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2. TRAVEL DEMAND  

 

In order to plan transportation facilities, it is necessary to forecast how much they will be used. 

In order to price them rationally and determine the best operating policies, it is necessary to 

know how users respond to prices and service characteristics. In order to evaluate whether a 

project is worthwhile at all, it is necessary to have a measure of the benefits it produces. All these 

requirements are in the province of travel demand analysis. 

 The demand for travel takes place in a multi-dimensional setting. The traditional 

sequential framework used by many metropolitan transportation planning agencies considers 

four choice dimensions: trip generation (the total number of trips originating from an area); trip 

distribution (the locations of the trips’ destinations); modal choice (the means of travel, such as 

car, bus, train, bicycle, or walking); and trip assignment (the exact route used). More recently, 

researchers have paid greater attention to other dimensions of choice, such as residential and job 

location, household automobile ownership, the time of day at which trips are taken, parking 

locations, and the duration of activities for which travel is undertaken. 

 These multiple decisions are often envisioned as a sequence, typically starting with 

residential and job locations, then vehicle ownership, then other aspects. This sequence is in 

decreasing order of the time span over which the decision can be changed easily. However, it 

does not imply a sequential decision procedure whereby one decision is made without regard to 

its implications for later decisions. Rather, each decision is affected by others and so can be fully 

understood only as part of a simultaneous choice process. A given study may isolate just a few of 

these decisions for tractability; it is then all the more important to remember, in interpreting 

results, that other decisions are lurking in the background. 

 Furthermore, travel is a derived demand, usually undertaken not for its own sake but 

rather to facilitate a spatially varied set of activities such as work, recreation, shopping, and 

home life. This observation links the study of travel demand to studies of labor supply, firms’ 

choices of technologies, and urban development. It also calls attention to an increasingly 

common form of travel: the linking together of several trip purposes into one integrated itinerary 

or tour, a process known as trip chaining. 

 The chapter begins (Section 2.1) by asking what can be learned from aggregate data 

about travel and how conventional economic demand theory is applied to such data. It then 
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moves on to disaggregate models (Section 2.2), also known as “behavioral” because they depict 

individual decision-making explicitly. Section 2.3 presents examples of models explaining some 

key travel choices: mode, time of day, and route. More specialized topics are then discussed 

(Sections 2.4-2.5). Finally, Section 2.6 analyzes two quantities of special interest to policy: 

travelers’ willingness to pay for travel-time savings and for improved reliability. We mostly 

discuss passenger transportation, in part because more data are available than for freight; 

however studies of the demand for urban freight transportation tend to use similar methods.1 

 

2.1 Aggregate Tabulations and Models 

 

Much can be learned simply from cross-tabulating survey data. For the United States, there are 

two very useful sources. One, covering all trips, is the National Personal Transportation Survey 

(NPTS), collected at approximately six-year intervals; for the single year 2001 it was subsumed 

into a broader survey called the National Household Travel Survey (NHTS). The other useful 

source is the journey-to-work portion of the US Census, taken every ten years. This consists of 

responses to questions about work travel, asked on the Census “long form,” which is 

administered to about 17% of all households. Pisarski (2006) provides a comprehensive analysis 

of the 2000 journey-to-work census and compares it to earlier censuses and to the 2001 NHTS. 

 The NHTS shows that work trips in the US continue to decline as a proportion of all trips, 

amounting to about 16% in 2001.2 However, it would be a mistake to conclude that work trips 

are no longer important for urban transportation. Two-thirds of US work trips in 2000 occurred 

during the hours 6-9 a.m., and work trips account for about half of all person-miles of travel 

during those hours. Trips to work have been found to account for more than half of all trips in 

selected Belgian cities, and a very high fraction of peak-period trips on some of the most 

                                                 
1 On freight demand, see D’Este (2000) and Small and Winston (1999). Collections of more specialized papers on 
travel demand are found in Hensher and Button (2000) and Mahmassani (2002). 
2 See Pisarski (2006),  p. 3. He adjusts the 2001 survey tabulation upward to better match the way “trips” were 
defined in previous years; without that adjustment the figure is 15 percent. The reason for the adjustment is that the 
2001 survey, unlike earlier surveys, counts each person, even a very small child, as a separate trip-maker. In the 
NHTS, “trips” includes such casual activities as walking the dog, which is probably why it shows a surprisingly high 
proportion of trips made by walking or bicycling: 9.5 percent according to Pucher and Renne (2003), compared to 
just 3.4 percent according to the journey-to-work Census (calculated from Pisarski 2006, Table ES-2, by dividing 
the percentages shown by 0.9674 to eliminate those working at home from their denominators). 
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notoriously congested Los Angeles freeways.3 Thus work trips remain predominant contributors 

to congestion. 

 Private vehicles dominate all categories of trips in the US, and increasingly so. They 

account for 91% of all work trips in 2000, up from 89% in 1990. The share of work trips that use 

public transit is just 4.7%, down from 5.3% in 1990. However, transit share is much larger in 

large metropolitan areas, averaging 5.7% and reaching 11.5% in those areas with over five 

million residents. Carpooling accounts for 12.6% of all metropolitan work trips. Automobile 

ownership is high and continues to grow faster than the population. Yet many US households 

owned no car in 2001: roughly 8% of all households and 26% of those with incomes below 

$20,000.4 

 The geography of commuting continues to become more dispersed. Commuting within 

the main central cities of US metropolitan areas accounted for about one-fourth of all work trips 

by metropolitan residents, and those from suburbs to central cities another 17%; the rest are trips 

within or between suburbs (41%), reverse commuting from central city to suburbs (8%), and 

trips to workplaces outside the metropolitan areas (10%).5 The increased dispersion of work trips 

shows up as longer distances traveled at somewhat higher speeds: average commuting distance 

has risen by about 14% over the decade (to 12.1 miles), while average commuting time has risen 

by only 9% (to 25.5 minutes).6 Commuting times are slightly higher in metropolitan areas than in 

the US as a whole — 26.1 minutes in 2000 — and higher still in larger metropolitan areas, 

reaching 34 minutes in New York (where the percentage using public transit is especially high). 

Several metropolitan areas, all of them with high population growth, had a 20% increase in 

average commuting time over the decade 1990-2000; yet in only one of them, Atlanta, did the 

average commute exceed 30 minutes in 2000;7 if we look just at commutes by private vehicles, 

                                                 
3 These statistics are, respectively, from Pisarski (2006, p. 6), Van Dender (2001, p. 103), and Giuliano (1994, p. 
261). 
4 The figures in these paragraphs are computed from Pisarski (2006, pp. xvi, 76-77); again we divide by (1–0.0326) 
to express them as proportions of work trips rather than of workers; and from Pucher and Renne (2003, Table 6). 
5 Calculated from Pisarski (2006), Fig. ES-2, p. xv. 
6 Pisarski (2006), Figures 307 (p. 51) and 3-68 (p. 101), the latter using the adjustment of the 1990 figure for 
measurement change as described by Pisarski. 
7 Pisarski (2006), Tables 3-40 (p. 102) and 3-41 (p. 106). Hu and Reuscher (2004, Table 26) document the much 
higher average travel time for commutes by public transit (47.9 minutes in 2001) compared to private vehicles (22.5 
minutes). 
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their duration averaged 26 minutes in metropolitan areas over 3 million in population and 

considerably less in smaller areas (Hu and Reuscher 2004, Fig. 11). 

 Most of these trends apply to other parts of the world as well, although the actual 

numbers may be quite different. For example, rather different modal splits are observed for the 

Netherlands: 38% of all trips are by car as driver, 12% by car as passenger, 5% by public 

transport, 26% by bicycle, and 17% walking.8 Of course, heavily urbanized areas have a much 

bigger proportion of trips by public transport — accounting for 23% of person-kilometers, 

compared to just 12% for the entire nation.9 Total travel per person (in kilometers per day) is also 

about 7% less in the heavily urbanized areas, probably reflecting greater accessibility and 

possibly also the impact of congestion. 

 Work trips in the Netherlands account for 26% of person-kilometers, with car driver 

accounting for a higher proportion of them than is the case for all trips (66% vs. 54%), while car 

passenger accounts for a lower proportion of work trips than of all trips (8% vs. 21%). Public 

transport in the Netherlands captures a higher proportion of person-kilometers for work trips than 

for all trips (16% vs. 12%), but this may be because work trips are longer. 

 The stereotype of the US being more car-dependent than a European country like the 

Netherlands thus seems confirmed by these figures, and by other information about the European 

Union in Strelow (2006). It is also reflected in car ownership: 23% of the Dutch households have 

no car and 56% have one car; in heavily urbanized areas these shares are 40% and 50%, 

respectively. Local circumstances — including cultural, geographical, and historical differences, 

but also more “conventional” economic factors such as fuel prices, vehicle taxes, and parking 

policies — are among the factors commonly thought to explain such differences; more 

systematic analyses will be discussed below.  

 

2.1.1 Aggregate Demand Models 

For more formal analysis, the approach most similar to standard economic analysis of consumer 

demand is an aggregate one. The demand for some portion of the travel market is explained as a 

                                                 
8 Statistics Netherlands (2007). These figures refer to trips by people of age 12 or more. There were 3.1 trips per 
person per day on average with average trip length 11.2 km (6.9 miles). 
9 These figures refer to “very heavily urbanized areas,” defined as those with more than 2500 addresses per km2. 
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function of variables that describe the product or its consumers. For example, total transit 

demand in a city might be related to the amounts of residential and industrial development, the 

average transit fare, the costs of alternative modes, some simple measures of service quality, and 

average income. Because behavior cannot be predicted precisely, an “error term” is added to 

represent behavior that, to the researcher at least, appears random. Thus a demand function might 

be represented as: 

 ε+= )(Zfx  (2.1) 

where x is the quantity demanded, Z is a vector of values of all the relevant characteristics of the 

good and its potential consumers, f(⋅) is some mathematical function, and ε is the random error 

term. Statistical data on x and Z can be used to estimate the function f and the probability 

distribution of ε. 

 It is possible to estimate f using non-parametric methods that impose no prior 

assumptions about its shape. More commonly, f is specified to be a particular functional form 

with parameters whose values are to be determined from statistical data. For example, f might be 

specified as a general quadratic function: 
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where Zk is one of the characteristics included in vector Z, Zl is a factor that possibly affects the 

extent the effect of Zk upon f, and the β parameters are to be estimated empirically. This is an 

example of an equation that is linear in parameters. To see why, define variables z0≡1, z1k=Zk, 

z2k=Zk
2, and z3kl=ZkZl, for all values of k and l. Combining all these variables into a single vector z 

and all the corresponding parameters into a single vector β, we can write (2.1) as: 

 εβ +′= zx  (2.3) 

where the prime on β indicates transposition (changing it from a column vector to a row vector); 

thus β′z is the inner product between β and z.10 

 Equation (2.3) is known as a regression of x on z. When it is linear in β, as in this 

example, one can very easily estimate the unknown parameters. Indeed, we chose this example 

to illustrate that even a quite complex relationship between x and Z can often be represented as a 

                                                 
10 That is, β′z ≡ β0z0 + Σkβ1kz1k + Σkβ2kz2k + Σklβ3klz3kl. 
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linear regression.11 The most common way of estimating the unknown parameters in (2.3) is 

ordinary least squares, in which the value of β is found that minimizes the sum of squared 

residuals for a set of observations labeled n=1,…,N: 
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where now we have indexed each observed data point (xn,zn) by its observation label n. Ordinary 

least squares has particularly nice properties when the random error ε is assumed to have a 

normal (bell-shaped) distribution. However it is quite possible to estimate regression models 

non-linear functional forms or with other error distributions.12 

 The non-random part of the demand equation (2.1) is often based on an explicit theory of 

consumer choice. Such a theory is not necessary in order to specify and estimate a demand 

function, but it may help by suggesting likely functional forms for f and it is useful for 

interpreting the results. The most common such theory postulates that a consumer or group of 

consumers maximizes a utility function, u(x,X); this function expresses preferences over the 

quantities of the good x under consideration and of other goods represented by the vector X. The 

consumer is limited by a budget constraint, expressed in terms of the price p of x and a price 

vector P consisting of prices of all the other goods X. Mathematically, then, consumption is 

determined as a solution to the following constrained maximization problem: 

 ),( 
,
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  subject to: yXPpx =′+  (2.4) 

where y is income and again the prime on P transposes it so that P′X is an inner product, 

expressing the cost of consuming all the goods in vector X. Denoting the solution to (2.4) by 

vector (x*,X*), we note that it depends on prices and income: 

                                                 
11 If the variables Zk in (2.2) are replaced by their natural logarithms, and the mean values of these logarithms 
subtracted, then (2.2) becomes the translog functional form: 
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where ( )kkk ZZZ loglog~
−≡  and the bar indicates a sample average. This function is widely used in cost analysis 

and regarded as a particularly good approximation to an arbitrary unknown function: see Spady and Friedlaender 
(1978), Brauetigam (1999), and Chapter 3 of this book. 
12 For basic econometric texts, see Pindyck and Rubinfeld (1998) or Johnston and DiNardo (1997). For an advanced 
text, see Greene (2003). 
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Thus if we knew, or were willing to postulate, a form for the function u, and if we could solve 

the maximization problem, we would know the form of the demand function (2.1) except for its 

random term.13 

 The demand functions (2.5), when derived in this way, can be used to define a very 

useful quantity. We simply substitute them into the utility function to see how much utility can 

be achieved with a given set of prices and income. The result is known as the indirect utility 

function, often written as V: 

 ( )),,(*),,,(*),,( yPpXyPpxuyPpV = . 

The indirect utility function has a property known as Roy’s identity: 
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where it is understood that all quantities in (2.6) depend on p, P, and y. We will make use of the 

indirect utility function and Roy’s identity when we discuss disaggregate demand analysis in 

Section 2.2. For simplicity, our notation for demand functions will omit the asterisks in (2.5) and 

(2.6). 

 The demand functions (2.5) were defined as resulting from an individual consumer’s 

optimization. An aggregate demand function can simply be derived from individuals’ demands 

by summing quantities demanded over consumers. Under some quite restrictive conditions, the 

resulting aggregate demand function may look as if it could have resulted from optimization by a 

single “representative” consumer, which can be convenient in analyses. Specifically, a necessary 

and sufficient condition for this to be true is that individuals’ indirect utility functions take the 

“Gorman form”, meaning that for an individual i it can be written as Vi(p,P,y) = ai(p,P) + 

b(p,P)·yi, where the ai-term can vary across consumers but the b-term cannot (Varian 1992, p. 

154). This condition is satisfied for several utility functions commonly used for theoretical 

analysis, but not for those underlying most empirical work. 

 

                                                 
13 Utility theory is treated in most texts on microeconomic theory. Varian (1992) provides a concise entry-level 
graduate treatment. 
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2.1.2 Cross-Sectional Studies of Metropolitan Areas 

Many studies have used aggregate data, such as are commonly reported by transit authorities or 

local governments, to study influences on travel behavior across cities. We illustrate here with 

three. 

 Gordon and Willson (1984) compile an international data set of 91 cities with light rail 

systems, and estimate simple regression equations explaining the ridership (per kilometer of line) 

on those systems. They show that ridership is positively related to city population density and 

gross national product per capita. Applying this model to five North American cities with light-

rail systems then under construction, they predict far lower ridership than the official forecasts 

— about half in most cases, but less than one-seventh in the case of Detroit. It has been shown 

subsequently by Pickrell (1992) that nearly every modern rail system built in the U.S. has in fact 

attained less than half the originally forecast patronage. 

 Winston and Shirley (1998) examine the shares of US work trips across metropolitan 

areas made by any of five different modes (two private, two public, plus taxi) within any of ten 

different time-of-day intervals. Their data are from the 1990 journey-to-work census. Among the 

many interesting findings are these: travel time has the largest effect on choice for trips of 

moderate distance, being less important for both short and long trips; route coverage and service 

frequency is important for public transit use, especially for commuters making long trips; and 

workers in the finance, real estate, and insurance industries tend to travel earlier in the day if they 

live further west, suggesting that they need to overlap with the operating hours of New York or 

other East Coast banking and financial markets. 

 Black (1990) uses regression analysis on data from 120 US metropolitan areas to see 

what factors influence the fraction of metropolitan workers who walk to work. This fraction 

varies from 1.9% to 15.7%, averaging 5.4%. It is higher in cities with military bases or 

universities, in small cities, and where incomes are low. Black’s study is a useful reminder that 

walking can be an important journey-to-work mode, its prevalence being sensitive to land uses 

and demographics. Plaut (2004) reports that in Tel Aviv, 9.4% of workers walk to work, a 

fraction that varies by gender, age, and household status.14 

 

                                                 
14 Computed as the weighted average of “percent walking to work” for the columns pertaining to Tel Aviv in Plaut’s 
Table 7, p. 246. 
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2.1.3 Cross-Sectional Studies within a Metropolitan Area 

Statistical analysis can also be used to analyze trip-making in different parts of one metropolitan 

area. This approach, known as direct demand modeling, was introduced by Domencich and Kraft 

(1970) to explain the number of round trips between zone pairs, by purpose and mode, in the 

Boston area. An example is the analysis by Kain and Liu (2002, Table 5-10) of mode share to 

work in Santiago, Chile. The share is measured for each of 34 districts (“communas”); its 

logarithm is regressed on variables such as travel time, transit availability, and household 

income. The most powerful predictors for automobile share are vehicle ownership and household 

income, both of which increase the share. (Unfortunately, this does not control for the possibility 

that vehicle ownership is influenced by automobile share itself — an “endogeneity problem” that 

we discuss later.) The share for the Metro rail system is strongly increased, quite naturally, by 

presence of a Metro station in the district, and is strongly decreased by high household income. 

 Dagenais and Gaudry (1986), analyzing Montreal data on trip-making, find it important 

to include observations of zone pairs with zero reported trips, using the standard “tobit” model 

for limited dependent variables to account for the fact that the number of trips between two zones 

cannot be negative.15 This illustrates a pervasive feature of travel-demand analysis: many of the 

variables to be explained are limited in range, making ordinary regression analysis inappropriate. 

For this reason, travel-demand researchers have contributed importantly to the development of 

techniques, discussed later in this chapter, that are appropriate for such data (McFadden 2001). 

Here we describe one such technique that is applicable to aggregate data. 

 Suppose the dependent variable of a model can logically take values only within a certain 

range. For example, if the dependent variable x is the modal share of transit, it must lie between 

zero and one. Instead of explaining x directly, we can explain the logistic transformation of x as 

follows: 

 εβ +′=







−
z

x
x

1
log  (2.7) 

                                                 
15 The tobit model, also known as a censored model, postulates a “latent” (unobserved) variable x* that is explained 
by an ordinary regression equation like x*=β′z+ε, and an observed variable x=max{x*,0}. The idea is that we 
observe x* except when it is below a logical cutoff for observability (zero in this example), in which case we 
observe only that it fell below that cutoff. See any econometrics text, for example Johnston and DiNardo (1997, Ch. 
13). 
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where β is a vector of parameters, z is a vector of independent variables, and ε is an error term 

with infinite range.16 Equivalently, 
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( )εβ
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This is an aggregate logit model for a single dependent variable. 

 In many applications, several dependent variables xi are related to each other, each 

associated with particular values zi of some independent variables. For example, xi might be the 

share of trips made by mode i, and zi a vector of service characteristics of mode i. If the 

characteristics in the z variables encompass all the systematic influences on mode shares, then a 

simple extension of equation (2.8) ensures that they sum to one: 

 
( )
( )∑

=

+′

+′
= J

j
jj

ii
i

z

zx

1
exp

exp

εβ

εβ
 (2.9) 

where J is the number of modes.17 Anas (1981) and Mackett (1985) use counts of interzonal 

flows to estimate models similar to this, in order to explain location and mode choice in Chicago 

and in Hertfordshire (England), respectively. The study by Winston and Shirley (1998), 

mentioned in the previous subsection, also uses this formula. 

 

2.1.4 Studies Using Time Series Data 

One can estimate demand equations from aggregate time-series data from a single area. For 

example, Greene (1992) uses US nationwide data on vehicle-miles traveled (VMT) to examine 

the effects of fuel prices. Several studies have examined transit ridership using data over time 

from a single metropolitan area or even a single transit corridor — for example Gaudry (1975) 

and Gómez-Ibáñez (1996) use this method to study Montreal and Boston, respectively. Time-

series studies are quite sensitive to the handling of auto-correlation among the error terms, which 

refers to the tendency for unobserved influences on the measured dependent variable to persist 

over time. They may also postulate “inertia” by including among the explanatory variables one 

                                                 
16 This assumes that x does not take values 0 or 1 in the observed data. If it does, an alternative would be a single- or 
double-censored tobit model. The double-censored tobit model is like that in the previous footnote except now x=0 
if x*<0, x=x* if 0≤x*≤1, and x=1 if x*>1. 
17 Eqn (2.2) is a special case of (2.3) in which J=2 and we define x=x1, z=z1-z2 and ε=ε1-ε2. 
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or more lagged values of the variable being explained. For example, Greene considers the 

possibility that once people have established the travel patterns that produce a particular level of 

VMT, they change them only gradually if conditions such as fuel prices suddenly change. The 

coefficients on the lagged dependent variables then enable one to measure the difference 

between short- and long-run responses. This measured difference is especially sensitive to the 

treatment of autocorrelation. 

 It is common to combine cross-sectional and time-series variation, for example using 

observations from many separate locations and two or more time periods. Voith (1997) analyzes 

ridership data from 118 commuter-rail stations in metropolitan Philadelphia over the years 1978–

91 to ascertain the effects of level of service and of demographics on rail ridership. Surprisingly, 

he finds that demographic characteristics have little independent effect; rather, he suggests that 

much of the observed correlation between demographic factors and rail ridership arises from 

reverse causation. For example, a neighborhood with good rail connections to the central 

business district (CBD) will attract residents who work in the CBD. A corollary of this finding is 

that the long-run effects of changes in fares or service levels, allowing for induced changes in 

residential location, are considerably greater than the short-run effects. Another study using 

cross-sectional time series is that by Petitte (2001), who estimates fare elasticities from station-

level data on Metrorail ridership in Washington, D.C. 

 Studies using cross-sectional time series need to account for the fact that, even aside from 

autocorrelation, the error terms for observations from the same location at different points in 

time cannot plausibly be assumed to be independent. Neglecting this fact will result in an 

unnecessary loss of efficiency and an over-statement of the precision of the estimates; for 

nonlinear models, it may also bias the estimates. To account for the error structure, at least three 

approaches are available. One is to “first difference” all variables, so that the variable explained 

describes changes in some quantity rather than the quantity itself; this reduces the size of the data 

set by N if N is the number of locations.18 A second is to estimate a “fixed effects” model, in 

which a separate constant is estimated for every location; this retains all observations but adds 

N–1 new coefficients to be estimated (assuming one constant would be estimated in any case). A 

third is a “random effects” model, in which a separate random-error term is specified that varies 

only by location (not time), usually with an assumed normal distribution; this specification adds 

                                                 
18 A good example is the study of transit use in US cities by Baum-Snow and Kahn (2000). 
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only one parameter to be estimated (the standard deviation of the new error term) and so is 

especially useful where only a few time periods are available. Statistical tests are available to 

determine whether the more restrictive random-effects model is justified. Voith (1997) uses both 

the first-difference and fixed-effects approaches. 

  

2.1.5 Summary of Key Results of Aggregate Studies 

Several literature surveys have compiled estimates of summary measures such as own- and 

cross-elasticities of demand for auto or public transit with respect to cost and service quality. 

Service quality is typically proxied by annual vehicle-miles or vehicle-hours of service. 

 As a rough rule of thumb, a 10 percent increase in transit fare reduces transit demand by 

four percent: that is, transit’s own-price elasticity is approximately -0.4 on average (Pratt et al. 

2000, p. 12-9). This elasticity is higher for trips to a central business district, trips on buses 

(compared to urban rail), and off-peak trips (Lago, Mayworm and McEnroe 1981). Goodwin 

(1992) and Pratt et al. (2000, Ch. 12) provide thorough reviews, which also include some studies 

using the disaggregate techniques described later in this chapter. Transit elasticities with respect 

to service quality tend to be higher, especially where service quality is poor (Chan and Ou 1978). 

Unfortunately, the time period over which these elasticities apply varies from study to study and 

is often unstated; usually the elasticities are measured using data covering a period of a few 

months to about two years. 

 Demand for automobile work trips is similarly more sensitive to service quality than to 

cost. For example, time- and cost-elasticities are measured at -0.8 and -0.5, respectively, for 

Boston; and at -0.4 and -0.1 for Louisville, Kentucky (Chan and Ou 1978, p. 43). Overall 

demand for travel in personal vehicles has more often been measured as a function of fuel price 

and/or fuel cost per mile; typical results show elasticities between –0.1 and –0.3, with short-run 

elasticities typically smaller (in absolute values) than long-run elasticities. The demand elasticity 

for fuel itself is apparently two to three times as large, indicating that changes in fuel price affect 

the composition of the motor-vehicle fleet more than its usage.19 

 Several studies have found intriguing regularities in the per-capita or per-household 

expenditures of time and money on travel. In a series of papers and reports, Yacov Zahavi has 
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made these regularities the centerpiece of a model of travel demand known as Unified 

Mechanism of Travel. However, most scholars have concluded that the regularities can be 

explained by more conventional models and, furthermore, that the regularities are only 

approximations and that violations of them occur as predicted by economic theory (Schafer 

2000). For example, Kockelman (2001) rejects the hypothesis of fixed travel-time budgets using 

data from the San Francisco Bay Area. She finds rather that total time spent traveling declines as 

nearby activities are made more accessible and as distant activities are made less accessible, the 

latter suggesting that substitution (of nearby for distant destinations) more than offsets the direct 

effects of increased travel time to distant locations. 

 

2.1.6 Transportation and Land Use 

Transportation is defined with respect to particular locations. Naturally, the way the land at those 

locations is used — the types and densities of buildings occupying them and the activities that 

occur there  — are among the most important factors influencing travel decisions. For example, 

researchers have found that public transit ridership in a city is more heavily influenced by the 

number of jobs in the city’s downtown area than by almost any other factor (Barnes 2005). 

Furthermore, transportation facilities have significant effects on land use. Thus, the two-way 

inter-relationship is important analytically and, because transportation and land use have 

significant spillover effects on quality of life for nearby residents, it fuels contentious policy 

debates.20 Here, we consider just one of the two-way directions of influence: from land use to 

travel. 

 One approach to understanding this influence is to study the relationships among 

aggregate land-use and travel measures, typically at the level of a metropolitan area. One needs 

to keep track of which is causing which, and to carefully disentangle related factors. For 

example, one obviously must control for variables like income and fuel price, which are 

correlated with land-use characteristics and which independently affect travel. Some influential 

studies claiming far-reaching effects of urban density on travel, such Newman and Kenworthy 

                                                                                                                                                             
19 Luk and Hepburn (1993); Greening, Greene and Difiglio (2000, Section 3.1.4); Graham and Glaister (2002, Table 
2). Johansson and Schipper (1997) estimate a useful breakdown of changes of per capita fuel consumption into 
changes in vehicle stock, average fuel economy, and average usage per vehicle. 
20 Giuliano (2004) provides a good review. 
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(1989), have been severely criticized for neglecting this fundamental requirement of statistical 

analysis. 

 But several other pitfalls afflict such aggregate studies. Most importantly, because the 

interaction is two-way, land-use patterns are not exogenous; instead, they respond strongly to 

transportation systems. As a result, trying to explain travel decisions with land-use patterns risks 

confusing cause with effect. Statistical techniques exist to handle this type of “endogeneity 

problem,” notably the use of “instrumental variables,” in this case variables related to land use 

but believed to be exogenous (see any of the econometrics texts listed in Section 2.1.1). An 

example might be the age of the city, or a measure of its density several decades earlier. Roughly 

speaking, the variable feared to be endogenous (land use) is replaced, in the equation explaining 

travel, by a predicted version formed by regressing the land-use variable on all exogenous 

variables in the system, including the instrumental variables. We discuss instrumental variables 

further in Section 2.4.5. 

 Even when the two directions of causality between transportation and land use are 

correctly measured, they can produce surprising policy paradoxes. For example, expanding 

highways to relieve congestion may attract development that undermines the intended effect; this 

is just one of many examples of “induced demand,” discussed in Chapter 5. Expanding mass 

transit can even exacerbate highway congestion because the induced development, even if 

relatively transit-oriented, still generates many automobile trips. For example, the Bay Area  

Rapid Transit system in San Francisco is credited with causing Walnut Creek, an outlying 

station, to develop into a major center of office employment — but despite its good transit 

access, 95 percent of commuting trips to this center are by automobile (Cervero and Wu 1996, 

Table 5). 

 A similar endogeneity problem afflicts measures of transportation infrastructure or 

service provision, such as the extent of roadways and rail transit lines or the amount of bus 

service provided. Presumably policy makers provide infrastructure and services at least partly in 

response to actual or expected travel. Therefore any factors, unaccounted for by the model, that 

increase a particular type of travel may also tend to increase the associated infrastructure and 

service provision. Ignoring this reverse causality could lead to an overstatement of the effect of 

infrastructure or service provision on travel and, because infrastructure is closely related to urban 
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density, an understatement of the effect of land-use patterns (since some of their effects would be 

attributed instead to the transportation service variables).  

 Another problem is that land-use patterns cannot be modified by fiat. Even in countries 

with strong land-use authority, such as the Netherlands, land-use policies do not always bring 

about the changes that were intended (Schwanen, Dijst and Dieleman 2004). In others, such as 

the US, the changes in land use that can feasibly be accomplished through policy are quite 

limited. The urbanized area of Portland, Oregon, remains relatively low density despite three 

decades of stringent policies aimed at increasing urban density; one reason is that Portland’s 

policies have apparently diverted urban development to more outlying jurisdictions outside its 

control (Downs 2004, Jun 2004). Thus, even when it can be established that a certain type of 

land-use pattern has favorable effects on travel, there may be no way to bring about the desired 

change. 

 We turn now to empirical findings on how land use affects travel demand at an aggregate 

level. At the level of an entire metropolitan area, modest effects have been documented. Within a 

cross-section of 49 US metropolitan areas, Keyes (1982) shows that per-capita gasoline 

consumption rises with total urban population and with the fraction of jobs located in the central 

business district, and falls with the fraction of people living in high-density census tracts. These 

effects are estimated to be even larger if transportation infrastructure and services are omitted on 

the grounds that they are endogenous. Gordon, Kumar and Richardson (1989) examine average 

commuting time among individual respondents to the 1980 National Personal Transportation 

Study. Commuting time, unlike gasoline consumption, goes up with residential density; 

presumably this reflects longer or more congested commutes. But commuting time goes down 

with the proportion of the metropolitan population that lives outside the central city. This last 

finding suggests that polycentric or dispersed land-use patterns enable people to bypass central 

congestion, which in turn may explain a paradox: average commuting times have risen much 

more slowly than the amount of congestion on any given road.  

 Bento et al. (2004) ask how various land-use and transportation variables, intended to 

measure “urban sprawl,” influence travel choices across 114 US metropolitan areas. While no 

one factor explains very much of the variation, all of them taken together make a significant 

difference. To illustrate, the authors predict annual vehicle use for a national sample of 

households if they all lived in metropolitan areas with specified characteristics related to land use 
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and transportation supply. If the characteristics are those of Atlanta, their model predicts 16,900 

vehicle-miles per household; if the characteristics are changed to those of Boston, the same 

households would travel 25 percent less. While many characteristics contribute to this difference, 

the most important is population centrality, which indicates that a higher proportion of Boston’s 

population than Atlanta’s lives within the central portions of the total urbanized land area. 

Boston also has a higher urban population density and a more even balance between jobs and 

households at the zip-code level, both of which contribute to its lower vehicle use. This limiting 

effect of density upon vehicle-miles traveled is consistent with the Dutch figures quoted in the 

introduction to Section 2.1. 

 Other contexts, or more precise breakdowns, may yield different results. Schwanen, Dijst 

and Dieleman  (2004) examine the effects of urban size and form on travel for commuting and 

shopping trips in the Netherlands. For any given mode (auto or transit), they find that the largest 

cities have the shortest and fastest commutes, medium-sized cities and outlying “growth centers” 

have the longest, while suburbs are in between. They also report exceptionally high use of 

walking and bicycling, amounting to 40 percent of work trips and 67 percent of shopping trips in 

the three largest cities, with lower rates in other areas. 

 Turning to the neighborhood level, the evidence on how land use affects travel is quite 

mixed. Crane (2000) provides a useful review. It is clear that high-density neighborhoods near 

transit stops support higher use of public transit. It is less clear how much of this is due simply to 

sorting of households: those who want to use transit choose transit-oriented neighborhoods. This 

is not a concern if one simply wants to predict transit patronage in a proposed isolated transit-

oriented development; but if one wants to know the aggregate effects of building many such 

developments, one needs to control statistically for sorting. When this is done, the effects of land 

use on the travel behavior are found to be much more modest, and to depend on a number of 

collateral factors such as how centralized the entire urban area is. For example, Cervero and 

Gorham (1995) find that transit-oriented development encourages more walking and bicycling in 

local areas within the San Francisco region, but not in those within the Los Angeles region. 

Recent work has suggested that the neighborhood-level effects of land use on travel can be 

understood by examining how trip costs are affected (Boarnet and Crane 2000); this observation 

opens the door to research explaining more specifically why land use has impacts in some 

settings and not others. 
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 One of the factors limiting the influence of land use is that people travel far greater 

distances than are required by land-use patterns alone. Even when jobs-housing balance is 

achieved within a community, people do not predominately choose nearby jobs. Thus, for 

example, new exurban communities intended to be relatively self-contained have generally 

discovered that most residents work elsewhere.21 

 A quite different approach to the linkage between land use and transportation is to build 

detailed computer models that simulate both land-use decisions, such as whether to develop a 

property and at what density, and travel decisions. Typically this is done at the level of small- to 

moderate-sized zones within an urban area. Because the potential number of relevant decisions is 

enormous, it has proven difficult to simultaneously meet the goals of theoretical rigor (generally 

based on micro-economic theory), adequate spatial detail, computational tractability, data 

availability, and comprehensibility. Nevertheless such models have achieved some success. Anas 

(1982) describes a model, known as the Chicago Area Transportation/ Land Use Analysis 

System (CATLAS), calibrated for Chicago and used for a number of interesting policy 

evaluations. One of them was to predict impacts of a new transit line from downtown Chicago to 

Midway Airport. Subsequent studies by other researchers have verified two of its predictions: 

substantial impacts on housing prices for properties within half a mile of the line, and virtually 

no price impact on housing more than 1.5 miles distant. Another notable result is that much of 

the impact appeared during the several years after the line was approved but not yet 

constructed.22 

 More recently, Anas and Liu (2006) describe a model that attempts to more fully 

represent economic decision-making with computational tractability. The land-use portion of the 

model keeps track of product prices, wages, housing rents and prices, and stocks of buildings, 

allowing for dynamic decision-making accounting for the durability of decisions about buildings. 

The transportation portion of the model contains the usual components of a complete travel 

model as described earlier in Section 2.1, including equilibration of route choices on networks 

representing available transit lines and roads. Safirova et al. (2006) combine the same underlying 

land-use model with a different transportation model, known as START, and use it for policy 

analysis for the Washington, D.C., area. Another significant recent model system is UrbanSim, 

                                                 
21 See Giuliano and Small (1993); Giuliano (1991); Cervero (1996); and Schwanen, Dijst and Dieleman . (2004). 
22 See McDonald and Osuji (1995) and McMillen and McDonald (2004). 
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which adopts an open computer architecture to facilitate adaptation by other researchers for 

specific purposes. It is described by Waddell (2002), who also provides a useful review of older 

models and of modeling strategies specifically designed for the needs of transportation agencies. 

 

2.2 Disaggregate Models: Methods 

 

An alternative approach, known as disaggregate or behavioral travel-demand modeling, is now 

far more common for travel demand research. Made possible by micro data (data on individual 

decision-making units), this approach explains behavior directly at the level of a person, 

household, or firm. Disaggregate models are more efficient in their use of survey data when such 

data are available, and are based on a more satisfactory microeconomic theory of demand, a 

feature that is particularly useful when applying welfare economics. Most such models analyze 

choices among discrete rather than continuous alternatives and so are called discrete-choice 

models.23 

 

2.2.1 Basic Discrete-Choice Models 

The most widely used theoretical foundation for these models is the additive random-utility 

model of McFadden (1973). Suppose a decision maker n facing discrete alternatives j=1,...,J 

chooses the one that maximizes utility as given by 

 ( ) jnnjnjn szVU εβ += ;,  (2.10) 

where V(⋅) is a function known as the systematic utility, zjn is a vector of attributes of the 

alternatives as they apply to this decision maker, sn is a vector of characteristics of the decision 

maker (effectively allowing different utility structures for different identifiable groups of 

decision makers), β is a vector of unknown parameters, and εjn is an unobservable component of 

utility which captures idiosyncratic preferences. Ujn and V are known as conditional indirect 

utility functions, since they are conditional on choice j and, just like the indirect utility function 

of standard consumer theory, may depend on income and prices and thus implicitly incorporate a 

budget constraint. 

                                                 
23 Reviews with a transportation focus include Train (2003), Ben-Akiva and Bierlaire (2003), Koppelman and Sethi 
(2000), and Ben-Akiva and Lerman (1985). 
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 The choice is probabilistic because the measured variables do not include everything 

relevant to the individual’s decision. This fact is represented by the random terms εjn. Once a 

functional form for V is specified, the model becomes complete by specifying a joint cumulative 

distribution function (cdf) for the random terms, F(ε1n,...,εJn). Denoting V(zjn,sn,β) by Vjn, the 

choice probability for alternative i is then 
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where Fi is the partial derivative of F with respect to its i-th argument. Fi is thus the probability 

density function of εin, conditional on the inequalities in (2.1). 

 Suppose the cdf F(⋅) is multivariate normal. Then (2.11) is the multinomial probit model 

with general covariance structure. However, neither F nor Fi can be expressed in closed form; 

instead, equation (2.11) is usually written as a (J–1)-dimensional integral of the normal density 

function. In the special case where the random terms are identically and independently 

distributed (iid) with the univariate normal distribution, F is the product of J univariate normal 

cdfs, and we have the iid probit model, which still requires computation of a (J–1)-dimensional 

integral. For example, in the iid probit model for binary choice (J=2), (2.11) becomes 
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where Φ is the cumulative standard normal distribution function (a one-dimensional integral) and 

σ is the standard deviation of ε1n–ε2n. In equation (2.12), σ cannot be distinguished empirically 

from the scale of utility, which is arbitrary; for example, doubling σ has the same  effect as 

halving both V1 and V2. Hence it is conventional to normalize by setting σ=1. 

 The logit model (also known as multinomial logit or conditional logit) arises when the J 

random terms are iid with the extreme-value distribution, sometimes called the Gumbel, Weibull, 

or double-exponential distributrion. This distribution is defined by 

 [ ] ( )x
jn ex µε −−=< expPr  (2.13) 
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for all real numbers x, where µ is a scale parameter. Here the convention is to normalize by 

setting µ=1. With this normalization, McFadden (1973) shows that the resulting probabilities 

calculated from (2.11) have the logit form: 
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This formula is easily seen to have the celebrated and restrictive property of independence from 

irrelevant alternatives: namely, that the odds ratio (Pin/Pjn) depends on the utilities Vin and Vjn 

but not on the utilities for any other alternatives. This property implies, for example, that adding 

a new alternative k (equivalent to increasing its systematic utility Vkn from -∞ to some finite 

value) will not affect the relative proportions of people using previously existing alternatives. It 

also implies that for a given alternative k, the cross-elasticities ∑logPjn/∑logVkn are identical for 

all j≠k: hence if the attractiveness of alternative k is increased, the probabilities of all the other 

alternatives j≠k will be reduced by identical percentages. These properties apply only to a group 

of consumers with a common value for Vin; they do not apply to heterogeneous populations.  

 The binary form of (2.14), i.e. the form with J=2, is: 

 ( )[ ]nn
in VV

P
21exp1

1
−−+

= . 

If graphed as a function of (V1n–V2n), this equation looks quite similar to (2.12). 

 It is really the iid assumption — identically and independently distributed error terms — 

that is restrictive, whether or not it entails independence of irrelevant alternatives. Hence there is 

no basis for the widespread belief that iid probit is more general than logit. In fact, the logit and 

iid probit models have been found empirically to give virtually identical results when normalized 

comparably (Horowitz 1980).24 Furthermore, both probit and logit may be generalized by 

                                                 
24 Comparable normalization is accomplished by dividing the logit coefficients by π/√3 in order to give the utilities the 
same standard deviations in the two models. In both models, the choice probabilities depend on (β/σε), where 2

εσ  is the 
variance of each of the random terms εin. In the case of probit, the variance of ε1n-ε2n, which is 22 εσ , is set to one by the 
conventional normalization; hence PROBIT

εσ = 1/√2. In the case of logit, the normalization µ=1 in equation (2.13) 
implies that εin has standard deviation LOGIT

εσ = π/√6 (Hastings and Peacock 1975, p. 60). Hence to make logit and iid 
probit comparable, the logit coefficients must be divided by PROBITLOGIT

εε σσ /  = π/√3 = 1.814. 
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defining non-iid distributions. In the probit case the generalization uses the multivariate normal 

distribution, whereas in the logit case it can take a number of forms to be discussed later. 

 As for the functional form of V, by far the most common is linear in unknown parameters 

β. More general forms such as Box-Cox and Box-Tukey transformations are studied by Gaudry 

and Wills (1978). Just as with regression analysis, V can be linear in parameters while still 

nonlinear in variables, just by specifying new variables equal to nonlinear functions of the 

original ones. For example, the utility (2.10) on mode i of a traveler n with wage wn facing travel 

costs cin and times Tin could be specified as: 

 ( ) 2
321 /);,,( ininninnininin TTwcwTcV ββββ ++⋅= . (2.15) 

This is non-linear in travel time and in wage rate. If we redefine zin as the vector of all such 

combinations of the original variables,25 then the linear-in-parameters specification is simply 

written as 

 inin zV β ′=  (2.16) 

where β′ is the transpose of column vector β. 

 

2.2.2 Estimation 

For a given model, data on actual choices, along with traits zjn, can be used to estimate the 

unknown parameter vector β in (2.16) and to carry out statistical tests of the specification (i.e., 

tests of whether the assumed functional form of V and the assumed error distribution are valid). 

Parameters are usually estimated by maximizing the log-likelihood function: 

 ∑∑
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where N is the sample size. In this equation, din is the choice variable, defined as 1 if decision-

maker n chooses alternative i and 0 otherwise, and Pin(β) is the choice probability. Not only does 

maximizing this function give us the maximum-likelihood estimates of parameters, often written 

as β̂ ; the derivatives of L also provide information about the statistical uncertainty in β̂ , 

usually summarized as its variance-covariance matrix, denoted )ˆ(βVar . The diagonal elements 

                                                 
25 In this example there are three such combinations, so zin is a vector with three components: cin/wn, Tin, and 2

inT . 
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of this matrix give the variances (i.e. the squares of the standard deviations) of the individual 

parameters, while the off-diagonal elements give the covariances between pairs of parameters. 

This information is crucial to knowing how firm we can be in making quantitative statements 

about the parameters based on the particular data set used. 

 A correction to (2.17) is available for choice-based samples, i.e., those in which the 

sampling frequencies depend on the choices made. Choice-based samples often are available for 

practical reasons, such as the convenience of conducting a mode-choice survey at train stations 

and bus stops. The correction simply multiplies each term in the second summation by the 

inverse of the sampling probability for that sample member (Manski and Lerman 1977). This 

correction does not, however, make efficient use of the information on aggregate mode shares 

that it requires; Imbens and Lancaster (1994) show how to incorporate aggregate information to 

improve efficiency. 

 Recent work has shown that demand functions built up from discrete-choice models at 

the individual consumer level can be estimated using data solely on aggregate market shares. 

Bresnahan, Stern and Trajtenberg (1997) provide a particularly clear exposition. Basically, they 

use an extension of the idea, described earlier in connection with regression analysis, of 

minimizing the sum of squared residuals. Recall that a residual is the discrepancy between an 

observed quantity (such as amount of a good consumed) and that predicted by the model at any 

particular set of parameters; it is those parameters that are adjusted to minimize the sum of 

squared residuals. In the treatment by Bresnahan, Stern and Trajtenberg , the sum of squared 

residuals is generalized to a quadratic form in the vector of residuals, a common procedure in 

econometric models. The innovation, derived from Berry (1994), is in constructing the residuals 

themselves, one for each alternative j; they are formed as the differences between the indirect 

utility Vj (as computed from the discrete-choice model at a trial set of parameter values) and the 

indirect utility δj that is implied by its observed market share. (The authors assume that the 

discrete-choice model contains no variables describing characteristics of consumers, which 

enables us to omit subscript n from indirect utility.) The values of δj used in this procedure are 

determined (again for a given set of trial parameters) by solving the equation for probabilities, 
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e.g. (2.14), so as to give each indirect utility Vj as a function of the probabilities Pi(i=1,…,J); the 

solution is interpreted as giving δj in terms of the observed market shares.26 

 One of the major attractions of logit is the computational simplicity of its log-likelihood 

function, due to taking the logarithm of the numerator in equation (2.14). With V linear in β, the 

logit log-likelihood function is globally concave in β, so finding a local maximum assures 

finding the global maximum. Fast computer routines to do this are widely available. In contrast, 

computing the log-likelihood function for multinomial probit with J alternatives entails 

computing for each member of the sample the (J–1)-dimensional integral implicit in equation 

(2.11). This has generally proven difficult for J larger than 3 or 4, despite the development of 

computational-intensive simulation methods (Train 2003). 

 It is possible that the likelihood function is unbounded in one of the coefficients, making 

it impossible to maximize. This happens if one includes a variable that is a perfect predictor of 

choice within the sample. For example, suppose one is predicting car ownership (yes or no) and 

wants to include among variables sn in (2.10) a dummy variable for high income. If it happens 

that within the sample everyone with high income owns a car, the likelihood function increases 

without limit in the coefficient of this dummy variable. The problem is that income does too 

good a job as an explanatory variable: within this data set, the model exuberantly declares high 

income to make the alternative of owning a car infinitely desirable relative to not owning one. 

We know of course that this is not true and that a larger sample would contain counter-examples 

— even in the US, 1.5% of the highest-income households owned no car in 2001 (Pucher and 

Renne 2003). Given the sample we have, we might solve the problem by respecifying the model 

with more broadly defined income groups or more narrowly defined alternatives. Alternatively, 

we could postulate a linear probability model, in which probability rather than utility is a linear 

function of coefficients; despite certain statistical disadvantages, this model is able to measure 

the coefficient in question (Caudill 1988) because there is a limit to how strongly income can 

affect probability. 

 

2.2.3 Interpreting Coefficient Estimates 

                                                 
26 The fact that (2.14) can be inverted is due to a property of the logit model: if a full set of alternative-specific 
constants is included, the predicted choice shares for each of the alternatives can be made exactly equal to the 
observed shares in the sample by setting parameter β to its maximum-likelihood estimate. 
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It is useful for interpreting empirical results to note that a change in β′zin in (2.16) by an amount 

of ±1 increases or decreases the relative odds of alternative i, compared to each other alternative, 

by a factor exp(1)=2.72. Thus a quick gauge of the behavioral significance of any particular 

variable can be obtained by considering the size of typical variations in that variable, multiplied 

by its relevant coefficient — if the result is on the order of 1.0 or larger, such variations have 

large effects on the relative odds. In fact some authors prefer to provide this information by 

listing, in addition to or instead of the coefficient estimates, the marginal effect of a specified 

change in the independent variable on the probabilities; this marginal effect however depends on 

the values of the variables. 

 The parameter vector may contain alternative-specific constants for one or more 

alternatives i. That is, the systematic utility may be of the form 

. z +  = V          iniin βα ′  (2.18) 

Since only utility differences matter, at least one of the alternative-specific constants αi must be 

normalized, usually to zero: that alternative then serves as a “base alternative” for comparisons. 

 The constant αi may be interpreted as the average utility of the unobserved characteristics 

of the i-th alternative, relative to the base alternative. In a sense, specifying these constants is 

admitting the inadequacy of variables zin to explain choice; hence the constants’ estimated values 

are especially likely to reflect circumstances of a particular sample rather than universal 

behavior. The use of alternative-specific constants also makes it impossible to forecast the result 

of adding a new alternative, unless there is some basis for a guess as to what its alternative-

specific constant would be. Quandt and Baumol (1966) coined the term “abstract mode” to 

indicate the desire to describe a travel mode entirely by its objective characteristics, rather than 

relying on alternative-specific constants. In practice, however, this goal is rarely achieved. 

 Equation (2.18) is really a special case of (2.16) in which one or more of the variables Z 

are alternative-specific dummy variables, Dk, defined by k
jnD =1 if j=k and 0 otherwise (for each 

j=1,…,J). (Such a variable does not depend on n.) In this notation, parameter αi in (2.18) is 

viewed as the coefficient of variable Di included among the z variables in (2.16). Such dummy 

variables can also be interacted with (i.e., multiplied by) any other variable, making it possible 

for the latter variable to affect utility in a different way for each alternative. All such variables 
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and interactions may be included in z, and their coefficients in β, thus allowing (2.16) still to 

represent the linear-in-parameters specification. 

  The most economically meaningful quantities obtained from estimating a discrete-choice 

model are often ratios of coefficients, which represent marginal rates of substitution — that is, 

the rates at which two variables can be traded against each other without changing utility. By 

interacting the variables of interest with socioeconomic characteristics or alternative-specific 

constants, these ratios can be specified quite flexibly so as to vary in a manner thought to be a 

priori plausible. 

 A particularly important example is the marginal rate of substitution between time and 

money in the conditional indirect utility function, often called the value of travel-time savings, or 

value of time for short. It represents the monetary value that the traveler places on time savings, 

and is very important in evaluating the benefits of transportation improvements whose primary 

effects are to improve people’s mobility. The value of time in the model (2.15) is 
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which varies across individuals since it depends on wn and Tin. We emphasize that this is a 

marginal concept: it is a measure, per unit of time, that applies to small time savings. For a larger 

time saving, say from 0
inT  to 1

inT , the total value to travelers would be the integral of (2.19), which 

can be computed analytically: 
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where 2/)( 10
inin TTT +=  and 2/)( 01

inin TTT −=∆ . Thus, in this example, the value of a finite time 

saving is computed as the time saving multiplied by the marginal value of time, with the latter 

evaluated at the average trip duration before and after the change. 

 As a more complex example, suppose we extend equation (2.15) by adding alternative-

specific dummies, both separately (with coefficients αi) and interacted with travel time (with 

coefficients γi): 

 ( ) iniininniniin TTTwcV γβββα +++⋅+= 2
321 /  (2.20) 
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where one of the αi and one of the γi are normalized to zero. This yields the following value of 

time applicable when individual n chooses alternative i:  

 n
iin

inT wTv ⋅






 ++
=

1

32 2)(
β

γββ . (2.21) 

Now the value of time varies across modes even with identical travel times, due to the presence 

of γi. There is a danger, however, in interpreting such a model. What appears to be variation in 

value of time across modes may just reflect selection bias: people who, for reasons we cannot 

observe, have high values of time will tend to self-select onto the faster modes (MVA 

Consultancy et al. 1987, pp. 90-92). This possibility can be modeled explicitly using a random-

coefficient model, described later in this chapter. 

 Confidence bounds for a ratio of coefficients, or for more complex functions of 

coefficients, can be estimated by standard approximations for transformations of normal variates. 

Specifically, if vector β is asymptotically normally distributed with mean b and variance-

covariance matrix Σ, then a function f(β–b) is asymptotically normally distributed with mean 

zero and variance-covariance matrix (“f)Σ(“f)′, where “f is the vector of partial derivatives of 

f.27 A more accurate estimate may be obtained by taking repeated random draws from the 

probability distribution of β (that distribution being estimated along with β itself), and then 

examining the values of f corresponding to these draws. As an example, the 5th and 95th 

percentile values of those values of f define a 90-percent confidence interval for f.28 

 

2.2.4 Data 

 Some of the most important variables for travel demand modeling are determined 

endogenously within a larger model of which the demand model is just one component. The 

most common example is that travel times depend on congestion, which depends on amount of 

                                                 
27 Chow (1983, pp. 182-3). The result requires asymptotic convergence of β at a rate proportional to the square root 
of the sample size. (That is, as the sample size N increases, the difference between the estimated and true values of β 
tends to diminish proportionally to 1/√N.) In the simple case where vT=β2/β1, it implies that the standard deviation σv 
of vT obeys the intuitive formula: (σv/vT)2 ≅ (σ1/β1)2 + (σ2/β2)2 – 2σ12/(β1β2), where σ1 and σ2 are the standard 
deviations of β1 and β2 and where σ12 is their covariance. Such an approximation requires that σ1/β1 and σ2/β2 be 
small, which in turn helps ensure that the variance of β1/β2 exists (it would not exist, for example, if the mean of β2 
were zero). 
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travel, which depends on travel times. Thus the application of a travel demand model may 

require a process of equilibration in which a solution is sought to a set of simultaneous 

relationships. An elegant formulation of supply-demand equilibration on a congested network is 

provided in the remarkable study by Beckmann, McGuire and Winsten (1956). Boyce, 

Mahmassani and Nagurney (2005) provide a readable review of its history and subsequent 

impact. 

 With aggregate data, the endogeneity of travel characteristics is an important issue for 

obtaining valid statistical estimates of demand parameters. In most cases, endogeneity can be 

ignored when using disaggregate data because, from the point of view of individual decision-

making, the travel environment does not depend appreciably on that one individual’s decisions. 

(See Section 2.4.5 for an important exception.) Nevertheless, measuring the values of attributes 

zin, which typically vary by alternative, is more difficult than it may first appear. How does one 

know the attributes that a traveler would have encountered on an alternative that was not in fact 

used? 

 One possibility is to use objective estimates, such as the engineering values produced by 

network models of the transportation system. Another is to use reported values obtained directly 

from survey respondents. Each is subject to problems. Reported values measure people’s 

perceptions of travel conditions, which, even for alternatives they choose regularly, may be quite 

different from the measures employed in policy analysis or forecasting. People know even less 

about alternatives they do not choose. Hence even if reported values accurately measure the 

perceptions that determine choice, the resulting models cannot be used for prediction unless one 

can predict how a given change will alter those perceptions. Worse still, the reports may be 

systematically biased so as to justify the choice, thereby exaggerating the advantages of the 

alternative chosen and the disadvantages of other alternatives. The study by MVA Consultancy 

et al. (1987, pp. 159-163) finds such bias to be severe in a study of the Tyne River crossing in 

England. In this case the measured values for explanatory variables are endogenous to the 

choice, which makes the estimated model appear to fit very well (a typical finding for studies 

using reported values) but which renders it useless for prediction.  

                                                                                                                                                             
28 This method is described by Armstrong, Garrido and Ortúzar (2001). See Train (2003, Ch. 9) for how to take 
random draws from distributions. 
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 Objective estimates of travel attributes, on the other hand, may be very expensive and not 

necessarily accurate. Even something as simple as the travel time for driving on a particular 

highway segment at a particular time of day is quite difficult to ascertain. Measuring the day-to-

day variability of that travel time is even more difficult. Three recent studies in California have 

accomplished this, one by applying sophisticated algorithms to data from loop detectors placed 

in the highway and two by using the floating-car method, in which a vehicle with a stopwatch is 

driven so as to blend in with the traffic stream.29 

 Ideally, one might formulate a model in which perceived attributes and actual choice are 

jointly determined, each influencing the other and both influenced by objective attributes and 

personal characteristics. This type of model most faithfully replicates the actual decision process. 

However, it is doubtful that the results would be worth the extra complexity unless there is 

inherent interest in perception formation for marketing purposes. For purposes of transportation 

planning, we care mainly about the relationship between objective values and actual choices. A 

model limited to this relationship may be interpreted as the reduced form of a more complex 

model including perceptions, so it is theoretically valid even though perception formation is only 

implicit. Hence the most fruitful expenditure of research effort is usually on finding ways to 

measure objective values as accurately as possible.  

 In a large sample, a cheaper way to compute objective values may be to assign values for 

a given alternative according to averages reported by people in the sample in similar 

circumstances who use that alternative. While subject to some inaccuracy, this at least eliminates 

endogeneity bias by using an identical procedure to assign values to chosen and unchosen 

alternatives. 

 The type of data described thus far measures revealed preference (RP) information, that 

reflected in actual choices. There is growing interest in using stated preference (SP) data, based 

on responses to hypothetical situations (Hensher 1994). SP data permit more control over the 

ranges of and correlations among the independent variables by applying an appropriate 

experimental design (see for example Louviere, Hensher and Swait 2000). If administered in 

interviews using a portable computer, the questions posed can be adapted to information about 

the respondent collected in an earlier portion of the survey – as for example in the study of 

freight mode choice in India by Shinghal and Fowkes (2002). SP surveys also can elicit 

                                                 
29 Brownstone et al. (2003); Lam and Small (2001); Small, Winston and Yan (2005). 
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information about potential travel options not now available. It is still an open question, 

however, how accurately they describe what people really do. 

 It is possible to combine data from both revealed and stated preferences in a single 

estimation procedure in order to take advantage of the strengths of each (Ben-Akiva and 

Morikawa 1990; Louviere and Hensher 2001). As long as observations are independent of each 

other, the log-likelihood functions simply add. To prevent SP survey bias from contaminating 

inferences from RP, or more generally just to account for differences in surveys, it is 

recommended to estimate certain parameters separately in the two portions of the data: the scale 

factors µ for the two parts of the sample (with one but not both normalized), any alternative-

specific constants (see next subsection), and any critical behavioral coefficients that may differ. 

For example, in the logit model of (2.14) and (2.18), one might constrain all parameters to be the 

same for RP and SP observations except for the scale, alternative-specific constants, and the first 

variable z1in. Letting inz22β ′  represent the rest of β′zin, adding superscripts for the parameters 

assumed distinct in the two data subsamples, and normalizing the RP scale parameter to one, the 

log-likelihood function (2.17) becomes the following: 
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where (α,β,µSP) denotes the entire set of parameters shown on the right-hand side (excluding 
RP

1α  and SP
1α , which can be normalized to zero). This expression is not as complicated as it 

looks: the first term in curly brackets is just the logarithm of the logit probability (2.14) for RP 

observations, while the second is the same thing for SP observations except utility Vin is 

multiplied by scale factor µSP. 

 Discrete-choice modeling of travel demand has mostly taken advantage of data from 

large and expensive transportation surveys. Deaton (1985) shows that it can also be used with 

household-expenditure surveys, which are often conducted for other purposes and are frequently 

available in developing nations. 

 

2.2.5 Randomness, Scale of Utility, and Measures of Benefit 
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The variance of the random utility term in equation (2.10) reflects randomness in behavior of 

individuals or, more likely, heterogeneity among observationally identical individuals. Hence it 

plays a key role in determining how sensitive travel behavior is to observable quantities such as 

price, service quality, and demographic traits. Little randomness implies a nearly deterministic 

model, one in which behavior suddenly changes at some crucial switching point (for example, 

when transit service becomes as fast as a car). Conversely, if there is a lot of randomness, 

behavior changes only gradually as the values of independent variables are varied. 

 When the variance of the random component is normalized, however, the degree of 

randomness becomes represented by the inverse of the scale of the systematic utility function. 

For example, in the logit model (2.14), suppose systematic utility is linear in parameter vector β 

as in (2.16). If all the elements of β are small in magnitude, the corresponding variables have 

little effect on probabilities so choices are dominated by randomness. If the elements of β are 

large, most of the variation in choice behavior is explained by variation in observable variables. 

 Randomness in individual behavior can also be viewed as producing variety, or entropy, 

in aggregate behavior. Indeed, it can be measured by the entropy-like quantity –ΣnΣjPjnlogPjn, 

which is larger when the choice probability is divided evenly among the alternatives than when 

one alternative is very likely and others very unlikely. Anderson, de Palma and Thisse. (1988) 

show that the aggregate logit model can be derived by maximizing a utility function for a 

representative traveler that includes an entropy term, subject to a consistency constraint on 

aggregate choice shares. Thus entropy is a link between aggregate and disaggregate models: at 

the aggregate level we can say the system tends to favor entropy or that a representative 

consumer craves variety, whereas at the disaggregate level we represent the same phenomenon 

as randomness in utility. 

 It is sometimes useful to have a measure of the overall desirability of the choice set being 

offered to a decision maker. Such a measure must account both for the utility of the individual 

choices being offered and for the variety of choices offered. The value of variety is directly 

related to randomness because both arise from unobserved idiosyncrasies in preferences. If 

choice were deterministic, i.e. determined solely by the ranking of Vin across alternatives i, the 

decision maker would care only about the traits of the best alternative; improving or offering 

inferior alternatives would have no value. But with random utilities, there is some chance that an 

alternative with a low value of Vin will nevertheless be chosen; so it is desirable for such an 
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alternative to be offered and to be made as attractive as possible. A natural measure of the 

desirability of choice set J is the expected maximum utility of that set, which for the logit model 

has the convenient form: 

 γµµε +=+ ∑
=

−
J

j
jjj VVE

1

1

j
)exp(log)( max  (2.22) 

where γ=0.5772 is Euler’s constant (it accounts for the nonzero mean of the error terms εj in the 

standard normalization). Here we have retained the parameter µ from (2.13), rather than 

normalizing it, to make clear how randomness affects expected utility. When the amount of 

randomness is small (large µ), the summation on the right-hand side is dominated by its largest 

term (let’s denote its index by j*); expected utility is then approximately µ–1⋅log[exp(µVj*)] = Vj*, 

the utility of the dominating alternative. When randomness dominates (small µ), all terms 

contribute more or less equally (let’s denote their average utility value by V); then expected 

utility is approximately µ–1⋅log[J⋅exp(µV)] = V+µ–1⋅log(J), which is the average utility plus a 

term reflecting the desirability of having many choices. 

 Expected utility is, naturally enough, directly related to measures of consumer welfare. 

Small and Rosen (1981) show that changes in aggregate consumer surplus (the area to the left of 

the demand curve and above the current price) are appropriate measures of welfare even when 

the demand curve is generated by a set of individuals making discrete choices. For a set of 

individuals n characterized by systematic utilities Vjn, changes in consumer surplus are 

proportional to changes in this expected maximum utility. The proportionality constant is the 

inverse of λn, the marginal utility of income; thus a useful welfare measure for such a set of 

individuals, with normalization µ=1, is: 

 ∑
=

=
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n
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1

)exp(log1
λ

, (2.23) 

a formula also derived by Williams (1977). (The constant γ drops out of welfare comparisons so 

is omitted.) Because portions of the utility Vi that are common to all alternatives cannot be 
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estimated from the choice model, λn cannot be estimated directly.30 However, typically it can be 

determined from Roy’s Identity: 

 
in

in

in
n c

V
x ∂

∂
⋅−=

1λ  (2.24) 

where xin is consumption of good i conditional on choosing it among the discrete alternatives. In 

the case of commuting-mode choice, for example, xin is just the individual’s number of work 

trips per year (assuming income and hence welfare are measured in annual units). Expression 

(2.24) is valid provided that its right-hand-side is independent of i; when it is not, tractable 

approximations are available (Chattopadhyay 2001). 

 There is an important condition for the validity of (2.23), which is that any income effects 

in the response of transportation demand be small. Changes in transportation costs or service 

quality exert most of their influence directly: travelers respond by shifting toward or away from 

the particular choices that have become more or less desirable. However, there is also a 

somewhat indirect effect caused by travelers being made more or less well off overall in terms of 

their standard of living. For example, suppose the price of gasoline rises by 50 percent, and 

gasoline accounts for 2 percent of total expenditures by a particular group of people. The price 

increase makes activities that use gasoline somewhat less attractive than before (how much so is 

something we examine in Section 3.4.6), and so tilts consumers toward choosing less of them. 

(They might travel less, or they might buy smaller cars with less energy-consuming options.) 

This is sometimes expressed as a compensated price elasticity: the responsiveness to price they 

would exhibit if their incomes were supplemented so as to leave them just as well off as before. 

But presuming they are not so compensated, the price increase makes them worse off overall by 

reducing their discretionary income for other consumption. As a first-order approximation, in the 

above example people would behave as though they had 1 percent less discretionary income (50 

percent of 2 percent). If gasoline is a normal good — one whose consumption increases with 

income — then this indirect effect also reduces gasoline consumption, by an amount proportional 

                                                 
30 If income y is included as an explanatory variable, it might be tempting to simply compute ∂Vj/∂y as a measure of 
λ. This is completely wrong because the indirect utility is strongly influenced by income, independently of which 
alternative is chosen, whereas Vj  captures only the relative effects of income on utility of the various alternatives.  
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to the product of the income elasticity of gasoline and the fraction of income spent on gasoline.31 

This indirect effect is called an income effect. The combined direct and indirect effects may be 

expressed as the total price elasticity, sometimes called the uncompensated price elasticity to 

distinguish it from the compensated elasticity. For normal goods the two effects reinforce each 

other, so the uncompensated price elasticity is larger in magnitude than the compensated one.32 

 Equation (2.23) is valid when λn , the marginal income of utility, is the same before and 

after the change under consideration. This condition is as assured as a close approximation if any 

income effects of the change are small — as is likely for transportation analysis because the 

fraction of income spent on any one transportation activity is usually quite small.  

 

2.2.6 Aggregation and Forecasting 

Once we have estimated a disaggregate travel-demand model, we face the question of how to 

predict aggregate quantities such as total transit ridership or total travel flows between zones. 

Ben-Akiva and Lerman (1985, Ch. 6) discuss several methods. 

 The most straightforward and common is sample enumeration. A sample of consumers is 

drawn, each assumed to represent a subpopulation with identical observable characteristics. (The 

estimation sample itself may satisfy this criterion and hence be usable as an enumeration 

sample.) Each individual’s choice probabilities, computed using the estimated parameters, 

predict the shares of that subpopulation choosing the various alternatives. These predictions can 

then simply be added, weighting each sample member according to the corresponding 

subpopulation size. Standard deviations of forecast values can be estimated by Monte Carlo 

simulation methods. 

 One can simulate the effects of a policy by determining how it changes the values of 

independent variables for each sample member, and recomputing the predicted probabilities 

accordingly. Doing so requires that these variables be explicitly included in the model. For 

                                                 
31 The income elasticity of a good is the ratio of the percentage change in its consumption to the percentage change 
in income, holding prices constant. 
32 The relationship between the uncompensated and price elasticities, εu and εc, is given by the Slutsky equation: 

 y
cu s ηεε ⋅−=  

where s is the share of income spend on the good in question and ηy is its income elasticity. Recall that both εu and 
εc are negative; hence the negative sign assures that the income effect (the last term) reinforces the compensated 
price elasticity. See Varian (1992) or any microeconomics textbook for a derivation. 
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example, to simulate the effect of better schedule coordination at transfer points on a transit 

system, the model must include a variable for waiting time at the transfer points. Such a 

specification is called policy-sensitive, and its absence in earlier aggregate models was one of the 

main objections to the traditional travel-demand modeling framework. The ability to examine 

complex policies by computing their effects on an enumeration sample is one of the major 

advantages of disaggregate models. 

 Aggregate forecasts may display a sensitivity to policy variables that is quite different 

from a naive calculation based on a representative individual. For example, suppose the choice 

between travel by automobile (alternative 1) and bus (alternative 2) is determined by a logit 

model with utilities given by equation (2.15) with β3=0. Then the probability of choosing bus 

travel is: 

 ( ) ( ) ( )[ ]nnnnn
n TTccw

P
212211

2 /exp1
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Suppose everyone’s bus fare is c2 and everyone’s wage is w. Then 
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Now suppose half the population has conditions favorable to bus travel, such that P2n=0.9; 

whereas the other half has P2n=0.1. Aggregate bus share is then 0.5. Applying (2.26) to each half 

of the population, we see that the rate of change of aggregate bus share with respect to bus fare is  

(β1/w)⋅[½(0.9)(0.1)+½(0.1)(0.9)] = 0.09⋅(β1/w). But if we were to apply (2.26) as though there 

were a single representative traveler with P2=0.5, we would get (β1/w)(0.5)(0.5) = 0.25(β1/w), 

more than twice the true value. Again, the existence of variety reduces the actual sensitivity to 

changes in independent variables, in this case because there are only a few travelers (those with 

extreme values of ε1n–ε2n) who have a close enough decision to be affected. 

 McFadden and Reid (1976) derive a more formal result illustrating this phenomenon in 

the case of a binary probit model where the independent variables are normally distributed in the 

population. They show that if a single individual’s choice probability (2.12) is written in the 

form ( )zP β ′Φ=1 , then the expected aggregate share is 
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where z  and σ2 are the average of z and the variance of β′z, respectively, within the population. 

Once again, the existence of population variance reduces policy sensitivity and causes the naive 

calculation using an average traveler (equivalent to setting σ=0) to overestimate that sensitivity. 

 Equation (2.27) illustrates a danger in using aggregate models for policy forecasts. If an 

aggregate probit model fitting 1P  to z  were estimated, its coefficients would correspond to 

21(/ σβ + . If a policy being investigated changed σ, these coefficients would no longer 

accurately represent behavior under the new policy. 

 

2.2.7 Specification 

Like most applied statistical work, travel demand analysis requires balancing completeness 

against tractability. A model that includes every relevant influence on behavior may require too 

much data to estimate with adequate precision, or it may be too complex to serve as a practical 

guide to policy analysis. A related problem, also common to most empirical work, is that the 

statistical properties of the model, such as standard errors of estimated coefficients, are valid 

only when the model’s basic assumptions are known in advance to be correct. But in practice the 

researcher normally chooses a model’s specification (i.e. its functional form and set of included 

variables) using guidance from the same data as those from which its parameters are estimated. 

 A good way to handle both problems is to base empirical models on an explicit 

behavioral theory. Rather than try out dozens of specifications to see what fits, one gives 

preference to relationships that are predicted by a plausible theory. For example, a specification 

like (2.15) would be chosen if there is good theoretical reason to think the value of time is 

proportional to the wage rate—a question explored later in this chapter. We discuss some other 

specification issues in connection with an example in Section 2.3.3. 

 Bayesian methods offer a more formal approach to using prior information or judgments 

when specifying empirical models. Instead of all-or-nothing decisions about model structure, 

they allow one to explicitly describe prior uncertainty and to calculate the manner in which prior 

beliefs need to be modified in light of the data. Such methods have recently been developed for 
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parameter estimation in discrete-choice models (Train 2003, Ch. 12) and for selection among 

competing model specifications (Berger and Pericchi 2001). 

 One of the goals of disaggregate travel-demand modeling is to describe behavioral 

tendencies that are reasonably general. This would enable a model estimated in one time and 

place to be used for another. The progress toward this goal of transferability has been 

disappointing, but some limited success has been achieved by making certain adjustments. 

Notably, the alternative-specific constants and the scale of the utility function are often found to 

be different in a new location, presumably because they reflect our degree of ignorance, which 

may vary from one setting to another. Such adjustments can be made relatively inexpensively by 

using limited data collection in a new location or, in the case of alternative-specific constants, 

just by adjusting them to match known aggregate choice shares (Koppelman and Rose 1985). 

The adjustment procedure is sometimes called calibration, and requires an iterative algorithm for 

matching the choice shares predicted by the model to observed shares; the match is exact so the 

algorithm is numerical rather than statistical.33 

 

2.2.8 Ordered and Rank-Ordered Models 

Sometimes there is a natural ordering to the alternatives that can be exploited to guide 

specification. For example, suppose one wants to explain a household’s choice among owning no 

vehicle, one vehicle, or two or more vehicles. It is perhaps plausible that there is a single index 

of propensity to own many vehicles, and that this index is determined in part by observable 

variables like household size and employment status. 

 In such a case, an ordered response model might be assumed. In this model, the choice of 

individual n is determined by the size of a “latent variable” ,*
nnn zy εβ +′= with choice j 

occurring if this latent variable falls in a particular interval [µj–1,µj] of the real line, where µ0=–∞ 

and µJ=∞. The interval boundaries µ1,...,µJ–1 are estimated along with β, except that one of them 

can be normalized arbitrarily if β′zn contains a constant term. The probability of choice j is then 

 )()(]Pr[ 11 njnjjnnjjn zFzFzP βµβµµεβµ ′−−′−=<+′<= −−  (2.28) 

                                                 
33 A commonly used algorithm, sometimes known as a contraction procedure, adjusts the alternative-specific 
constants {αi} at each iteration by an amount )],...,(ˆlog[]log[ 1 Jii ss αα− , where si is the observed share and iŝ  is the 
share predicted by the model (Train 1986,  p. 105). 
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where F(⋅) is the cumulative distribution function assumed for εn. In the ordered probit model 

F(⋅) is standard normal, while in the ordered logit model it is logistic, i.e. ( )[ ] 1exp1)( −−+= xxF . 

Thus probabilities depend entirely on a single index, β′zn, calculated for individual n. When this 

index is strongly positive, all the terms F(µj–β′zn) are small except for the last, F(µJ–β′zn) = F(∞) 

= 1, so the most likely choice will be alternative J. When the index is strongly negative, the most 

likely choice will be alternative 1. At intermediate values it becomes more likely that alternatives 

between 1 and J will be chosen. Note that all the variables in this model are characteristics of 

individuals, not of the alternatives, and thus if the latter information is available this model 

cannot easily take advantage of it. 

 In some cases the alternatives are integers indicating the number of times some random 

event occurs. An example would be the number of trips per month by a given household to a 

particular destination. For such cases, a set of models based on Poisson and negative binomial 

regressions is available (Washington, Karlaftis and Mannering 2003, Ch. 10). 

 Sometimes information is available not only on the most preferred alternative, but on the 

individual’s ranking of other alternatives. In this case, we effectively observe “choices” among 

numerous situations, including some where the most preferred alternative is hypothetically 

absent. Efficient use can be made of such data through the rank-ordered logit model.34 In the 

case where a complete ranking of J alternatives is obtained, the probability formula for rank-

ordered logit is a product of J logit probability formulas, one for each ranked alternative, giving 

the probability of choosing that alternative from the set of itself and all lower-ranked 

alternatives. One may want to ignore the stated ordering among some low-ranked alternatives, or 

alternatively to estimate a separate scale factor for those choices, to allow for the possibility that 

a respondent pays less attention when answering questions about alternatives of little interest. 

 

2.3 Disaggregate Models: Examples 

 

                                                 
34 Rank-ordered logit, sometimes called “expanded logit” or “exploded logit,” is analyzed by Beggs, Cardell and 
Hausman (1981) and Hausman and Ruud (1987) Beggs et al. call it “ordered logit,” but that name is now usually 
reserved for an ordered response model as described here. 
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Discrete-choice models have been estimated for nearly every conceivable travel decision, 

forming a body of research that cannot possibly be reviewed here.35 In some cases, these models 

have been linked into large simultaneous systems requiring extensive computer simulation. An 

example is the system of models developed to analyze a proposal for congestion pricing in 

London (Bates et al. 1996). 

 In this section we present three very modest disaggregate models, each chosen for its 

compact representation of a behavioral factor that is central to urban transportation policy as 

analyzed in later chapters. 

 

2.3.1 Mode Choice 

Kenneth Train (1978, 1980) and colleagues have developed a series of models explaining 

automobile ownership and commuting mode, estimated from survey data collected before and 

after the opening of the Bay Area Rapid Transit (BART) system in the San Francisco area. Here 

we present one of the simplest, explaining only mode choice: the “naive model” reported by 

McFadden et al. (1977, pp. 121-123). It assumes choice among four modes: (1) auto alone, (2) 

bus with walk access, (3) bus with auto access, and (4) carpool (two or more occupants). The 

model’s parameters are estimated from a sample of 771 commuters to San Francisco or Oakland 

who were surveyed prior to opening of the BART system. 

 Mode choice is explained by just three independent variables plus three alternative-

specific constants. The three variables are: cin/wn, the round-trip variable cost (in US $) of mode i 

for traveler n divided by the traveler’s post-tax wage rate (in $ per minute); Tin, the in-vehicle 

travel time (in minutes); and o
inT , the out-of-vehicle travel time including walking, waiting, and 

transferring. Cost cin includes parking, tolls, gasoline, and maintenance (Train 1980, p. 362). The 

estimated utility function is: 
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, (2.29) 

where the subscripts denoting mode and individual have been omitted, and standard errors of 

coefficient estimates are given in parentheses. Variables Dj are alternative-specific dummies. 

                                                 
35 For additional examples, see McCarthy (2001, Ch. 3-4) and Small and Winston (1999). 
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 This utility function is a simplification of (2.20) (with β3=γi=0), except that travel time is 

broken into two components, T and To. Adapting (2.21), we see that the “value of time” for each 

of these two components is assumed to be proportional to the post-tax wage rate, the 

proportionality constant being the ratio of the corresponding time-coefficient to the coefficient of 

c/w. Hence the values of in-vehicle and out-of-vehicle time are 49 percent and 129 percent of the 

after-tax wage. The negative alternative-specific constants indicate that the hypothetical traveler 

facing equal times and operating costs by all four modes will prefer bus with walk access (mode 

2, the base mode); this is probably because each of the other three modes requires owning an 

automobile, which entails fixed costs not included in variable c. The strongly negative constants 

for bus with auto access (mode 3) and carpool (mode 4) probably reflect unmeasured 

inconvenience associated with getting from car to bus stop and with arranging carpools.  

 The fit of Train’s model’s could undoubtedly be improved by including automobile 

ownership, perhaps interacted with (D1+D3+D4) to indicate a common effect on modes that use 

an automobile. However, there is good reason to exclude such a variable because it is 

endogenous—people choosing one of those modes for other reasons are likely to buy an extra car 

as a result. This in fact is demonstrated by the more complete model of Train (1980), which 

considers both choices simultaneously. The way to interpret (2.29), then, is as a “reduced-form” 

model that implicitly incorporates the automobile ownership decision. It is thus applicable to a 

time frame long enough for automobile ownership to adjust to changes in the variables included 

in the model. 

 More complete models typically aim to directly measure some of the preferences 

indicated here by coefficients of alternative-specific dummy variables. Currie (2005) compares 

results of ten mode-choice studies that estimate a “transfer penalty,” i.e., that include a dummy 

variable indicating if a transfer was necessary (or how many were necessary) for the trip being 

explained. They measure the penalty in terms of the equivalent number of minutes of in-vehicle 

time, which means they are measuring the rate of substitution between additional travel time and 

the saving of one transfer. The average penalty ranges from 8 minutes for transfers between 

subway lines to 22 minutes for transfers between bus lines, with intermediate values for transfers 

where one or both modes is suburban rail or light rail. They also compare alternative-specific 

constants, finding that “bus rapid transit,” a type of bus service designed to mimic rail in 

convenience, does indeed achieve mode-specific constants comparable to those of rail. 
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2.3.2 Trip-Scheduling Choice 

One of the key decisions affecting congestion is the timing or scheduling of work trips. There is 

now a substantial body of empirical work on this subject, reviewed by Mahmassani (2000). 

 Although the scheduling decision is inherently continuous, most authors model it as a 

discrete choice among time intervals. There are two reasons for this: survey responses are 

rounded off to a few even numbers, and disaggregate models can easily portray the complex 

manner in which travel time varies across possible schedules. Small (1982) estimates the choice 

among twelve possible five-minute intervals for work arrival time, using a set of auto commuters 

from the San Francisco Bay Area who have an official work-start time. The data set includes 

characteristics of the workers and a network-based engineering calculation of the travel time that 

each would encounter at each arrival time. Commuters are assumed to have full information; 

reliability of arrival is not considered except that the specification assumes the consumer needs 

to arrive before the work-start time in order to avoid a penalty. 

 The utility specification postulates a linear penalty for arriving early, on the assumption 

that time spent before work is relatively unproductive; and a much larger linear penalty for 

arriving late, on the assumption that employer sanctions take hold with gradually increasing 

severity. Define schedule delay, SD, as the difference (in minutes, rounded to nearest five 

minutes) between the arrival time represented by a given alternative and the official work start 

time. Define “Schedule Delay Late”, SDL, as Max{SD,0} and “Schedule Delay Early”, SDE, as 

Max{–SD,0}. Define a “late dummy”, DL, equal to one for the on-time and all later alternatives 

and equal to 0 for the early alternatives. Define T as the travel time (in minutes) encountered at 

each alternative.  

 The utility function estimated by Small (1982, Table 2, Model 1), with estimated standard 

errors in parentheses, is: 
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Here we exclude two variables used by Small to represent a tendency of respondents to round off 

answers to the nearest 10 or 15 minutes. More complex models are also estimated, in which the 

various penalties are nonlinear or depend upon such factors as the worker’s family status, 

occupation, car occupancy, and stated work-hour flexibility. 
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 Figure 2.1 shows utility function (2.30), divided by the coefficient of travel time. The 

marginal rates of substitution indicate that the commuter is willing to suffer an extra 0.61 

minutes of congestion to reduce the amount of early arrival by one minute;36 and 2.40 minutes of 

congestion to reduce late arrival by one minute, plus an extra 5.47 minutes of congestion to avoid 

any of the just-on-time or late alternatives. These turn out to be key parameters in models, to be 

presented in the next chapter, which describe equilibrium when congestion occurs in the form of 

queuing behind a bottleneck. They also can be used to formulate models of traveler response to 

network unreliability, as we describe in Section 2.6.4. 

 The twelve alternatives in the choice model just described have a natural ordering in 

terms of chronological time; so why is the ordered response model not used? There are two 

reasons. First, as already noted, the ordered response model cannot take advantage of 

information that varies by alternative, such as travel time. Second, there is no plausible 

combination of variables that would exert a monotonic influence on the time of day; rather, there 

are likely to be some variables that favor peak times, others that favor earlier or later times, 

others still that that would affect the strength of preference for low travel times, and so forth. 

Such richness can be incorporated into the specification of a discrete-choice model based on 

random utility maximization, one of its great advantages. 

 

2.3.3 Choice of Free or Express Lanes 

Lam and Small (2001) analyze data from commuters with an option of paying to travel in a set of 

express lanes on a very congested freeway, State Route 91 (SR91), in southern California. The 

toll depends on time of day and on car occupancy, both of which differ across respondents. 

Travel time also varies by time of day — fortunately in a manner not too highly correlated with 

the toll. The authors construct a measure of the unreliability of travel time by obtaining data on 

travel times across many different days, all at the same time of day. After some experimentation, 

they choose the median travel time (across days) as the best measure of travel time, and the 

difference between 90th and 50th percentile travel times (also across days) as the best measure of 

unreliability. This latter choice is based on the idea, documented in the previous subsection, that 

people are more averse to unexpected delays than to unexpected early arrivals. 

                                                 
36 Calculated as 0.065/0.106=0.61. 
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 The model explains a pair of related decisions: (a) whether to acquire an electronic toll-

collection transponder (required for any use of the express lanes), and (b) which lanes to take on 

the day in question. A natural way to view these decisions is as a hierarchical set, with 

transponder choice governed by the potential benefits of express-lane travel and other factors. As 

we will see in the next section, a model known as “nested logit” has been developed precisely for 

this type of situation, and indeed Lam and Small estimate such a model. However, they obtain 

virtually identical results with a simpler “joint logit” model with three choice alternatives: (1) no 

transponder; (2) have a transponder but travel in the free lanes on the day in question; and (3) 

have a transponder and travel in the express lanes on the day in question. 

 The model that Lam and Small estimate is:37 
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Here Dtag≡D2+D3 is a composite of alternative-specific dummy variables for those choices 

involving a transponder, or “toll tag”; its negative coefficient presumably reflects the hassle and 

cost of obtaining one. Getting a transponder is apparently more attractive to people with high 

annual incomes (Inc, in $1000s per year) and less attractive to those speaking a foreign language 

(dummy variable ForLang). The statistical insignificance of the coefficient of D3, an alternative-

specific dummy for using the express lanes, suggests that the most important explanatory factors 

are included explicitly in the model. 

 The coefficients on per-person cost c, median travel time T, and unreliability R can be 

used to compute dollar values of time and reliability. Here we focus on two aspects of the 

resulting valuations. First, reliability is highly valued, achieving coefficients of similar 

magnitudes as travel time (recall that both variables are measured in units of time). Second, men 

seem to care less about reliability than women; their value is only 53 percent as high according 

                                                 
37 This is a partial listing of the coefficients in Lam and Small (2001), Table 11, Model 4b, with coefficients of T and 
R divided by 1.37 to adjust travel-time measurements to the time of the survey, as described on their p. 234 and 
Table 11, note a. Standard errors are in parentheses. 
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to the point estimates,38 although the difference (i.e. the coefficient of Male⋅R) is not quite 

statistically significant even at a 10-percent significance level. 

 This provides a good opportunity to consider how one chooses the list of variables to be 

included in a travel-demand model. In this case, the model is specified to yield a constant value 

of time and a constant value of reliability. Although theory suggests these values might vary by 

income or other factors, prior experimentation showed that including such variations (through 

interactions like those in Section 2.3.1) resulted in imprecise and ambiguous results. However, 

the authors did find that those same factors strongly affect the alternative-specific constants (as 

determined by interacting these variables with alternative-specific dummies, part of “other 

terms” in the results shown here). Furthermore, the hierarchical nature of the decision process, 

already  mentioned, suggests that certain alternatives are likely to fall within groups subject to 

common influences. Specifically, one might assume that certain unobserved factors would 

influence the extent to which the requirement to get a “toll tag”, specific to two of the 

alternatives, is regarded as onerous. For example, the financial set-up arrangements for a toll tag 

might be of lesser significance to people with high incomes and of greater significance for 

people who have difficulty communicating in English — precisely what is indicated by the signs 

of the second and third coefficients in equation (2.31). The additional alternative-specific 

constant D3 is included on the grounds that yet other unmeasured factors could affect the actual 

decision to pay for the express lanes. The variable Male⋅R is included because several studies of 

this particular toll facility have found women noticeably more likely to use the express lanes than 

men. This could be accounted for with a simple interaction variable Male⋅D3, but 

experimentation shows that the formulation shown here fits better. It is more specific about why 

men use the express lanes less often: apparently, the reason is less aversion to the unreliability of 

the free lanes. To be specific, reliability enters women’s utility with the negative coefficient 

159.0− , whereas it enters men’s utility with the more weakly negative coefficient 

085.0)074.0159.0( −=+− . One could attempt to be even more specific: perhaps the gender 

difference is due to differing responsibility for children; the authors investigated this by 

                                                 
38 The coefficient for women is –0.159, and that for men is –0.159+0.074 = –0.085. 
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including a variable equal to R multiplied by a dummy for women with children, but they were 

unsuccessful in pinpointing the effect in this manner.39 

 Equation (2.31) also makes it easy to define a quantity used often in demand and cost 

analysis: the generalized price of a particular type of travel.40 The idea is that if a traveler 

considers cost and other aspects of travel, such as time and reliability, in fixed proportions, it 

may be analytically useful to combine them into a single index denominated in money. The 

conditional indirect utility function, V in this example, summarizes the relative weights the 

traveler puts on these various aspects of travel. Thus in (2.31), the generalized price p for 

females would be defined as 

 RTcp
357.0
159.0

357.0
109.0

++=  (2.32) 

and the same for males except the coefficient of R would have numerator (0.159–0.074). It is not 

hard to see that the first ratio of coefficients is just the value of time defined earlier (perhaps in 

different units); and the second will be defined later as the value of reliability. The concept of 

generalized price is most straightforward if the price is the same for everyone; it is somewhat 

less straightforward in this example since there are two groups with two different generalized 

prices. It would be even more complicated in our mode-choice example of (2.29), where the 

value of time depends on the traveler’s wage rate. 

 The generalized price could also incorporate more than one component of travel time, as 

in (2.29), and it could incorporate scheduling costs, as in (2.30). Note that (2.30) itself is 

insufficient to define a generalized price because it does not contain a cost variable. However, it 

gives the rates of tradeoff between schedule delay and time, and (2.31) gives the tradeoff 

between time and cost, so by combining the two studies we could extend (2.32) as follows: 
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In Chapter 3, we will see that a generalized price based on those parts of (2.33) involving c, T, 

SDE, and SDL, has been used extensively to analyze equilibria with travelers individually 

choosing their trip schedules in response to time-varying congestion. 

                                                 
39 See Small, Winston and Yan (2005) for further discussion of this same issue in a different data set from SR91. 
40 Generalized price is also sometimes known as generalized cost; but we avoid this term because in our 
terminology, price includes taxes and tolls, if levied, while cost does not. 
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2.4 Advanced Discrete-Choice Modeling 

 

2.4.1 Generalized Extreme Value Models 

Often it is implausible that the additive random utility components εj be independent, especially 

if important variables are omitted from the model’s specification. This will make either logit or 

iid probit predict poorly. 

 A simple example is mode choice among automobile, bus transit, and rail transit. The two 

public-transit modes have many unmeasured attributes in common, such as occasional crowding. 

Suppose a traveler initially has available only auto (j=1) and bus (j=2), with equal systematic 

utilities Vj so that the choice probabilities are each one-half. Now suppose we want to predict the 

effects of adding a rail service (j=3) with measurable characteristics identical to those for bus. 

The iid models would predict that all three modes would then have choice probabilities of one-

third; in reality, the probability of choosing auto would most likely remain near one-half while 

the two transit modes divide the rest of the probability equally between them. The argument is 

even stronger if we imagine instead that the newly added mode is simply a bus of a different 

color: this is the famous “red bus, blue bus” example. 

 The probit model generalizes naturally, as already noted, by allowing the distribution 

function in equation (2.11) to be multivariate normal with an arbitrary variance-covariance 

matrix. It must be remembered that not all the elements of this matrix can be distinguished 

(identified, in econometric terminology) because, as already noted, it is only the (J–1) utility 

differences that affect behavior.41 

 The logit model generalizes in a comparable manner, as shown by McFadden (1978, 

1981). The distribution function is postulated to be Generalized Extreme Value (GEV), given by 

 [ ]),...,(exp),...,( 1
1

JeeGF J
εεεε −−−=  

where G is a function satisfying certain technical conditions. With this distribution, the choice 

probabilities are of the form 

                                                 
41 The variance-covariance matrix of these utility differences has (J–1)2 elements and is symmetric. Hence it has only 
J(J–1)/2 identifiable elements, less one for utility-scale normalization. 
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where Gi is the i-th partial derivative of G. (The technical conditions assure that these 

probabilities add to one.) The expected maximum utility is 
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where again γ is Euler’s constant.42 Logit is the special case G(y1,...,yJ) = y1+...+yJ. 

 The best known GEV model, other than logit itself, is nested logit, also called structured 

logit or tree logit and first developed by Ben-Akiva (1974). McFadden (1981) discusses its 

theoretical roots and computational characteristics. In this model, certain groups of alternatives 

are postulated to have correlated random terms. This is accomplished by grouping the 

corresponding alternatives in G in a manner we can illustrate using the auto-bus-rail example, 

with auto the first alternative: 

 ( )ρρρ /1
3

/1
21321 ),,( yyyyyyG ++= . (2.36) 

In this equation, ρ is a parameter between 0 and 1 that indicates the degree of dissimilarity 

between bus and rail; more precisely, 1–ρ2 is the correlation between ε1 and ε2 (Daganzo and 

Kusnic 1993). The choice probability for this example, computed from (2.34), may be written: 
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where B1={1} and B2={2,3} are a partition of the choice set into groups; r(i) indexes the group 

containing alternative i; and Ir denotes the inclusive value of set Br, defined as the logarithm of 

the denominator of (2.39): 

                                                 
42 This is demonstrated by Lindberg, Eriksson and Mattsson (1995, p. 134). For a simpler proof, see Choi and Moon 
(1997, p. 131). 
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When ρ=1 in this model, ε2 and ε3 are independent and we have the logit model. As ρ↓0, ε2 and 

ε3 become perfectly correlated and we have an extreme form of the “red bus, blue bus” example, 

in which auto is pitted against the better (as measured by Vi) of the two transit alternatives; in 

this case ρI1=V1 and ρI2 Ø max{V2, V3}. 

 The model just described can be generalized to any partition {Br,r=1,…,R} of 

alternatives, and each group Br can have its own parameter ρr in equations (2.36)-(2.40), leading 

to the form: 
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This is the general two-level nested logit model. It has choice probabilities (2.37)-(2.40) except 

that the index s in the denominator of (2.38) now runs from 1 to R. Like logit, it can be also 

derived from an entropy formulation (Brice 1989). The groups Br can themselves be grouped, 

and those groupings further grouped, and so on, giving rise to even more general “tree 

structures” of three or more levels. 

 As in the logit model, the inclusive value is a summary measure of the overall desirability 

(expected maximum utility) of the relevant group of alternatives. This fact gives the “upper-

level” probability (2.38) a natural interpretation as a choice among groups, taking the logit form 

with Ir playing the role of the independent variable and ρr its coefficient. Thus, for example, in a 

destination-choice model the inclusive value of a set of shopping destinations (from a given 

origin) can serve as a measure of accessibility of that origin to shopping  (Ben-Akiva and 

Lerman 1979). The welfare measure for the two-level nested logit model is, from (2.35), (2.40), 

and (2.41): 

 ∑ ⋅=
r

rr IW )exp(log1 ρ
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 (2.42) 

where again λ is the marginal utility of income and the constant γ is omitted. 

 In nested logit, {Br} is an exhaustive partition of the choice set into mutually exclusive 

subsets. Therefore equation (2.39) is a true conditional probability, and the model can be 

estimated sequentially: first estimate the parameters (β/ρ) from (2.39), use them to form the 
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inclusive values (2.40), then estimate ρ from (2.38). Each estimation step uses an ordinary logit 

log-likelihood function, so it can be carried out with a logit algorithm. However, this sequential 

method is not statistically efficient, nor does it produce consistent estimates of the standard 

errors of the coefficients. Several studies show that maximum-likelihood estimation, although 

computationally more difficult, gives more accurate results (Hensher 1986, Brownstone and 

Small 1989).43 

 Most other GEV models that have been studied generalize (2.41) by not requiring the 

subsets Br to be mutually exclusive. Small (1987) defines subsets each encompassing two or 

more alternatives that lie close to each other on some ordering. Vovsha (1997) defines a cross-

nested logit model with nests that can overlap in a general way and with alternatives that can 

belong to a nest in a partial sense, with weights to be estimated. Chu (1981) and Koppelman and 

Wen (2000) define a model in which the subsets Br include all possible pairs of alternatives: 

 ( ) jk

jkjk
J

j

J

jk
kjJ yyyyG

ρ
ρρ∑ ∑

−

= +=

+=
1

1 1

/1/1
1 ),...,( . (2.43) 

This model, known as paired combinatorial logit, has error terms whose variance-covariance 

matrix contains the same number of estimable parameters as does multinomial probit with a 

general covariance structure (again, the arbitrary scale requires one more normalization); thus the 

two models can be expected to have comparable degrees of generality, although in practice 

paired combinatorial logit seems to be easier to estimate.  

 Nevertheless, estimation of GEV models is often difficult because of the highly nonlinear 

manner in which ρr enters the equation for choice probabilities. When the true model is GEV but 

differs only moderately from logit, a reasonable approximation can be estimated using two steps 

of a standard logit estimation routine, a procedure that appears to be considerably more stable 

than maximum likelihood estimation (Small 1994). 

 A different direction for generalizing the logit model is to maintain independence 

between error terms while allowing each error term to have a unique variance. This is the 

heteroscedastic extreme value model of Bhat (1995); it is a random-utility model but not in the 

                                                 
43 If maximizing the log-likelihood function is numerically difficult, one can start with the sequential estimator and 
carry out just one step of a Newton-Raphson algorithm toward maximization; this yields a statistically efficient 
estimate and seems to work well in practice (Brownstone and Small 1989). 
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GEV class, and its probabilities cannot be written in closed form so require numerical 

integration.44 

 

2.4.2 Combined Discrete and Continuous Choice 

In many situations, the choice among discrete alternatives is made simultaneously with some 

related continuous quantity. For example, a household’s choice of type of automobile is closely 

intertwined with its choice of how much to drive. One can formulate an equation to explain 

usage, conditional on ownership, but it is subject to sample selection bias (Heckman 1979). To 

illustrate, suppose that people who drive a lot tend to select themselves into the category of 

owners of nice cars; the conditional model would overstate the independent effect of nice cars on 

driving by ignoring this reverse causality (a form of endogeneity). A variety of methods are 

available to remove this bias.45 

 The essence of the problem can be illustrated within an example of binary choice: that of 

owning a new or used automobile, denoted j=1 or 2. Each type of car has a fixed measurable 

quality level Qj that we can assume is higher for new cars, i.e. Q1>Q2. For example, Q could be 

the number of safety features offered from a particular list, or simply an alternative-specific 

dummy variable equal to 1 for a new car. Let us suppose that the decision of how much to drive 

depends on car quality Q, income Y, and other explanatory variables X as follows: 

 uYQXx YQX +++= βββ  (2.44) 

where u is a random error term. For simplicity we have omitted the subscript n denoting the 

individual in the sample. Car quality can be written in terms of the choice variable d1n defined 

earlier, as follows (again omitting subscript n): 

 ( ) 2111 1 QdQdQ −+= . (2.45) 

Substituting (2.45) into (2.44) makes explicit the dependence of the usage decision (x) on the 

ownership decision (d1). 

 Suppose also that the ownership decision (which type of car to own) depends on some set 

of observable variables Z, which might include Y, some elements of X, and/or the quality 

difference (Q1–Q2): 

                                                 
44 For a review of these and other GEV models, see Koppelman and Sethi (2000). 
45 See Train (1986, Ch. 5), Mannering and Hensher (1987), and Washington, Karlaftis and Mannering (2003, Ch. 
12). 
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This equation defines a binary probit model if ε is assumed normal, binary logit if ε is assumed 

logistic. 

 Selection bias is present if u and ε are correlated, which is likely because unobservable 

factors may affect both usage and the relative desirability of a new car. (An example of such a 

factor is how much this individual likes listening to a high-quality car stereo.) If u is correlated 

with ε, it is also correlated with the car-type indicator d1, via (2.46), and therefore with car 

quality Q, via (2.45). This biases the estimated coefficients in (2.44) — especially that of βQ, — 

because Q is an explanatory variable for usage and thus needs to be uncorrelated with the error 

term for usage. 

 If we can find an exogenous proxy for Q, we can use it instead of Q in estimating (2.44) 

and solve the problem. This can be accomplished using the following two-step procedure 

proposed by Heckman (1979). 

 Step 1 consists of estimating (2.46). Its explanatory variables are presumed exogenous so 

there is no bias at this stage. From the estimated coefficient vector Zβ̂ , we can compute a 

predicted probability 1̂P  of choosing a new car, equal to )ˆ( ZZβΦ  if the model is probit or 

[ ] 1
)ˆexp(1
−

−+ ZZβ  if the model is logit. 

 Step 2 consists of estimating a variant of (2.44) that is purged of endogeneity. There are 

two alternative strategies for doing this: 

 Step 2 Version (a): Replace Q by an exogenous predictorQ̂ . 

We look for an unbiased estimate of Q that does not use the observed ownership choice, d1, as 

does (2.45). There are at least three possibilities, which are Methods II, I, and III of Train (1986, 

p. 90): 

(i) Compute Q̂  as 2111 )ˆ1(ˆ)( QPQPQE ⋅−+⋅≡ . 

(ii) Compute Q̂  as the predicted value from an auxiliary regression of observed Q on all the 

exogenous variables of the system, namely X, Y, and Z. (This method does not actually 

require that Step 1 be carried out.) 
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(iii) Compute Q̂  from an auxiliary regression as in (ii) with E(Q), calculated as in (i), as an 

additional variable in the regression. This procedure is more statistically efficient than 

either (i) or (ii) because it incorporates data on actual choices (via the process for 

computing 1̂P ) as well as on variables X, Y, and Z. 

Method (iii) is probably the best choice in most cases, although like (ii) it requires one to 

arbitrarily specify the exact functional form of the auxiliary regression. 

 Step 2 Version (b): Add a “correction term” to the error term in (2.44) to make it 

independent of u. 

One way to look at selection bias is that observed Q is conditional on the individual’s ownership 

decision. Therefore using Q as a variable in (2.44) would be appropriate if (2.44) could be 

transformed into an equation describing usage conditional on ownership. This can be done by 

making its error term conditional on ownership. If u is assumed to be normal, as is usual, the 

required transformation is accomplished by subtracting the conditional expectation of a normal 

variable, given its link to ownership via (2.46), from u; the remaining error term is independent 

of Q and so (2.44) is purged of selectivity bias. A recent application of this technique in 

transportation is West’s (2004) model of automobile type choice and amount of use. 

 The conditional expectation just mentioned can be computed explicitly for binary probit 

and logit models.46 We write the result as a term γC to be added to (2.44), where γ is a parameter 

to be estimated and C is a “correction variable” computed from the results of Step 1. The 

correction variable is included in an ordinary regression as though it were a real variable, and its 

coefficient is an estimate of γ. The estimated value of γ will be proportional to the correlation 

between u and ε, which we denote by ρ. It is this correlation that causes the problem, so we can 

test for selection bias by testing whether γ is different from zero. Furthermore, error term u may 

be regarded as consisting of γC plus a new error that is uncorrelated with Q; hence the other 

coefficients in the model are now estimated without bias. 

 Table 2.1 gives formulas for the correction variable C = d1C1+(1–d1)C2; it also shows 

how parameter γ is related to correlation ρ. In this table, φ denotes the probability density 

                                                 
46 Supposedly it can be done for multinomial logit model as well, but it is extremely complex. Dubin and McFadden 
(1984) specify a usage model conditional on a single choice, i; the include J–1 correction terms, and so estimate J–1 
correlations (between u and εj, j≠i). However they do not discuss how to pool the data with observations of 
individuals who choose other alternatives. 
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function of a standard normal random variable, σu is the standard deviation of u, and 2̂P =1– 1̂P . 

Sometimes data are lacking on people making choice j=2, in which case the correction factor is 

simply C1 and the usage equation is estimated on just the subsample of new car owners.47 

 

Table 2.1. Selectivity Correction Terms γ⋅(d1C1+d2C2) for (2.44) 

Correction Variable Coefficient Model 
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 What this procedure does is add correction γC1 for those individuals in the sample who 

chose a new car and γC2 for the others. Note that in each row, C1 is positive and C2 is negative. 

Thus if ρ is positive, indicating that people choosing new cars are likely to drive more for 

unobserved reasons, the adjustment γC is positive for those individuals who choose new cars and 

negative for those who choose used cars — exactly the pattern we want for γC to replace the part 

of error term u that is correlated with Q. 

 More elaborate systems of equations can be handled with the tools of structural 

equations modeling. These methods are quite flexible and allow one to try out different patterns 

of mutual causality, testing for the presence of particular causal links. They are often used when 

large data sets are available describing mutually related decisions. Golob (2003) provides a 

review. 

 

2.4.3 Disaggregate Panel Data 

                                                 
47 Sign conventions vary in the literature. In the probit case, some references replace ZZβ̂  by the equivalent quantity 

)ˆ( 1
1 P−Φ , where 1−Φ  denotes the inverse of the standard normal cumulative distribution function. 
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When observations from individual respondents are collected repeatedly over time, the set of 

respondents is called a panel and the information on them is called panel data or longitudinal 

data. A good example is the Dutch National Mobility Panel, in which travel-diary information 

was obtained from the same individuals (with some attrition and replacement) at ten different 

times over the years 1984-1989. The resulting data have been widely used to analyze time lags 

and other dynamic aspects of travel behavior (Van Wissen and Meurs 1989). 

 The methods described earlier for aggregate cross-sectional time series are applicable to 

disaggregate panel data as well. In addition, attrition becomes a statistical issue: over time, some 

respondents will be lost from the sample and the reasons need not be independent of the behavior 

being investigated. The solution is to create an explicit model of what causes an individual to 

leave the sample, and to estimate it simultaneously with the choice process being considered.48 

 

2.4.4 Random Parameters and Mixed Logit 

In the random utility model of (2.10)-(2.11), randomness in individual behavior is limited to an 

additive error term in the utility function. Other parameters, and functions of them, are 

deterministic: that is, the only variation in them is due to observed variables. Thus for example, 

the value of time defined by (2.19) varies with observed travel time and wage rate but otherwise 

is the same for everyone. 

 Experience has shown, however, that parameters of critical interest to transportation 

policy vary among individuals for reasons that we do not observe. Such reasons could be missing 

socioeconomic characteristics, personality, special features of the travel environment, and data 

errors. These, of course, are the same reasons for the inclusion of the additive error term in utility 

function (2.10). So the question is, why not also include randomness in the other parameters? 

 The only reason is tractability, and that has largely been overcome by advances in 

computing power. Boyd and Mellman (1980) and Cardell and Dunbar (1980) showed how one 

could allow a parameter in the logit model to vary randomly across individuals. The idea is to 

specify a distribution, such as normal with unknown mean and variance, for the parameter in 

question; the overall probability is determined by embedding the integral in (2.11) within another 

integral over the density function of that distribution. Subsequently, this simple idea was 

                                                 
48 See Kitamura (2000) for a general review and Pendyala and Kitamura (1997) or Brownstone and Chu (1997) 
specifically on attrition. 
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generalized to allow for general forms of randomness in all the parameters – even alternative-

specific constants, where further randomness might seem redundant yet it proves a simple way to 

produce correlation patterns like those in GEV without the complexity of the GEV probability 

formulas. Such models are tractable because the outer integration (over the distribution defining 

random parameters) can be performed using simulation methods based on random draws, while 

the inner integration (that over the remaining additive errors εjn) is unnecessary because, 

conditional on the values of random parameters, it yields the logit formula (2.14). The model is 

called mixed logit because the combined error term has a distribution that is a mixture of the 

extreme value distribution with the distribution of the random parameters. 

 The mixed logit model is not difficult to write out. Using the logit formulation of (2.14) 

and (2.16), the choice probability conditional on random parameters is 

 
∑ ′

′
=

j
jn

in
in z

zP
)exp(

)exp(
| β

β
β . (2.47) 

Let f(β|Θ) denote the density function defining the distribution of random parameters, which 

depends on some unknown “meta-parameters” Θ (such as means and variances of β). The 

unconditional choice probability is then the multi-dimensional integral: 

 ∫ Θ⋅= βββ dfPP inin )|(| . (2.48) 

Integration by simulation consists of taking R random draws βr, r=1,…,R, from distribution 

f(β|Θ), calculating Pin|β each time, and averaging over the resulting values: 

 ( )∑
=

=
R

r

r
in

sim
in PRP

1
|/1 β . (2.49) 

Doing so requires, of course, assuming some trial value of Θ, just as calculating the usual logit 

probability requires assuming some trial value of β. Under reasonable conditions, maximizing 

the likelihood function defined by this simulated probability yields statistically consistent 

estimates of the meta-parameters Θ. Details are provided by Train (2003). 

 Brownstone and Train (1999) demonstrate how one can shape the model to capture 

anticipated patterns by specifying which parameters are random and what form their distribution 

takes — in particular, whether some of them are correlated with each other.49 In their application, 

                                                 
49 The following simplified explanation is adapted from Small and Winston (1999). 
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consumers state their willingness to purchase various makes and models of cars, each specified to 

be powered by one of four fuel types: gasoline (G), natural gas (N), methanol (M), or electricity 

(E). Respondents were asked to choose among hypothetical vehicles with specified characteristics. 

A partial listing of estimation results is as follows: 

 V = -0.264⋅[p/log(inc)] + 0.517⋅range + (1.43+7.45φ1)⋅size + (1.70+5.99φ2)⋅luggage 

  + 2.46φ3⋅nonE +1.07φ4⋅nonN + (other terms) 

where p (vehicle price) and inc (income) are in thousands of dollars; the range between refueling 

(or recharging) is in hundreds of miles; luggage is luggage space relative to a comparably sized 

gasoline vehicle; nonE is a dummy variable for cars running on a fuel that must be purchased 

outside the home (in contrast to electric cars); nonN is a dummy for cars running on a fuel stored at 

atmospheric pressure (in contrast to natural gas); and φ1–φ4 are independent random variables with 

the standard normal distribution. All parameters shown above are estimated with enough precision 

to easily pass tests of statistical significance. 

 This model provides for observed heterogeneity in the effect of price p on utility, since 

(∑V/∑p) varies with inc. It provides for random coefficients on size and luggage, and for random 

constants as defined by nonE and nonN. This can be understood by examining the results term by 

term. 

 The terms in parentheses involving φ1 and φ2 represent the random coefficients. The 

coefficient of size is random with mean 1.43 and standard deviation 7.45. Similarly, the coefficient 

of luggage has mean 1.70 and standard deviation 5.99. These estimates indicate a wide variation in 

people’s evaluation of these characteristics. For example, it implies that many people actually 

prefer less luggage space namely, those for whom φ2<–1.70/5.99; presumably they do so because a 

smaller luggage compartment allows more interior room for the same size of vehicle. Similarly, 

preference for vehicle size ranges from negative (perhaps due to easier parking for small cars) to 

substantially positive. 

 The terms involving φ3 and φ4 represent random alternative-specific constants with a 

particular correlation pattern, predicated on the assumption that groups of alternatives share 

common features for which people have idiosyncratic preferences — very similar to the rationale 

for nested logit. Each of the dummy variables nonE and nonN is simply a sum of alternative-

specific constants for those car models falling into a particular group. The two groups overlap: any 

gasoline-powered or methanol-powered car falls into both. If the coefficients of φ3 and φ4 had 
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turned out to be negligible, then these terms would play no role and we would have the usual logit 

probability conditional on the values of φ1 and φ2. But the coefficients are not negligible, so each 

produces a correlation among utilities for alternatives within the corresponding group. For 

example, all cars that are not electric share a random utility component 2.46φ3, which has standard 

deviation 2.46; this is in addition to other random utility components including εin in (2.10). Thus 

the combined additive random term in utility,50 (εin+2.46φ3n⋅nonEi+1.07φ4n⋅nonNi), exhibits 

correlation across those alternatives i representing cars that are not electric and, by similar 

argument involving φ4, across those alternatives representing cars that are not natural gas. The two 

alternatives falling into both the nonE and nonN groups, namely alternatives G and M, are even 

more highly correlated with each other. Note that because the distributions of φ3 and φ4 are 

centered at zero, this combined random term does not imply any overall average preference for or 

against various types of vehicles; such absolute preferences are in fact included in other terms. 

 The lesson from this example is that mixed logit can be used not only to specify 

unobserved randomness in the coefficients of certain variables, but also to mimic the kinds of 

correlation patterns among the random constants for which the GEV model was developed. Indeed, 

McFadden and Train (2000) show that it can closely approximate virtually any choice model based 

on random utility. The model described above acts much like a GEV model with overlapping nests 

for alternatives in groups nonE and nonN, and with random parameters for size and luggage. It is 

probably easier to estimate than such a nested logit model, especially if one is already committed 

to random parameters. Even more complicated error structures can be accommodated within this 

framework, for example one designating repeated observations from a given individual (Small, 

Winston and Yan 2005) or spatial correlation related to geographical location (Bhat and Guo 

2004). 

 In principle, the mixing idea can be applied to any choice model, not just logit, in order to 

randomize its parameters. Indeed, it happens that the multinomial probit model was first developed 

with a random-parameters formulation (Hausman and Wise 1978), a fact that has caused some 

confusion about the relationship between probit and logit. There may be cases where it is easier to 

estimate a random-parameters multinomial probit than a mixed logit model, but usually it is harder 

                                                 
50 As Brownstone and Train (1999) point out, the terms in φ1 and φ2 also may be viewed as part of an additive 
random utility term, but one that is not a constant, i.e. it depends on values of observed variables. 
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because one needs to simulate not only the explicit integral in (2.48) but also the integral that, for 

probit, is part of the definition of the conditional choice probability Pin|β. 

 

2.4.5 Endogenous Prices 

We have already mentioned the biases that can be introduced by including, as an explanatory 

variable, one that is not really independent of what is being explained. For example, the level of 

automobile ownership does a great job of “explaining” mode choice, but is it really an 

independent factor or does it, at least partly, respond to the mode choice decision? If the latter, 

automobile ownership is endogenous to mode choice; including it to explain mode choice then 

overstates its effect and also biases the coefficients of other variables that are correlated with it. 

This is called endogeneity bias. 

 There is a more subtle source of endogeneity bias that can occur with a variable 

measuring the price of an alternative. This has long been recognized as a problem in aggregate 

demand studies, where the demand curve is understood to be just one side of a simultaneous 

system determining price and quantity. But it can also afflict disaggregate studies if price is 

determined in a market setting where unobserved quality attributes are important and if those 

unobserved attributes are not controlled for in the model. 

 For example, Train and Winston (2007) seek to explain individual consumers’ choices 

among 200 different makes and models of cars. Naturally they want to include the price of the 

car as a variable. The trouble is, manufacturers’ pricing decisions take account of the car’s 

quality, including some aspects of quality that the investigators are unable to measure. If some 

makes and models have higher unmeasured quality than others, and their prices reflect this, it can 

appear as though consumers are drawn to high prices whereas they are really drawn to high 

unobserved quality. Thus, the strength of the usual negative effect of price on choice probability 

will tend to be underestimated or even not discerned at all. 

 Unobserved quality attributes are not a problem if the model includes a full set of 

alternative-specific dummy variables, because then the attributes are accounted for by the 

coefficients of those dummy variables (i.e., by the alternative-specific constants). But that 

solution is not always satisfactory for at least two reasons. First, the data set might be too small 

to estimate all the alternative-specific constants, especially when there are many of them; for 

example, if it happens that some alternative is not chosen by anyone in the sample, its 
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alternative-specific constant cannot be estimated. Second, including all alternative-specific 

constants makes it impossible to include any other variable that varies across alternatives but not 

across sample members.51 Thus, for example, if for any given product all sample members face 

the same price, the price alone cannot be included as an explanatory variable along with a full set 

of alternative-specific dummies; price can only be included by interacting it with some 

characteristic of consumers such as income, so that it varies in some manner different from what 

can be absorbed into the alternative-specific constants. Thus the alternative-specific constants, if 

included in the model, may hide important information. 

 A solution to this problem is available whether or not alternative-specific constants have 

been estimated. The key is to either estimate or calibrate alternative-specific constants and then 

regress them on price (and any other variables that vary only by alternative) using an 

instrumental-variables estimator — a procedure noted briefly in Section 2.1.6. If the alternative-

specific constants are not estimated statistically, one can obtain them using the calibration 

procedure described earlier for updating a model to a new location (Section 2.2.7). That 

procedure finds the values that equate the choice shares predicted by the discrete-choice model to 

the observed choice shares. (Presumably the latter are based on large enough samples so that 

they are all strictly positive.)52 

 We now describe the instrumental-variables estimator more fully, using the example of 

an endogenous price variable in Train and Winston (2007). The instrumental variables are any 

set of variables that do a good job of predicting price but are independent of unmeasured quality 

attributes that might be correlated with price. The instrumental-variables estimator effectively 

replaces “price” in the regression equation by its predicted value based on all exogenous 

variables in the model, including the instrumental variables. In this way price is purged of its 

endogeneity but otherwise still carries information relevant to understanding consumer choice. 

                                                 
51 Formally, this is because the variable would be perfectly collinear with the alternative-specific dummies: that is, 
some linear combination of them adds to zero. The inability to include perfectly collinear variables is a well-known 
limitation on any regression model. Intuitively, the problem is that two different variables (or combinations of 
variables) would be competing to explain the same dimension of variation in the data, and so their separate effects 
could not be distinguished. 
52 An alternative solution is proposed by Petrin and Train (2004): adding artificial variables to the model to absorb 
the part of error term that is correlated with price, an extension of the approach of Heckman described as “Step 2 
Version (b)” in Section 2.4.2. 
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The procedure works only in a linear model, which is why it cannot be applied directly to the 

discrete-choice model itself. 

 The full Train-Winston procedure, then, looks like this. The conditional indirect utility 

function Vin is decomposed two parts, one varying across consumers and the other not: 

 ( )iiinin xzV ξγβ +′+′=  (2.50) 

where zin and xi are vectors of explanatory variables, the latter varying only across alternatives, 

not individuals. The first part of this decomposition, β′zin, has exactly the same meaning as in the 

mixed logit model of (2.47), including the fact that β can vary randomly across consumers. The 

second part, which we write as 

 δi=γ′xi+ξi  (2.51) 

varies only across products and has a constant parameter vector γ. Price is included among 

variables x; it may also be included in z if it is interacted with a consumer characteristic such as 

income.  

 The model is estimated iteratively. Starting with a guess or a preliminary estimate of 

constants { old
iδ }, β is estimated using the mixed-logit estimator with utility (2.50), holding the 

part in parentheses (δi) constant. Predicted choice shares iŝ  (conditional on { old
iδ }) are then 

obtained by aggregating the mixed-logit probabilities (2.49) over the sample. Finally, using the 

observed choice shares si, δi is updated according to the rule described in a footnote to Section 

2.2.7: 

 )ˆlog()log( ii
old
i

new
i ss −+= δδ  . 

These steps are iterated until they converge.53 Finally, γ is estimated by regressing the resulting 

values of {δi} on xi according to (2.51), using instrumental variables. 

 What sort of variable would make a good instrument for price? The value of such a 

variable, for a given make/model of automobile, needs to be reasonably well correlated with the 

price of that make/model but not with its unmeasured characteristics. A key insight of Berry 

(1994) is that a good instrument can be constructed as an index of the measured characteristics of 

other makes and models. This is because automobile prices are presumed to be determined in an 

oligopoly setting, in which each firm sets product prices while taking account of all the other 

                                                 
53 Proof of convergence is given by Berry, Levinsohn, and Pakes (1995, Appendix I). 
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products in the market, including its own. Hence price is influenced by the instrumental variable, 

as required. Furthermore, because there are many other makes and models, it is reasonable to 

assume that an index of such characteristics is not significantly influenced by the price of the 

make/model under consideration, thus meeting the other requirement for an instrument.54 

 Fortunately, this procedure is unnecessary for most problems in urban transportation 

because either the model contains alternative-specific constants or prices can be considered 

exogenous (for example they may be set by a public agency). The procedure has been used 

mainly to study the demand for automobiles, computers, and other products characterized by 

significant and measurable product variety.55  

 

2.5 Activity Patterns and Trip Chaining 

 

A more fundamental approach to the demand for travel would be to explain the entire structure 

of decision-making about what activities to undertake in what locations. This idea has proven 

difficult to translate into workable models that use available data. For example, early theories 

based on shopping strategies in the face of multiple products and storage costs yielded rich 

insights but no practical predictive models, whereas ad hoc empirical models were theoretically 

unsatisfactory and also not very accurate (Thill and Thomas 1987). Nevertheless, important 

progress has been made. Descriptive information on activity patterns is now extensive, often 

showing surprising similarities across nations.56 Surveys now elicit multi-day diaries describing 

all activities and travel undertaken during a period of time. And newer theoretical work more 

fully integrates shopping and trip chaining into conventional consumption theory (Anas 2007). 

One intriguing result: making it easier to chain trips together may result in more destinations 

visited rather than less travel. 

                                                 
54 Specifically Train and Winston (2007) create four instrumental variables. The first two are the sums of differences 
in measured characteristics between the make/model in question and (1) all other makes/models by the same 
manufacturer, or (2) all other makes/models by other manufacturers. The other two are formed the same way but 
using the squares of differences in characteristics. 
55 The procedure was first developed for aggregate data, using demand functions built up from disaggregate discrete-
choice decisions by Berry (1994); Berry, Levinsohn and Pakes (1995); and Bresnahan, Stern and 
Trajtenberg.(1997). In those cases the mixed-logit part of the algorithm is simplified because consumers, not being 
observed individually, must be treated as observationally identical. Applications to disaggregate data include Berry, 
Levinsohn and Pakes (2004) for automobiles and Goolsbee and Petrin (2004) for television reception. 
56 For example, (Timmermans et al. 2002) compare data on Japan, Canada, The Netherlands, the US, and UK. 
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 As for models that are fully activity-based, two main classes have emerged.57 One 

consists of econometric models that extend the basic framework of this chapter to deal with 

additional choice dimensions such as trip frequency, destination, and type and duration of 

activities undertaken. The other consists of simulation models that enumerate feasible 

combinations of activities, based on logical constraints relating activities at different locations to 

travel between those locations. 

 Turning to the first class of models, one significant advance has been to model an entire 

tour (a round trip visiting one or more destinations in sequence) as an object of choice. The 

problem with this is that it leads to enormous numbers of possible choice alternatives, especially 

when one considers a daily schedule containing several possible tours. Bowman and Ben-Akiva 

(2001) improve tractability by breaking the overall decision about the daily schedule into parts, 

including a primary tour type, secondary tour type(s), and destinations and modes of travel for 

each tour. Such a model lends itself to a structured choice model such as nested logit. Illustrating 

the difficulty of designing realistic models, the authors acknowledge that the results in their 

example are able to explain only a small part of variations in observed activity patterns. 

 Fundamental to describing trips are the locations and the starting and ending times of 

activities that the trips are intended to connect. Yet few if any formal activity models, whether of 

the econometric or simulation variety, have been able to satisfactorily account for the varying 

degrees of flexibility in locations and times of day. Moreover, to fully understand the processes 

generating travel, one needs to model the substitution between in-home and out-of-home 

activities, adding further to the sheer number of possibilities to consider. 

 As an example of what can be accomplished, Shiftan and Suhrbier (2002) utilize one of 

the best data sets for activity analysis — a 1994 household survey in Portland, Oregon — to 

analyze several policies classified as “travel demand management.” One result is illustrative. A 

policy to encourage telecommuting is predicted to reduce long-distance work trips to downtown 

Portland, just as one would expect. But the policy increases the number of short tours, as people 

make special-purpose trips for activities that previously were handled as part of a tour from 

home to work and back. This result is consistent with several studies of telecommuting, which 

                                                 
57 See Ettema and Timermans (1997), Ben-Akiva and Bowman (1998), or Bhat and Koppelman (2003) for reviews. 
A collection of recent research appears in Miller (2005). 
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have found only a very small net reduction in travel; indeed many types of telecommunication 

appear to be complements to, rather than substitutes for, travel.58 

 

2.6 Value of Time and Reliability  

 

Among the most important quantities inferred from travel demand studies are the monetary 

values that people place on saving various forms of travel time or on improving the predictability 

of travel time. The first, loosely known as the value of time (VOT), is a key parameter in cost-

benefit analyses that measure the benefits brought about by transportation policies or projects. 

The second, the value of reliability (VOR), also appears important, but accurate measurement is 

a science in its infancy. 

 The main reason these quantities are so important is that they account for a large portion 

of the benefits (positive or negative) of changes in the transportation environment. For this 

reason, analysts are generally not satisfied to merely have these benefits captured implicitly as 

part of consumer surplus as, for example, in equation (2.17); rather, they would like to separate 

them explicitly in order to illuminate the nature of the changes being considered. In this section, 

we consider the theory behind consumers’ response to time and reliability and our empirical 

knowledge about those responses; in Chapter 5, we discuss how that knowledge is used in the 

evaluation of projects or policies. 

 

2.6.1 Value of Time: Basic Theory 

The most natural definition of value of time is in terms of “compensating variation” (Varian 

1992). The value of saving a given amount and type of travel time by a particular person is the 

amount that person could pay, after receiving the saving, and be just as well off as before. This 

amount, divided by the time saving, is that person’s average value of time saved for that 

particular change. Aggregating over a class of people yields the average value of time for those 

people in that situation. The limit of this average value, as the time saving shrinks to zero, is 

called the marginal value of time, or just “value of time.”59 

                                                 
58 Choo, Mokhtarian and Salomon (2005), Plaut (1997). 
59 It is sometimes claimed that the average value of time savings diminishes rapidly as the time savings shrink to 
zero, which would imply a very low marginal rate. These claims are based on the idea that travelers judge changes 
in the transportation system relative to some reference point, taken to be the situation before a proposed change. But 
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 Value of time may depend on many aspects of the trip-maker and of the trip itself. To 

name just a few, it depends on trip purpose (e.g. work or recreation), demographic and socio-

economic characteristics, time of day, physical or psychological amenities available during 

travel, and the total duration of the trip. There are two main approaches to specifying a travel-

demand model so it can measure such variations. One is known as market segmentation: the 

sample is divided according to criteria such as income and type of household, and a separate 

model is estimated for each segment. This has the advantage of imposing no potentially 

erroneous constraints, but the disadvantage of requiring many parameters to be estimated, with 

no guarantee that these estimates will follow a reasonable pattern. The second approach uses 

theoretical reasoning to postulate a functional form for utility that determines how VOT varies. 

This second approach is pursued here. 

 A useful theoretical framework builds on that of Becker (1965), in which utility is 

maximized subject to a time constraint. Becker’s theory has been elaborated in many directions; 

here, we present ideas developed mainly by Oort (1969) and DeSerpa (1971), adapting the 

exposition of MVA Consultancy et al. (1987). 

 Let utility U depend on consumption of goods G, time Tw spent at work, and times Tk 

spent in various other activities k. We can normalize the price of consumption to one. Utility is 

maximized subject to several constraints. First, the usual budget constraint requires that 

expenditures are no greater than the sum of unearned income Y and earned income wTw, where w 

is the wage rate. Second, a time constraint requires that time spent on all activities be within total 

time available, T . Finally, certain activities (such as travel) have technological features (such as 

maximum speeds) that impose a minimum kT  on time Tk spent in activity k. (We will consider 

later an extension where Tw is also so constrained.) We assume that the first two constraints are 

binding, so they can be expressed as equalities. 

 This problem can be solved by maximizing the following Lagrangian function with 

respect to G, Tw, and {Tk}: 

                                                                                                                                                             
that idea ignores the fact that travel patterns and other factors affecting travel are in constant flux. This flux means 
that within a few months of a change, most travelers will no longer view the “before” situation, as defined by an 
analyst, as a reference point. It is more plausible that travelers will adjust their behavior to their needs at any point in 
time, subject to the situation that faces them (as measured by current conditions) and not to some arbitrary previous 
situation. Studies based on consistent definitions have generally not found such dependencies (MVA Consultancy et 
al. 1987, pp. 65-68), and theory refutes the alleged rationale for them (Mackie, Jara-Díaz and Fowkes 2001). 



Small & Verhoef, The Economics of Urban Transportation, Chapter 2 FINAL EDIT  January 29, 2007 

 2-64

 ( ) [ ] [ ]∑∑ −⋅+







−−⋅+−+⋅+=Λ

k
kkk

k
kwwkw TTTTTGwTYTTGU φµλ}{,, , (2.52) 

where λ, µ, and {φk} are Lagrange multipliers that indicate how tightly each of the corresponding 

constraints limits utility. The first-order condition for maximizing (2.52) with respect to one 

activity time Tk is 

 0=+− kTkU φµ  (2.53) 

while that with respect to Tw is 

 [ ] 0)/( =−⋅+⋅+ µλ wwTw dTdwTwU , (2.54) 

where subscripts on U indicate partial derivatives. We have allowed for a nonlinear 

compensation schedule by letting w depend on Tw. 

 We can denote the value of utility at the solution to this maximization problem by V, the 

indirect utility function; it depends on Y, T , wage schedule w(Tw), and minimum activity times 

{ kT }. The rate at which utility increases as the k-th minimum-time constraint is relaxed is given 

by its Lagrange multiplier, φk; the increase of utility with respect to unearned income is λ. Hence 

the marginal value of time for the k-th time component is their ratio: 
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Those activities for which the minimum-time constraint is not binding, i.e. those for which φk=0, 

are called by DeSerpa pure leisure activities. The others, which presumably include most travel, 

are intermediate activities. 

 Equations (2.53)-(2.55) imply that for a travel activity k, 
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UU
dT
dwTwUv −+⋅+=−= . (2.56) 

This equation decomposes the value of travel-time savings into the opportunity cost of time that 

could be used for work, µ/λ, less the value of the marginal utility of time spent in travel. The 

opportunity cost µ/λ is both pecuniary (the first two terms after the last equality) and non-

pecuniary (the third term, which could be positive or negative). 

 Most of the theoretical literature assumes that the wage rate is fixed, in which case 

equation (2.56) gives the result noted by Oort (1969): the value of time exceeds the wage rate if 

time spent at work is enjoyed relative to that spent traveling, and falls short of it if time at work 



Small & Verhoef, The Economics of Urban Transportation, Chapter 2 FINAL EDIT  January 29, 2007 

 2-65

is relatively disliked. This is a fundamental insight into how the value of time, even for non-work 

trips, depends on conditions of the job. It suggests a modeling strategy that interacts variables 

believed to be related to compensation and work enjoyment with those measuring time or cost. In 

addition, we might expect k
Tv  to rise with total trip time because the total time constraint in 

(2.52) will bind more tightly, causing µ, the marginal utility of leisure, to rise.60 

 

2.6.2 Empirical Specifications 

The most common situation for measuring values of time empirically is one where a discrete 

choice is being made, such as among modes or between routes. To clarify how the general theory 

just presented corresponds to empirical specifications, assume that there is only one pure leisure 

activity, k=0, and that the other activities are all mutually exclusive travel activities, each 

consisting of one trip. We can also add travel cost ckδk to the budget constraint, where δk is one if 

travel activity k is chosen and zero otherwise. The indirect utility function has the same 

derivatives with respect to exogenous variables ck and kT  as does the Lagrangian function, which 

under the assumptions just stated can be written as: 

 k
kc

V λδ−=
∂
∂ ; kk

kT
V δφ−=

∂
∂ . 

Equivalently, writing Vk as the conditional indirect utility function: 
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∂
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Then our definition of value of time in (2.55) is identical to that in (2.19): 
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Note also that the first of equations (2.57) is identical to (2.24) since we assume just one trip per 

time period. (It is easy to generalize to allow for an endogenously chosen number of trips per 

time period.) 

                                                 
60 According to (2.54), this could happen by the consumer adjusting so as to raise the wage rate w and/or the 
marginal enjoyment of work UTw. This reflects the idea that if time is scarce, one is more choosy about the kind of 
job one will accept. Academics with consulting opportunities will often say that when they are exceptionally busy, 
they only accept consulting jobs with very high wages or that they find especially interesting, in either case helping 
them meet the marginal condition (2.54). Similarly, some people busy with small children will take on part-time 
work only if it pays well or is especially enjoyable. 
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 Our theory provides some guidance about how to specify the systematic utilities Vk in a 

discrete-choice model. Suppose, for example, one believes that work is disliked (relative to 

travel) and that its relative marginal disutility is a fixed fraction of the wage rate. Suppose further 

that the wage rate is fixed, so the second term in the right-hand side of (2.56) disappears. Then 

(2.56) implies that the value of time is a fraction of the wage rate, as for example with 

specification (2.15) with β3=0. Alternatively, one might think that work enjoyment varies 

nonlinearly with the observed wage rate: perhaps negatively due to wage differentials that 

compensate for working conditions, or perhaps positively due to employers’ responses to an 

income-elastic demand for job amenities. Then (2.56) implies that value of time is a nonlinear 

function of the wage rate, which could suggest using (2.15) with a non-zero term β3 or with 

additional terms involving cost divided by some other power of the wage. Train and McFadden 

(1978) demonstrate how specific forms of the utility function in (2.52) can lead to operational 

specifications for the conditional indirect utility function. 

 

2.6.3 Extensions 

Human behavior is complex, and many additional factors may affect how people allocate their 

time. No analytical model can account for all of them, but we can mention several interesting 

extensions to the theory just presented. They account for constraints on work hours, variable 

commuting times, technologies of home production, and psychological bias against losses from 

the status quo. 

 First, consider work-hour constraints. People cannot always change the amount of time 

they spend at work, perhaps because they are locked into a particular job with fixed hours. To 

some extent this is handled by allowing w to depend on Tw; but we could also consider a stricter 

constraint that Tw be fixed, say at wT . This adds a term [ ]www TT −⋅φ  to (2.52), where φw is 

another Lagrangian multiplier whose sign indicates whether this person would prefer to work 

fewer (φw>0) or more (φw<0) hours. This modification adds a term φw/λ to the value of time as 

given by (2.56), thus raising or lowering the value of time depending on the sign of φw. Indeed, 

MVA Consultancy et al. (1987, pp. 149-150) find that people who are required to work extra 

hours at short notice have 15-20 percent higher values of travel time than other workers, 

suggesting that for them such a model may apply with φw>0. 
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 Second, consider the situation where the amount of time devoted to consuming goods is 

proportional to the amount of goods— as for example occurs if the “good” is watching a movie. 

For simplicity, let’s label this as activity 0 and consider it a generalized leisure activity, whose 

consumption time is proportional to all goods consumption G. Then the term [ ]000 TT −⋅φ  in 

(2.52) must be changed to [ ]GT ⋅−⋅ l00φ , where l is the unit time requirement for consumption. 

The constraint is binding if φ0>0. While this modification does not alter the formulas derived for 

value of time, it does change the meaning of λ (the marginal utility of income) in those formulas, 

as shown by Jara-Díaz (2000, 2003). Previously, the solution required that λ=UG, the marginal 

utility of consumption, as is easily seen from the first-order condition for maximizing (2.52) with 

respect to G. But now that first-order condition implies λ=UG–φ0⋅l. Since λ appears in the 

denominator of expressions for value of time, this change would tend to raise the value of time if 

the constraint is binding. Consumers are pressed for time in all their activities because of the 

time needed for ordinary consumption. 

 Third, suppose that working more hours requires spending more time commuting. This 

would be the case, for example, if it requires a secondary worker entering the work force or a 

part-time worker increasing the number of days worked. Following De Borger and Van Dender 

(2003), suppose commuting is activity c and commuting time is proportional to the amount of 

time worked: wc TaT ⋅=  for fixed parameter a. Substituting this equality into the overall time 

constraint in (2.52), the value µ in (2.54) becomes multiplied by (1+a) and all terms on the right-

hand side of (2.56) are therefore divided by (1+a). Thus greater commuting time (larger a) 

causes the value of time to decrease — opposite to the effect noted earlier from a rising marginal 

utility of leisure. One way to understand this is that a larger value of a reduces the effective 

hourly wage rate, i.e. the wage rate net of commuting cost. De Borger and Van Dender suggest 

in numerical simulations that the effect can be quite large. 

 Finally, consider the well-known phenomenon of loss aversion. People often display 

asymmetric preferences regarding gains or losses from the status quo (more generally, from a 

reference situation), assigning far more weight to losses than to gains. Kahneman and Tversky 

(1979) develop a general theory of such behavior known as prospect theory. This behavior may 

create a large gap between “willingness to pay” (WTP) for a time savings and “willingness to 

accept” (WTA) for an identical time increase, each being defined as the amount of money paid 
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or received so as to leave the traveler indifferent to the change. De Borger and Fosgerau (2006) 

apply the following “reference-dependent” utility function, adapted from the literature on 

prospect theory: 

 )()(),( tvVcVtcV T
tc −+−=  

where c and t are deviations in cost and time, respectively, from the reference situation, vT is a 

fixed parameter for a given traveler known as the “reference-free value of time,” and the “value 

function” Vi (⋅) is an increasing function of its argument with Vi(0)=0, i=c,t. Loss aversion is 

represented by assuming that Vi slopes downward from zero more steeply than it slopes upward 

from zero: Vi(x)<–Vi(–x) for x>0. Specifically, De Borger and Fosgerau assume the following 

value functions postulated by Tversky and Kahneman (1991): 

 xexSxV xSi i )()()( η−=  

where S(x)≡x/|x| is the sign of x, with S(0)=0, and ηc and ηt are fixed parameters. We have loss 

aversion in Vi if ηi>0. We define willingness to pay WTP(t) as the amount the consumer would 

pay and remain indifferent in light of a time saving of t>0; i.e. it is the solution to 

 Vc(–WTP)+Vt(vTt)=0. 

Similarly WTA(t) is the amount the consumer would have to receive to be willing to accept a 

time increase of t: 

 Vc(WTA)+Vt(–vTt)=0. 

These definitions imply that tevtWTP
tc

T ⋅= +− )()( ηη  and tevtWTA
tc

T ⋅= + )()( ηη , again for t>0. If 

there is loss aversion (η>0), we immediately see that WTP<WTA and both WTP and WTA differ 

from vTt. In terms of our previous definitions, the marginal value of time (∂V/∂t)/ (∂V/∂c) falls 

short of vT for a time saving and it rises above vT for a time increase. Furthermore, if values of 

(WTP/t) and (WTA/t) can be measured from experimental data, then vT can be determined simply 

as their geometric mean. De Borger and Fosgerau, using a considerably more general model than 

this one, estimate values of ηc=0.24 and ηt=0.50 from stated preference data from over 2000 

individuals, implying that WTA exceeds WTP by a factor of four. 

 We caution that the kind of loss aversion applied to an individual, in a hypothetical 

situation with a very clear reference scenario (a recent actual trip), need not apply to a proposed 

change to a transportation system affecting thousands of people in varying and changing 

circumstances. If you improve a traffic signal and wait a few months, many users’ situations will 



Small & Verhoef, The Economics of Urban Transportation, Chapter 2 FINAL EDIT  January 29, 2007 

 2-69

have changed since before the improvement and their reference situations are unclear; indeed, 

other events simultaneously affecting their travel might make them quite unaware of the signal 

improvement, even if they pay close attention to the overall time of their commute. Therefore it 

is not appropriate to use distinct values for WTP and WTA in most welfare analyses of public 

policies. Rather, we view the model just described as useful for interpreting stated-preference 

results. Nevertheless it illustrates that the standard assumption of rational behavior need not hold 

literally in all situations, and sometimes this must be taken into account in empirical work. 

 Other theoretical extensions to the theory of value of time include those showing how it 

depends on tax rates (Forsyth 1980) and on scheduling considerations (Small 1982). 

 

2.6.4 Value of Reliability: Theory 

It is well known that uncertainty in travel time, which may result from congestion or poor 

adherence to transit schedules, is a major perceived cost of travel (e.g., MVA Consultancy et al. 

1987, pp. 61-62). This conclusion is supported by attitudinal surveys (Prashker 1979), and 

perhaps by the frequent finding that time spent in congestion is more onerous than other in-

vehicle time.61 How can this aversion to unreliability be captured in a theoretical model of 

travel? 

 One approach, adapting Noland and Small (1995), is to begin with the model of trip-

scheduling choice presented in equation (2.30). Dividing utility by minus the marginal utility of 

income, we can write this model in terms of trip cost, in a conventional notation that we will use 

extensively in the next chapter: 

 DLSDLSDETTtC rd ⋅+⋅+⋅+⋅= θγβα),(  (2.58) 

where α≡vT/60 is the per-minute value of travel time, β and γ are per-minute costs of early and 

late arrival, and θ is a fixed cost of arriving late. Travel time T is disaggregated into a value Tf 

that represents the lowest possible travel time for this particular trip, plus a random 

(unpredictable) component of travel time, Tr≥0. Since Tf is simply a given for the traveler, we 

use the functional notation C(td,Tr) to focus attention on two variables: departure time td and 

stochastic delay Tr. Specifically, our objective is to measure the increase in expected cost C due 

                                                 
61 See for example MVA Consultancy et al. (1987), p. 149; Small, Noland, Chu and Lewis (1999); and Hensher 
(2001). 
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to the dispersion in Tr, given that td is subject to choice by the traveler. Letting C* denote this 

expected cost after the user chooses td optimally, we have 

    [ ] [ ]L
d

rd
d

PSDLESDEETEMinttCEMinC
tt

⋅+⋅+⋅+⋅== θγβα )()()(),(*  (2.59) 

where E denotes an expected value taken over the distribution of Tr, conditional on td; and where 

PL≡E(DL) is the probability of being late, again conditional on td. This equation can form the 

basis for specifying the reliability term in a model like (2.31). It captures the effect of travel time 

uncertainty upon expected schedule delay costs, but may omit other reasons why uncertainty 

could cause disutility. 

 To focus just on reliability, let’s ignore the dynamics of congestion for now by assuming 

that Tf and hence E(T) are independent of departure time. To find the optimal departure time, let 

f(Tr) be the probability density function for Tr and let t* be the preferred arrival time at the 

destination. The next to last term in the square brackets of (2.59) can then be written as 
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where fTtt −≡ *~  is the time the traveler would depart if Tr were equal to zero with certainty. 

Differentiating yields: 
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where *
LP  is the probability of being late given the optimal departure time.62 Similarly, 

differentiating the term involving β in (2.59) yields ( )*1 LP−⋅− β . Finally, differentiating the last 

term yields –θf0 where f0≡ )~( *
dttf −  is the probability density at the point where the traveler is 

neither early nor late. What these three derivatives tell us is that departing later will lower the 

expected cost of early arrival but raise the expected costs of late arrival (involving γ and θ). 

Combining all three terms and setting them equal to zero gives the first-order condition for 

optimal departure time: 

                                                 
62 The term “0” in this equation arises from differentiating the lower limit of integration:  

[ ] [ ]
dr ttTrrddd TftTtdtttd −=⋅−+⋅−− ~)()~(/)~(  =1⋅0=0. 
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In the special case θ=0, equation (2.60) yields the very intuitive rule )/(* γββ +=LP , noted by 

Bates et al. (2001, p. 202). 

 Equation (2.60) is only an implicit equation for the optimal departure time, *
dt , because 

both PL and f0 depend on td. The equation can be regarded as a rule for setting a “buffer” to allow 

for occasional delays, a buffer whose size balances the aversions to early and late arrival. If Tr 

has a tight distribution (low variance), then the desired probability *
LP  can be achieved by a small 

time buffer; but as the distribution of Tr becomes more dispersed (more unreliability), a larger 

time buffer is required, causing the usual early arrivals to be of greater magnitude and therefore 

to incur greater costs. Lomax, Turner and Margiotta (2003) estimate buffers in 21 US cities using 

an assumed value *
LP =0.95, obtaining results that are substantial fractions of average travel time. 

 The cost function itself has been derived in closed form for two cases: a uniform 

distribution and an exponential distribution for Tr. In the case of a uniform distribution with 

range b, (2.60) again simplifies to a closed form: 
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+
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/* . 

The value of C* in this case is given by Noland and Small (1995) and Bates et al. (2001). In the 

special case θ=0, it is equal to the cost of expected travel time, α⋅E(T), plus the following cost of 

unreliability: 

 
2
bRvR ⋅








+

=
γβ

βγ  . (2.61) 

The quantity in parentheses is a composite measure of the unit costs of scheduling mismatch, 

which plays a central role in the cost functions considered in the next chapter. Thus (2.61) 

indicates that reliability cost derives from the combination of costly scheduling mismatches and 

dispersion in travel time. The specific value for vR depends on how unreliability R is defined; if it 

is defined as half the possible range of travel times, then vR is just the term in parentheses in 

(2.61). 

 More generally, the last two terms in (2.59) are potentially important if γ>β or if θ is 

large, conditions that are in fact true according to the empirical findings in (2.30). Because they 
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contain E(SDL) and PL, these terms depend especially on the shape of the distribution of Tr in its 

upper ranges, which governs the likelihood that Tr takes a high enough value to make the traveler 

late. Thus we might expect the expected cost of unreliability to depend more on this part of the 

distribution (its “upper tail”) than on other parts. 

 Equation (2.61) applies equally to the expected cost of schedule mismatches on a transit 

trip, under the common assumption that people arrive at a transit stop at a steady rate and with b 

now defined as the headway between transit vehicles.63 Although under that interpretation vRR is 

proportional to expected waiting time, it is not a representation of waiting-time cost but rather 

must be added to it. In the case where the transit headway is itself uncertain, or where the vehicle 

might be too full to accommodate another passenger, the derivation of reliability cost for transit 

becomes much more complicated (Bates et al. 2001). 

 

2.6.5 Empirical Results 

Research has generated an enormous literature on empirical estimates of value of time, and a 

much smaller one on value of reliability. Here we rely mainly on reviews of these literatures by 

others. 

 Waters (1996) reviews 56 value-of-time estimates from 14 nations. Each is stated as a 

fraction of the gross wage rate. Focusing on those where the context is commuting by 

automobile, he finds an average ratio of VOT to wage rate of 48 percent, and a median ratio of 

42 percent. He suggests that “a representative [VOT] for auto commuting would be in the 35 to 

50 percent range, probably at the upper end of this range for North America.” Consistent with 

this last statement, both Transport Canada (1994, Sect. 7.3.2) and US Department of 

Transportation  (1997) currently recommend using a value for personal travel by automobile 

equal to 50 percent of the average wage rate. 

 Reviewing studies for the UK, Wardman (1998, Table 6) finds an average VOT of 

£3.58/hour in late 1994 prices, which is 52% of the corresponding wage rate.64 Mackie et al. 

(2003), reviewing a larger set of UK studies, recommend best hourly values for VOT of £3.96 

for commuting and £3.54 for other trips at 1997 prices; the average of these two values is 51% of 

                                                 
63 This equivalence is pointed out by Wardman (2004, p. 364); the equation is also derived by de Palma and Lindsey 
(2001).  
64 Mean gross hourly earnings for the UK were £6.79 and £7.07/hour in spring 1994 and 1995, respectively. Source: 
UK National Statistics Online (2004, Table 38). 
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the relevant wage rate.65 Gunn (2001) find that Dutch values used in 1988, differentiated by level 

of household income, compare well with various British results for a similar time. However, 

Gunn reports that there was a substantial unexplained downward shift in the profile for 1997 – a 

phenomenon possibly resulting from better amenities in vehicles. Another Dutch study — using 

a novel methodology in which the “choice” is to leave a job rather than to pick a mode or route 

— finds a ratio of VOT to wage rate of one-third for shorter commutes (less than one hour round 

trip) and two-thirds for longer ones, for an average of “almost half” (Van Ommeren, Van den 

Berg and Gorter 2000). A French review by the Commissariat Général du Plan (2001, p. 42) 

finds VOT to be 77 and 42 percent of the wage for commuting and other urban trips, 

respectively, for an average of 59 percent. Finally, a Japanese review suggests using ¥2333/hour 

for weekday automobile travel in 1999, which was 84 percent of the wage rate.66 

 There is considerable evidence that value of time rises with income but less than 

proportionally, which makes the expression of VOT as a fraction of the wage rate, as above, 

somewhat of an approximation.67 The easiest way to summarize this evidence is as an elasticity 

of value of time with respect to income. Wardman (2001, p. 116), using a formal meta-analysis, 

finds that elasticity to be 0.51 when income is measured as gross domestic product per capita; 

with a larger sample he obtains 0.72 (Wardman 2004, p. 373), and he is part of a group that 

recommends using an elasticity of 0.8 (Mackie et al. 2003). These elasticities could be subject to 

a downward bias if there is indeed a downward trend, independent of income, as suggested by 

Gunn. 

 Wardman’s (2001) meta-analysis is especially useful for tracking the effects of various 

trip attributes on value of time. For example, there is a 16 percent differential between value of 

time for commuting and leisure trips. There are also considerable differences across modes, with 

bus riders having a lower than average value and rail riders a higher than average value — 

possibly due to self-selection by speed. 

 Most important, walking and waiting time are valued much higher than in-vehicle time 

— a universal finding conventionally summarized as 2 to 2.5 times as high. Wardman actually 

                                                 
65 Mean gross hourly earnings in 1997 were £7.42/hour, from same source as previous footnote. 
66 Japan Research Institute Study Group on Road Investment Evaluation (2000), Table 3-2-2, using car occupancy of 
1.44 (p. 52). Average wage rate is calculated as cash earnings divided by hours worked, from Japan Ministry of 
Health, Labour and Welfare (1999). 
67 See for example MVA Consultancy et al. (1987, pp. 133-135, 150, 152) and Mackie et al. (2003). 
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gets a smaller differential, namely a ratio of 1.62, which is quite precisely estimated; 

nevertheless he joins Mackie et al. (2003) in recommending a ratio of 2.0. There is considerable 

dispersion in the reported estimates of these relative valuations, especially in the relative value of 

waiting time (MVA Consultancy et al., 1987, p. 130). This may indicate that the disutility of 

transfers (which entail waiting as well as other possible difficulties) is quite variable, and 

suggests a payoff from research into the sources of this variation. 

 A number of studies have been carried out using Chilean data. Munizaga et al. (2004), 

using an innovative model that combines choices of activities and travel modes by residents of 

Santiago, obtain average VOT equal to 46% and 67% of the wage rate for middle and upper 

income groups, respectively. 

 SP data often yield considerably smaller values of time than RP data. For example, 

Hensher (1997) and Calfee and Winston (1998) obtain values using SP surveys of car commuters 

of 19 percent and 20 percent, respectively, of the wage rate.68 Brownstone and Small (2005) take 

advantage of three data sets, all from “high occupancy toll lane” facilities in southern California, 

that obtained RP and SP data from comparable populations, in some cases from the same 

individuals. They find that SP results for VOT are one-third to one-half the corresponding RP 

results,69 the latter being 50-90 percent of the wage rate. One possible explanation for this 

difference is hinted at by the finding, from other studies of these same corridors, that people 

overestimate the actual time savings from the toll roads by roughly a factor of two; thus when 

answering SP survey questions, they may indicate a per-minute willingness to pay for perceived 

time savings that is lower than their willingness to pay for actual time savings. If one wants to 

use a VOT for purposes of policy analysis, one needs it to correspond to actual travel time since 

that is typically the variable considered in the analysis. Therefore if RP and SP values differ 

when both are accurately measured, it is the RP values that are relevant for most purposes. 

 From this evidence, we conclude that the value of time for personal journeys varies 

widely by circumstance, usually between 20 and 90 percent of the gross wage rate and averaging 

around 50 percent. Although it varies somewhat less than proportionally with income or wages, 

expressing it as a fraction of the wage rate is a good approximation and is more useful than 

                                                 
68 This statement is based on Calfee and Winston’s (1998) summary of the average over the entire sample ( p. 91), 
and on Hensher’s (1997) Table 3.7 (p. 274), panel for “private commute,” using his preferred VOT of $4.35/hour. 
69 See their Table 1, rows 4-5, 13-14 
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expressing it as an absolute amount. (This is not to prejudge whether it may be desirable to use a 

constant absolute amount in cost-benefit analysis for political or distributional reasons.) The 

value of time is much higher for business travel, generally taken as 100 percent of total 

compensation including benefits. The value of walking and waiting time for transit trips is 1.6 to 

2.0 times that of in-vehicle time, not counting some context-specific disutility of having to 

transfer from one vehicle to another. 

 Several studies have applied mixed logit to measure variation from unobserved sources in 

the disutility of time and reliability. Hensher (2001) allows for random coefficients of three types 

of travel time, using SP data on New Zealand commuters, resulting in standard deviations of 

VOT equal to 41-58 percent of the corresponding mean VOT.70 The California studies reviewed 

by Brownstone and Small (2005) measure heterogeneity as the inter-quartile range (75th minus 

25th percentile values) of the distribution of VOT or VOR. With that measure, they find that 

unobserved heterogeneity in VOT — that is, heterogeneity due just to random coefficients — is 

55-144 percent of median VOT. 

 There has been far less empirical research on value of reliability. Almost all of it has been 

based on SP data, for at least two reasons: it is difficult to measure unreliability in actual 

situations, and unreliability tends to be correlated with travel time itself. However, a few recent 

studies have had some success with RP data. One key development is to measure unreliability as 

a property of the upper percentiles of the distribution of travel times, as suggested by the theory 

discussed earlier. It turns out that such a measure is less correlated with travel time than is a 

symmetric measure like standard deviation, because the upper-percentile travel times (i.e., travel 

times that occur only rarely) tend to arise from incidents such as accidents or stalled vehicles. 

The occurrence of such incidents is closely correlated to congestion, but the delays they cause 

are less so because the effects of the incident persist long after it occurs. 

 Bates et al. (2001) review several SP studies of car travel that define unreliability as the 

standard deviation of travel time. Those that they deem most free of methodological problems 

produce a value of reliability (VOR), expressed in units of money per unit increase in that 

standard deviation, on the order of 0.8 to 1.3 times the value of time (VOT). Brownstone and 

Small (2005) review studies in which unreliability is defined as the difference between the 90th 

                                                 
70 This statement is based on Hensher’s (2001) Table 3, Model 3a, the lower panel showing values of time in which 
the cost coefficient is that on a variable measuring the toll. 
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and 50th percentile of the travel-time distribution across days, or some similar measure. In these 

studies also, VOR tends to be of about the same magnitude as VOT. One of these studies, using 

data from the high-occupancy toll (HOT) lane on State Route 91 in the Los Angeles region, finds 

that roughly two-thirds of the advantage of the HOT lane to the average traveler is due to its 

lower travel time and one-third is due to its higher reliability.71 

 If reliability is not controlled for in studies of value of time, the estimated VOT may 

include some aversion to unreliability to the extent that time and unreliability are correlated. 

Nevertheless, the studies of automobile users reviewed by Brownstone and Small (2005) obtain 

high VOT for automobile users even when simultaneously measuring VOR. 

 Turning to freight transportation, it is clear that values of time and reliability are 

important, but empirical evidence is sparse and definitions inconsistent. Most studies use SP 

methodology and place primary emphasis on inter-city travel. De Jong (2000) provides a recent 

review of studies; they suggest that for countries like The Netherlands, where a high proportion 

of travel is urban, values of time are quite high. This finding is consistent with the common 

belief that travel time for freight vehicles is viewed as similar to business time for the driver plus 

some inventory value for equipment and payload. Kawamura (2000), Wigan et al. (2000), and 

Fowkes et al. (2004) provide evidence on values of both travel time and reliability. 

 

2.7 Conclusions 

 

All tractable approaches to travel-demand analysis are based upon greatly simplified portrayals 

of behavior. This is necessary because the variety of purposes and available choices make travel 

behavior very complex. As a result, distinct or even mutually contradictory analytical approaches 

may each provide useful information for particular circumstances, and the sophisticated planner 

will want to understand several different approaches. 

 Both aggregate and disaggregate models can be instructive, the choice between them 

depending on availability of micro data and on how important it is to have an explicit 

representation of individual decision-making processes. Many of the problems plaguing the 

traditional planning process are not inherent in aggregate models, but rather in simplifications 

that obscure important feedback effects. Disaggregate models have performed well in many but 

                                                 
71 An updated version of that study is Small, Winston and Yan (2005). 
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not all circumstances, and have enabled researchers to undertake new and sophisticated types of 

policy analysis. They have also enriched our understanding of how variability affects travel 

behavior, and have given new insight into aggregate measures of attractiveness, accessibility, 

and welfare. 

 The theory of time allocation is well developed and permits us to rigorously address 

conceptual issues concerning value of time and reliability. Despite uncertainty, a consensus has 

developed over many of the most important empirical magnitudes for values of time, permitting 

them to be used confidently in benefit assessment. Another decade should bring similar 

consensus to value of reliability. 

 

 

 

Figure 2.1   Disutility of Schedule Delay
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