is the loss function, which
is asymmetric except when p= 0�5,

gp(t)= [|t| + (2p− 1)t
]
/2�(A2)

in which case equation (A1) defines. Yu and Jones (1998) show that the esti-
mated percentile values converge in probability to the actual percentile values
as the number of observations n grows larger, provided the bandwidth h is
allowed to shrink to zero in such a way that nh→ ∞. In the case of the me-
dian (p = 0�5), this is a least-absolute-deviation loss function and, therefore,
the estimator can be thought of as a nonparametric least-absolute-deviation
estimator.

Similarly, denoting the mean of y given x by m(x), its estimate is given
by (A1), but with subscript p replaced by m and with loss function gm(t)= t2.

The choice of kernel function has no significant effect on our results. We use
the biweight kernel function

K(u)=
{

15/16(1 − u2)2� |u| ≤ 1,
0� otherwise.

(A3)
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The choice of bandwidth, however, is important. We first tried the bandwidth
proposed by Silverman (1985),

h= 0�9n−0�5 min{stdx� (iqdx/1�34)}�(A4)

where stdx and iqdx are the standard deviation and interquartile difference of
the empirical distribution of x. This bandwidth turns out to be about 0.5 hour
for our data. However, there is rather extreme variation in our data at partic-
ular times of day, especially around 6:00 am, due to accidents that occurred
on two days around that time. While these accidents are part of the genuine
history and we want to include their effects, they produce an unlikely time pat-
tern for reliability when used with the bandwidth defined by (A4)—namely,
one with a sharp but narrow peak in the higher percentiles around 5:30 am,
followed by the expected broader peak centered near 7:30 am. We therefore
increased the bandwidth to 0.8 hour to smooth out this first peak.

We also estimated the standard deviation as the square root of the estimated
variance of time saving, obtained by a similar nonparametric regression of the
squared residuals [yi − m̂(xi)]2 on time of day.

Results are shown in Figures A1 and A2. Figure A1(a) shows the raw field
observations of travel-time savings with the nonparametric estimates of mean,
median, and 80th percentile superimposed. Median time savings reach a peak
of 5.6 minutes around 7:15 am.

The pointwise confidence intervals of the median time savings, shown in Fig-
ure A1(b), and of our preferred reliability measure, shown in Figure A2(b),
are constructed using the paired bootstrap (Hardle (1990), Buchinsky (1998)).
We randomly sample pairs (yi� xi) with replacement to form the bootstrap sam-
ple with the same size as the original data and compute the local linear quan-
tile estimator for both the median and the 80th percentile. The procedure is
repeated 100 times. The empirical distributions of the median time savings and
unreliability (80th–50th percentile) are used to construct the upper and lower
bounds of the 90% confidence intervals for the two estimates. The 90% confi-
dence band is indicated by the lines labeled “CI-UP” and “CI-LO.”

Figure A2(a) shows the same raw observations after subtracting our non-
parametric estimate of median time savings by time of day. An interesting pat-
tern emerges. Up to 7:30 am, the scatter of points is reasonably symmetric
around zero with the exception of three data points, but after 7:30 am the scat-
ter becomes highly asymmetric, with dispersion in the positive range (the up-
per half of the figure) apparently continuing to increase until well after 8:00 am
while dispersion in the negative range decreases. This feature is reflected in the
three measures of dispersion, or unreliability, that are also shown in the figure:
the standard deviation and the 80th–50th and 90th–50th percentile differences.
The standard deviation peaks at roughly 7:45 am, the other two peak consid-
erably later. The reason for these differences is that traffic in the later part of
the peak is affected by incidents that occur either then or earlier. This mostly
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FIGURE A1.—Time saving.
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FIGURE A2.—Dispersion of time saving.
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affects the upper tails of the distribution of travel-time savings and so is most
apparent in the percentile differences. The standard deviation, by contrast, is
higher early in the rush hour because of days with little congestion—showing
up as negative points in Figure A2(a). Note that the confidence bands in Fig-
ure A2(b) suggest that unreliability as we choose to measure it most likely
continues to rise until after 8:00 am, generating a pattern that is different from
that of median travel time.

In our estimations, we obtained the best statistical fits (in terms of log like-
lihood) using the 80th–50th percentile difference. The 90th–50th percentile
difference fits almost as well and resulted in similar coefficient estimates. The
75th–50th percentile difference, not shown in Figures A1 and A2, fits notice-
ably less well and gave statistically insignificant results for the reliability mea-
sure. The same was true for the standard deviation.

OTHER INDEPENDENT VARIABLES

The “flexible arrival time” variable was designed to be similar to a variable
found in Small (1982) to be important in explaining the cost of early or late
arrivals. The question, identical in the Brookings and Cal Poly RP surveys,
was, “Could you arrive late at work on that day without it having an impact on
your job?”

MODELS ESTIMATES ON RP-ONLY AND ON SP-ONLY DATA

Table A.II shows (in columns 2 and 3) our “best” RP-only model and SP-only
model, along with the joint RP/SP model reported in the paper (column 4).
Also shown (in column 1) is a joint RP/SP model estimated without random-
izing the time and unreliability coefficients. The coefficients of this model may
be compared to those of the RP-only model in column 2 because they have the
same error structure and thus the coefficients are of comparable scale. All co-
efficients that are even close to statistical significance are of similar magnitudes
in these two columns.

Many of the coefficients of the SP-only model of column 3 are imprecisely
estimated; the others align closely with the comparable joint SP/RP model of
column 4. This may not appear to be the case with the standard deviation of
the constant (σξ) among the SP variables, but actually they are similar because
in the joint model the comparable standard deviation is that of the combined
terms ρνBR + ξBS, which is [(ρ · 1)2 + σ2

ξ ]1/2 = (3�28822 + 0�48002)1/2 = 3�3230,
which is within 2 standard deviations of the estimate of σ2

ξ in column 3.

MODELS TESTING SENSITIVITY TO IDENTIFYING ASSUMPTIONS

In our base model, any taste differences across different times of day are
assumed to be captured by interacting the alternative-specific dummy variable
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TABLE A.II

COMPARISON OF MODELS ESTIMATED ON RP, SP, OR COMBINED DATA SETS

Dependent Variable: 1 if Toll Lanes Chosen, 0 Otherwise

Coefficient (Standard Error)

Joint RP/SP RP Only SP Only Joint RP/SP
Independent Variable (Fixed) (Fixed) (Random) (Random)

RP variables
Constant

BR subsample (θ̄BR) −0�0437 −0�6046 0�1489
(1�3267) (0�9854) (0�8931)

C subsample (θ̄C) −1�8146 −2�0108 −1�6349
(0�8665) (0�8537) (1�1040)

Cost ($) −1�7539 −1�5533 −1�8705
(0�6761) (0�6245) (0�5812)

Cost × dummy for medium 0�5470 0�5375 0�5438
income ($60,000–100,000) (0�2420) (0�1990) (0�2549)

Cost × dummy for high income 1�0765 1�0507 1�1992
(>$100,000) (0�3997) (0�3488) (0�3849)

Median travel time (min) × trip −0�3695 −0�3057 −0�4088
distance (in units of 10 mi) (0�1388) (0�1296) (0�1536)

Median travel time × (trip 0�0618 0�0484 0�0695
distance squared) (0�0270) (0�0240) (0�0276)

Median travel time × (trip −0�0026 −0�0020 −0�0029
distance cubed) (0�0011) (0�0009) (0�0012)

Unreliability of travel time (min) −0�7567 −0�7063 −0�5778
(0�3027) (0�2823) (0�2435)

SP variables
Constant (θ̄BS) −1�7845 −0�8180 −1�6107

(1�1025) (1�5111) (0�8943)
Standard dev. of constant (σξ) 0�1606 4�4873 0�4800

(0�6603) (0�8610) (0�6305)
Cost −0�9575 −1�3835 −1�0008

(0�2842) (0�3465) (0�2849)
Cost × dummy for high income 0�3934 0�4091 0�2842

(>$100,000) (0�7427) (0�9382) (0�9714)
Cost × dummy for medium −0�2827 −0�2951 −0�2317

income ($60,000–100,000) (0�4014) (0�6695) (0�5407)
Travel time (min) × long- −0�1908 −0�2450 −0�1965

commute dummy (>45 min) (0�0392) (0�0638) (0�0522)
Travel time ×(1 − long- −0�2212 −0�2919 −0�2146

commute dummy) (0�0477) (0�0727) (0�0618)
Unreliability of travel time −5�4733 −7�5635 −5�6292

(probability) (2�1784) (2�0451) (2�3819)

Continues

for express lane use with individuals’ characteristics, especially characteristics
already suspected to affect travelers’ time-of-day choice. In this section, we test
the sensitivity of our results to this assumption.
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TABLE A.II—Continued

Dependent Variable: 1 if Toll Lanes Chosen, 0 Otherwise

Coefficient (Standard Error)

Joint RP/SP RP Only SP Only Joint RP/SP
Independent Variable (Fixed) (Fixed) (Random) (Random)

Variables pooled in joint RP/SP model
Female dummy 1�2260 1�3003 0�4125 1�3267

(0�4475) (0�3776) (1�4493) (0�6292)
Age 30–50 dummy 1�1980 1�3428 −0�1976 1�2362

(0�5467) (0�4544) (1�0270) (0�5121)
Flexible arrival-time dummy 0�4687 0�2699 2�3446 0�5903

(0�4920) (0�3597) (1�0611) (0�6994)
Household size (number of people) −0�4989 −0�4395 −0�9089 −0�5497

(0�2123) (0�1968) (0�4493) (0�2248)
Standard dev. of coeff.’s of 0�2188 0�1658

travel time (part of Ω) (0�0643) (0�0457)
Ratio of std. dev. to mean for 1�1009 1�0560

coeff.’s of unreliability (σω) (0�3449) (0�2754)

Other parameters
Scale parameter

C subsample (µC) 0�4228 0�4495 0�4118
(0�1544) (0�1909) (0�1688)

SP subsample (µBS) 1�0634 1�3368
(0�2185) (0�3741)

Correlation parameter (ρ) 3�4555 3�2882
(0�7153) (0�8320)

Summary statistics
Number of observations 522 522 633 1�155
Number of persons 522 522 81 548
Number of replications (R) 4�500 4�500 4�500 4�500
Log-likelihood −510�77 −267�91 −241�19 −501�57
Pseudo R2 0�3589 0�3507 0�4503 0�3704

First, we take advantage of the low correlation built by design into the in-
dependent variables in the SP subsample. About two-thirds of the SP respon-
dents also answered RP questions so that we know their time of day of travel.
Therefore we use this subsample to test whether adding time-of-day dummy
variables, one for each hour of the day (with 7:00–8:00 am omitted as the base
hour), improves the fit and changes results of interest.

Table A.III shows the resulting estimates. The model in the first column has
the same specification as the “SP Only” model in Table A.II,1 but is estimated

1It is parameterized slightly differently by estimating the standard deviation of the coefficient
of reliability directly, rather than its ratio to the mean coefficient. Since in SP-only there is only
one such coefficient, the two parameterizations contain the same information.
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TABLE A.III

SP PARAMETER ESTIMATES WITH AND WITHOUT TIME-OF-DAY DUMMY VARIABLES
ON SUBSET OF SP DATAa

SP Model Without SP Model with 5 Time
Time Dummies Dummies

Constant (θ̄BS) −3�3976 −7�5484
(1�0696) (2�7081)

Standard deviation of constant (σξ) 5�0741 4�4774
(1�1871) (0�9892)

Cost −1�3736 −1�4106
(0�3758) (0�4176)

Cost × dummy for high household income 1�1043 1�5854
(>$100,000) (0�9037) (1�3433)

Cost × dummy for medium household −0�2547 −0�1013
income ($60,000–100,000) (0�5837) (0�7527)

Travel time (min) × long-commute −0�2548 −0�2390
dummy (>45 min) (0�0646) (0�0772)

Travel time ×(1 − long-commute dummy) −0�3439 −0�3816
(0�0959) (0�0908)

Unreliability of travel time (probability) −6�8380 −6�8387
(0�7550) (1�0872)

Female dummy 1�4710 2�1094
(1�1129) (1�3880)

Age 30–50 dummy −1�1926 −0�3462
(1�2027) (1�4856)

Flexible arrival-time dummy 3�1764 2�7374
(1�0885) (1�1891)

Household size (number of people) −0�6959 −0�7530
(0�5252) (0�5139)

Time dummy
Between 4 and 5 am 3�8750

(3�2170)
Between 5 and 6 am 3�5643

(2�3979)
Between 6 and 7 am 5�2648

(2�5304)
Between 7 and 8 am
Between 8 and 9 am 7�8265

(2�5848)
Between 9 and 10 am 4�8480

(2�5887)

Standard deviation of coefficients of travel 0�2601 0�2939
time (part of Ω) (0�0785) (0�0883)

Standard deviation of coefficient of 1�5310 1�4474
unreliability (part of Ω) (0�4824) (0�4908)

Summary statistics
Number of observations 433 433
Number of persons 55 55
Log-likelihood −152�98 −149�11

aNumbers in parentheses are robust standard errors. Monte Carlo integration performed using 4,500 random
draws.
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on only the subsample of 55 people who answered both SP and RP questions.
The second column shows the same model with the addition of five time-of-
day dummies. The results show that after controlling for individuals’ charac-
teristics, people traveling between 7:00 and 8:00 am are different from those
traveling in other periods. There seems to be little difference among the five
time periods other than 7:00–8:00, except possibly 8:00–9:00. Likelihood ratio
tests show that the five time dummies taken together do not significantly im-
prove the fit, with 2�L= 6�52 well short of the chi-square critical value (at 5%
significance level) for 5 degrees of freedom. (A likelihood ratio test for includ-
ing just the single dummy for 8:00–9:00, compared to the model of column 1,
yields a value almost exactly equal to the critical value for 1 degree of freedom,
but given that we had no a priori reason to single out that period, such a test is
biased toward rejecting the null.)

Next, we use our full data set to reestimate our joint RP/SP base model, but
adding a single time dummy for 7:00–8:00 am. This variable is chosen based
on the finding from the SP subsample that this time period is the most distinct
(see Table A.III, column 2). Because one-third of the SP sample (26 people)
provide no information about time schedule, we divide the SP subsample into
two parts, BST and BSNT, each with its own mean constant θ̄k in (3) and its
own mean random coefficient vector β̄k in (4). The time dummy is included
in the variable vector W k

i in (3) for those samples k for which time of day of
travel is known, namely k= C, BR, BST. In this way the BNST subsample does
not bias the coefficient of the time dummy, although it also does not contribute
to identifying it.

Results from this model are presented in Table A.IV. The coefficient of the
peak dummy is not statistically significant but has a substantial magnitude. As
shown in Table III of the paper, middle column, the estimated RP values of
time and reliability are moderately higher in this model than in the base model.
Through a separate experiment, not shown, we ascertained that this is due to
the inclusion of the time dummy and not to allowing for separate constants and
mean random parameters for the two halves of the SP subsample.

MODELS TESTING SENSITIVITY TO CONSTRAINTS ACROSS
RP AND SP COEFFICIENTS

As noted in the text, we estimated models with both more and fewer con-
straints across the RP and SP coefficients. Table A.V shows the results. The
“constrained model” forces each of the three cost coefficients to be identical
between the RP and SP subsamples. These three constraints are not rejected
by a likelihood ratio test (2�L = 3�90, 3 d.f.), but as noted in the paper we
nonetheless impose that constraint in our base model since the RP cost coef-
ficient is a particularly policy-relevant parameter and we do not want to risk
contaminating it with SP values if they are really different.

The two “flexible models” keep the cost coefficients unconstrained, like the
base model. In addition, flexible model 1 allows two variables (namely female
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TABLE A.IV

PARAMETER ESTIMATES OF JOINT RP/SP MODEL WITH DUMMY FOR TRAVEL DURING
PEAK HOUR (7–8 AM)a

Joint RP/SP Joint RP/SP
Independent Variable (Table II of Paper) with Time Dummy

RP variables
Constant

Brookings subsample (θ̄BR) 0�1489 −0�3666
(0�8931) (0�9579)

Cal Poly subsample (θ̄C) −1�6349 −2�0826
(1�1040) (1�1526)

Cost ($) −1�8705 −1�9793
(0�5812) (0�7088)

Cost × dummy for medium household income 0�5438 0�5819
($60,000–100,000) (0�2549) (0�4103)

Cost × dummy for high household income 1�1992 1�2039
(>$100,000) (0�3849) (0�5800)

Median travel time (min) × trip distance −0�4088 −0�5433
(in units of 10 mi) (0�1536) (0�1858)

Median travel time × (trip distance squared) 0�0695 0�0908
(0�0276) (0�0358)

Median travel time × (trip distance cubed) −0�0029 −0�0037
(0�0012) (0�0015)

Unreliability of travel time (min) −0�5778 −0�7629
(0�2435) (0�4118)

SP variables
Constant
θ̄BS or θ̄BST −1�6107 −2�3024

(0�8943) (1�2070)
θ̄BSNT −0�6206

(0�6780)
Standard deviation of SP constants (σξ) 0�4800 2�7149

(0�6305) (1�0897)
CostBS or BST −1�0008 −0�9621

(0�2849) (0�6390)
CostBSNT −1�2230

(0�5689)
Cost × dummy for medium household income −0�2317 −0�1171

($60,000–100,000)BS or BST (0�5407) (0�7072)
Cost × dummy for medium household income 0�2069

($60,000–100,000)BSNT (1�0601)
Cost × dummy for high household income 0�2842 0�7294

(>$100,000)BS or BST (0�9714) (0�6209)
Cost × dummy for high household income −0�2121

(>$100,000)BSNT (0�7158)
Travel time (min) × long-commute dummy −0�1965 −0�1826

(>45 min)BS or BST (0�0522) (0�0681)
Travel time (min) × long-commute dummy −0�2576

(>45 min)BSNT (0�1117)

Continues
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TABLE A.IV—Continued

Joint RP/SP Joint RP/SP
Independent Variable (Table II of Paper) with Time Dummy

Travel time ×(1 − long-commute dummy)BS or BST −0�2146 −0�2414
(0�0618) (0�0793)

Travel time ×(1 − long-commute dummy)BSNT −0�1813
(0�1010)

Unreliability of travel time (probability)BS or BST −5�6292 −5�5637
(2�3819) (2�1783)

Unreliability of travel time (probability)BSNT −6�4284
(2�5097)

Variables pooled in joint RP/SP model
Female dummy 1�3267 1�3631

(0�6292) (1�0750)
Age 30–50 dummy 1�2362 1�3661

(0�5121) (0�8699)
Flexible arrival-time dummy 0�5903 0�6255

(0�6994) (0�9079)
Household size (number of people) −0�5497 −0�5782

(0�2248) (0�1869)
Peak dummy (time of passing toll sign is −1�6400

between 7 and 8 am) (1�2855)
Standard deviation of coefficients of travel time 0�1658 0�1695

(part of Ω) (0�0457) (0�0663)
Ratio of standard deviation to the mean for 1�0560 0�9983

coefficients of unreliability (σω) (0�2754) (0�4253)

Other parameters
Scale parameter

Cal Poly sample (µC) 0�4118 0�4000
(0�1688) (0�2517)

SP sample (µBS or BST) 1�3368 1�3798
(0�3741) (0�5438)

SP sample (µBSNT) 1�1715
(0�5026)

Correlation parameter: RP and SP (ρ) 3�2882 2�3510
(0�8320) (1�0682)

Summary statistics
Number of observations 1�155 1�155
Number of persons 548 548
Log-likelihood −501�57 −496�71

aNumbers in parentheses are robust standard errors. Monte Carlo integration performed using 4,500 random
draws.

and household size), of the four that are pooled in the base model, to differ
between RP and SP. Flexible model 2 allows all four of those variables to differ.
Table A.VI shows some implications of these models for values of time and
reliability.
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TABLE A.V

ESTIMATES OF MODELS WITH DIFFERENT CONSTRAINTS IN COMBINING RP AND SP DATAa

Constrained Flexible Flexible
Independent Variable Model Model 1 Model 2

RP variables
Constant

Brookings subsample (θ̄BR) −0�2824 0�0489 −0�2490
(1�1698) (1�1855) (1�1921)

Cal Poly subsample (θ̄C) −1�7043 −1�4813 −1�5501
(0�9153) (0�9314) (0�9530)

Cost ($) −1�6802 −1�5368
(0�6466) (0�6819)

Cost × dummy for medium household 0�5037 0�4610
income ($60,000–100,000) (0�2548) (0�2649)

Cost × dummy for high household 1�0225 0�9438
income (>$100,000) (0�4086) (0�4246)

Median travel time (min) × trip distance −0�3670 −0�3672 −0�3429
(in units of 10 mi) (0�1351) (0�1538) (0�1550)

Median travel time × (trip distance squared) 0�0620 0�0624 0�0575
(0�0246) (0�0301) (0�0313)

Median travel time × (trip distance cubed) −0�0026 −0�0026 −0�0024
(0�0010) (0�0013) (0�0013)

Unreliability of travel time (min) −0�5756 −0�5367 −0�4842
(0�2403) (0�2764) (0�2871)

Female dummy 1�2300
(0�5963)

Age 30–50 dummy 1�2792 1�2064
(0�7316) (0�6765)

Flexible arrival-time dummy 0�3179 0�3081
(0�5484) (0�6344)

Household size (number of people) −0�4604
(0�3050)

SP variables
Constant (θ̄BS) −2�8392 −1�9158 −0�8929

(1�3131) (1�1092) (1�0722)
Standard deviation of constant (σξ) 0�7779 0�0952 0�0582

(0�8621) (0�6376) (0�7978)
Cost ($) −0�9506 −0�5974

(0�3920) (0�3976)
Cost × dummy for medium household −0�2366 −0�1701

income ($60,000–100,000) (0�5082) (0�4395)
Cost × dummy for high household 0�2385 0�0969

income (>$100,000) (1�3160) (0�7285)
Travel time (min) × long-commute −0�2927 −0�1835 −0�1141

dummy (>45 min) (0�1145) (0�0856) (0�0719)
Travel time ×(1 − long-commute dummy) −0�3311 −0�2152 −0�1350

(0�1472) (0�1033) (0�1013)
Unreliability of travel time (probability) −8�3078 −5�4302 −3�3903

(3�7404) (2�5374) (2�0618)
Female dummy 0�3990

(1�0978)

Continues
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TABLE A.V—Continued

Constrained Flexible Flexible
Independent Variable Model Model 1 Model 2

Age 30–50 dummy 0�8342 0�5822
(0�9278) (1�0957)

Flexible arrival-time dummy 1�6099 1�0396
(1�0436) (1�7014)

Household size (number of people) −0�4012
(0�6599)

Variables pooled in joint RP/SP model
Cost ($) −1�6431

(0�6378)
Cost × dummy for medium household 0�4499

income ($60,000–100,000) (0�2239)
Cost × dummy for high household 0�9866

income (>$100,000) (0�4024)
Female dummy 1�3204 1�2044

(0�4080) (0�5355)
Age 30–50 dummy 1�2589

(0�4978)
Flexible arrival-time dummy 0�4281

(0�5046)
Household size (number of people) −0�4986 −0�5173

(0�2303) (0�2499)
Standard deviation of coefficients of travel 0�2248 0�1417 0�0922

time (part of Ω) (0�0730) (0�0656) (0�0792)
Ratio of standard deviation to the mean for 0�9908 1�0529 1�0733

coefficients of unreliability (σω) (0�2555) (0�3651) (0�3291)

Other parameters
Scale parameter

Cal Poly sample (µC) 0�4634 0�4608 0�5013
(0�1927) (0�2371) (0�2645)

SP sample (µBS) 0�8758 1�3915 2�2202
(0�4061) (0�3987) (1�0082)

Correlation parameter: RP and SP (ρ) 5�0864 3�2013 2�0276
(1�8389) (0�8889) (0�9637)

Summary statistics
Number of observations 1�155 1�155 1�155
Number of persons 548 548 548
Log-likelihoodb −503�52 −500�55 −500�23

aNumbers in parentheses are robust standard errors. Monte Carlo integration performed using 4,500 random
draws.

bBy comparison, the log-likelihood for the base model is −501�57 (see Table II of the paper).

MODEL WITH RELATED CHOICES TREATED SIMULTANEOUSLY

To see whether results are sensitive to the assumptions made about exogene-
ity or endogeneity of related choices, we estimated a model that simultane-
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TABLE A.VI

VALUES OF TIME AND RELIABILITY FROM MODELS WITH DIFFERENT CONSTRAINTS
IN COMBINING RP AND SP DATAa

Constrained Model Base Model Flexible Model 1 Flexible Model 2

RP VOT
Median 22�17 21�46 21�62 22�23

(13.28, 40.33) (11.47, 29.32) (10.72, 36.60) (10.58, 42.17)
Total heterogeneity 13�91 10�47 10�15 10�33

(8.49, 33.62) (5.82, 24.11) (5.16, 24.76) (4.15, 32.23)

RP VOR
Median 21�89 19�56 19�86 19�35

(10.93, 39.69) (6.26, 42.80) (4.51, 44.92) (0.16, 44.71)
Total heterogeneity 28�32 26�49 27�18 28�05

(14.05, 59.37) (8.60, 60.40) (6.81, 70.07) (6.64, 76.80)
Log-likelihood −503�52 −501�57 −500�55 −500�23

aNumbers in parentheses are robust standard errors. Monte Carlo integration performed using 4,500 random
draws.

ously incorporated choice of route (i.e., express or free lanes), transponder,
and mode (i.e., car occupancy). Ten people are omitted in this estimation be-
cause of missing mode choice. (In the base model of the paper, we assume that
these ten people are solo drivers, and we tested this assumption by estimat-
ing another model in which the cost variable is interacted with a dummy that
represents those ten people; this interaction term was not significant and the
increase in log-likelihood value was also not significant.)

As explained in the paper, this model has nine alternatives for RP obser-
vations: namely, all the permissible combinations of two routes (regular or
express lanes), two transponder choices (yes or no), and three modes (solo,
two-person carpool, or three-or-more-person carpool). The three combina-
tions that involve express lanes but no transponder are ruled out by the legal
requirement to have a transponder to use the express lanes. Thus the choice
set is

{TF1�TF2�TF3�TX1�TX2�TX3�NF1�NF2�NF3}�
where each alternative is defined by T or N for having or not having a
transponder; F or X for free or express lane; and 1, 2, or 3 for the number
of people in the vehicle (3 means three or more).

For SP observations, there are still only two choices, express or regular
lanes. Thus these observations help identify the coefficients that apply to those
choice, but not those that apply only to mode or transponder choice.

The Cal Poly sample was actually formed by the Cal Poly researchers from
four separate subsamples, one random and three choice-based. We could ig-
nore this in our models of route choice only, because the route shares are
nearly identical across all samples. However, with this expanded choice set,
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TABLE A.VII

CHOICE SHARES AND WEIGHTS FOR CAL POLY DATA SUBSETSa

Sample Share

Population Share New-Plates Subsample Repeat Subsample UCI Subsample

Choice Alternative % % Weight % Weight % Weight

Solo_notrans_91f 42 28 1�5000 17 2.4706 11 3.8182
Solo_trans_91f 18 26 0�6923 33 0.5455 39 0.4615
Solo_trans_91x 18 15 1�2000 16 1.1250 22 0.8182
Hov2_notrans_91f 5 9 0�5556 3 1.6667 0 NA
Hov2_trans_91f 2 8 0�2500 16 0.1250 6 0.3333
Hov2_trans_91x 6 5 1�2000 7 0.8571 22 0.2727
Hov3_notrans_91f 4 3 1�3333 0 NA 0 NA
Hov3_trans_91f 2 3 0�6667 3 0.6667 0 NA
Hov3_trans_91x 3 3 1�0000 5 0.6000 0 NA

No. of observations 302 191 58 18

aSolo, Hov2, and Hov3 refer to occupancy one, two, and three or more, respectively; notrans and trans refer to no
transponder and transponder; 91f and 91x refers to free lanes and express lanes. Weight = (population share)/(sample
share). NA denotes not applicable.

the shares of the choice-based portions of the sample differ substantially from
those of the random portions. We use the weighted exogenous sample max-
imum likelihood estimator to account for this (Manski and Lerman (1977)).
The population choice shares for each alternative are constructed based on
the 302 respondents in the Brookings RP sample (84 respondents) and the Cal
Poly random subsample (218 respondents). Table A.VII shows the weights and
how they are computed.

We allow for a new complication that arises from the possibility of special
correlation patterns among the nine alternatives. These patterns could arise
from individual-specific preferences for features that are shared by several al-
ternatives.

We assume specifically that such features are shared by four groups of alter-
natives: those alternatives that involve owning a transponder (T ), those that
make use of the express lanes (E), those that involve a high-occupancy vehicle
of 2 people (H2), those that involve a high-occupancy vehicle of 3 people or
more (H3). We define dummy variablesDT

j ,DE
j ,DH2

j , andDH3
j for alternatives

in each of these groups. Thus for example the dummy variable DT
j is defined

as DT
j = 1 if j ∈ΩT and 0 if j ∈ΩN , where

ΩT = {TF1�TF2�TF3�TX1�TX2�TX3}�
ΩN = {NF1�NF2�NF3}�

We allow each of these four dummy variables Dk to have a random coeffi-
cient πk with its own variance (except that we constrain πH2

j and πH3
j to have
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the same variance). Brownstone and Train (1999) show how such a structure
mimics a generalized extreme value model analogous to a generalized nested
logit, in which the error terms in certain groups of alternatives (such as ΩT )
are correlated with each other.

Table A.VIII shows the estimation results. In the RP portion of the model,
the variables previously interacted with express lane dummy (in the base model

TABLE A.VIII

MODEL OF SIMULTANEOUS ROUTE, TRANSPONDER, AND MODE CHOICEa

Model Specification Model 1 Model 2

RP estimates
Generic variables

Toll −2�1584 (0�8076) −2�3242 (0�7927)
Toll × high household income 1�7290 (0�6924) 1�8653 (0�6468)
Toll × medium household income 0�7949 (0�4055) 0�8611 (0�4519)
Median travel time × trip distance −0�5724 (0�1885) −0�7301 (0�1966)
Median travel time × trip distance squared 0�1057 (0�0412) 0�1330 (0�0418)
Median travel time × trip distance cubed −0�0046 (0�0020) 0�0058 (0�0020)
Travel time uncertainty −0�8432 (0�3488) −1�0284 (0�3694)

Transponder choice
Transponder dummy× Brookings dummy −3�4748 (1�2356) −3�6485 (1�1985)
Transponder dummy × Cal Poly dummy −3�9872 (1�1263) −4�1199 (1�1201)
Female dummy × transponder dummy 2�0008 (0�7575) 2�1197 (0�7643)
Household size × transponder dummy −0�5278 (0�3216) −0�5467 (0�3093)
Commute dummy × transponder dummy 1�6617 (0�9047) 1�6973 (0�9568)
Age 30–50 dummy × transponder dummy 1�4734 (0�8102) 1�5966 (0�7502)
Flexible arrival time dummy × transponder dummy 1�0900 (0�6531) 1�0799 (0�6969)
Std. dev. of transponder dummy (σ2

πT ) 0�5148 (1�1836) 0�5593 (1�2038)

Route choice
Express lane dummy × Brookings dummy 0�9480 (1�1598) 0�2766 (1�1373)
Express lane dummy × Cal Poly dummy −0�2209 (0�9747) −0�6633 (0�9799)
Travel between 7–8 am × express lane −1�7420 (1�0506)
Std. dev. of express lane dummy (σ2

πE) 1�8667 (0�7009) 2�0697 (0�7634)

Carpool choice
Carpool dummy × Brookings dummy −12�0415 (3�5257) −13�1853 (4�8817)
Carpool dummy × Cal Poly dummy −7�6201 (1�9693) −8�1681 (3�0250)
Female dummy × age 30–50 dummy ×

carpool dummy 4�2380 (1�2671) 4�5499 (1�8136)
Commute dummy × carpool dummy −2�0038 (1�0197) −2�1747 (1�1157)
HOV3 dummy × Brookings dummy 2�5501 (2�5805) 2�4164 (2�4015)
HOV3 dummy × Cal Poly dummy 1�4015 (1�5798) 1�3327 (1�5475)
Flexible arrival time dummy × HOV3 dummy −3�1861 (1�4337) −3�4114 (1�5671)
Small family size (≤4) × HOV3 dummy −1�7968 (1�0710) −1�9213 (1�1970)
Log of trip distance × HOV3 dummy −2�1905 (1�1829) −2�1981 (1�1853)
Common std. dev. of HOV2, HOV3

dummies (σ2
πH) 6�0159 (2�9544) 6�6347 (3�1331)

Continues
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TABLE A.VIII—Continued

Model Specification Model 1 Model 2

SP estimates
Express lane dummy −0�6475 (1�4869) −0�5533 (1�1885)
Std. dev. of express lane dummy 1�4452 (0�6802) 1�4513 (0�6397)
Toll −1�4007 (0�3058) −1�4181 (0�3034)
Toll × dummy for high household income 0�6561 (1�0086) 0�6854 (0�9838)
Toll × dummy for medium household income −0�1722 (0�5870) −0�1345 (0�5611)
Travel time (min) × long commute dummy −0�2281 (0�0537) −0�2283 (0�0519)
Travel time × (1 − long commute dummy) −0�2788 (0�0653) −0�2742 (0�0645)
Travel-time uncertainty −7�4717 (2�2717) −7�5477 (2�3027)
Female dummy × express lane dummy 1�3131 (1�0265) 1�2922 (0�9653)
Flexible arrival-time dummy × express lane dummy 1�5888 (1�1100) 1�5208 (1�0894)
Age 30–50 dummy × express lane dummy −1�0218 (1�0618) −0�9845 (0�9816)
Household size × express lane dummy −0�5848 (0�4050) −0�5973 (0�3724)
Correlation between RP and SP express lane choice 2�3538 (0�8024) 2�1204 (0�7096)

Combined estimates
Std. dev. of travel time coefficient 0�2149 (0�0462) 0�2140 (0�0468)
Ratio between mean and std. dev. of

travel-time uncertainty 0�9052 (0�3192) 0�8744 (0�3004)

Parameters associated with scaling
Scale parameter

Cal Poly sample 0�3498 (0�0598) 0�3406 (0�0539)
Brookings RP sample 0�6379 (0�1916) 0�5805 (0�1302)

Number of observations 1�124 1�124
Number of persons 538 538
Log-likelihood −1�002�06 −1�001�25

aNumbers in parentheses are robust standard errors. Monte Carlo simulations performed using 4,000 randomized
and shuffled Halton draws. (Results were stable for more than 2,000 draws.) The Halton sequences are first random-
ized by adding a uniform random number to each element and are then shuffled by reordering the elements randomly
to avoid correlation across sequences in high-dimensional integration. See Train (2003, Sections 9.3.3–9.3.4) and Hess,
Train, and Polak (2005). Instead of normalizing the variance of the Brookings RP remaining error term and rescaling
the other two, as in our base model, here we normalize the variance of Brookings SP and rescale the two RP variances;
this proved to have better numerical properties.

of the paper) are now interacted with a transponder dummy instead, which we
found improves the goodness of fit. As a result, all these variables are now be-
ing estimated separately across RP and SP data sets since there is no transpon-
der dummy in the SP model. In model 2, we include a time-of-day dummy
interacted with express lane, just as in Table A.VIII.2

Table A.IX reports the distribution of the estimated RP VOT and VOR from
the two models shown in Table A.VIII.

2We take advantage of our earlier finding that omitting this information from the SP sample
does not affect values of time and reliability. We therefore include the time-of-day dummy only
for the RP observations. This avoids dividing the SP sample into two parts, which would have
increased the number of parameters to estimate.
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TABLE A.IX

VALUES OF TIME AND RELIABILITY FROM MODEL WITH 9 CHOICE ALTERNATIVES

Model 1 Model 2
(Without Time-of-Day Dummies) (with Time-of-Day-Dummy)

RP VOT
Median 23.58 28.50

(12.73, 36.48) (17.42, 42.17)
Total heterogeneity 12.50 12.55

(8.01, 21.41) (7.62, 22.54)
RP VOR

25.47 28.35
Median (6.94, 42.18) (11.92, 47.87)
Total heterogeneity 29.45 30.96

(10.32, 61.44) (8.52, 64.57)

INTERPRETATION AS A SELECTION MODEL FOR TRANSPONDER ACQUISITION

Our nine-alternative mixed-logit model for RP observations can be inter-
preted as a selection model, in which one first selects transponder (denoted
by choice variable Ti), then conditional on that chooses among occupancies if
Ti = 0 (with no transponder) and among occupancies and lanes if Ti = 1 (with
transponder). We could write the observation likelihood as a conditional prob-
ability multiplied by a marginal probability, the form depending on whether or
not transponder was chosen for this observation:

Li =
∑
j∈ΩT

yij Pr(yij = 1|Ti = 1) · Pr(Ti = 1)(A5)

+
∑
j∈ΩN

yij Pr(yij = 1|Ti = 0) · (1 − Pr(Ti = 1))�

where yij indicates the observed choice for traveler i (equal to 1 if the com-
muter chooses alternative j; 0 otherwise). The choices involved in Pr(yij =
1|Ti = 1) are more extensive than those in Pr(yij = 1|Ti = 0) because they in-
clude lane choice.

If we had no random parameters, Pr(Ti = 1) would be binary logit and the
conditional probabilities in (A5) would be multinomial logit; transponder se-
lection and lane choice would then be correlated in a manner determined en-
tirely by the logit functional form. However, our use of random parameters
results in a more flexible correlation pattern that depends on the estimated
variances of these random parameters, especially πTi (the random coefficient
of the transponder dummy). As it happens, we do not estimate a statistically
significant variance for πTi nor are the results of our nine-alternative model
affected in any important way by whether or not we include πTi in the model.
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Nevertheless, the exclusion restrictions that identify the selection model—
namely, the inclusion of certain variables under “transponder choice” but not
under “route choice” in Table A.VIII—are based on statistical significance
rather than any theoretical exclusion requirement. Therefore, the mixed-logit
functional form chosen for the nine-alternative model effectively identifies the
selection model.
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