TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 174, December 1972

TOPOLOGIES OF CLOSED SUBSETS
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ABSTRACT. In this paper various topologies on closed subsets of a topologi-
cal space are considered. The interrelationships between these topologies are
explored, and several applications are given. The methods of proof as well as
some intrinsic definitions assume a familiarity with A, Robinson’s nonstandard analysis.

E. Michael (Topologies of spaces of subsets, Trans. Amer. Math. Soc. 71
(1951), 152-182), K. Kuratowski (Topology, Vols. I and II, Academic Press,
New York, 1968), L. Vietoris (Berichezweiter Ordnung, Monatsh. Math.-Phys.

33 (1923), 49—62), and others have considered methods of putting topologies on
closed subsets of a topological space. These topologies have the property that
if the underlying topological space is compact then the topology of closed sub-
sets is also compact. In general, however, these topologies of closed subsets
are not compact. In this paper, a topology of closed subsets of a topological
space is constructed that is always compact. This topology is called the com-
pact topology and has many pleasant features. For closed subsets of compact
Hausdorff spaces, this topology agrees with Vietoris’ topology. For arbitrary
spaces, there are interesting connections between the compact topology and
topological convergence of subsets, including generalized versions of the Bol-
zano-Weierstrass theorem.

1. Preliminaries. Throughout this paper topologies are specified by giving a
set together with its cl/osed subsets. Thus, if (X, ") is a topological space, then
**X’? will denote a set and *'I"’” will denote the family of closed subsets of X. If
(X, I') is a topological space and A C X then A will denote the closure of A,
and A™ the complement of A in X.

We will basically follow A. Robinson’s treatment of topological spaces that
is given in [8]. (The symbol ** ~ *’, however, has a specialized use.) Among the
more important concepts of nonstandard analysis that will be used in this paper
are the following:’

(1) Concurrent relations. The relation R(x, y) is said to be a concurrent re-
lation if and only if for each finite set A, if for each a € A there is a y such that
R(a, y), then there is a z such that for each a € A, R(a, z).
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(2) Enlargements. Let U be a full mathematical structure. That is, ¥ is a
higher order mathematical structure that is composed of objects of type i for i =
0,1,2,.--. The objects of type 0 are the elements of a given set. The objects
of type i > 1 are all possible n-ary relations between objects of lower type. Let
L be a language that describes U We assume that L has constant symbols cor-
responding to each element of . Let L' be the language L together with a new
constant symbol ap corresponding to each concurrent relation R in U, Let the set
of sentences, &, of L' be defined as follows: Rq(a, ag)€ & if and only if R is a
concurrent relation in ¥ and a is an element of U that is in the domain of R. Of
course, R(x, y) is the relation in L that corresponds to R and a is the constant
symbol that corresponds to a. Let  be the set of true sentences of U in the lan-
guage L. Then F U & is a consistent set of sentences in the language L.", and
an enlargement of U is a Henkin model of the sentences J U &. In particular, an
enlargement of U is an elementary extension of &. In this discussion, & is called
the standard model.

3) *-notation. Let & be a standard model and*Ql an enlargement of A, If A
is an object in ¥ then *A is the object in"U that corresponds to the constant sym-
bol A in the language L. If B is an element of *?I, and for some A in U, B = *A,
then B is said to be standard. (Sometimes the word ‘‘standard’’ will be used re-
dundantly for emphasis.)

(4) Monads. Let U be a standard model of a topological space, *U an enlarge-
ment of 4, and x be a point in &. Then the monad of x is nUEA*U where A is
the family of open subsets in the standard model that contain the point x. If @ is
a standard point, and in the enlargement, b is in the monad of a, we write a ~=b.
Note that by this definition, @ ~ b implies that a is a standard point. However,
if the topological space is Hausdorff, then the monads of distinct standard points
have empty intersection, and it will be convenient to express that x and y are in
the same monad in this case by writing x ~ y. If x is a point in *A and x is in
the monad of some standard point then x is said to be near-standard. By a funda-
mental theorem of A. Robinson, a topological space is compact if and only if in
every enlargement of the space each point is near-standard.

Since compactness and near-standardness are intimately related, an intriguing
possibility arises: If one could define a relationship of ‘‘near-standardness”’

*

among objects of a standard set, A, in the enlargement in such a way that each

)
object in A is ‘‘near-standard,’’ then one might be able to define a compact topol-
ogy on A in the standard model by using this notion of ‘‘near-standardness.’”” For
example, let X be the set of points of a topological space and A the family of all
closed subsets of X. Then in the enlargement we want to define a relationship of
‘‘near-standardness’’ among the members of *A. That is, if A €*A we want to find a

%A € A such that (°A) is “‘near-standard’’to A. One obvious possibility is that
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%4 = {x € X|x ~ y for some y € A}. In §3 we will see that this does indeed define
an interesting compact topology on A. However, a technical difficulty arises: We
must be able to verify that if A € *A then %A is a closed subset in the standard
model. If A is standard, this is always the case. A. Robinson has shown in [8,
Theorem 4.3.12] that if the standard model is a first countable space then A is
closed. For arbitrary topological spaces, however, a model more powerful than an
enlargement is needed to show this. In the next section this model is constructed.
Since this is the only result of $2 that is used in the subsequent sections, the
reader may skip the lengthy construction on the first reading of this paper.

It should be noted that W. A. J. Luxemburg in [5, Theorem 3.4.2] constructs a
model (by a different method than in $2) in which %A is always closed. By using
the methods of H. J. Keisler, an internal set, A, of an enlargement can be given
which is such that %A is not closed. (See Example 3.4.3 in [51.)

2. Special enlargements. Let X be a topological space and %, a model of
Xy For each natural number 7, let 917”1 be an enlargement of the structure %n.

Let umz ) ?In, where w is the set of natural numbers. Then U

e is an enlarge-

@
ment for U, for each 7 € w.(?)

Definition 2.1. uw is called a special enlargement of 2[0.

Notation. Since for each 7 < w, ?Ii is a model of a topological space, let X,
be the (internal) topological space of 211.. That is, let X be the extension of X
in the model %[i'

Notation. Suppose that V C X for some i € w. V need not bé an internal sub-
set of X, in the model ?Ii. Since 21”1 is an enlargement of the structure QIl.,
there is an internal subset of X1 , that corresponds to V. This
internal subset is denoted by V. Thus if U is a subset of X, (U is the name of

the set that corresponds to U. This correspondence, of course, depends upon the

in the model ?Ii+

model. Thus in %0, oU corresponds to U, while in ?«[1, oU is the name of some
set V that is the extension (in ?Il) of U. Notethat if V, V,,---, V  are the in-
terpretations of OU in ?IO, ?Il’ RN ?Iw respectively, then V C ViC... CV .
Once again, let U be a subset of X,. Since UC X1, 4U is a name of a set V
that is an internal subset of X, in the model 2[2. V is, of course, an extension

(in ?‘[2) of U. The relationship of 0U and IU is given in the following theorem:
Theorem 2.1. If UC X then Uk LU C U

Proof. It is true about the model 2[1 that *‘U is a subset of 0U.” Since Uz

is an enlargement of the structure ?«[1, 2[2 preserves this truth. In the language
appropriate to ¥, this says that ;U C (U,”

2 . N e
(%) Abraham Robinson in Compactification of groups and rings and nonstandard anal-
ysis (in J. Symbolic Logic 34 (1969), 576-588) also uses the union of a denumerable

sequence of enlargements to elicit certain compactification properties.
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Similarly, one can in general show that if U C X, then 91141 E,UC U. Then
by using elementary equivalence between models, the following theorem can easily
be shown:

Theorem 2.2. If 0<i<j<wand Uis a subset of X, then 2{]. EUcC,U.

Definition 2.2. If x € X and i < @, then p (x), the monad of x in U, is de-
fined as follows: y € p(x) if and only if for each open subset U of X, if x €U
then U |y e oU. Note that if i <j< w and U kye oU then ?I]. Eye jU. Thus
if i<j<wthenp(x)C ;t].(x).

Definition 2.3. If A is a subset of X , let

04 = fx € X ylp () N A £ B
Definition 2.4. Let S(V) be the predicate that says 'V is a subset of X.”’

Theorem 2.3. If Uk S(A) and A is a name of the set A in the model U, then
%A is a closed subset of Xoe

Proof. Suppose that U _ |- S(A) and A is a name of the set A in % . Since U
is a union of a chain of models, there is an i € @ such that ?Ii }= S(A). Let x be an
accumulation point of %A. If UC Xy let U' be the interpretation of ol in ?’[i‘
Let A' be the interpretation of A in ?li' Let R(U, y) be the following relation:

‘U is an open subset of X and x € u'

and ye /'and y € A'.”
Then R(U, y) is a concurrent relation on ?Ii' For suppose that U,---, U _are
such that 3y,R(U,, y,) and---and 3y R(U,, y,). Let U= . U. Then U
is an open subset of X ;and x € U. Since x is an accumulation_pc;int of %4,
Uk 0U N A # @. By elementary equivalence, ?Ii E JUN A £ 0. Therefore, there
is a y such that ?Ii E(x € oUand y € (Uand y € ). In other words, x € u',yeu,
y € A'. Since for j=1,:++,n, UC U, R(U, y) holds.

Since R(U, y) is a concurrent relation on the structure QLi and Y is an en-
largement of ?ll., there is a y such that for all open subsets, U, of X, such that
x e U, 2[@ E R(iU, yo)- Therefore by Theorem 2.2, ?lw E(x € OU and y, € 0U and
¥ € A). Since this is true for each open subset U of X such that x € U,

Yo € k(x)and y, € A. Hence x € 4.

3. The compact topology. Throughout the rest of this paper we will assume
that all enlargements are special enlargements.

Let (X, I') be a topological space. (Recall that I" is the family of closed
subsets of X.) If A € T let

0a - ly € Xlthere is an x € A such that y ~ «x|.
By Theorem 2.3, %A € 1.

Theorem 3.1. If A € T" then %(*A)= A.
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Proof. Assume A € I". Let x € A. Then x € *A. Since x is standard,
x € O%(*A). Therefore, A C O(*A). Let x € °%(*A). Then there isa y € *A such
that y is in the monad of x. Let U be an arbitrary standard open set with x € U.
Since y is in the monad of x, y € *U. Therefore, *U N*A £ @. By elementary
equivalence, UN A # @. Thus x is an accumulation point of A. Since A is closed,
x € A. Hence 0("‘A) DA.

Definition 3.1. If ¥ CI", ¥ is said to be compact if and only if for each
Ae*W % ew,

Definition 3.2. Let C = {¥|¥ CI" and ¥ is compact}.

Theorem 3.2. I, €) is a topological space.

Proof. (a) @, " € C.

() Let A, ¥ eCandAc*AuUWY¥). Then A € (*A U*¥). Thus A € *A or
A € *¥. Since A and ¥ are compact, this means that %4 € A or %4 € V. There-
fore, %A e A UW¥)and (AU W)€ C.

(c) Let Ai’ i€l beinCand A€ *(ﬂie’Ai). Since *(niEIAi)z
nis*,*Ai and I C*I, A € ﬂie,*Ai. Since for each 7 € I, A, is compact, it fol-
lows that %A € A.. Therefore 04 € ﬂie,Ai. Thus ni“Ai e C.

Definition 3.2. The topology C on I' is called the compact topology.

Example 3.1. Let X be the closed unit disk in the Euclidean plane. Let A be
the family of all squares that are contained in X and that have area > '%. Then A
is a compact family.

Proof. If A is a square and A C *X and area of A > % then A is a square and
%4 C X and area of A > 4. (The compactness of X is needed to ensure that A
is a square.)

Example 3.2. Let X be the closed unit disk in the Euclidean plane. Let D be
a Jordan curve and r a positive real number. Let AD,r be the family of all Jordan
curves E such that E has area > r, E C X, and there is an affine transformation T
such that T(D)=E. Then AD‘, is a compact family.

Proof. Let A € *AD’,. Then A = T(D) where T is an affine transformation of
the form

x':a1x+b1y+cl, y':a2x+b2y+cz.
Since each point of A has at most unit distance from the origin, a, b,, ¢}, a,, bz,
c, are all finite numbers. Since A has area >, albz - a,b, is not infinitesimal.

For each finite (nonstandard) real number «, let 04 be the standard real number

such that %% ~ u. Then Oal, Obl, Oaz, Obz, OCI, and OCZ are standard real num-
bers and Oalohz - Oazohl # 0. Thus if S is the transformation defined by
r_ 0 0 0 r 0 0 0
X'=Capx o+ Chyyt oy, yl = ta,x+ byy+ o,

then S is affine and S(D) = "A. It is easy to prove that the area of A is infini-

tesimally close to area of A. This implies that the area of %4 > 7. Thus %4 €

AD,I'
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Example 3.3. Let X be a linear topological space and A the family of all
closed convex subsets of X. Then A is a compact family. (Note that neither com-
pactness nor boundedness is assumed.)

Proof. Let A € *A and a, b € °A. Then there are c and d in A such that a =~
c and b =~ d. Since A is convex, for each ¢ (in the enlargement) such that 0< ¢ <
1, (ct+d( —-1t)) € A. Therefore, O(ct +d(1 -t)) € 04. By an easy argument about
near-standardness, it follows that (at + (1 - t)) € 94 for each standard ¢ € [o, 1].
Thus %4 € A.

Example 3.4. Let (X, ") be a topological group and A the family of closed
subgroups of (X, 1"). Then A is a compact family.

Proof. Let A € *A. We need only to show that %4 € A. %A is closed. To
show that %4 is a group, let x4, y, € OA, x,y €A, xo=~x,and y, ~ y. Then
Xy Yo x-y. Since A is a group, x - y € A. Thus x, -y, € 4. Since xa’l’i
x~land x~! € A, it follows that xal € %A, Thus %4 is a closed group.

Example 3.5. Mabler families of lattices. Let R™ be Euclidean n-space.
Each x in R” can be represented by an ordered n-tuple (xyy+++, x,) of real num-

bers. Let {a <y ani be a set of linear independent vectors in R” and so A =

e
A @, +eeet Aja A, -+, A are integers}. Then A is said to be an n-dimensional
lattice generated by {a,---, a}, and fa,-+-,a } is called a basis for A. Since
{al,. . an§ are independent, the determinate |ai].| is not 0. If {bl, cee bn} is

another basis for A then {bl,- .., bn} is also independent. Let d(A) be the great-

est lower bound of the positive determinates of the form lbijl’ where {bl, ceey, bnf
is a basis for A. Let
_ inf
|A] = ae(A _{0})“““,

where ||a|| is the norm of the vector a. A family, A, of n-dimensional lattices is
said to be a Mahler family if and only if for each A € A there are positive real
numbers r and s such that d(A)<r and |A| >s. A. Robinson in [9] shows that if
A is a Mahler family and A € *A then %A € A. Hence a Mabler family is a compact
family.

Theorem 3.3. Let (X, I') be a topological space. B € *1" can be considered
in two ways: as a closed subset of *X and as a point in the space (*T", *C). Con-
sider B as a closed subset of *X and let A = °B. Then in the space (*F, *G), B

is near-standard to *A.

Proof. Assume B is not near-standard to *A. Then there is a compact family
A in C such that B € *A and *A € *(A™), where A~ is the complement of A. There-
fore, *A £*A. Since A is compact, 9B = A € A. Therefore A € A and *A £ *A.
This contradicts elementary equivalence between the standard model and the en-

largement.
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Theorem 3.4. (I', C) is a compact space.

Proof. By Theorem 3.3 each point of *I" is near-standard.

The condition **if A € "A then %A € A”’is satisfied by many important families
of closed subsets. It is also an easy condition to verify. This coupled with Theo-
rem 3.4 then gives a powerful method of establishing compactness properties for
collections of families of subsets—as the following example will show.

Example 3.6. Let (X, I') be a compact Hausdorff space. The function II is
said to be a dynamical system on (X, I') if and only if the following two condi-
tions hold:

(1) II is a continuous function from X x R onto X, where R is the real number
system,

(2) if z=1(x, t)and w = (2, ¢t') then w = II(x, ¢ + t'). Then for each x € X,
Hx(t) = Il(x, ) is a continuous function in the variable f, and for each ¢ € R,

Ht(x) = II(x, t) is a continuous function in the variable x. If, in addition, there is
a ty € R such that for each x € X there is a t'< t, such that Hx(t)z ﬂx(t + 1)
for each real number ¢, Il is said to be periodic. The notion of orbit is one of the
fundamental concepts in the theory of dynamical systems. For each x € X, A =
{yly = I1_(¢) for some ¢ € R} is called the orbit of x under II. Since y € A_ if and
only if x € Ay, X is partitioned by the family of orbits that are determined by a
given dynamical system on (X, I'). If J is a family of dynamical systems on the
space (X, T), F is said to have a fixed orbit if and only if there is a set A such
that for each Il in F, there is an x in X such that A is the orbit of x under II. The

following compactness theorem can now be proved:

If (X,T) is a compact Hausdor[f space, § is a family of periodic dynamical
systems on (X, 1), and each finite subfamily of ¥ bas a fixed orbit, then § has a
fixed orbit.

Proof. Let I1 € F, A the family of orbits determined by II, and A € A. Then
for some x in X, A = {Hx(t)lt € R}. Since Il is periodic, there are ¢; and ¢, such
that A = Il _(1)|z € [z, £,]}. Since A is the image of a compact set under a con-
tinuous function, A is compact and therefore closed. Thus A CI'. Let D € A,

x € X, and D = {*Hx(t)h € *R}. Since X is a compact Hausdorff space, let x, be
the unique member of X such that x ;= x. Let B be the orbit of x, under II.

Then B = °D. For if z € B, then there is a ¢ in R such that z = H(x g, 1) = I, (x ).
Since H[ is a standard continuous function, z =*Ht(x0) 2*H[(x): *Hx(t) €D,
Thus B C °D. To show °D C B, let z € OD. Then =z 'z*l_[(x, u) for some u € R.
Since II is periodic we may suppose that « is finite. Let u, be the real number
that is near-standard to «. Since (X, I") is Hausdorff, z = H(xo, uy). Thus z € B
and °D C B. Since B = OD, %D € A. Hence Ais a compact family. For each Il

in F let A(Il) be the family of orbits determined by 1. If §CJF then § has'a fixed
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orbit if and only if ﬂneg A(l) £ @. Since each finite subfamily § of F has a fixed
orbit and AW € C for each T in ?, it then follows from the compactness of
(@, C) (Theorem 3.4) that M, ¢ A(D) # @.

Example 3.7. Let (X, T") be the discrete space. That is, let I" be the family
of all subsets of X. Then (', C) is a compact Hausdorff space.

Proof. By Theorem 3.4, (I', C) is compact. To see that (I', €) is also a
Hausdorff space, let A, B € I"and A # B. Without loss of generality we may let a
be a point of X such that @ € A and a ¢ B. Let A={D €I'Ja€ D} and ¥ =
{De)a ¢ D}. Then A and ¥ are in C. Thus in the space (I', ©), A~ and ¥~ are
open sets with B € A~ , A e ¥~ and A¥NY¥™= @.

Some closed families of the discrete space are:{A|A C X and A has less than
n members} where n is a positive integer, and having less then » members allows
the case of having no members; {A|D C A} and {A|A C D} where D is a subset of
X. Observe that {A|A C X and A has exactly 2 members} may not be closed in the
compact topology.

Definition 3.3. A point x in the topological space X is said to be isolated if

and only if X —{x} is a closed subset of X.

Theorem 3.5. (X, I') is compact if and only if @ is an isolated point of the
space (I, C).

Proof. Suppose (X, I') is compact. Let A ={A|A eT and A £ @}. If A € *A
then %4 is closed. Since (X, I) is compact and A £ @, %4 is nonempty. Thus
94 € A. Therefore A is a closed subset of (I', C). Since A =T"-{@}, @ is iso-
lated.

Suppose that @ is an isolated point of (I', C). Then A ={AJA € " and A £ @}
is a closed subset of I". Let x € *X. It will be shown that x is near-standard. In
the enlargement, let W = {A|A € *I"and x € A} and B = M Y. Then B € *A. Since
A€C, °BeA. Therefore °B£ @. Let y € °B and U an arbitrary open set that
contains y. We will show that x € *U. For suppose x £ *U. Then x € *U™ and
*U~ € *I". By the definition of B, B C *U™. However, since y € °B, *Un B £ ¢-
a contradiction. Therefore x € *UU. Since U is an arbitrary open set containing y,

it follows that x is in the monad of y. Thus (X, I') is a compact space.

Theorem 3.6. If (X, I') is a locally compact T, space then [T, C) is a Haus-
dorff space.

Proof. Let A, B € I" and A # B. Without loss of generality, assume that a €A
and @ ¢ B. Since (X, I") is a locally compact T, space, let U and V be open
subsets of X such that @ € U, BCV, UN V =@, and U, the closure of U, is com-
pact. USN V =@. For if x € U°N V then, since V is an open subset of X, VN
U # @—a contradiction. In particular, U°N B=@. Let A={D e I'|D C U™} and



1972] TOPOLOGIES OF CLOSED SUBSETS 63

Y-{DellDNU 4@} AeC. Since US is compact, ¥ € C. Since 4 € A~
BeV~,and ANV ={DelIDNU#@Nn{D eT’|D N U =@} = @, it follows
that (", ©) is a Hausdorff space.

Definition 3.5. Let (X, I') be a topological space. For each finite family of
open subsets of X, Gy, G|,-+-, G, (n>0), let

,(B(GO,GI,-H,GH):{A elACGyand fori=1,-+-,n,G,NALGL

The Vietoris topology on I is the topology on I which has families of the form
%(GO, Gy,--+, G,) as basic open sets, where G,,--+, G are an arbitrary, finite
number of open subsets of X. (See [3, pp. 160-169] and [11].) Let O denote the

collection of closed families of the Vietoris topology.
Theorem 3.7. If (X, ") is compact then O C C.

Proof. Suppose A € U and 4 € *A. Let 93(60, -++, G ) be an arbitrary, basic
open set in the Vietoris topology such that %4 € 33(60, +++, G, ). Thatis, %4 C
Gyandfor i=1,-++,n, G,N°A4@. Let 1<i<nandx,cG,n A. By the def-
inition of monad, in the enlargement let y; be such that y, € A and x, >~ y,. By
the definition of monad, y, € *Gl.. Hence for i =1,.-., n, *Gi NA£LQ@. Let y€ A,
Since (X, I') is compact, let x € X and such that x ~ y. Since x € OA, x € G
Thus by the definition of monad, y € *GO. Hence A C *GO. Thus A €
*33(*60, cee, *Gn). Therefore in the enlargement, A N B *GO, cee, *Gn) £ Q.
Hence A N fB(GO, +++, G )# @. Thus in the Vietoris topology, 94 is in the clo-
sure of A. Since A is closed in the Vietoris topology, %4 € A. Therefore A € C,

Theorem 3.8. If (X, ") is a compact Hausdorff space then O = C.

Proof. By Theorem 3.7, O CC. Let ¥ € C. Let E be an accumulation point
of ¥ in the Vietoris topology. It will be shown that E € ¥. Let R(U, ) be the

following relation:

“U is an open subset of X, ¥ is a finite family of subsets,

Ue ff, and for each V € ?, V is an open subset of X and
VNE#£@.”

Then R(U, ) is a concurrent relation: for if R(U,, ffl), -+, R(U,, ffn) hold in
the standard model, then R(U, £y, R(U,, ¥) also hold in the standard model,
where f = U?:I ?l Therefore, let § be an element of the enlargement such that
for all standard U in the domain of R, R(*U, ) is true in the enlargement. Since
Gis (nonstandardly) finite, let § = {GI, Gyyrre,y pr, where p is a (nonstandard)
natural number. Let S(U, G) be the following concurrent relation:

‘G and U are open subsets of X and £ C G C U.”

In the enlargement, let G, be such that for all standard U in the domain of §,
S(*U, Gy). Then e %(GO, Gy, Gp). Since *E is an accumulation point of
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*W in the *Vietoris topology, %(GO, Giyooey Gp) N*W L@ Let De

B(G oy Gpyvvy Gy A*Y. We will show that °D = E. Let x € °D. Assume x £ E.
A contradiction will be shown. Since (X, ') is a compact Hausdorff space, there
are open subsets of X, U, and U,, such that x € U;, ECU,, and U N U, = @.
Since G, C *Uz’ *Ul N Gy =@. Since DCG,, >kUl N D = @. However, since x €
OD, there is a y € D such that x =~ y. By the definition of monad, y € *Ul’ Hence
>kUl N D £ @. A contradiction. Thus x € E. Therefore °D C E. Let z € E. Sup-
pose z £°D. A contradiction will be shown. Since (X, I') is a compact Hausdorff
space, there are open subsets V and W of X such that x € V, op ¢ W,and VN W=
@. Since 'V eG,*Vn D£@. Let v e*V n D. By the compactness of (X, I),
let u be a standard element such that « ~v. Then u € °D. Since W is an open
set containing « and u ~ v, by the definition of monad, v € *W. Hence "V n*w#
@. Therefore, V N W £ @, a contradiction. Hence E C °D. Thus we have shown
E=°D. Since YeCandD €™, °D = FE €¥. Thus ¥ € 0. Therefore C 0.

Theorem 3.9. If (X, I') is not a compact space then O #£ C.

Proof. Since B(@) = {@}, {@} is an open set in the Vietoris topology. By
Theorem 3.5, {@} is not an open set in the compact topology.

The following example will more clearly show the differences of the Vietoris
topology and the compact topology.

Example 3.8. Let (X, I') be the Euclidean plane. Let A be the family of all
A, where 7 is a natural number, such that A is the union of two perpendicular
lines, one of which is the Y-axis, and the other a line through (0, n). Let D be an
accumulation point of A in the Vietoris topology. We first note that D is not a sub-
set of the Y-axis: for if D were a subset of the Y-axis, then for V = {(x, y)| ~ % <
x < Y}, D € B(V), and for each A € A, A £ B(V), thus contradicting that D is an
accumulation point of A. Next we note that if b € D n (Y-axis)™, and U is the open
disk about b of radius Y%, D € %(X, U), and since U intersects at most one member
of A, at most one member of A is in B(X, U), thus making it impossible for D to be
an accumulation point of A. Thus A contains all of its accumulation points in the
Vietoris topology. Therefore A € ). Let p be an infinite natural.number. Then
A, € *A but the Y-axis = OAP ¢ A. Hence A ¢ C. Observe that if ¥ = A u {Y-

axis} then ¥ is a compact family.

4. Metric spaces.
Definition 4.1. Let (X, I') be a metric space with metric p. If x is in X and
A is in I then the distance from x to A, p(x, A), is defined as follows:
plx, A)= inf, p(x, ).
The diameter of X, §(X), is defined as follows:
0(X)=sup_p(x, y).
x,yeX
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(X, I') is said to be bounded if and only if the diameter of X is finite. If A, Bel
then the distance from A to B, p(A, B), is defined as follows:
(1) if A4 @and B#@leta=sup__,p(x, B)and b= sup
p(A, B) = supla, bi;
(2) if A=@and B#£ @ let p(A, B)=p(B, A)=8(X)+ 1;
(3) if A=B=@let p(A, B)= 0.

p(x, A) and

x€B

Theorem 4.1. If (X, I") is a metric space with metric p and A, B, D € I' then
the following statements are true:

(1) p(A, B) € [0, ] (o can only be assumed in unbounded spaces),

@) p(A, B) = p(B, ),

(3) p(A, B)< p(A, D) + p(B, D),

(4) p(A, B)= 0 if and only if A = B,

(5) if A# @ then p(A, @) = diameter of X.

The proof of this theorem is left to the reader.

Definition 4.2. If (X, I') is a bounded metric space with metric p then, by
Theorem 4.1, p defines a metric on I'. This metric is called the Hausdorff metric
on I'. Let H ={A|A is a closed subset of I in the topology determined by the
Hausdorff metric}. H is called the Hausdorff topology on T'.

Theorem 4.2. If (X, [") is a bounded metric space then (I, }) is a bounded

metric space.

Proof. Immediate from Definition 4.2.

Theorem 4.3. If (X, ') is a bounded metric space, C is the compact topology
on I, and X the Hausdor[f topology on T, then C C H.

Proof. Suppose (X, I') is a bounded metric space with metric p, A € C, and
in the Hausdorff topology, A is an accumulation point of A. That is, for each pos-
itive real number r, there is a B in A such that A # B and p(A, B) < r. Therefore,
in the enlargement, there is a B in *A such that *A £ B and >kp(*A, B)=~0. But
*p( *A, B)~ 0 if and only if for each x € *A there is a y € B such that >kp(x, y)=~0
and for each v € B there is a z € *A such that *p(u, z)~0. Thus O( *A) = 0p,
Since 0( *A) = A (Theorem 3.1), A = 8. Since A is in € and "B is in *A, o =
A € A. Thus A contains (in the topology H) all of its accumulation points. There-
fore A € H.

Theorem 4.4. If (X, ") is a compact metric space then C=H.

Proof. Assume (X, I') is a compact metric space with metric p. By Theorem
4.3, CCH. Let A € H. Suppose that in the enlargement A € *A, and in the stan-
dard model, %4 ¢ A. A contradiction will be shown. Since %A £ A and A € K,
there is a standard positive r such that for each B € A, p(OA, B) > r. Therefore,
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in the enlargement, >kp( *(OA), A)>r. Since X is compact, if y € A there is an

x € A such that *p(x, y) = 0. Therefore, for each y € A, *p(y,*(OA)) ~ 0. Hence,
since >kp(*(OA), A)> r, thereis a z € *(°A) such that *p(z, A)>r. Since (X, I

is compact, there is a v € X such that v =~ z. Thus *p(v, A)>r. Hence v ¢ °A.
But, by Theorem 3.1, 0(*(OA))= OA, and since z € *(°A) and v =~ z,v € 0C*(%4 )=
9A. A contradiction. Therefore we can conclude that H C € and thus H = C.

Corollary 4.1 (Vietoris). If (X, I') is a compact metric space then (I, Hy is

a compact metric space.

Definition 4.3. Let (X, I') be a metric space with metric p. If for each natural
number 7, A_ €I, then{A |n is a natural number} is said to be a Cauchy sequence
if and only if for each real number r > 0, there is a natural number n such that for
all natural numbers m and p, if m, p > n then p(Am, Ap) <r.

Definition 4.4. Let (X, I') be a metric space with metric p. If An el for
each natural number, then A = LimA_ if and only if lim _ _p(A, A )= 0.

Example 4.1. Let (X, I') be the Euclidean plane, x the point (n, 0), and
An = {xni Then LimA does not exist. That is, there is no A such that A =
LimA . In particular, @ # LimA .

Theorem 4.5. Let (X, 1) be a metric space, {An} a sequence of closed sub-
sets of X, and A = LimA . Then for each infinite natural number p, A = OAP.

Proof. Let p be a metric for (X, I'). If 7 is an arbitrary, standard, positive,
real number, then from Definition 4.4 it follows that *p( *A, *AP) <r. Hence
"p("A, "4 ) = 0. Therefore, p(°("4), %4,) = 0. Since %(A) = 4, p(A, %4 ) - 0.
That is, A = OAp.

Definition 4.5. Let (X, I') be a metric space with metric p. Then (X, I") is
said to be uniformly locally compact if and only if for each r> 0 and each x € X,

{y € X|p(x, y) <} is compact.

Theorem 4.6. Let (X, I') be a uniformlylocally compact metric space and {An}
be a Cauchy sequence of closed subsets of X. Then LimA  exists. In fact, for

each infinite natural number p, LimA_ = °A .
n 4

Proof. Let p be a metric for (X, I'). In the enlargement, let p and g be two
infinite natural numbers. It then follows from the definition of Cauchy sequence
that *p(Ap, A,) =~ 0. Hence OAP = OAq. Let A = OAP and suppose that A #
LimAn. A contradiction will be shown. Since A #£ LimAn, it is not the case that
limnHoo p(A, A )= 0. Hence there is a positive real number 7 such that p(A, An)z
r for infinitely many natural numbers n. Since each subsequence of a Cauchy se-
quence is a Cauchy sequence, we may suppose, without loss of generality, that

{A} is a Cauchy sequence and p(A, A)) > r for each natural number n. Then at
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least one of the following two cases holds:

(1) for some x in A, p(x, An) > r for infinitely many n,

(2) there is an m such that for all n> m, there is an x_ € An such that
p(xn, A)Y>r.

Assume case (1). Then for some infinite natural number ¢, >kp(x, At)z r. But
since OAt =A, *p(x, A,) =~ 0. A contradiction. Case (2) is also impossible. For
let m be a natural number such that m > m, and for alls, n>m, p(A_, A )< Y.
Then for some infinite natural number ¢, >kp(*z‘\m, A)< Yr. In particular, >kp(xm, A)
<Y r. Let a €A, and be such that >|:p(xm, a) < % r. By hypothesis, B ={z €
X |p(xm, z)< Y% r} is a compact set. Since A € B, let a, be a standard point in
B such that a; ~ a. Then a, € OAt = A. Therefore, p(x,,, A)<7/2. A contradic-
tion.

Definition 4.6. Let (X, T") be a metric space and ACT'. A is said to be com-
plete if and only if whenever {An} is a Cauchy sequence such that for each n,

A, €A, LimA  exists and LimA_ €A,

Note that the definition of completeness for families of closed subsets does
not assume that the underlying space, (X, I'), is bounded. Since the Hausdorff
topology is only defined for bounded spaces, the above notion of completeness ap-

plies to some nonmetric spaces.

Theorem 4.7. If (X, T") is a uniformly locally compact metric space and A € C
then A is a complete family.

Proof. Suppose that (X, I") is a uniformly locally compact metric space with
metric p and A € C. Also suppose that {4} is a Cauchy sequence such that for
each natural number 7, An € A. In the enlargement, let p be an infinite natural
number. Then A, € *A. Let A = OAP. By Theorem 4.6, A = LimA . Since A €
C, A= OAP € A. Thus A is complete.

Example 4.2. An example of a compact family that is not a complete family.
Let (X, I") be the rational numbers with the usual metric p(x, y) = |x — y|. Let
A = {{xl|x € X} U{@). Then A is a compact family. Let {an} be a sequence of
rational numbers that converges to /2. Let A = {an}. Then for each natural num-
ber n, A €A. {A } is a Cauchy sequence, but LimA_ does not exist. Therefore
A is not a complete family.

Example 4.3. An example of a complete family of closed subsets of the Eu-
clidean plane that is not a compact family. Let (X, ") be the Euclidean plane
with its usual metric, p. Let A be the set of all lines. To show that A is a com-
plete family, let {An} be a Cauchy sequence such that for each natural number 7,
A, € A. Let m be a natural number such that for all natural numbers n, g > m,
p(An, Aq) <1. Thus if n> m, An is parallel to Am. (Otherwise, p(Am, An)=oo.)
In the enlargement, let p be an infinite natural number. Then *p(*Am, Ap) <1.
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Hence Ap is a line contained in *X that is parallel to *Am. Since >kp(*Am, Ap) <
1, OAP is a line parallel to A . Hence OAP € A. By Theorem 4.6, LimA  ex-
ists, and, by Theorem 4.5, LimA = OAp. Therefore A is complete. A is not com-
pact; since if ¢ is an infinite natural number and A is the line through (g, 0) par-

allel to the Y-axis, then A € *Abut A = @ ¢ A.

Theorem 4.8. Le: (X, I") be a compact metric space and A CI'. Then A is a
compact family if and only if A is a complete family.

Proof. Assume A is a compact family. Then, by Theorem 4.7, A is a complete
family. Assume that A is a complete family. Let p be a metric for (X, I'). Let
A € *A. We will first show that >kp(A, =k(OA )) =~ 0. Suppose that there is a stan-
dard 7 > 0 such that >kp(A, >k(OA))Z r. Then, since (X, I') is compact,
p(°A, °(*(°A)) > r. By Theorem 3.1, °(*(°A)) = °A. Hence p(°A, °A)> r, which
is impossible. Thus *p(4, %(%A)) =~ 0. Let A ={B € A|p(B, °A) < 1/n}. Since
A€ *An for each standard natural number 7, the sentence "*An £ @ is true in
the enlargement for each standard natural number n. By elementary equivalence,
“An £ @ is true in the standard model for all natural numbers n. By the axiom
of choice, choose A €A . Then {A } is a sequence of members of A and 04 =
LimA . Since every convergent sequence is a Cauchy sequence, {Ani is a Cauchy

sequence. Since A is complete, LimA = %4 € A. Thus A is compact.

5. Topological limits.

Definition 5.1. Let (X, I") be a topological space and {A} be a sequence of
closed subsets of X. Then liminf{/\ii, limsup{A }, and limA; are defined as fol-
lows:

1) x € lim inf{Ai} if and only if for each open neighborhood U of x, UN A, £
@ for all but finitely many natural numbers i,

(2) x € limsupiA } if and only if for each neighborhood U of x, UN A # ¢
for infinitely many natural numbers 7, and

(3) if liminf{A = limsup{A } = A then we say that A = limA .

limA, is called the topological limit of the sequence {Ai}.

Theorem 5.1. If (X, I') is a topological space and {A } is a sequence of

members of I then liminfA . limsupA ., and limA ., if it exists, are members of
1 1 1

I

The proof is left to the reader.

Definition 5.2. Let (X, I') be a topological space and A CT". A is said to
be a limit family if and only if for each sequence of closed subsets of X, {4 }, if
A, €A for eachiand A = limA, then A € A. £ will denote the set of limit fami-

lies.

Theorem 5.2. Let (X, I') be a topological space. Then (I, 8) is a topologi-
cal space.
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Proof. By Definition 5.2, I' € £ and @ € £. Suppose that A and ¥ are in £.
It will be shown that AU ¥ is in £. Suppose that {Al.} is a sequence such that
A =1limA,, and for each i, A, € (A U¥). Let I, ={i|A, € Aland I, = {i]A, € ¥}.
Since I, U I, is the set of natural numbers, either I, or I, is infinite. Without
loss of generality suppose I, is infinite. Then {B,}=1{A i € 1|} is, in a natural
way, a subsequence of {Aii, and B, € A for each &, and A = lim B,. Since Aef,
it follows that A € A, Thus A € (A U¥Y) and we have shown that (A UW¥) ¢ L.
Suppose F C&. It will be shown that ({1F) e £. Suppose that {4 ;} is a sequence
of closed subsets of X, A = limA . pand A€ ﬂj Then for each A € F, A€ A.
Since A is a limit family, A € A, Thus A e NF. Therefore NF is a l1m1t fam-
ily.

Theorem 5.3. Let (X, I') be a topological space and {Ai} a sequence of
closed subsets of X. Then, limA, = A if and only if there is an infinite natural

number p such that for all q > p, q an infinite natural number, OAC17 = A,

Proof. Assume that limA, = A. Let s be an arbitrary, infinite natural number.
Let x € OAS. It will be shown that x € A. For suppose that x ¢ A. Then there
is an open neighborhood U of x such that U intersects only finitely many A
(Otherwise x would be in limsup A and therefore in A.) Let ¢ be the largest nat-
ural number such that U N A, # @. Then the following statement is true in the
standard model:

te

if v is a natural number and v > ¢ then U N A, = @.”

Thus in the enlargement, *Un A, = @. Since x € OAS, let y be such that y € A_
and x >~ y. From the definition of monad it then follows that y € *U. Thus *Un
A # @, a contradiction. Therefore, x € A and OAS C A for each infinite natural
number s. Now suppose that @ € A. Let R(V, W) be the following relation:
*“V and W are open subsets of X and a € W C V.”

Then R(V, W) is a concurrent relation: if 3W R(V w ),--- Jw R(V w )hold,
then R(V W), -+, R(V_, W) hold, where W = n” . V. Therefore, in the en-
largement, there is a Z such that R( V,Z) holds for all open subsets V of X such
that @ € V. Thus Z is an open subset of *X and Z C monad of a. Since a € A,
a €*lim ianZ.. Thus, in the enlargement, Z N Aq = @ for all natural numbers ¢
such that ¢ > p for some natural number p. Without loss of generality, it may be
assumed that p is infinite. Thus a € 0A and A C 0A Therefore, there is an in-
finite p such that for all ¢ > p, OA = A

Assume that p is an infinite natural number and for all g > p, OAq =A. It
will be shown that A = limA .. Let x € A, U an open neighborhood of x, and ¢ an
infinite natural number such that ¢ > p. Since x € 0A , let y € A and such that
% =~ y. Then, by the definition of monad, it follows that ye*un A 4 Thatis,

un A # @. Hence the following sentence is true in the enlargement
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“‘there is a natural number n such that for all natural numbers

m, if m>nthen*Un A _#@.”
Hence in the standard model, by elementary equivalence, it follows that UN A, #
@ for all but finitely many 7. Since this is true for each open set that contains x,
x € liminfA . Thus we have shown that A CliminfA ClimsupA . In order to
show that limsupA,C A, let a € limsupA . As before, let R(V, W) be the con-
current relation: **V and W are open subsets of X and @ € W C V.”” Then in the
enlargement, there is a Z such that for all open subsets V of X that contain a,
R(*V, Z) holds. Thus Z is an open subset of *X and @ € Z and Z is contained in
the monad of a. Since @ € *lim supA , let s be a natural number that is larger than
p and such that Z N A_ # @. Since a is standard, @ € 0AS = A. Therefore
limsupA, = liminfA = A.

Theorem 5.4. Let (X, 1") be a topological space. Then C C L.

Proof. Let A € C, {A_} a sequence of members of A, and A = limA . By
Theorem 5.3, there is an infinite natural number p such that A = 0Ap. Since Ap €
*A and A € C, OAp = A € A. Therefore, A € £.

Example 5.1. An example of a compact Hausdorff space (X, ") and a limit
family A, A CT', such that A is not a compact family. Let w, be the first un-
countable ordinal, X = {a|a is an ordinal and @ < @}, and I" the collection of all
subsets of X that are closed in the order topology of X. Then (X, I') is a compact
Hausdorff space, and X has the property that if {Otn} is a sequence of countable
ordinals then there is a countable ordinal 3 such that @ < 3 for each n. Thus if
{an} is a sequence of countable ordinals and a = lima  then @ is a countable or-
dinal. Let A = {{alla € X - {a)lﬁ, {An} be a sequence of members of A, A =
limA , and o such thata € A . By Theorem 5.3, let p be an infinite natural num-
ber such that A = OAP. Since Ap # @ and (X, I") is compact, OAp = A# @. Thus
let @ € A. Then each neighborhood U of @ intersects all except finitely many A _;
that is, all except finitely many @, are in U. Therefore, a is a limit point of the
sequence {ai}. a is the only such limit point: since if 8 is a limit point of the
sequence {an} and 8 £ a, then, since (X, I") is a Hausdorff space, there are dis-
joint neighborhoods U and V of a and 8 respectively, each of which contains all
but finitely many a,—which is clearly impossible. Therefore, & is the only member
of A and @ =lima . But then a is countable. Thus A € Aand A € L. However,
A ¢ C. For in the enlargement, there isa 8 € *X such that for each a € X - {wl},
a<f<w,. That is, there is a “"countable ordinal’’ B in the enlargement that is
larger than each standard countable ordinal. It then follows that w; ~ 8. Thus

{B) € "A and *iBl = w, £ A.

Theorem 5.5. If (X, ") is a compact metric space, A CT", and A is a limit
family, then A is a complete family.
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Proof. Suppose A is a limit family. Let p be a metric for (X, I") and {A_} be
a Cauchy sequence of members of A. Then for some infinite natural number p, and
all infinite natural numbers g > p, OAq =limA . Let A= OAq = limA . Suppose
A# LimA . Then lim__,p(A,, A)# 0. Thus the following statement is true in
the standard model: ‘‘r> 0 and for each natural number m there is a natural num-
ber n > m such that p(An, A)>r.” Hence in the enlargement for some s> p,
oA, *A)> r. Since (X, T) is compact, it follows that p(°A_, °("A)) > r. But
since %("A)= A (Theorem 3.1), p(°A_, A)>r. Since s >p, "A_ = A. Thus
p(A, A) > r—an impossibility. Therefore, limn~0(An’ A)=0and A = LimA . Thus
A is complete.

Example 5.2. Let (X, I') be the rational numbers with metric p(x, y) =
|x - y|. Let tx,} be a Cauchy sequence of rational numbers such that limx =
V2. For each natural number 7, let A= tx ). Let A=1{@} UlA |n is a natural
number}. Then A is a limit family that is not a complete family.

Example 5.3. Let (X, I') be the Euclidean plane and A the family of lines
that are contained in X. Then, by Example 4.3, A is a complete family. A is not
a limit family: since if for each natural number n, A is the line through (z, 0)
parallel to the Y-axis, then limA =@ ¢ A. Thus A is a complete family of a lo-

cally compact space that is not a limit family.

Theorem 5.6. Let (X, I") be a compact metric space and A CT". Then the
following three statements are equivalent:

(1) A is a compact family,

(2) A is a limit family,

(3) A is a complete family.

Proof. By Theorem 5.4, (1) implies (2); by Theorem 5.5, (2) implies (3); by
Theorem 4.8, (3) implies (1).

Definition 5.3. If {An} is a sequence of closed subsets and there is an A
such that A =1imA _, then {Ani is said to be l-convergent. If {Ani are closed
subsets of a metric space and there is an A such that A = LimA_ then {An§ is
said to be L-convergent.

The Bolzano-Weierstrass theorem says that in the space [0, 1] every sequence
of points has a convergent subsequence. Several authors have investigated gen-
eralizations of this theorem for sequences of functions and sets. (See [3, p. 340],
[13, p. 111, [14, p. 124], and [12, p. 229].) For sets, the general version of the
Bolzano-Weierstrass theorem has the following form: Every sequence of closed
subsets has an /-convergent subsequence. The usual method of proof is to assume
the second axiom of countability and construct the limit (to which the correct sub-
sequence will converge) by means of a diagonal argument. Using nonstandard

analysis, the problem is in the opposite direction: The limit can be immediately
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found; the problem is to find a subsequence that coverges to it. This method of
proof by nonstandard analysis will also allow us to describe exactly those fami-
lies of subsets that have the Bolzano-Weierstrass property. This method then be-
comes a powerful tool for finding and proving theorems that involve convergence

of subsequences of sequences of closed subsets.

Theorem 5.7. Let (X, ") be a compact metric space, A a complete family,
and 1A } a sequence of members of A. Then there is an L-convergent subsequence
of {An}, {Bz.f, such that Lim B is in A.

Proof. Let p be a metric for (X, I'). Let p be an infinite natural number and
A= OAp. Suppose that no subsequence of {4 } L-converges to A. A contradic-
tion will be shown. For, in the standard model, the following sentence is then
true: ‘‘there is a natural number m and a real number 7> 0 such that for all nat-
ural numbers 7 such that n>m, p(A , A)>r.”” Therefore, in the enlargement,
*p(Ap, *A)Z r. Since (X, I") is compact and OAP = A, this is impossible. Thus
we have shown that {An} has an L-convergent subsequence, {Bi}, and Lim B ;= A.
Since (X, T') is compact and A is complete, by Theorem 4.8, A € C. Therefore,
since Ap € *A, LimB;=A = OAP eA.

Example 5.4 (The Blaschke convergence theorem). Let Y be a linear topologi-
cal space and X a compact subset of Y. Suppose that X together with its relative
topology 1" is a metric space. Then, if {An} is a sequence of nonempty, closed
convex subsets of X, then {An} bas an L-convergent subsequence within X that converges
to a nonempty, closed convex subset of X.

Proof. Let A = {A|A is a nonempty, closed convex subset of X}. Let A € A,
Then by Example 3.3, %4 is a closed convex subset of X. Since (X, I') is com-
pactand A £ @, °A £ @. Thus %A € A and A is a compact family. By Theorem
4.7, A is a complete family. By Theorem 5.7, {An} has an L-convergent subse-
quence that converges to a member of A.

Example 5.5. Let AD,r be as in Example 3.2 (the family of all Jordan curves
in the closed unit disk of the Euclidean plane that have area > r and that are the
image of an affine transformation applied to the Jordan curve D). Let {An} be a
sequence of members of AD,r' Then {An} has a subsequence that L-converges
to a member of AD,r'

Proof. By Example 3.2 and Theorem 4.7, AD,r is complete. By Theorem
5.7, the desired conclusion then follows.

Definition 5.4. Let (X, I") be a topological space and A CI'. A is said to
be a Bolzano-Weierstrass family if and only if each sequence of members of A has
an l-convergent subsequence that converges to a member of A, { will denote the
collection of all Bolzano-Weierstrass families.

In the literature, what is here called Bolzano-Weierstrass families are often
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<

referred to as “‘compact families,’’ and should not be confused with our use of the

term ‘‘compact family.”’
Theorem 5.7. {0 C £.

Proof. Let A € M) and 1A} be a sequence of members of A such that lim4 =
A. Since A € l@, there is a subsequence of {AZ}, {Bz.f, such that lim B; is in A.
But limB, = A. Hence A € A and A e L.

Let (X, I') be a topological space. Unlike C and £, © does not always form
a topology on I'. In fact, for many interesting spaces, I" £ -as is shown by W.
Sierpifiski in the following theorem of [10]:

Theorem 5.8. Assume the continuum bypothesis. Let (X, ') be a nonsepar-
able metric space. Then T" ¢ ©. That is, there is a sequence of closed subsets

of X that has no [-convergent subsequence.

Proof. Since 20 = N, let {5}

quences of natural numbers, where w, is the first uncountable ordinal. Since

y<wy be a well-ordering of all infinite se-
(X, I') is not separable, there is a positive real number, 4, and a transfinite se-

quence of points of X, {x such that for all y <3< W1, p(xy, x/B)Z d,

Y’ y< wl’
where p is the metric for (X, I'). For each natural number &, let

Ek = {>c,>,|y<cu1 and k € S,y}.

It will be shown that E, E |, E,,-++, E,,++ form a sequence of closed subsets
of X that has no convergent subsequence. Since p(x, y)>d, for each x,y € E,,
E, is a closed subset of X. Let E, ,E, ,+++, E, ,-+- be an arbitrary subse-
0 1 n
quence of E, Ey,+++, E,,---. Let abe the countable ordinal such that § =
{ko, kz,- .., kzi" «+}. Then for each natural number i, X € Ekzi' Thus x €
limsupE, . Let U be the open ball about x_ of radius 4. "Then, by construction,
I3
for each natural number i, U N Ek = (. Thus xa¢ lim infEk_. Therefore
2741 z

Eko’ Ekl’ NN Ekl-’ -+« is not l-convergent.

Definition 5.5. Let (X, I') be a topological space. (X, I') is said to be sec-
ond countable if and only if there is a sequence of open subsets of X that form a
base for the topology on X. Such a sequence is called a fundamental system of

open subsets of X.

Theorem 5.9. If (X, ") is a second countable topological space then C =
0=

Proof. (i) Suppose A € C. Let {A } be a sequence of members of A, p be
an infinite natural number, and A = OAp. Let J be a fundamental system of open
subsets of X. Let V, V,,++-, V_,..+, be those members of ¥ such that for each
n, V.0 AL @ let Wy, W, W+, be those members of ¥ such that for
each n, >kWn N Ap = @. (We are tacitly assuming that there are infinitely many
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members V of F and infinitely many members W of ¥ suchthat VN A £ @ and *WN
Ap = @. Even though this is not always the case, the proof presented here is suf-
ficiently general to allow for the other cases with only slight notational modifica-
tions. The reader may prove these additional cases, if he wishes.) Define B, as

follows:

B, is the element of the sequence {Ai} that has least
index and is such that for all j<n, B, N vV, £ 0
and B, N W, = 0.

We will show that B,, exists for each natural number n. We first note that it fol-
lows from the definition of monad that for each standard natural number i, v, n

Ap # @. Let n be a standard natural number. The statement
“for 1= 0,++,m, A N*V £ Pand A O FW, < @

is then true in the enlargement. Therefore, the statement
‘‘there is a natural number » such that for i=1,..+, n,
m * ¥ .= bR
A N*V. A Gand A N *W, = @
is also true in the enlargement. Thus the statement

“‘there is a natural number m such that for i =1,..., n,

A AV.AGandA O W, =@

is true in the standard model. The existence of B, immediately follows. Let

x € A. Let V be a fundamental open set such that x € V. Then V =V, for some
k. Hence for all i >k, VN B;# @. Therefore x € liminfB,. Thus A C liminfB,.
Now let y ¢ A. Let Sy, S,,-++,S

n

tainy. Let T ={]7_,5. Letgq be an arbitrary, infinite natural number. Then

T, C monad of y. Since A = OAD, it follows that T,N Ap = @. Therefore for some

0 **+s be the fundamental open sets that con-

stand ard natural number 7, >kT]. N Ap = (. (Otherwise the set of infinite natural
numbers could be shown to be an internal set—which it is not.) Hence for some
fundamental open set W, y € W and *WnN A, =@. Let b be such that W = W,. Then
for i>h, B,N W, =@. Thus y ¢ limsupB,. Hence limsupB,C A. Since
limsupB,CA Climinf B, limB, = A. Therefore A € 0.

(ii) By Theorem 5.7, Wcf.

(iii) Lec ¥ € Land D € "W, Let Y, Y,,++, Y ,-++ be fundamental open
subsets of X such that for each natural number 7, °p N Y, £ @, and Z, Ziyee,
Zn,- ++ be the fundamental open sets such that for each n, D N >"Zn =@. Letn
be an arbitrary, standard natural number. Let ‘Pn ={E€eV¥| fori=0,--+,n EN
Y,;#@and EN Z, = @}. Since °D n Y. # @ for each standard i, it follows from
the definition of monad that for each standard 7, D N *Yi £ @. Thus D € *‘P".

Hence in the enlargement *‘P" # @. Therefore ¥ # @. Therefore, by the axiom
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of choice, let D, e ‘I’n. Let ¢ be an infinite natural number. We will show that
op = ODt. Let v € °D. Let Gy Gyytrry G, »o v+ be the fundamental open subsets
of X that contain v. For each standard natural number m, let H = n?:o G,. Then
H, is an open subset of X and v € H . Therefore let V be a fundamental open
subset of X such thag ve€Vand VCH, . Then V =V, for some standard natural
number k. Since D, N *V,e £ 0, D,n >ka £ @. Since for each standard natural
number m, Dz N *Hm £ @, it follows that there is an infinite natural number s such
that D, M H_ # @. (Otherwise the set of infinite natural numbers would be inter-
nal.) Since H_ Cmonadof v, v € ODz' Therefore °D C 0Dz° Now assume z £ Op.
Then for some open subset Z of X, z € Z and Z N °D = @. Then there is a stand-
ard natural number g such that x € Zg and Z_CZ. Since t is an infinite natural
number, D,n *Zg = (. Hence z ¢ 0Dt. Therefore ODZ C °D. Thus we have shown
%D = th for each infinite natural number t. By Theorem 5.3, limD = °D. Since
D €W¥ for each natural number » and ¥ € L, lim D, = °D € ¥. Hence ¥eC.

Example 5.6 (The Mahler compactness theorem). Let (X, I') be Euclidean n-
space, A a Mahler family of lattices (Example 3.5), and {Aii a sequence of mem-
bers of A. Then {Ai} bas an l-convergent subsequence.(®)

Proof. By Example 3.5, A € C. Thus, by Theorem 5.9, A € (0.

Example 5.7. Let (X, ") be a second countable, topological group and {A }
a sequence of closed subgroups of X. Then {Al} has a subsequence that l-con-
verges to a closed subgroup of X.

Proof. Let A be the family of closed subgroups of X. By Example 3.4, A €
€. Thus by Theorem 5.9, A € (0.
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