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Minimal Conditions for Additive Conjoint Measurement and
Qualitative Probability*

Louis NARENS

School of Social Sciences, University of California, Irvine, California 92664

Axioms for additive conjoint measurement and qualitative probability are given.
Representation theorems and uniqueness theorems are proved for structures that
satisfy these axioms. Both Archimedean and nonarchimedean cases are considered.
Approximations of infinite structures by sequences of finite structures are also con-
sidered.

INTRODUCTION

At the present time, there is one set of techniques for proving representation theorems
for finite measurement structures an another set for infinite structures. Techniques
for finite structures were developed in Scott (1964) and basically consist of solving
finite sets of inequalities; techniques for infinite structures in one way or another
resemble those used in Hélder (1901) and consist of the construction of fundamental
sequences. Although finite structures often admit good axiomatizations in the sense
that necessary and sufficient conditions for their representations can be given, they do
not admit good uniqueness results. Infinite structures, however, often have uniqueness
results for their representations but assume structural (nonnecessary) conditions in
their axiomatizations. In this paper, new techniques are developed which allow
infinite structures to be represented in terms of their finite substructures and thus
simultaneously achieve good axiomatizations and representation theorems. These new
techniques use the compactness theorem of mathematical logic in a way similar to
Abraham Robinson’s use in his Nonstandard Analysis (Robinson, 1966). However, to
avoid the introduction of a large amount of mathematical logic into this paper,
algebraic constructions are given for the various uses of the compactness theorem.
This makes the paper relatively self-contained. These new techniques also allow
a bridge to be built from finite to infinite structures. Thus, in Section 7 it is shown
that certain infinite structures with unique representations are limits of sequences of
finite structures. In terms of representations this means that as more elements are
included into the qualitative structure the more ““unique” the representation becomes.
These new techniques also avoid the use of Archimedean axioms.

! The author wishes to thank R. Duncan Luce for his help in the preparation of this paper.
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1. PRELIMINARIES

The following definitions, notations, and conventions will be observed throughout
this paper.

A = X, A, will mean that A4 is the Cartesian product of the sets 4, ,..., 4, .
Xi, A; is sometimes written as 4; X - X A4, . By convention it is assumed that
n > 2 and for each i < n, 4, is nonempty. Members of Xj_, 4; are often written as
a, - a, where it is understood that for each 7 < n, a,€ 4;. a; is called the /th
coordinate of a, -~ a, .

Let > be a binary relation on 4. By convention, it is assumed that 2> is nonempty.
(Thus 4 # 3.) By definition,

(1) x*~yifand onlyif x > yand y = »,
(2) x> yif and only if x > y and not x ~ y,
(3) vy < «xif and only if x > v,

(4) v < xif and only if x > v.

A statement of the form u > v, 4 >> 9, or u ~ v is called an inequality, and u is called
the left side (of the inequality) and v is called the right side. If the inequality is of the
form u > v it is called a strict inequality. If the inequality is of the form u ~ o, it is
called an equivalence.

By convention, if 4 = X;_, 4; and > is a binary relation on A, then it is assumed
that for eachi < ntherearea, - a,mm Aand x,y € A; suchthata, --- a;_yxa, -~ a, >
ST (NS

Let > be a binary relation on 4. By definition,

(1) Z is reflexive if and only if foreach x € 4, x ~ x,

(2) Z is a weak order if and only if (i) = is reflexive, (ii) (transitivity) for each
x,y,2in 4, if x 2> y and y = 2, then x > 2, and (iii) (connectivity) for each x, y € 4,
either x > y or y > «x.

(%, %), <, y> will denote ordered pairs, (¥,y,2), {x,y, 2> will denote ordered
triplets, etc. If R(xy ,..., x,,) Is a relation on A and B is a set, then, by definition, the
restriction of Rto B, R} Bis {(by ..., b,) | by ..., b, € B and R(by ,..., b,,)}.

Re will denote the set of real numbers, I the set of integers, Re* the set of positive
real numbers, and I*+ the set of positive integers. The real number field is the ordered
4-tuple (Re, 4, -, =>. (Re, +, -, =) is sometimes called the reals. {F, ®, O, =
is said to be a weakly ordered field if and only if the following conditions hold:

(1) the elements 0 and 1 are in F and not 0 ~ 1,
(2) 2= is a weak order on F,

(3) forallx,y, 2, weF,aPy~yPx, 2D (yP)~xDPy) P 2x2P0~x,
and if x > y and 2 > w, then x Dz = y ® w,
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(4) foreach x € FthereisayeFsuchthatx @y~ 0,

(5) for all x,y,2weF, xOy~y0Ox 200~ Cy) Oz
xO1=uxifx>0andy = 0, thenx Oy =0,

(6) foreachxeF, if not x ~ 0then thereisayeFsuchthatx Oy~ 1,

(7) foreacha,y,z2inF,x O (y @2~ xOy) D (x O 2).

By definition, <F, ®, O, Z) is said to be a weakly ordered field extension of the reals
if and only if (F, @, ©, Z> is a weakly ordered field such that FO Re, &2 +,
O 2, and Z 2 >=. For notational simplicity, weakly ordered field extensions of
the reals will often be written as {*Re, +, -, 2> where it is understood that |, - are
extensions of the addition and multiplication operations of the reals, etc. *Re*
will denote {x € *Re | x > 0}.

Let X be a set. If 4 C X then X — A is said to be the complement of A (relative to X).
We often write 4 ~ for the complement of 4 when it is clear from the context that this
complement is relative to X. & is said to be an algebra of subsets of X if and only if
(i) X is a nonempty set and each member of & is a subset of X, (i) X €& and € &,
and (iii) if x, y € & then x~ € & and x U y € &. Let & be a nonempty family of subsets
of X. 4 is said to be a maximal element of # if and only if for each Be #,if BO 4
then B = A4. ¥ is said to be a chain in & if and only if € C % and for each 4, Be &,
either A C B or BC A. By a fundamental theorem of set theory miscalled Zorn’s
lemma, if & is such that for each chain € in &, J¥ € #, then for some A e #, A is
a maximal element of #.

2. AppITIvE CONJOINT STRUCTURES

DerFNITION 2.1. (A4, Z) is said to be an additive conjoint structure if and only if
the following three conditions hold:

(1) forsome nel+, 4 = X}, A

(2) 2z is a reflexive relation on 4; and

(3) for i ==1,...,n, there are functions @, from A4, into Re such that for each
a, *** a, and each b; --- b, in A4 the following two properties hold:

(i) ifay - a,>b b, thenPyay) + 4 D.(a,) > Dy(b) + *+ + D (b)),
and

(i) ifay - a,~ b, - b, then Dy(a;) + - + Pula,) = Dy(by) + - + Du(by)-
The functions D, ,..., D, that satisfy condition (3) are called a set of strict representation
functions for (A, Z>.

Derinrrion 2.2, Let 4 = X, A; and > be a binary relation on A. Then
(A, = is said to be independent if and only if for each i << # and each x;, y,€ 4;,
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if for some a;, j # 1, @ " @ 1Xi@54y Ay 2 @y G;_1 Vil T G, then for each

~

biedy,j#d by biyxibiy by Z by b Yibig b

THEOREM 2.1. If (4, =) is an additive conjoint structure and 2 is a weak order
then (A, = is independent.

Proof. Left to reader.

DeriNiTION 2.3. Let 4 = X, A; and > be a reflexive relation on 4. Then for
each 7, let 2>, be the relation defined on 4, as follows: x =, y if and only if for some
a;€A;, ] Fiy ay @ 1%y Ay 28 @Yy T Ay -

DeriNiTION 2.4, Let A = X, 4; and > be a weak ordering on 4 and (4, >
be independent. Then (4, ) is said to be Archimedean if and only if it is not the case
that there are

(1) ¢,j < msuchthati # jand

(2) a,be A4;such that b >>; a and

(3) for p #1,§, c,€ 4, and

(4) x, 4% %.. in 4; such that either (i) for each positive integer 4,
x>, S b and ¢ - aFH e @ o, 26 v &P o b ¢y, or (i) for each
positive integer k, x¥ >, x> wand ¢; - &F @0y Z gy e aF b gy

THEOREM 2.2. If (A, = is an additive conjoint structure and 2 is a weak order

then (A, > is Archimedean.

Proof. Suppose not. Let 4 = X, 4;. Since by Theorem 2.1 {4, > is inde-
pendent, >, is defined on 4, for each i <. Letd, j <n, i #j, a, b€ 4;, b>;aq,

¢, € 4y, for k # 1, j, and x, 1, a2,... be in 4;, and x >, x7+1 >, x? (the case where
xP >, 2241 > x will follow similarly), and for each positive integer p,
€@ oy xP+L ... n 2 e b Cp o xP .
Let &, ,..., D, be a set of strict representation functions for (A4, =>. Then for each
positive integer p,
(1) Dyer) + - + Pia) + =+ + Puler) + = + Pua*h) + -+ + Pyley)
= @i(cy) + -+ Pyb) + o + Duler) + o+ Pula?) + o+ A Plen)-
By subtraction we get
(2) Pia) + Di(a?+!) = Pyb) + D7)

Let r, = ®,(x?) and s = ®,(b) — P(a). Since b >; a, s > 0. From (2) it follows that
7p41 — Tp == § for each positive integer p. Since x >>; x?, @,(x) > r,, for each positive
integer p. This violates the Archimedean axiom for the real number system.
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DeriNiTION 2.5. Let A = X, A; and > be a binary relation on 4. (B, ='> is
said to be a finite substructure of (A, =) if and only if for i = 1,...,n, B, is a finite
subset of 4, B = X, B;, and >’ is the restriction of 2> to B. (4, 2) is said to
have the finiteness property for additive comjoint structures if and only if each finite
substructure of (A, 2> is an additive conjoint structure.

THEOREM 2.3. If (A, =) is an additive comjoini structure then {A, > has the
finiteness property for additive conjoint structures.

Proof. Obvious.

DerFiNITION 2.6. Let A = X, A; and > be a reflexive relation on 4. Let I be
a set of equivalences of members of 4, or strict inequalities of members of A. That is,
each y e I' has the form a, -*- a, ~ b, - b, , or the form a, ---a, > b, - b, . For
each 7 < n and each x € 4, define I'* and I'"* as follows: I'Y is the number of y in I’
such that x occurs in the ith coordinate of the left side of y, and I';? is the number of y
in I' such that x occurs in the 7th coordinate of the right side of y. (4, = is said to
satisfy the kth cancellation axiom if and only if for each set I" which consists of equiva-
lences of members of A4 or strict inequalities of members of 4, if I" has at most %
elements and for each 7 <{ n and each x € 4;, I's* = I'", then each member of I"is an
equivalence of members of 4. (4, =) is said to satisfy the finite cancellation axioms
if and only if (4, ) satisfies the kth cancellation axiom for each % e I+,

THEOREM 2.4. If (A, =) is an additive conjoint structure then (A, =) satisfies the
kth cancellation axiom for each k € 1+

Proof. LetA = X, 4;,®, ..., D, be a set of strict representation functions for
{4, Z> and I be a set of equivalences and strict inequalities on 4. Suppose that I
has at most % elements where & € I and for each i < n and each x€ 4;, I't! = I'7",
Let y be in I Then y is @, *-a, > b, - b, or y is a; - a, ~ b; -** b, . In either
case let 1(y) = @y(ay) + - + D,(a,) and r(y) = DPy(b,) + -+ + D,(b,). Then if y is
a strict inequality, 1(y) > r(y) and if y is an equivalence 1(y) == r(y). Therefore,

Y=Y ¥ 'Ok  and Y i) =3 Y I70()

yel in XEA; yel’ i<<n x€A;
== i 4

Since I'y! = I'%, 3 . 1(y) = Y r#(v). This can only happen if for all y e I', 1(y) =
r(y). That is, each y is an equivalence. Thus {4, 2> satisfies the cancellation axiom.

THEOREM 2.5. Let A be a finite set and = be a reflexive relation on A. If <A, >
satisfies the finite cancellation axioms then (A, =) is an additive conjoint structure.

Proof. Chapter 9 of Krantz, Luce, Suppes, and Tversky [1971].
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THEOREM 2.6. Let > be a reflexive velation on A. If (A, ) satisfies the finite
cancellation axioms then (A, ) satisfies the finiteness condition for additive conjoint
structures.

Proof. Immediate from Theorem 2.5.

TuroREM 2.7. Let > be a weak ordering on A. If {A, Z) satisfies the second

~

cancellation axiom then (A, > is independent.

Proof. Left to reader.

3. QUALITATIVE PROBABILITY

DeriNITION 3.1. (X, &, =) is said to be a qualitative probability structure if and
only if X is a nonempty set, & is an algebra of subsets of X, 2 is a reflexive relation

on &, and there is a function P from & into [0, 1] such that the following four conditions
hold for all 4, Bin &

(1) P(X) =1, P(g)=0;

(2) if 4> B then P(4) > P(B);

(3) if A ~ B then P(4) = P(B); and

(4) if AN B =  then P(4 U B) = P(4) + P(B).

The above function P is called a probability representation for {X, &, =>.

DerFINITION 3.2. Let X be a nonempty set, & an algebra of subsets of X, and =
a binary relation on 4. Then <X, &, ) is said to be Archimedean if and only if for
each 4, 4,, 4, ,... in &, it is not the case that

mn 4> g,
(2) A,>> A for each ieI*, and
(3) 4;N A; = o for eacht, j € I* such that

TureoreM 3.1. If (X, &, = is a qualitative probability structure, then (X, &, Z is
Archimedean.

Proof. Left to reader.

DeriniTION 3.3. (X, &, =) is said to satisfy the finiteness property for qualitative
probability if and only if X is a nonempty set, & is an algebra of subsets of X, = is a
binary relation on &. and for each finite subalgebra & of &, { X, ", =" is a qualitative
probability structure where 2>’ is the restriction of = to &'

Turorem 3.2. If (X, &, =) is a qualitative probability structure then (X, &, Z)
satisfies the finiteness property for qualitative probability.
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Proof. Immediate from Definition 3.3.

DerFiNITION 3.4. Let X be a nonempty set, & an algebra of subsets of X, and =
a reflexive relation on &. Let I"be a set of equivalences or strict inequalities of members
of &. That is, each y e I" is of the form 4 > B or A ~ B. For each x € X, define
I and I',7 as follows: I, is the number of  in I' such that x is a member of the left
side of y, and I',” is the number of y in I' such that x is a member of the right side of .
(X, &, Z is said to satisfy the kth cancellation axiom if and only if for each I" which
is a set of equivalences or strict inequalities of members of &, if I" has at most %
elements and for each x € X, I',} = I';7, then each member of I is an equivalence of
members of &. (X, &, =) is said to satisfy the finite cancellation axioms if and only if
(X, &, ) satisfies the kth cancelaltion axiom for each 2 eI+,

TueorReM 3.3. If (X, &, =) is a qualitative probability structure then <X, &, =>
satisfies the kth cancellation axiom for each k € T+.

Proof. Left to reader.

THEOREM 3.4. Let X be a nonempty set, & a finite algebra of subsets of X, and = a
reflexive relation on &. If (X, &, ) satisfies the finite cancellation axioms then (X, &, 2>
is a qualitative probability structure.

Proof. Chapter 9 of Krantz e al. [1971].

THEOREM 3.5. Let X be a nonempty set, & an algebra of subsets of X, and = a
reflexive relation on &. If (X, &, =) satisfies the finite cancellation axioms then{X, &, Z=)
satisfies the infiniteness condition for qualitative probability structures.

Proof. Immediate from Theorem 3.4.

4. ULTRAPRODUCTS

DeriNiTION 4.]1. Let# be a nonempty collection of sets. & is said to have the finite
intersection property if and only if for each finite nonempty subset % of #, N ¥ +# &.

DeriniTioN 4.2. 4 is said to be an ultrafilter on X if and only if the following six
conditions hold for all subsets 4, B of X:

(I) X is a nonempty set;

(2) % is a collection of subsets of X;

(B) Xe¥%and g ¢%;

4) if Ae% and BD A4 then Be %;

(5) if Ac% and B e % then AN B e %; and
(6) either Ac W or A~eU.
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THrOREM 4.1, If X is a nonempty set and F 1s a collection of subsets of X that has
the finite intersection property, then there is an ultrafilter U on X such that U 2 F.

Proof. Let I be defined as follows: % € I'if and only if (i) 4 is a family of subsets
of X, (i) ¥ 2 %, and (iil) % has the finite intersection property. We will show by
Zorn’s lemma that I has a maximal element. Let 4 be a chain in I. Let %~ = 4.
Then it is easy to show that #” is in I". Thus by Zorn’s lemma, I" has a maximal element
%. Suppose that A C X and A4 ¢ %. Then, since # is a maximal element of I', % U {4}
does not have the finite intersection property. Thus for some A4,,.., 4, in %,
An-nd,NnA= g. Therefore A~ 24, N NA,. UV{A~} has the finite
intersection property since if for some B, ,..., B, in %, B;n---NnB, NnA~ = g,
then B; N - N B, N4, N - N A, = @, which would contradict that % has the finite
intersection property, Therefore % U {4~} is in I'. Since % is a maximal element of
I, A~ec%. In other words, for each subset 4 of X, either 4 € % or A~ e %. Since
% has the finite intersection property, @ ¢ %. Therefore, & ~ = X € %. Suppose D e %
and E € %. Since % has the finite intersection propertyand DN EN (DN E)~ = @,
(D N E)~ is not in %. Therefore, D N E is in %. Suppose that Fe % and X 2 G2 F.
Since % has the finite intersection property and FN G~ = @, G~ is not in %.
Therefore, G is in %. Therefore, by Definition 4.2, % is an ultrafilter.

DErFINITION 4.3. Let % be an ultrafilter on [ and for each j € [, let >, be a binary
relation on the nonempty set A;. Then, by definition, the % ultraproduct of
{(4;,Z> je Jtis (4, Z)y where A = X5 A; and 2 is the binary relation on 4
defined by: f = g if and only if {5 | f(j) Z; ()} € %.

THEOREM 4.2. Let U be an ultrafilter on | and for each jc ], let Z=; be a weak
ordering on the nonempty set A; . Let (A, 22> be the U ultraproduct of {{A;, Z,> |j€ ]}
Then = is a weak ordering on A.

Proof. Let f, g, h be in 4. Since | = {j| f(j) Z,; f(/)}, by Definition 4.3, f > f.
Thus 2 is reflexive. Suppose that f > g and g > 4. Then by Definition 4.3, J; =
GIfDZig0N e and J, ={j|g(j) Z,; h(j)}e¥. Since % is an ultrafilter,
Ji " Joe . Since -, is a weak order, J, —{j | £() 25 h(i)} 2 {7 f(j) 25 £(j) and
&) Zi h(j)} = J1 0 ], . Since % is an ultrafilter, J; € %. Therefore, by Definition 4.3,
fZ h. Thus, = is transitive. To show that > is connected, suppose that d and e are
in 4. Let J, = {j|d(j) 2 e} and J, = {j | e(j) 2 d(j)}. Since for each je ] =,
is a weak order, [, U J, = J. Since % is an ultrafilter on J, either J,e % or J,e %.
Thus by Definition 4.3 we have either d = e or ¢ = d.

DErFINITION 4.4. Let % be an ultrafilter on J. Then (*Re, @, O, 2> is said to be
an % ultrapower of (Re, 4, -, 22> if and only if for all f, g, 2 in *Re the following

four conditions hold:

480{11/4-6
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(I} *Re ={d|dis a function from ] into Re};

(2) fzgifandonlyif {j|f(7) = g(j)} € %;

(3) f@g~hifandonlyif{j|f(j)+ g(j) = k(j)} € %; and
(4) fOg~hifandonlyif{j|f(5) 8(j) = h(j)}eZ.

Let % be an ultrafilter on J, #; = {(Re, +, -, =) for each je J, and *#Z =
{*Re, ®, O, =) be an % ultrapower of (Re, -+, -, =>. Then (*Re, =) is the #
ultraproduct of %, . Also note that by Theorem 4.2 > is a weak ordering in *Re.
Also note that for each f, g€ *Re, f~gifand only if {je J| f(j) = g(j)} e %.

THEOREM 4.3. Let U be an ultrafilter on J. If *# = {*Re, +, ", =) is an ¥
ultrapower of # = {Re, +, -, ==, then *Z is a weakly ordered field extension of A.

Proof. By Theorem 4.2 2> is a weak ordering on *Re. Suppose that f, g, % are in
*Re. Then

J={170) +2() = &) + f(7}
= {711 + [8() -+ A(D] = [F(7) + &) + k() = {71 F(5) - (i) = &(4) - F (4}
={1f() - [8G) - K] = [f()) - &(N] - A7)}
= {711(7) - [8() + K] = f(1) - &() +- 1 (5) - (1)}

Thus by Definition 4.4, f g ~g Bf, f D (e DN ~(fDH DAL fOg~gOh,
FOEON~(fOLOhandfO(e@ k)~ (fOg@(fO k). Let *0 and *1 be
the following functions on J: For each j e ], 0%(j) = 0 and *1(j) = 1. Then *0 and
*] are in *Re. Since J = {j | *0(7) 5 *1(7)}, it is not the case that *0 ~ *1. Since for
cach fe *Re, [ ={j|f(j) + *00) = f(7)} = {j | f(4) - *1(5) = f ()}, it follows from
Definition 4.4 that f @ *0 ~ f and f © *1 ~ f. Suppose that d € *Re. Let 4" be the
following function on [: for each je [, d'(j) = —d(j)- Then d'e *Re. Since [ =
{j 1 d(j) + d'(j) = *0(j)}, by Definition 4.4, d & d’ ~ *0. Suppose that e € *Re and
not e ~ *0. Let ¢” be the following function on J: for each j€ ], if &(j) # 0 then
e"(j) = l/e(j), and if e(j) =0 then €"(j) =0. Let J, = {j|e(j) # 0}. Since not
e~ *0, J,e%. But then [, ={j|e(j) €'(j) = *1(j)}. Thus by Definition 4.4,
¢© e ~ *1. Suppose p 2 q and rZ s Let J,—1{j| p(j) > q(j)} and J, —
{717(j) = s(j)}- Then by Definition 4.4, J, € % and J; & %. Since % is an ultrafilter,
o0 Jae . Since J, ={j | p(7) + (i) = q(i) + s} 2 i | #(7) > a(j) and #(j) >
()} = Jon Js, Jo€ %. Therefore, by Definition 4.4, p @7 = s @ g. Suppose that
a,be *Reand a > *0and b = *0. Then by Definition 4.4, J; = {j | a(j) = *0(j)} e %
and J, = {7 8(j) = *0(j)} € %. Since % is an ultrafilter, J; N Jse %. Since [, =
(71 alg) - 5(7) 2 *0Ci)} 2 {j [ a(j) X *0(j) and b(j) Z *0()} = Js A Ji., Jo € . Thus
by Definition 4.4, a O b = *0. For each x € Re let *x be the following function on J:
For je ], *x(j) = x. For each x € Re let F(x) = *x. Then it is easy to show that F
is an isomorphic imbedding of Re into ¥*Re. (We may therefore consider Re as a subset
of *Re.) Therefore, *Z is a weakly orderend field extension of Z.
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NotaTioN. To simplify notation we will from here on write “@” as “+-” and
“” as “+”. Although this introduces some ambiguity, it makes the text much more
readable.

DerintTION 4.5. Let (*Re, +, *, 22> be a weakly ordered field extension of the
reals, An element f € *Re is said to be finite if and only if there are » and s in Re such

that 7 > f > s.

DeFINITION 4.6. Let (*Re, +, -, 2> be a weakly ordered field extension of the
reals, f€ *Re, and f be finite. Let 4, = {x€Re | x = f} and 4, = {xe Re | f> x}.
Then since f is finite, the ordered pair (4, , 4,) is a Dedekind cut of Re. Let b be the
cut number of (4, , 4,). Then, by definition, °f = b.

THEOREM 4.4. Let {*Re, -, *, =) be a weakly ordered field extension of the reals
and f be a finite element of *Re. Then for each positive real number r, | °f — f| S 7.

Proof. Let r be a postive real number. Let 4; = {xeRe | x < f} and 4, =
{xe Re|x = f}. Since °f is the cut number of the Dedekind cut (4, , 4,), °f — /2 is
in Ay and °f 4 r/2 is in A4, . But then °f — r/2 < f < °f 4~ 7/2. In other words,
| f—fI 572

THEOREM 4.5. Let(*Re, -+, -, > be a weakly ordered field extension of the reals and
e, f, g, h be finite elements of *Re such that e > f and g ~ h. Then °e > °f and °g = °h.

Proof. Since for each positive real number 7, |e — % | <rand [ f— °f| <7, it
follows that for each reRet, ¢ — °f+2r =% +r — (°f —r) Z e — f. Thus,
°¢ — °f > 0. Similarly it can be shown that °% = °h.

THEOREM 4.6. Let {*Re, +-, ', 2> be a weakly ordered field extension of the reals
and f, g be finite elements of *Re. Then f + g is a finite element of *Re and °(f + g) =
Of+ Og.

Proof. Itis immediate from Definition 4.5 that f + g is finite. By Theorem 4.4, for

each positive real number 7, | °f—f| <r, | g—g| Srand |(f + o)~ (f+ &) < r.
Thus | °(f -+ g) — (°f + °g)| < 3r for each 7 € Ret. Therefore, °(f + g) = °f + .

THEOREM 4.7. Let {*Re, -+, *, 2> be a weakly ordered field extension of the reals
and fy , fy seves [ e finite elements of *Re. Then f, + fy + -+ + f, is a finite element of
*Re and °(fy + fo + - + 1) = i+t o+

Proof. Left to reader.
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5. MiNmMAL CONDITIONS FOR QUALITATIVE PROBABILITY

THEOREM 5.1. Let X be a nonempty set, & an algebra of subsets of X, and > a
reflexive relation on &. Suppose that {X, &, Z> satisfies the finite cancellation axioms
(Definition 3.4). Then there is a weakly ordered field extension of the reals (*Re, -+, -, >
and a function P from & into *[0, 1] = {x€ *Re | 0 < x < 1} such that the following
Jour conditions hold:

(1) P(X)~1and P(z)~ 0;

() if x> y then P(sx) > P(y);

(3Y if x ~y then P(x) ~ P(y); and

4) fx,ycfandxny = g then P(x U y) ~ P(x) + P(»).

Proof. Let S = {«| «is a finite subalgebra of £}. Let Y = {4 | 4 is a nonempty
finite subset of S}. For eachae Slet& = {d|deYandaed}. Let F = {4 | ac S}.
If &,...,8, are in & then & N -~ N4, # & since {o ,...,a,} €&; fori = 1,..., n.
Thus, # has the finite intersection property. Therefore, by Theorem 4.1, let % be an
ultrafilter on Y such that % D #.

For each a € S let =, be the restriction of = to a. Since (X, &, 2 satisfies the
finite cancellation axioms, by Theorem 3.5, (X, &, 2> satisfies the finiteness condition
for qualitative probability structures. Therefore, for each « € S let P, be a probability
representation for (X, o, 2,>. For each x € & define the function F, from Y into Re as
follows: Let 8 be the finite subalgebra of & generated by ()4, and:

if x € B then F (4) = Py(x);
if x ¢ B then F (4) = 0.

Let {*Re, +, *, 2> be an % ultrapower of (Re, -+, -, =>. Define P on & as follows:
for each x € & let P(x) = F, . Then P is a function from & into *Re.

Let «€ S. If 4 €& and B is the finite subalgebra generated by ()4 then Fy(4) =
Py(X) =1 and F4(d) = Py(2) =0. In other words {4 | Fyx(4) = 1} 2 &. Since § € %,
we can conclude that Fy ~ 1. Therefore, P(X) ~ 1. Similarly, P(z) ~ 0.

Suppose that x, y € & and x > y. Let a € S be such that x, y € «. If 4 € £ and B is the
finite subalgebra generated by U 4 then F,(4) = Py(x) > Py(y) = F,(4). In other
words, {4 | F(4) > F,(4)} 2 4. Since & € %, we can conclude that F,, >~ F,, . Therefore,
P(x) > P(y). Similarly it can be shown that if #, y € & and x ~ y then P(x) ~ P(y).

Suppose that x, ye £andx Ny = @.Letac Sbesuchthatx, yew.If d edand B
is the finite subalgebra generated by ()4 then F,,(4) = Py(x U y) = Py(x) + Py(y) =
F(4) + F,(4). In other words, {4 | F,,(4) = F,(4) + F,(4)} 2 . Since &€ % we
can conclude that P(x U y) ~ P(x) + P(y). :
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DerFINITION 5.1.  Let & be an algebra of subsets of X and 2 be a reflexive relation
on &. Then P is said to be a weak probability representation for (X, &, 2> if and only if
P is a function from & into [0, 1] such that the following four conditions hold for all
x,yed:

(1) PX)=1,P(z)=0;

(2) if x> y then P(x) > P(y);

(3) if x ~ ythen P(x) = P(y); and

4) ifxny = & then P(x U y) = P(x) + P(y).

THEOREM 5.2. Let & be an algebra of subsets of X, 2= a reflexive relation on &, and
(X, &, ) satisfy the finite cancellation axioms (Definition 3.4). Then there is a weak
probability representation for (X, &, =>.

Proof. By Theorem 5.1 let (*Re, -+, *, 2> be a weakly ordered field extension of
the reals and P a function from & into *Re such that the following four conditions hold
for each x, y e &

(1) P(X)~1, P(z)~0;

(2) if x >y then P(x) > P(y);

(3) if x ~ y then P(x) ~ P(y); and

4) if xNny = g then P(x Uy)~ P(x) + P(y).

Since for eachxe & X 2 x = @, by (1), (2),and (3), 1 ~ P(X) Z P(x) = P($) ~ 0.
Therefore, P(x) is finite for each x € &. Thus, by Definition 4.6 for each x & &, let
P'(x) = °P(x). Then P’ is a function from & into [0, 1]. By Theorem 4.5, P/(X) = 1
and P'(@) = 0. Let x, ¥ be elements of &. If x > y then by (2) P(x) > P(y), and thus
by Theorem 4.5, P'(x) = P'(y). If x ~y then by (3) P(x) ~ P(y), and thus by
Theorem 4.5, P'(x) = P'(y).lf x Ny = @ then by (4) P(x U y) ~ P(x) + P(¥), and
thus by Theorem 4.5, P'(x U y) = P'(x) + P'(y). Therefore, by Definition 5.1 P’ is
a weak probability representation for (X, &, ).

DEerFINITION 5.2. Let & be an algebra of subsets of X, > a weak order on &, and
a, b e & such that a C b. Then (b, ¢, d, a) is said to be a trisplit of b, a if and only if the
following four conditions hold:

(1) 862¢2d2a

2) b—czc—d,;

(3 b—dzd—a;and
@ c—azb—e

(X, &, > is said to be trisplittable if and only if for each a, b€ &, if a C b then there
are ¢, d € & such that (b, ¢, d, a) is a trisplit of b, a.
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LeMMA 5.1. Let & be an algebra of subsets of X, 2 a weak order on &, a, b € & such
that aCb, (b, ¢, d, a) a trisplit of b,a, and P a weak probability representation for
(X, &, Z>. Then

3[P(b) — P(a)] > P(b) — P(c) = {[P(b) — P(a)].

Proof. Since 62¢2d, (b—c)N{c—d)= @ and b —-c)U(c—d)=b—d.
Thus,

(1) P(—d) = P(b— c) + P(c — d).
Since b — ¢ Z ¢ — d, P(b — ¢) > P(c — d). Thus, by (1) we can conclude
@) 2P(b — ¢) = P(b — d).
Since b — d 2 d — a, P(b — d) > P(d — a). Thus, by (2) we can conclude that
(3) 4P(b —c) > P(b — d)+ P(d — a).

Since b2d2a, (b—d)Nn(d—a)= ¢ and b —a = (b—d)uU(d— a). Thus,
P(b — a) = P(b — d) + P(d — a). Therefore, by (3)

4) 4P —c) = P(b — a).

Since b2c2a, (b—c)yNn(c—a)= 3 and (b — ¢) U (c — a) = b — a. Therefore
(5) P(b— ¢)+ P(c — a) = P(b — a).

Since ¢ —a Z b — ¢, P(c — a) = P(b — ¢). Thus, by (5)
(6) P(b— a) = 2P — o).

Since for each x, ye & such that x Dy, yN(x —y) = g and x = y U (x — y), we

can conclude that P(y) 4- P(x — y) = P(x), i.e., P(x — y) = P(x) — P(y). There-
fore, by (6) and (4)

(7) 2P() — P(a)] = P(b) — P(c) = 3[P(b) — P(a)].

LemMa 5.2. Let & be an algebra of subsets of X, 2 a weak ordering on &, P a weak
probability representation for &, (X, &, Z) be trisplittable, r, s€ [0, 1] and s > r. Then
for some s &, s > P(x) > r.

Proof. Suppose not. A contradiction will be shown. Let = {x € & | P(x) > s}.
D + @ since Xed. Lett = inf{P(x) |xeD}and e = t — r. Then for each x € & it
is not the case that £ > P(x) > 7. Then by the definition of inf let y € 2 be such
that P(y) — ¢t < ¢/100. Let @, = & and for each i € I', a;, b, be such that (y, a;,, ,
b;, a;) is a trisplit of y, a; . By repeated applications of Lemma 5.1, it is easy to show
that (1/29P(y) = (1/29[P(y) — P(a;)] = P(y) — P(a;,,). Note that since 4, = @,
P(y) — P(a;) > e. Therefore let nel* be such that P(y) — P(a,) > € and
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P(y) — P(a,.1) < ¢. Then by Lemma 5.1 we can conclude that e > P(y) — P(a,.,,) =
1[P(y) — P(a,)] = %e. Thent > P(a,;) > 7, a contradiction.

LeEMMA 5.3. Let & be an algebra of subsets of X, 2= a weak ordering on &, P, Q weak
probability representations for (X, &, 2>, and (X, &, Z) be trisplittable. Then for each
a, be &, if b > aand P(b) = P(a) then Q(b) = Q(a).

Proof. Let a,be& be such that 4> a and P(b) = P(a). Let ¢ =b—a.
Since cNa = @ and P(b) = P(aV ¢) = P(a) + P(c), P(c) = 0. Let d, = & and
for each ¢ € I+, let d; , ¢; be such that (¢ ~, d,,, , e; , d;) is a trisplit of ¢ ~, d; . By repeated
applications of Lemma 5.1 one can show that for each ielt, P(c~—d,) >0,
Qc~ — d;) > 0, and lim,,,, O(c~ — d;) = 0. Since 2 is a weak order and for each
ielt, P(c~ — d;) > P(c) = 0, we can conclude that ¢~ — d; > ¢ for each iel*.
Thus Q(c~ — d;) = Q(c) for each ieI*. Since lim;,,,Q(c~—d;) = 0, Q(c) = 0.

Therefore, Q(b) = Q(a U ¢) = Q(a) 4+ Q(c}) = O(a).

THEOREM 5.3. Let & be an algebra of subsets of X, 2 be a weak ordering on &,
(X, &, = be trisplittable, and P, Q be weak probability representations for (X, &, 2.
Then P = Q.

Proof. Define O’ on [0, 1] as follows: For each z € [0, 1] let Q'(t) = sup,., O(a)
where 4 = {xe& | P(x) <t}. Note that if P(3) = P(y) then by Lemma 5.3

O(») = O(z) and thus
(1) for each x € &, Q'[P(x)] = Q(x).

Suppose that 7,s€[0,1] and s > r. By Lemma 5.2, let x,ye& be such that
s > P(x) > P(y) > r. Since 2 is a weak order, x >> y. Thus, O(x) > O(y). Then by
the definition of §', Q'(s) = Q'[P(x)] = Q(x) > Q(y) = Q'(r). (Note that by Lemma 5.3,
O(x) > O(y) since P(x) > P(¥).) In other words,

(2) foreachr,se0,1],ifs > r thenQ’(s) > Q'(r).
We will now show the following:
(3) ifforeachiel*, P(2;) < wand lim,,, P(2;) = w, then sup;+ O(%;) = Q'(w).

To show (3) there are two cases to consider: Case 1. for each ze &, P(3) # w. Let
A ={zeé& | P(2) <w}. Then for each z€ 4 there is an €I* such that 2, > 2.
Thus Q'(w) = sup;cp+ Q(z;). Case 2. 2’ is such that P(z") = w. Since 2 is a weak order
and P(2') > P(z;), & = 2; for each ieI*, Thus, O(3') = Q(z;) for each ielt.
Therefore, Q(2) = sup;er+ O(2;). Assume that Q(z') > sup;er+ O(2;). We will show a
contradiction thus establishing that Q(z') == sup;+ O(2;). By Lemma 5.2, let x€ &
be such that Q(2') > O(x) > sup,+ O(z;). Then since 2z is a weak ordering,
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3’ > x> z;.Since lim;p+ P(2;) = w = P(%’), P(x) = P(2"). Therefore, by Lemma 5.3
O(x) = O(="), a contradiction.
We will now show the following:

(4) For all ,v<([0,1] such that u 4 ve[0,1], O'(x + v} = Q'(w) + Q'(v).

There are two cases to consider: Case 1. # = 0 or v = 0. Without loss of generality
suppose that # = 0. Let 4 = {x €& | P(x) = 0}. Then by Lemma 5.3, for each
xe€ A, Q(x) = 0. Therefore, Q'(u) = 0. Thus, Q'(x + 2) = Q’'(v) = Q'(v) + Q’'(v).
Case2.u #0andv 0. Thensince0 <# v <{l,u#7% 1 and v 5 1. By Lemma 5.2
let {x;,]7e1*} be such that for each ielt, 0 < P(x;) < u and lim,,, P(x;) = u.
Since # 4- v < 1 and for each {el*, P(x;) < u, we can conclude that v < P(x; ™).
ForeachieI* let&; = {y |y = x;,~ N = for some 2 € &}, =, be the restriction of >
to &;, and P; = P[P(x;~). Then for each i € I*+ it is easy to show that &; is an algebra
of subsets of x;~, >, is a weak ordering on ¥, ~, {x,~, &; , 2=,> is trisplittable, and P;is a
weak probability representation for (x;~, &, , 2,>. By Lemma 5.3, for each 7 e I+ let
{3i;1j eI} besuchthat0 < Py(y;) < v/P(x;~)and lim,,, P(yy) = v/P(x;~). Then
it follows that 0 < P(y,,) < vand lim,,,, P(y;;) =v and for each i, feI*, x, N y,;,= &.
Thus

lim lim P(s; U 3,5) — lim Bm{P(s) + P(y4)] = Im[P(s) + lim P(y,)]
10 ]-—)03 -0 -0

i2® joo

= grg[P(x,) +ov]=u+wv
Therefore, by (3) sup; ja+ O(x; U 355) = Q'(# + ©). Since
sup Q(%; U y;5) = sup[O(x;) +O(yy)] = sup O(x;) 4 sup O(ys)
i.del ¢.jel i.Jel 2,9l

and by (3) sup; ser+ Q(%;) = Q'(w) and sup; o1+ Q(¥45) = Q’(v), we can conclude that
Q'+ v) =0'w) + Q')

Note that

() Q) =0andQ'(1) =1,

since if 4 ={xe & | P(x) =0} and B={ye & | P(y) = 1} then from Lemma 5.3 it
follows that for each x € 4 and each y € B, P(g) =P(x) =0(@ ) =0(x) and P(X) =
P(y) = O(X) = O(3).

It is a well-known theorem of analysis that the only function Q' that satisfies (2), (4),
and (5) is the identity function. (This can also easily be shown by using the representa-
tion and uniqueness theorem for Archimedean, regular, positive, ordered local
semigroups that is given in Chapter 2 Krantz et al. [1971].) Thus, for each » € [0, 1],
of Q'(r) = r. By (1) this means that for each x € &, Q(x) = Q'[P(x)] = P(x).
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THEOREM 5.4. Suppose that & is an algebra of subsets of X, > is a weak ordering on
&, (X, &, z) is trisplittable and Archimedean (Definition 3.2), <X, &, =) satisfies the
finite cancellation axioms (Definition 3.4), and P is a weak probability representation for

(X, &, z>. Then P is a probability representation for (X, &, Z>>.

Proof. Suppose that P is not a probability representation. A condtradiction will be
shown. Let x, y € & be such that ¥ > y and P(x) = P(y). Let d, = @ and for each
il lete; d;besuchthat (X, d;y,,c;,d;)isatrisplit of X, d; . Then by Lemma 5.1,
one can easily show that for each i e It, P(d;,, — d;) > 0. Lete; = d; ; — d,. Then
ifi,jeIt and 7 # j, then ¢; N ¢; = &. Since = is a weak ordering, by Theorem 5.1,
let {*Re, +, -, > be a weakly ordered field extension of the reals and Q a function
from & into *[0, 1] such that for all , v, w, tin &, (i) # > v if and only if Q(x) > O(v),
and (i) if w Nt = g thenQ(w U t) = O(w) + O(f). Let 2 = x — y. Since x > y and
#Ny = gandy Uz = %0(x) = 0(y U 2) =0(») + 0(=) > Q(3). Thus, 0(z) > 0.
Thus, 2 > 0. Since P(x) = P(y) and P(x) = P(y U 2) = P(y) + P(2), P(z) = 0.
Since for each ielt, P(e;) > 0 = P(z), ¢; > 2. Therefore, for each i,jel,
e;Ne; = o and e; > 2> @. This contradicts the Archimedean axiom (Definition 3.2).

THEOREM 5.5. Suppose that & is an algebra of subsets of X, = is a weak ordering on
&, (X, &,z is trisplittable and satisfies the finite cancellation axioms (Definition 3.4).
Then there is an unique weak probability representation P for (X, &, =). Furthermore, if
in addition {X, &, =) is Archimedean, then P is a probability representation for
(X, &, 2.

Proof. Theorem 5.2, 5.3, and 5.4.

6. MiniMAL CoNDITIONS FOR ADDITIVE CONJOINT MEASUREMENT

TreoreM 6.1. Let A = X, A; and = be a reflexive relation on A. Suppose that
(A, =) satisfies the finite cancellation axioms (Definition 2.6). Then there is a weakly
ordered field extension of the reals (*Re, -, +, 22> and functions @, on A, fori = 1,..., n,
such that the following two conditions hold:

(1) if ay - ay > by = by then Dy(ay) 4 -+~ + Pp(@n) > Do(by) + =+ + Po(bn);
and
(2) tfay - ay~ by by then Dyay) + -+ + Ppla,) ~ Dy(by) + ++ + Du(b)-

Proof. 'To simplify notation, we will assume that 4 = 4; X 4, .

Let S = {a| « is a finite substructure of {4, Z>}. Let X = {4 | 4 is a nonempty
finite subset of S}. Foreachae Sletd ={4|deXandaed}. Let F ={d| a€ S}
If & ,..,4, are in &F then & N - N &, * & since {og ,..., ¥} €Q; for = 1,...,m.
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Thus, & has the finite intersection property. Therefore, by Theorem 4.1 let % be an
ultrafilter on X such that 2 #.

Suppose that 4 isin X, 4 = {ay ,..., a}, and o; = (By* X Byt, = fori = 1,..., m.
Let B; = B;'U - U B, B, = B,} U -+ U By, and ! be the restriction of > to
B, X B,. Then a« = (B; X B,, =) €S and «; is a finite substructure of o for
i = 1,..., m. Let B be the function from X into .S defined by B(4) = «.

Since {4, ) satisfies the kth cancellation axiom for each % € I+, by Theorem 2.6
(A, Z» satisfies the finiteness condition for additive conjoint structures. Therefore,
for each a e S, let ¥,* and ¥,* be a set of representation functions for «. For each
acA,,be4,,and 4 € X, the functions F, and G, on X are defined as follows:

(1) Fu(d) = P2 q) if for some aecd, if « = (B, X By, =) then ac B,,
otherwise F,(4) = 0;

(2) Gy(d) = ¥PE“a) if for some aed, if « = (B; X By, = then beB,,
otherwise Gy(4) = 0.

Let {*Re, -+, *, > be the % ultrapower of (Re, +, *, =>. Define @; on 4, and P,
on A, as follows: For eacha € 4, ,let @,(a) = F, ,and foreach b € 4, , let D,(b) = G,
Since F, and G, are functions from X into Re, F, and G, are in *Re. Thus, @, and @,
are functions from 4, and 4, into *Re.

Suppose that x,u€ 4, and y,ve 4,. Let A' = {x, 4} X {y, v} and = be the
restriction of > on AL Let o = (A% =1>. Then a € X. By definition of %, &€ %.
Let 4 €&. Then a € 4. Since « = {{x, ¥} X {u, v}, =1, F(4) = P8 x), F (4) =
PED(w), G,(d) = PED(y), and Gy(d) = Pi9(o).

Case1. xy>> uv. Since « = ({x, u} X {y, v}, =1 and a € 4, P24 (x) + PEW(5) >
YD) 4+ P5D(v). Thus, F(4) + G,(4) > F,(4) + G4 4). In other words,
(4| F(4) + G(d) > Fy(d) + G)} D 4. Since & € , F, + G, > F, + G, . That
is, @y(x) + Py y) > Py(u) + Py(2).

Case 2. xy ~ uv. By a proof similar to Case 1 we show that ®@,(x) 4 @y(y) ~
Dy(u) + Pyfv).

DerFiNtTION 6.1. Let A = X;, A; and > be a binary relation on 4. Then
D, ..., D, is said to be a set of representation functions for (A, 2> if and only if the
following three conditions hold for all @, -+ a, , b, -*- b, in A:

(1) foreachi < n, @, is a function from A; into Re; -

() ifa - an > by by then @y(a) + v + Po(an) = Dy(b) +  + Pulba);
and

() ifay  ay~ by by then Pya) + -+ + Ppla,) = Py(b;) + -+ + Py(bn).
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DErFINITION 6.2. Let A = X, 4;, 2 be a binary relation on 4, and {4, 2> be

independent. Then {4, =) is said to be bounded by a, , b, , a, ,..., a, if and only if
the following three conditions hold for each x; - x, in 4 and each ¢, 2 <7 < n:
1 & 1% 2 a;

~

2) %, =;a; and

1~

() biay @A, T 0 ARy Gy

~

THEOREM 6.2. Let A = X, 4;, = be a reflexive relation on A, {4, > be
bounded by a,, by, ay,..., a,, and {A, =) satisfy the finite cancellation axioms
(Definition 2.6). Then there is a set of representation functions for (A, >, @, ,..., D

such that ®,(a;) = Pofa,) = - = D(a,) = 0 and Py (b,) = 1.

n

Proof. 'To simplify notation, we will assume that 4 = 4; x A, . By Theorem 6.1,
let <*Re, +, *, > be a weakly ordered field extension of the reals and ¥,’, ¥,
functions from A4, , 4, into *Re such that for all uv, xy in 4, (') if uv > xy then
' (w) + ¥/ (v) > ¥y (x) + P,'(»), and (ii') if wv ~ xy then ¥'(s) + ¥5/(v) ~
Y/(x) + ¥,/ (y). Let V] = V)" — ¥)'(ay) and ¥; = ¥, — ¥, (a,). Then ¥](a;)) =
¥;(a,) = 0. Since b > a, ¥{(b) > 0. Let ¥, = ¥[[¥{(b) and ¥, = ¥;/¥,(b). Then it
is easy to show that ¥i(a;) = Wy(ay) = 0, ¥4(d,) = 1, and for each wv, xy in 4,
(i) if wo> xy then Wy(u) + Vy(v) > Pi(x) + Po(y), and (i) if wo~ xy then
Pi(u) + Po(v) ~ Py(x) -+ Py(y). Since for each xe 4;, b =y x>, a,, it follows
that 1 = ¥,(b,) = ¥,(x) = ¥,(a;) = 0. Since for each y € 4, , bja, = a, y, it follows
that ¥(b,) + Pu(as) = Pi(a)) + Pa(y) and thus 1 = Wy(b,) = Py(x) = 0. Therefore,
for each x € 4, and each y € 4, , ¥ ,(x) and ¥y( ) are finite (Definition 4.5). Therefore,
for each xy e 4, let @,(x) = °WVy(x) and DPy(y) = °Wy(y). Then by Theorem 4.4,
Dy(a;) = Py(a,) = 0and P,(b,) = 1. Suppose that uv, xy are in 4 and uv > xy. Then
Vi) + Pyv) > ¥i(x) + WP(y). Thus, by Theorem 4.5, °[¥,(u) + Yy(v)] =
°[Fi(x) + ¥o(»)], and by Theorem 4.7, °F1(u) + °Vy(v) = °W,(x) + o). Therefore,
Dy(u) + Dy(v) = Dy(x) + Dy(»). In a similar manner it can be shown that if ef, gh are
in A and ef ~ gh, then @,(e) + Po( f) = Dy(g) + D (h).

The first interesting thing to not about Theorem 6.2 is that no type of Archimedean
axiom is assumed. In general, Archimedean axioms are used to guarantee that no
distinguished pair of measured objects (i.e., a pair x, y where x>y or ¥ > x) are
“too far” or “too close” with respect to a fixed distinguished pair. While in most
areas of physical sciences there are reasonable grounds for making such an assumption,
it seems to me to be a highly dubious assumption to make in the social sciences,
especially when one is measuring quantities like utility or subjective probability.
In Theorem 6.2, all distinguished pairs of elements of A that are ‘“‘too close’ with
respect to the distinguished pair @, - a,, , bja; **- a,, , are assigned the same numerical
value.
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DeFINITION 6.3. Let A = Xj, 4;, 2= be a weak ordering on 4, (4, =) be
independent, { < #, and u, v, x, y € A, . Then, by definition, # — v >; x — y if and
only if (1) #>>; v and x>, y, and (2) for some 4, -** a,, in 4 and for some j # {and

some b, d in 4;,

ay v @ Uy A5 At Gy D Gyt @408 Tt A bagyy o ay,
and
ay "t Yy BBy @y >y 8 X8y G5 Ay Gy

DerFiNtTION 6.4. Let A = X, 4;, = be a weak ordering on 4, (4, =) be
independent, and ¢ < n. Then (b, ¢, d, a) is said to be an i-trisplit of b, a if and only if
the following four conditions hold:

(1) b>ie>;d>;a;

(2 b—d>id—a

(3) ¢c—a>;b—c;and

4 b—c>;c—d,andd —a>;c—d.

DerFINITION 6.5. Let A = X}, 4;, = be a weak ordering on 4, and {4, > be
independent. Then {4, =) is said to be trisplittable if and only if for each ¢ < n, if
b >, a then there is an i-trisplit (b, ¢, d, @) of b, a.

Let A = X, A; , = be aweak ordering on A, { A, =) be independent and trisplittable,

and D, ,..., D, a set of representation functions for {A, =>. Then for each i < n the
following five lemmas hold:

LemMMma 6.1. Ifb— a>>; e — f then ®b) — D(a) = Dfe) — D f).

Proof. For notational simplicity, assume that 4 = A4, X 4, and { =1. By
hypothesis, b6 — a >, ¢ — f. Therefore, by Definition 5.3 let ¢, d € 4, be such that
c>gd and bd > ac and fc>> ed. Then D,(b) + Py(d) = DPy(a) + Pyc), ie,

O,(6) — By(a) > Byfc) — By(d), and B(f) + Bye) > By(e) + Pu(d),
iie., By(c) — Pyd) = By(e) — By(f). Thus, By(b) — By(a) > Byle) — Py(f)-

Lemma 6.2.  Suppose that O (b) > By(a) and (b, c, d, a) is an i-trisplit of b, a. Then
(8 > B(0)

Proof. TFor notational simplicity, assume that 4 = 4; X A, and 7 = 1. Since
(b, ¢, d, a) is an 1-trisplit of b, a, b >, ¢. Thus @,(b) = Py(c). Suppose that P,(b) =
D,(c). A contradiction will be shown. Since (b, ¢, d, ) is an ¢-trisplit of b, @, b — ¢ >>;
c—dand b — d >, d — a. Thus, by Lemma 6.1 (i) @,(8) — ®y(c) = Dy(c) — Dy(d)
and (ii) D,(b) — Py(d) = @y(d) — P,(a). Since Py(b) = P,(c) and Py(c) = D,(d), by (i)
we conclude that ®@;(c) = Py(d). Thus D(b) = Py(d). Since D,(b) = P4(d) and
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®,(d) = Dy(a), by (ii) we conclude that D(d) = Dy(a). Thus Dy (b) = Py(a), a
contradiction.

LeEMMA 6.3. Suppose that y(b) > D,(a) and (b, ¢, d, a) is an i-trisplit of b, a. Then
HD,(b) — Pifa)] = Dy(b) — Dic) and HPy(b) — P(a)] = Pyd) — PAa).

Proof. For notational simplicity, assume that 4 = 4, X 4, and ¢ = 1. Since
(8, ¢, d, a) is an i-trisplit of b, @, ¢ — a >, b — ¢. Therefore, let ¢, f € A, be such that
e >, f, cf > ae, and ce > bf. Thus,

(1) Di(c) + Do f) = Py(a) + Pofe), and

(2) Di(c) + Pye) = Py(b) + Do f)-
Adding (1) and (2) and subtracting the common term, ®,(e) + D,( f), of both sides of
the resulting inequality, we get

() 29y(c) = Py(a) + Py(b).
Thus,

(4) —Py(a) — Py(b) = —29y(c).

(5) 29,(6) — Di(a) — Dy(b) = 2P,(b) — 2Py(c),

(6) @y(b) — Py(a) = 2[Py(b) — Py(¢)], and

() 3HP:(b) — D1(a)] = Py(5) — Py(c)-

Similarly it can be shown that }[®@,(8) — @,(a)] = Dy(d) — D,(a).
LemMma 6.4.  Suppose that ®(b) > Dy(b,), and b, , by , by ,... are such that for each

jeI+ there is a c; such that (b, b;,y, ¢;, b;) is an i-trisplit of b, b; . Also suppose that
x> v and D(x) = D(y). Then for eachjelt, b — b;>;x — y.

Proof. For notational simplicity, suppose that 4 = 4, X 4, and 7 = 1. By
repeated applications of Lemma 6.2 one can easily show that for each jelt,
D,(b) > Dy(b;). Since (b, b4, ¢;, b;) is a 1-trisplit of b, b; , b — b; >, b — b;,, . Thus
let e, f in A, be such that e >, f and bf > b,e and b; ;e > bf. Since, by hypothesis,
2> is a weak order, either ye > xf or xf = ye. If xf = ye, then

(1) Du(byi1) + Pole) = Di(b) + Py(f), and
(2) Dix) + Po(f) = Pu(y) + Pole),

which by adding (1) and (2) and then subtracting the common term, D,(e) + Dy f),
from the resulting inequality yields

B) Di(bs11) + Dufx) = Di(b) + Pu(),
and, thus,

(4) Pi(x) — Py(y) = Py(b) — Pu(bsa),
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which—since @,(x) = @,(y)—yields

(5) Pub) = Pulbs),
which contradicts @,(b) > ®,(b;,,). Thus ye > xf. Since bf > bse, we conclude that
b—b;> x—y.

LemmMa 6.5. Suppose that ©,(b) > Da), x >>; v, Py(x) = P(y), and ¥y ,..., ¥, is
a set of representation functions for (A, ) such that ¥(b) > ¥ {(a). Then ¥(x) = P{y).

Proof. Since @y(b) > P,(a) and {4, =) is trisplittable, we can find b, = a, b, ,
by ey €14 Co ..y such that for each jel+, (b, by, ¢;,b;) is a trisplit of b, b;. By
Lemma 6.4, for each jelI+t, b — b; >; x — y. Therefore, by Lemma 6.1 for each
jel+

(1) ¥ib) — ¥ilb) = ¥il») — ¥i(0).
Thus, by Lemma 6.3 for each j € I+,

() HFb) — Fi(by)] = Fi(b) — ¥ilbsa).
Therefore, for each je I+

(3) F[¥(B) — ¥i(by)] = ¥i(b) — Pilbsa) = ¥il%) — Pi()-
Thus, P(x) = P(y).

THEOREM 6.3. Let A = Xj_, A;, 2= be a weak ordering on A, {A, ) satisfy the
finite cancellation axioms, (A, > be bounded by b,,a,,.., a,, and {4,Z> be
trisplittable. By Theorem 6.2 let @, ,..., D, and ¥, ..., ¥, be sets of representation
Sfunctions for (A, Z) such that (b)) = Vy(b;) = 1, Py(a)) = Pi(a)) = -+ = D,(a,) =
Y(a,) =0. Then d, =¥, , D, =%,,.,9, =¥,.

Proof. To simplify notation, we will assume that 4 = A4, X A4,. Let B, = B, = [0, 1]
and B =B, X B,. Define =’ on B as follows: s > ut ifand only if r + s > u -+ &

Suppose that xy >’ uv. We will show that for some a, b € 4, xy >' D(@)D(b) >' uv.
Letx +y — (u + v) = € > 0. For simplicity we will assume that x # 0 and y # 0.
These cases will follow by an analogous argument. We will first show that for some
acd,, xy>'Da)y>"uv. Let x; be such that x > x; > 0 and x — x; < e. Then
since &,y > uw, we need only find some ac 4, such that x > @,(a) > %, . Let
8 = x—x;.Letr = inf{®,(c) | D4(c) = xand c € A;}and s = sup{D,(c) | %, = Dy(c)
and ¢ € 4,}. Then r — s = 8. By the definitions of inf and sup, let ¢, d € 4, be such
that @y(c) =7, s = Py(d), Py(c) —r < §/100. Let 8 = Dy(c) — Dy(d). Then
8-+8/50 > 8, = 8. Let (¢, e, f, d) be a 1-trisplit of A;. By Lemma 6.3, @,(c) - D(e) < 35,
and @,(f) — D,(d) < 38, . Therefore, by Definition 6.4 48, > Py(e) — Py(f) =
[B4(6) = By(d)] - [B(c) - By&)] - [Bo( £ ) — Py(d)]. Therefore, since By(c) - By(d) = 3, ,
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either @,(c) — Dy(e) > 18, or P(f) — Dy(d) > 18, . Without loss of generality
suppose that @,(c) — Dy(e) > 18, . Then 18; = Py(c}) — Dy(e) > 16, . It then easily
follows that x > @,(c) > x, which we wanted to show. Thus, if xy >>' uv then for some
ac 4, , xy > ®,(a)y > wv. Similarly, it can be shown that since @,(a)y >’ uv, for
some b e A, , xy > D(a)y > Dy{a) Pyb) > uv.

For: = 1, 2, define «; on B; as follows: (%) = supgcp ¥i{a) where D = {a|ac 4,
and x > @,(a)}. Note that for each ab & 4, oy[Dy(a)] = ¥1(a) and ay[DP,(b)] = Py(b).
Suppose that xy >' uv. Let abe A be such that xy >’ ®,(a) ®4(b) > uv. Then by
the definition of o and «, , ay(%) + oo V) = o[ Py(a)] + o[ DPy(b)] = ¥i(a) + Fu(b) >
ay(#) + ay(v). In other words, «; , ap is a set of strict representation functions for
(B, =". But (B, 2> satisfies Luce’s axioms for additive conjoint structures [see
Krantz et al.,, 1971, Chapter 6]. It follows from the uniqueness theorem for such
structures [see Krantz et al., 1971, Chapter 6] that the only set of strict representation
functions B, , B, for (B, "> such that 8,{0) = B,(0) = 0and §5,(1) = By(1) = 11s the
set of identity functions. Thus for each xy € B, (%) = x and oy(y) = y. Therefore,
fori = 1,2 and each a € 4, , D(a) = «,[P(a)] = V{a).

TueoreM 6.4. Let A — Xi_, A;, > be a weak ordering on A, and (4,2
satisfy the finite cancellation axioms, be trisplittable and be Archimedean. Then {4, Z) is
an additive conjoint structure with a set of strict representation functions @, ..., D, .
Furthermore, ¥, ,..., ¥, is another set of representation functions for (A, =5 if and only if
there is a positive real number v and real numbers t ..., t, such that for i = 1,...,n,

@’L' :rWi+ti.

Proof. To simplify notation, we will assume that 4 = A4, X A, . By Theorem 6.1,
let (*Re, +, *, 2> be an ordered field extension of the reals and «, , o, functions from
A, , A, into *Re such that for each xy, uv in 4,

xy > wv if and only if oy(x) -+ () > oy() + ax(v).

Let b, a in A, be such that b >, 4, and let ¢ be in 4,. Define 8, , B, as follows:
B1 = [ — oq{@)]/[ea(b) — xy(@)] and By = oy — ay(c). Then it is easy to show that
Bu(a) = 0, By(d) = 1, Ba(c) = 0, and for each xy, uv in 4,

xy > uw if and only if B,(x) + Bo(y) > By(u) -+ Bo(v).

We will now show that for each xy in 4, B,(x) and B,(y) are finite. First, suppose that
y € A, and y is not finite. A contradiction will be shown. Without loss of generality,
suppose that B,(y) > 0. Then S,(y) > ¢ for each ¢ € Re. Since {4, =) is trisplittable,
let (y, e, f, c) be a 1-trisplit of y, ¢. Then it can be shown by a proof similar to Lemma 6.3
that 3[Bx() — Bale)] = 3Bo() > Boy) — Bale). Since By(y) > 21 for each 7€ Re,

1B8,(y) > t for each t € Re. Since By(e) > Ba(v) — $8(y) = 4B:(¥), we can conclude
that By(e) > ¢ for each ¢ € Re. That is, ,(e) is not finite. We will now show that
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£a(y) — Bale) X 1. Suppose not. Then By(y) — By(e) < 1. and since fi(y) — Bufe) >
Bale) = Bo(f ) 2 > [Ba(7) = Ba(e)] + [Bale) = Bo )] = Boy) = Bo f ) > Ba( f) — Bole)-
In other words, 4 > [B5(3) — Bl £)] + (B £) — Bale)] — Bal3) — Balc) = Ba(3) > .
But this is impossible since B,( y) is not finite. Thus, B,(y) — Ba(e) = 1 = B1(8) — By(a).
In summary, if y € A, and B,(y) is not finite and By(y) > O then there is a y, € 4, such
that ¥ >, 93 >4 ¢, Bo(¥,) is not finite and ay > by, . Therefore, by repeating this
argument, we can find y; , ¥5, ¥5 , ¥4 5... such that ¥ >, y, >, ¥, >, ..., and for each
tel*, y, >, cand ay; by, . This contradicts the Archimedean axiom for {4, >>.
Therefore, we have shown that if xy € 4 then By(y) is finite. To show that 8,(x) is
finite for each xy in 4, we only have to apply a similar argument. (Note that since for
each element x of A, B,() is finite and that there are elements g, £ in 4, such that g > &,
the violation of the Archimedean axiom takes the form: there are %y, «, ,... such that
%y >3 %3 >4 - and for each 7€ I*, x4 2 x;,,£.) In summary, for each xy € 4, B,(x)
and B,( y) are finite. Therefore, for each xy € 4, let @;(x) = °By(x) and Py(y) = °By(y).
Then by using the methods of Theorem 6.2, one can easily verify that @, , @, is a set
of representation functions for {4, 2. Note that 1 = ®(b) > J,(a) = 0.

We will now show that @, , @, are a set of strict representation functions {4, 2>>.
Assume not, i.e., assume that a,a, , b;b, are in 4, aya, > by, , and Py(a,) + Dya,) =
D(by) + Dy(by). A contradiction will be shown. Since (4, ) is trisplittable, at least
one of the following two cases hold:

Case 1. Lete, € A; be such that @, >>, ¢, and e,a, > b,b,. Since a,a, >~ e,a, > b,b,,
Pyay) + Dyfa) = Difey) + Pylay) = Po(by) + Do(bs). Thus Py(a;) = Py(ey). Since
{4, Z is trisplittable, let (b, u, v, a) be a 1-trisplit of b, a. (Recall that D,(b) > ®,(a).)
Since u — a >>; b — u, by Definition 6.3 let d, f be in A4, and such that d >, f and
ud > bf. Since Dy(u) + Dy(d) = Dy(b) + Dy(f) and by Lemma 6.2 D,(b) > D,(u),
we can conclude that @,(d) > Dy(f). Since <4, =) is trisplittable, let d, , d, ,..., and
€1, €3 5., be such that for each ieIt, (d,d,,,,¢;,d;) is a 2-trisplit of d, f. Since
by Lemma 6.2 @y(d;,) — Po(d;) > 0 = Py(a;) — Py(e;) for each {eI+, we can
conclude that @,(e;) + Py(d; ;) > P,(a;) + Py(d;) for each i € I+. Since = is a weak
order, eyd;; > ayd; for each 7 € I*. Since d >, d; for each { € I+, this contradicts the
Archimedean axiom (Definition 2.4).

Case 2. Let e, € 4, be such that a;e, > b,b, . By an argument similar to Case 1
the Archimedean axiom can be contradicted.

7. APPROXIMATION BY FINITE STRUCTURES
DerFniTION 7.1, For each i € I'* let ¥, be a nonempty set and F; a function from

Y, into Re. Suppose that for each 7, je I+ such that { < j, Y, C Y;and ¥ = s+ ¥ -
Then, by definition, F = lim,_, F; if and only if F is a function from Y into Re such



ADDITIVE CONJOINT MFEASUREMENT 427

that for each x € Y and each positive real number ¢, there is a ¢ €I+ such thatxe Y,
and for each 7 > ¢, | Fi(x) — F(x)| <e.

DEerFINITION 7.2, Let & be an algebra of subsets on X and = be a reflexive relation
on &. Then (X, &, ) is said to be a finite qualitative probability structure if and only if
{X, &, Z is a qualitative probability structure and & is a finite set.

Let A = X, 4; and 2> be a reflexive relation on 4. Then (4, 2> is said to be a
finite additive conjoint siructure if and only if (4, > is an additive conjoint structure
and 4 is a finite set.

TueorEM 7.1. For each iel+, suppose that (X, &;, ;> s a finite probability
structure and that P, is a probability representation for (X, &, z.>. Suppose that for
eachi,jelt suchthati <j, 6;C&;and 2, C = . Let & = Users 6 and Z = Ojeys 2

Then the following three propositions are true:

(1) <X, &, =) has a weak probability representation;

(2) if Z; is a weak order on &; for each i € I+ and (X, &, =) is trisplittable, then
(X, &, > has an unique weak probability representation P and lim, , P; = P; and

(3) if =, is a weak order on &; for each i It and {X, &, =) is trisplittable and
Archimedean, then (X, &, ) has an unique probability representation P and
P =lim,,. P;.

Proof. (1) Since for each 1€ I*(X, &,, =,> is a finite probability structure, for
each eI X, &;, =;> satisfies the finite cancellation axioms. Thus, (X, &, >>
satisfies the finite cancellation axioms. Therefore, by Theorem 5.2 (X, &, >) has a
weak probability representation.

(2) Since for each 7e1*, >, is a weak order on &; and = = J;1+ 2, it is easy
to show that > is a weak order on &, Since (X, &, =) is trisplittable, by Theorem 5.5
let P be the unique weak probability representation for (X, &, 2». Suppose that
lim; ., P; = P. We will show a contradiction. Since lim, ., P; 5= P, letae &, [ be an
infinite subset of I*, and € a positive real number such that for each ie ],
| P(a) — Pja)| = e. Let F ={«| ] — o is a finite subset of [}. Then it is easy to show
that # has the finite intersection property. By Theorem 4.1, let % be an ultrafilter on [
such that # 2 %. Let (*Re, +, -, > be the #-ultrapower of (Re, -+, -, >>. For
each x € &, let Q,, be the function from [ into Re such that for each i e J, Q,{i) = P(x)
if xeé; and Q,(f) = 0 if x¢ &;. Then for each x € &, Q, € *[0, 1] where *[0, 1] =
{Fe*Re |0 < F < 1}. Since for each x € £ Q, is finite (Definition 4.5), let Q be the
function from & into Re such that for each x € &, Q(x) = °(Q,). Then by Theorem 4.5,
for each x € &, Q(x) € [0, 1]. We will now show that Q is a weak probability representa-
tion for (X, &, 2. (i) Since {i € ] | P(X) = 1} ={ie J | Qx(i) = 1} = Je ¥, 0x~ 1.
Therefore, by Theorem 4.5 Q(X) = °(Qx) = 1. Similarly, O( @) = 0. (ii) Suppose that
%,y €& and x > y. Then let g € J be such that for each7 € Jsuchthati >q,x,ye&;.

480/11/4-7
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Then {i|ie Jand Q,(f) > Q,(()} 2{f = ¢ |ie Jand Pyx) > Pyy)} ={i| i€ Jand
1 = q} € U. Therefore, as members of *Re, O, > O, . Therefore, by Theorem 4.5
O(x) = °(Qw) = °(Q,) = O(»). That is, O(x) = O(¥). Similarly it can be shown that
if u, v €& and u ~ v then Q(x) = Q(v). (iii) Suppose that w, 2 andw Nz = 3.
Let p € J be such that for each i € Jand such thati == p, w,2€ ;. Then{i | ie Jand
Ouorli) = 0uli) + Qu} 24 > p | i€ Jand Pw U ) = Pifw) + P()} = (i [ie ]
and ¢ = pl e #. Thus, Oy, ~ 0, + O, . Therefore, by Theorems 4.5 and 4.6
QU z) = Qo) = “(Qu + 0 = “Qu) + Q) = O(w) + O(). That is,
O(w U 2) = O(w) -+ O(2). By (1), (ii), and (iii) we have shown that O is a weak
probability representation for (X, &, ). Since for each ie J| Pja) — P(a)l > ¢,
e ]|1040)— P@)] > ¢ — fic ]| |P(a)— P@)] > ¢ — Jea. Thus, in
{*Re, +, ', =5, |0, — P(a)] Z e. Since °(Q,) = O(a), by Theorem 4.4 we can
conclude that | °(Q,) — O(a)| < ¢/2. Therefore, | O(a) — P(a)| > €/2. Thatis,Q # P.
This is impossible since P is the unique weak probability representation for (X, &, 2>.
Therefore, we can conclude that lim,_,, P; = P.

(3) Since for each i € I* >, is a weak order on &; and (X, &, =) is trisplittable, by
(2) there is an unique weak probability representation P for (X, &, => and
P =lim,  P,. Since (X, &, =) satisfies the finite cancellation axioms and is
Archimedean, by Theorem 5.4, P is a probability representation for (X, &, 2=>.

For notational simplicity, the following theorem for additive conjoint measurement
will be stated for the case of two components. Similar theorems are true for the general
case of n-components, n == 2. The proof of Theorem 7.2 is similar to the proof of
Theorem 7.1 and will be omitted.

THEOREM 7.2. For eachie 1+, let A, = B; X C;, =, be a reflexive relation on A, ,
and {A;, ;> be a finite additive conjoint structure with a set of strict representation
Sfunctions @, , ¥, . Suppose that a\b,, ash, are in A, and for each i, jel+ such that
i<j4:CA;,2:C %5, A= Uiar 4is T = Userr Zo» Pulby) = 1, and D(ay) =

Y(a,) = 0. Then the following three propositions are true:

(1) If <4, =) is bounded by b, , a, , a, then there is a set of representation functions
Jor <4, Z>.

(2) If <A, =) is trisplittable and bounded by b, , a, , a, and for each i € I+, =, is
a weak order on A;, then there is an unique set of representation functions @,V for
{4, z> such that D(b)) = 1 and P(a,) = ¥(a;) = 0. Furthermore, ® = lim, ., D; and
¥ = lim;,, ¥;.

(3) If {4, = is trisplittable and Archimedean and for each i € 1+, 2=, is a weak
order on A, , then there is an unique set of strict representation functions, @, ¥, for (A, >
such that ®(b;) = 1 and D(a,) = ¥(a,) = 0. Furthermore, ® = lim ®;and ¥ =lim ¥;.

It has been shown by Scott and Suppes [1958] that the finite cancellation axioms
(Definition 2.6) are not derivable from the kth cancellation axiom for any keI,
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8. HistoricaL NOTE

The formulation of the finite cancellation axioms (Definition 2.6) and the proof of
the representation theorem (Theorem 2.5) appear in various forms in Scott [1964],
Tversky [1964], and Adams [1965].

The discovery of necessary and sufficient conditions for finite qualitative probability
structures is due to Kraft ez al. [1959]. Scott later reformulated and proved these
results in Scott [1964].

The ultraporudct construction was introduced in .08 [1955]. Many uses of ordered
field extensions of the reals for the elicitation of properties of the reals can be found in
Robinson [1966].

Axioms, representation theorems, and uniqueness results for qualitative probability
structures have been considered by Savage [1954], deFinetti [1937], Koopman
[1940a, b], and Luce [1967]. All of these axiom systems use logically stronger assump-
tions than those that are presented in Section 5 to prove essentially the same theorems.
The above papers only consider Archimedean structures.

Additive conjoint structures have been considered in various forms by Adams and
Fagot [1959], Debreu [1960], Aczél, Belousov, and Hosszt [1960] and Aczél, Pickert,
and Raé [1960], Luce and Tukey [1964], and Luce [1966]. The above papers use
stronger assumptions than those presented in Section 6. Luce and Tukey [1964]
consider a representation theorem for the non-Archimedean case.
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