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1. Introduction 

Theories of measurement - at least those for classical physics, probability, and 
the behavioral and social sciences - study ordered algebraic structures that fulfill two 
conditions. First, at least one empirical interpretation of the primitives exists for which 
the axioms appear to be either approximately true laws or plausible, if untestable, 
conditions. Second, a homomorphism into some numerical structure can be established 
in which the order maps into ordinary inequality and which is essentially unique in the 
sense that its value at one (or two) points determines it. (When one value is sufficient, 
the measurement literature refers to the homomorphism as a ratio scale, and when two 
are needed, as some species of interval scale.) 

Most of the literature has focussed on structures which either have or induce opera- 
tions (either closed or partial) t that are associative (see, for example, Krantz et al. [4] 
and Pfanzagl [ 131). Such structures have numerical homomorphisms with the opera- 
tions mapping into f. Aside from some work on bisymmetric intensive structures -- 
those with the iniensive property that if x ky, then x .>x o y 2 y and the bisymme- 
try condition (X 0 y) 0 (u 0 u) - (X 0 tl) 0 (y 0 u) - very little has been done on non- 
associative measurement structures. Our purpose here is to work out some of the basic 
features of such structures. In doing so we adhere strictly to the demand of essentially 
unique homomorphisms, but relax considerably the requirement of citing existing em- 
pirical interpretations. One consequence of this program is to enhance our understand- 
ing of the interconnections between positive concatenation structures (ordered partial 
operations with the property that x Q y > XJ), general intensive structures, and gen- 
eral conjoint ones (orderings of Cartesian products). 

The paper has the following structure. The next section is devoted to positive con- 
catenation structures which meet the structural conditior, of having half elements, i.e., 
a function 0 from X into X such that for all x in X, 0(x) J e(x) = X. The resulting 
homomorphism is into (Re,>, 4, where 0 is a partial, binary, numerical operation. 
Section 3 takes up intensive structures and conditions under which it is possible to 

“f For special terminology rend notation, see the end of this section. 
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convert one into a positive concatenation structure with half elements and conversely. 
The topic of Section 4 is conjoint structures (X X P, 2) for which the representation 
involves functions tix and $P from X and P, respectively, into the reals and a real 
function F of two real variables such that for all x, y in X and p, 4 in P, 

It is shown that under reasonable conditions this problem can be solved by inducing 
on one of the components a partial operation of the sort studied in Section 2, and its 
representation is used to construct one for the conjoint structure. In Section 5 we turn 
to conjoint structures which also possess a positive partial operation on one of the 
sets X, P, or X X P. A concept of distributivity is introduced, and it is shown that in 
its presence the operation has an additive representation if and only if the conjoint 
structure has a multiplicative one. Although this subsumes much of the measurement 
structure of classical physics, it does omit such important cases as relativistic velocity. 
That case is taken up lin Section 6, where a qualitative assumption is shown to be 
equivalent to the usual relativistic “addition” law for velocities. Finally, Section 7 
returns to positive concatenation structures but with a focus on the question of alge- 
braic conditions under which it is plausible to suppose that the homomorphism is 
into a continuous, strictly increasing operation on the positive reals. We provide 
purely algebraic conditions under which it is possible to construct a Dedekind com- 
pletion of the given structure, and so a representation onto the positive reals. These 
conditions, which appear both to be new and interesting, avoid the usual mixture of 
algebraic and topological assumptions, and are necessary conditions in a Dedekind 
complete structure with a closed operation. Some open problems are cited in the end. 

Throughout this paper, the following conventions and definitions wiil be observed. 
Re will denote the set of reals, Re+ the positive reals, I the integers, and I+ the 

positive integers. Elements of Cartesian products X X Y will be written as (x, JJ) or xy. 
We say 0 is a partial operation on X if and only if for some nonempty subset A of 

X X X, c is a function from A into X. 
Let Q be a partial operation on X, A be the domain of 0, and x, y be arbitrary ele- 

ments of X. x 0 y is said to be defined if and only if (x, u) is in A. 0 is said to be a 
cbsed operation if and only if x 0 y is defined for each x, y in X, i.e., if and only if 
0 is an operation. ror each n in I+, vlx is inductively defined as fol!ows: 

01 i x=x; 
(ii) if f? > 1 and [(n-1)x] 0 x is defined, then UUT = [(IS 1)x] 0 x; 

(iii) if H> I and [(n- 1)x] 0 x is not defined, then ytx is not defined. 
Let Y be a subset of X. The closure of Y (with respect to 0) is the smallest set 2 such 
that Y c 2 and for each x,y in 2, if x o y is defined then x o y is in 2. 

6 is said to be a haZf eZenzent function on X if and only if 6 is a function on X sul=h 
that for each x in X, 6(.x) o O(x) =x. 

2 is said to be a weak ordering (or weak order) on X if and only if X is a nonempty 
set and? is a transitive and connected binary relation on X. 

Let 5 be a weak ordering ;rn X and U,U be arbitrary elements of X. Then u - u 
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denoTs l4 2 v and vk u. It is easy to show that - ’ IS an equivalence relation oi X and 
that -/- is a total ordering on X/-. u > v denotes u 2 v and not v 2 21, and II < v 
denotes v > u. <X, 2) is said to have a countable dense subset if and only if there 
exists a countable subset Y of X such that for each x, z in X, if x > z then for some y 
in Y,xZy?Zz.(X,Z)’ 1s said to be Dedekind compZete if and only if each nonempty 
bounded subset Y of X has a least upper bound (1.u.b.) in X. 9 is said to be an order 
homomorphism of (X, ?> into Re (respectively, Re+) if and only if q is a function 
from X into Re (respectively, Re+) such that for each x, y in X, 

xky iff g(x)&@). 

By well-known theorems of Cantor, <X,5> has a countable>_dense subset if and only 
if order homomorphisms into Re and Re+ exist; and if (X, J has a countable dense 
subset, has no minimal or maximal elements, is Dedekind complete, and is such that 
for each x, y in X if x‘r y, then for some z, x > z t y, then there exists an order 
homomorphism that is onto Re+. 

Let ?Z be a weak ordering on X. Throughout this paper, we will often treat multi- 
valued functions whose values are unique up to - as functions, e.g., if cp is an order 
homomorphism of CX, 2) into Re then cp-* will often be treated as a function. 

Let R c Re? For convenience, instead of forming a new relation that is the 
restriction of 2 to R, we will often consider 2 to be a relation on R. 

2. Positive concatenation structures 

Definition 2.1. Let X be a nonemptl set, 2 a binary relation on X, and f’ a partial 
binary operation on X. The structure X = (X, 2, 0 ) is a positivt- concatenatior2 strut- 
ture if and only if the following seven axioms hold for all w, x, y, z in X: 

Axiom 1. 
Axiom 2. 
Axiom 3. 

Axiom 4. 

Axiom 5 
Axiom 6. 
Axiom 7. 

Weak ordering: ;), is connected and transitive. 
Nontriviality: there exist u, v in X such that u t v. 
Local definability: if x o y is defined, x 2 w, and y 2 z, then w 0 z is 
defined. 
Monotonicity: (i) if x 0 z and y o z are defined, then 

x?y iff xc&yoz, 

and (ii) if z 0 x and z o y are defined, then 

x?y iff zox?zoy. 

Restricted solvability: if x > y, then there exists u such that x ‘r y (1 14. 

Positivity: if x o y is defined, then x 0 y > x and x (J y > y. 
Archimedean: there exists II E I+ such that either nx is not defined OJ 

nx ky. cl 

Definition 2.2. Let 5V = (X, ?, 0 ) be 3 positive concatenation structure. g is said to 

be a o-representation for Sy if and only if 9 is a function from X onto some subset R 



200 L. Narens, R.D. Lute / 7%e algebra of measurement 

of Re+ such that (R, 2,~ ) is a positive concatenation structure and the follow 
two conditions are true for each x, y in X: 

(i)x?y iff cp(x&Q); 
(ii) if x 0 y is defined, then &:) 0 Cpo) is defined and cp(x o u) = g(x) o 40’ 

If 0 is +, then 4 is said to be an additive representation for X. 0 

i 

) 

ng 

. 

Lemma 2.1. Let CX, 2, 0 ) be a positive concatenation stmcture and x be an arbitrary 
element of X. Then the following three statements are true: 

(i) There exists y in X such that x > y. 
(ii) There exists y in X such that y 0 y is defined and x t y 0 y. 

(iii) There exists a sequence of elements of X, x 1, x2, . . . such that (1) for each 
i E I+, xi+1 0 xi+1 is defined and xi t xi+1 0 xi+1 , and (2) for each z in X there 
exists j E I+ such that z > Xj. 

Roof. Left to reader. 0 

Lemma 2.2. If <X, 2, 0 ) is a positive concatenation structure, then <X, 2) has a 
countable dense subset. 

Roof. By Lemma 2.1, let x1, X2, . . . . Xi, . . . be a sequence of members of X such that 
for each z E X there e,uists m such that z > xm . Let Y be the closure of {x1, x2, . . . . 

Xi, . . . } with respect to 0. Then Y is a countable set. Suppose that u > u. By’restricted 
solvability, let w be such that u > u 0 w. Let n be such that w t x, and u > x, . We 
will first show that for some positive integer k, 

(2.1) V?kxn and (k+ 1)x, > V. 

If (2.1) does not hold for some k, then from Archimedean it follows that it must be 
the case that for some positive integer p, 

u>, pxn and (p + l)xn is not defined. 

But since u )? px,, w$. Xn, and u 0 w is defined, it follows from local definability 
that (px,) 0 xn =O,- f 1) xn is defined - a contradiction. Therefore, let k be such that 
ukkx, and(k+l)x,>u.SinceuZkx, andwkx,, 

u>vo w>(kx,)ox, =(k+l)x,>v. 

Since Y is the closure of (~1, x2, . . . . xi, . . . } with respect to 0, (k + 1)x,, is in Y. El 

Theorem 2.1. Let Sy = <X, 2, 0 ) be a positive concatenation structure. Then there 
exists 9 and 0 such that 9 is a 0 -representation for x . 

roof. Since by Lemma 2.2 (X > , -1 has a countable dense subset, by a well known 
theorem of set theory, let cp bc an order homomorphism from <X, 2) into Re? Let 
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R = {g(x) 1 x E X) and for each r E R let q-l@) be an element x of X such that’ 
g(x) = r. Let 0 be the partial binary operation on R such that for each r, s in R, 

r 0 s = cp(q- ’ (r) 0 cp-’ (s)) iff cp- ’ (r) 0 cp- ’ (s) is defined. 

Then q is a o-representation for %. Cl 

Definition 2.3. A positive concatenation structure 9C = <X, 2, 0 ) is said to be with 
haEfelements if and only if SC satisfies the following axiom: 

Half elements: for each x in X there exists u such that u 0 u - x. Cl 

Theorem 2.2. Let % = <X, 2, 0) be a positive concatenation structure with half ele- 
ments and 9, 3, be o-representations for % such that for some u, g(u) = G(u). Then 
cp=$. 

Proof. Suppose that q, $ are -representations for % and q(u) = I,&(U). Assume that 
cp + JI. A contradiction will be shown. Without loss of generality assume that u is 
such that q(u) > 9(u). Let u1 = u, and by half-elements, for each n E I+ let u,,+~ be 
such that u, - un+l 0 u,,~. For each n E I+, let s = g(u,,). Then 

9 @ &2 = cp(u2) @ cp(u2) = cp(u2 0 2.42) = cp(u,) = a1 , 

and by induction, for each n E I+, 

%+l ’ %+l =%z* 
Since (R, -, > 0) is a positive concatenation structure for some R c Re+, by the proof 
of Lemma 2.2, let p, m E I+ be such that 

where of course POrm stands for [(p- 1)&m] 0 am. Since ~1 - ~2 0 ~2, 

a!2 @ c9 = q = cp(q) = w-q) = w42 O 9) = WQ) @ \I(uz) l 

Since 0 is monotonic this means that $49) = 09. By induction, for each 11 E I+, 

Since cp(V) > g(pU,), V > Pllm , - since $(pu, ) > \cl(v), pu, > U. This is a contra- 
diction. Cl 

Definition 2.4. % = <X, -, >e 0) is said to be an extensive structure if and only if % is 
a positive concatenation structure that satisfies the following axioms: 

Associativity: for each x, y, z in X, if x D (y :7 z) and (x p y) 0 z are defined, then 
x~~(y~z)-(xoy)oz. 

Unboundedness: for each x, there exists y such that y > x. Cl 
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The following theorem due to Krantz et al. [4] is a generalization of a classic 
theorem of Hiilder [2]. 

Theorem 2.3. If % is an extensive structure, then there exists an additive reptwn- 

tation for %. Furthermore, ifrp and 3/ are additive representations for %, then for 
somerERe+,cp=r$. 

Proof. Theorem 2.4 of Krantz et al. [4]. Cl 

Sometimes it is convenient to consider additive structures with maximal elements. 
x = cx, 2, o ) is said to be an extensive structure with a maximal element if and only 
if % satisfies all the conditions of Definition 2.4 except for unboundedness and there 
exist u, u in X such that u 0 u is defined and for each x in X, u 0 vk x. Then it is easy 
to shdw that Theorem 2.3 remains valid if “extensive structure” is replaced by “ex- 
tensive structure with a maximal element”. 

3. Intensive concatenation structures 

Definition 3.1. Let X be a nonempty set,2 a binary relation on X, and s a (partial) 
binary operation on X. The structure % = (X, k, *) is an intensive concatenation 
structure iff for every x, y, z in X the following five axioms hold: 

Axiom 1. Weak order : 5 is transitive and connected. 
Axiom 2. Nontriviality: there exist U, u in X such that u % v. 
Axiom 3. Local definability: If x * y is defined and x k w and y 2 z, then w * z, 

is defined. 
Axiom 4. Monotonicity: (i) if x * z is defined, then x k y iff x + : ?y * z: and 

(ii)ifz*xisdefined,thenx?Zyiffz*xkz*y. 
Axiom 5. Intern: if x - y, then x * y, y * x are defined and x -x * y -y * x. If 

x~y,thenx>x*y>yandxty*x>y.(x*yandy*xarcde- 
fined by x hr x and Axiom 3.) 0 

Definition 3.2. Suppose % = (X, 2, *) is an intensive concatenation structure and 6 
is a function from A E X into X. S is a doubZingfitnction iff for every x, y in X: 

(i) 6 is strictly monotonic increasing. 
(ii) If x 2 y and x is in A, then y is in A. 
(iii) If x t y, then there is u in X such that y * 11 is in .4 and x )L S@ * 11). 
(iv) If x * y is in A, then 6(x * y) > x, y. 
(v) Let x,, , n = 1,2, . . . . be such that xl - x and if x,, -1 is in A, then x,1 - ci(x,+ 1) * x. 

Either there exists n E I+ such that x,, is not defined or x,, 2 y. Such a sequence is 
called a standard sequence of 6. Cl 

Intensive concatenation structures resemble positive concatenation ones in that the 
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order, nontriviality, local detlnability, and monotanicity - 

tive ~t~~tu~es~ it is suffi- 
sive structures, the concept 

e name wit1 become 
e structure is unique 

it matters what one ad- 

Theorems 3.2 and 3.3. 

Proof. Since the weak order and nontriviality assumptions involve only 2, we need 
not consider them. 

Assume (X,&Q) is a positive concatenation structure with 8 the half element 
function. Since e(x) 0 6(x) W x, the monotonicity of o implies the strict mnnotonicity 
of& We show the axioms of an intensive structure. 

3. Localdefinabiliry. Suppose x * y is defined, x 2 w, and y 2 z. Then x G 1 is de- 
fined and so by local definability of c-a, w (J z is defined. whence HP * z is defined. 

4. nstwicit),. Suppose x * 2 is defined, then x u z is deIk*d and by the mono- 
tonicity of > > o,x,yiffx~z~y 0 z. By the strict monotanicity of 0, this holds iff 
x * z &JJ * z. The other case is similar. 

S. Intent. Suppose x > y and x * y is defined. Since x * y = 0(x i y), we see 
(x *y) 0 (x + ypx By the manotonicity of f’, (x y) 0 (x * yP y (; y, whence 
x * y Ip )b. Suppose x k x, then 0(x ~1 y) - x * y 2.~: - 0(x 0 x), where by the 
nlonotonicity of 0 and of c, yk x, contrary to assumpq.ion. A similar argument holds 
for-y * x. 

If x - y, thm since 0(x QP x) - x, x * y - x. 
NW% ‘WC show that O- 1 is a dl function. IJY ,4 be the domain of 0 I. 

(i) ‘I he s%ric% monotonicity of 6 hence of 0 * was shown above. 

(ii) Suppose x is in /I and .&C _r. Let E = 8 - 1 (..u), JJ z r5 -II: I x. By local Jefinability 
of k), xk y implies y 3 y is defined, whence y I y - Q - l(y). 

(iii) Suppose x > y. By restricted solvability, there exists u in X such that x >c _Y J 

II ry s-qy * 84). 

(iv) Suppose x * y is in A and that 8- i (x * y) >t x,y is false. If x 2 8- 1 (X * _Y), 

then by the strict monotonicity of C4.2 -Y * Y - N-r Y), whence 
x 2 x Ci y, contrary to the positivity of \ . 
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(v) Supposeykx,, n = 1,2, . . . . wherex, is in A, x1 =x, and 

xrr = O-l(xn_l) *x = e[e-‘(x,_,) 0 x] l 

A contradiction will be shown. Since 6-‘(Xn) - (n + 1)x [where lx = x and 
for each m k I+, (m + 1)x = (mx) 0 x] , Archimedean (Definition 2.1) is con- 
tradicted. 

Conversely, suppose <X, 2, *c) is an intensive concatenation structure and O-1 is 
a doubling function. 

3. Local definability. Suppose x 0 y is defined, x kw, y k z. Since x * y * 0(x o y) 
is defined, by local definability of *, w * z is defined, so e-l(w * z) = w 0 z is defined. 

4. Monotunicity. Assume x 0 z is defined, 

xky > iff x*2-y*z (monotonicity of *) 

iff @(x * z)? &+Y * 2) (strict monotonicity of 0-l 
and property (ii) of Def. 3.2) 

iffxoz,yoz. > 

The other case is similar. 
5. Restricted solvability. Suppose x>*Y. By property (ii) of Definition 3.2, 

x>e-1(pu)=y02.i. 
6. Positivity. Suppose x 0 y is defined, then by property (iv) of Definition 3.2, 

xoy-e-l(x~y)>x,y. 
7. Archimedean. Consider the sequence yrx = ((rz- 1)x) 0 x. Let 

X, - e(fa) - e[(n- 1)~ 0 X] 

-(?I- 1)~ *x:-e-1[e((f2-i)x)] *x 

-e-l(xn_l)*~. 

‘So for some n either xn is not defined or x, 2 O(y), whence IZX 2 y. 
8. Half elements. Since e(x) = e(x) B e(x), 

x - e- l [e(x) * e(x)] = e(x) o e(x). 0 

Corollary 3.1. Under the assumptions of Theorem 3. I, the operation 0 is bisymmetric 
(i.e., (x 0 y) 0 (z 0 w) - (x 0 z) 0 (y 0 w)) iff the operation * is bisymmetric. 

Proof, (x 0 y) 0 (2 0 w) - (x 0 2) 0 0) 0 w) 

iff[(x*y)o(x*y)] 0 [(z*w)o(z*w)] -[(x*z)o(x*z)] 0 [(~*w)o~*w)] 

(since x 0 y - (x * Y) O (x * Y)) 

if-f Mx #Y) o (z * w)] 0 [(x * y) 0 (z * w)] - [(x * z) 0 b * w)] 0 [(x * z) 0 fjJ * w)] 

(bisymmetry) 
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iff(x *y)o (0 w)m(x *z)o (y * w) (monotonicity of 0) 

(monotonicity of 8 and 0(x o y) = 
x*y). cl 

Definition 3.3. Suppose % = <X, 2, *) is an intensive structure with a doubling func- 
tion 6.9 is said to be a o-representation for Cx if and only if cp is a function from X 
into.Re+ and 0 is a partial binary operation on Re+ with half elements (let h denote 
the o-half element function) such 
x,y in X: 

(i) x ?y iff cp(x) 2 s(y); 
(ii) cp(x * y) = h [dx) 0 (P(Y)] ; 
(iii) q(x) = hq6 (x) if x is in the 

that the following three conditions are true for each 

domain of 6. Cl 

Theorem 3.2. Let % = <X, -, >- *e) be an intensive stnrcture with doubling function 6. 
Then there exist cp and o such that q is a o-representation. Moreover, if $ is another 
o-representation such that for some u in X $(u) = q(u), then J, = cp. 

Proof. By Theorem 3.1, x 0 y = 6(x * y) defines a positive concatenation structure 
<x, 5, o ) and by Theorem 2.1 there is a numerical operation 0 and a function 4 that 
is a o-representation of CX, -, > 0). We show this is also a o-representation of the inten- 
sive structure by proving (i)-(iii) of Definition 3.3. (i) holds in both structures. (ii) 
Since 

xoy-s-‘(xoy)o6-I(xoy)~(x*y)~(x*y), 
then 

(iii) Since 
$06(x) = $6(x * x) = $0(x 0 x) = g(x) @ g(x) ) 

so 

ww = &I l 

If 9 and $ are two such functions with g(u) = J/(U), 
. . . 

( ) 111 , 

cp(xQY)=gs(x*Y)=~~x~Y)~(P(x*Y) 

= h[W @ SW @ GP(x) @ rpw1 

then using properties (ii) and 

= 4x) @ rpol) . 

Similarly, $(x o y) = 3/(x) 0 $0). Thus, 9 and $ are both e-representations of <X, ?, 0) 
and so, by Theorem 2.2,9 = $. Cl 

We next turn to the question, which is not fully answered, about the relation be- 
tween doubling functions of the same intensive structure. 
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Theorem 3.3. Suppose <X, -, - > *) is an intensive concatenation structure with a doub- 
ling function 6 and there exists f from X onto X such that 

(i) f is strictly increasing; 
(ii) ifx * y is dej@ed, then f(x) * fcv) is defined and 

f(x * Y) =f(x) *folk 

then f - 1 Sf is also a doubling function. 

Proof. We show 6’ = f-16f is a doubling function: Let A, A’ be the domains of 6,6’. 
(i) 6’ is monotonic because f, f-l, and 6 are. 

(ii) Suppose x ?Y and x is in A’. Since fS’ = Sf, we see f(x) is in A, whencefCY) 
is A and soy is in A’. 

(iii) If x> Y, the:1 f(x) t f@), and so there is u such that f(x) > S[f(x) *j’(u)] = 

S If(x * u)] . Taking inverses x > 6’(x * u). 
(iv) 6’(x * y) = f-%f(x * y) = f-l6 [j(x) *f(y)] > fW1f(.X), f-‘f(j) =X, y. 
(v) If x, is a standard sequence of S’, we show j(x,) is one of 6. xn = 6’(x,_ 1) * x. 

so 

f(xn) =f[a’(Xn-l) * xl =fs’(xn-l) *f(?~) 

=ff-‘Sf(x,,_l) *flx)=6f(xn-1) *f(x) l 

And SO property (v) of Definition 3.2 holds for 6’ because it does for 6. 0 

Theorem 3.3 fails to characterize the non-uniqueness of the doubling functions. 
We conjecture that the necessary and sufficient conditions for 6 and 6’ both to be 
doubling functions of the same intensive structure is the existence of an automor- 
phism f of that structure such that 6’ = f ‘l&f. This conjecture can be recast as a con- 
jecture about either the relation between the two induced positive concatenation 
structures or the existence of a solution to a functional equation arising from the 
numerical representations of these positive concatenation structures. 

First, let 0 and 0’ be the concatenation operations induced by * through 6 and 6’, 
respectively. We observe that 0 and 0’ are constrained by the following important 
property: if all of the following concatenations are defined, then for all x, y, II, u in 
X, 

(3.1) xOY -140~ iff XO’Y-140 v. 

This follows immediately from the fact x 0 y - 6(x * y) and x 0’ y - 6’(x * Y). 
Moreover, if the original conjecture is correct that there is an auton~orpl~isn~fsucl~ 
that 6’ = j’-bf, then it is easy to see that for all x,y in X for which the concatena- 
tions are definc2, 

(3.2) f (x (1’ y) = j(x) (J fez,) . 

So the question can be cast as: stlppose (X, 2, >-l> and CX, k, Q’) are two positive 



concatenation structures satisfyin 
that eq. (3.2) holds? 

. (3.l ), does there then exist a function f such 

Then, as is easily shown, eq. ( 
same indifference curves. And 
function g = 

We are not aware of any an ysis of this fun~t~~na~ equalion except when :) and p * are 

associative. 

4. Idxal conjoint structures 

The literature on conjoint structures has to date been concerned with weak t,rders 
on Cartesian products. Krantz et al. 14, p.275) noted that in practice a somevvM less 
restrictive concept is needed. The one given below attempts to capture that a prefer- 
ence ordering on the Cartesian product need only hold for pairs of elements that ate 

comparable with the minimal element. 

Definition 4.1. e = M X I?, 2, ab) is said to be a heal mtjnirrt stnrctrrrc (with au 
idmity eleniettt ab) if and only if? is a binary relation on X X P, ab 
the following eight axioms hold for all x, y, z in X and all p, q, r in P: 

1. Transitivity: if xp 2 y9 and y9 z zr, then xp 2 2~ 

2. Local cannectivity : either .xp 2~9 or y9 2 xp if and only if xp 2 ab and y9 >, ab. 
3. Independence: (i) if& ak, and, for some s, A& YS, then xp k yp; and (ii) if 
> r xg ry ab and, for some w, wp 64r IV 

% 
t 9 then xp - ~9. 

4. Cbnlportent defirlability : xb w ab and ap Z ab. 
5. M-mtriviak’ty: there exists IV such that wb t ab. 
6. Partial solvabilitp (i) ifp9 2 ab, then thefe exists w such that wb - pl; NN.! 

(ii) there exists I such that xb * at. 
7. Derrsity: if xb >L yq, then r some S, xb > ys p ._1’9* 
8. A rchirmdeun : for some 11 It, either (rtx)b kyb or ctx is not dcf’ined, where 

m.x is defined inductively as follows: x = X, and if W.X is defined and S, w are such 
that xb -as and (~2~)s - wb, then (m + 1)x is some element u of X such that wb h* ub, 
and otherwise (nt + 1)x is not defined. 

e is said to be a local corydrzt stntcttrre with hdfeiertterlts if 6 dso satisdles the 
following axiom: 

9. Halfelemerzts: for each x in X there exist rv, s such that ws - xb and lvb W as. 0 
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Definition 4.2. Let e = (XX P, -, > ab) be a local conjoint structure with an identity 
element ab. Define 5 e1Y on X and ?ZP on P as follows: for each x, y in X, 

&y iff xbkyb; 

and for each q, r in P, 

q+ iff aqkar. 

It is easy to show that ?x and ?$ are weak orderings. By partial solvability, let k be 
a function on D = (xp 1 xp k ab ) such that for each xp in 0, xp - k(xp)b. By partial 
solvability and component definability, let u be a function on X such that for each 
x E X, xb - au(x). Let (D be the binary partial operation defined on X as follows: For 
each x, y in X, 

(i) x 0 y is defined iff xc@) ?ab, 
and 

(ii) if x Q, y is defined, then x CD y = &o(y)). Cl 

Imma4.1.Let e =tXXP,> -, ab) be a local conjoint structure. Then the following 
three statements are true for each x, y in X and each p, q in P: 

WxP~Yq iff E&PI& KYah 

(2) x 2~ Y iff o(x) 5~ NY); 
(3) N&PN -p P* 

Proof. Left to reader. Cl 

Definition 4.3. Let C? = (XX P, ?, 
ab. y = (X+ ,k’, 

ab> be a local conjoint structure with an identity 
4 is said to be the partial operation structure induced by C? if and 

only if X+ = {x E X I x>x a}, ? is the restriction of 2’ to X+, and 0’ is the restric- 
tion of a to X+ X X+. If y is a partial operation structure induced by e that is also 
a positive concatenation structure, then Y is said to be the positive concatenatiorz 
structure induced by C. Cl 

Theorem 4.1. Let e = (X X P, 2, 
>f 

ab) be a iocal conjoint structure and let y = (X’, 

-7 d be the partial operation structure induced by e. Then CJ is a positive con- 
catenation structure. Furthermore, if e has half elemerzts, then y has half elemerzts. 

Proof. We will show that axioms l-7 of Definition 2.1 hold for y. 
1. Since 2’ is a weak ordering on X, ? is a weak ordering on X+. 
2. Since C! is nontrivial, let x be such that xb > ab. By density, let t be such that 

xbt at > ab, Then 

xb > at - E(at)b > ab , 

and thus by the definition of >‘, x >’ ((at) >x a. Therefore y is nontrivial. 
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3. Suppose that x 0’ y is defined, x 2’ w, and y>-’ z. Then by Lemma 4.1, 

(x Q”‘y)b - xc&Y) ?h(z) 22 wu(z) ) 

and so w m’ z = ~(~~(2~) is defined. 
(4). (i) Suppose that x a’ z and y a’ z are defined. Then . 

x ?Y y iff x 2~ y iff x0(z) $w(z) 

iff ~(~~(~)) 2~ ~~~(~)) iff X ~3’ Z 2 y @’ 2, 

(ii) Suppose that z m’ x and z QC y are defined. Then 

x>,’ y iff x ?$ y iff o(x)? cr@) iff zu(#Z ZoCy) 

iff ~(zo(x)) 2~ &a@)) iff 2 C! X Z z dy. 

Thus y satisfies monotonicity. 
5. Suppose that x >’ y. Then x >x y, and thus xb > yb. By density, let t be such 

that xb t yt > yb, Then xb> at. Let u = s(at). Then by Lemma 4.1, a(u) -p t, and 
SO 

Thus y satisfies restricted solvability. 
6. Suppose that x m’y is defined. Then xo(y) > xb, and thus by Lemma 4.1, 

x 0'~ = &W(Y)) + W) - x 9 

and similarly, 

Therefore y satisfies positivity. 
7. Since @ is Ar~~limedean~ it follows imn~ediately that QJ is Ar~llin~edean* 
Suppose that e has half elements and x is an element of Xf. Let w9 t be such that 

wt - xb and wb - at. From the latter, dew) -p t, and so we - xb. Therefore, 

w 0’ IV = ~(W~(W)) -l bowl) -t gxb) - x I 

Thus y has half elements. IJ 

Definition 4.4, Let e = (X X P, - ) > abS be a local conjoint structure. Then (rp, $, is 
said to be a +representation ~%r C? if and only if F is a partial binary operation on Re, 
9: X + Re, JI: P + Re, and the following three conditions hold for all x, y in X and 
all p, q in P: 

W&a) @ HP) = HP) * 

(2) q(x) m NW = d-4 . 

(3)xpzyq iff xpkab, yqk ab, and q(x) 0 $(p) 2 q(v) ~~1 J/(q)- q 
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rhere exists a o-representation for e. Furthermore, for each 0, a’, 9, $J, $‘, if hp, $ ) 
is a ++representation for 2 and (rp, JI’ ) is a 0 Lrepresen tatiota for C! , then JI = $I’ and 
for all xp kab, dx) 0 $(p) = g(x) 0’ #‘I$). 

> Proof. By Lemma 2.2 and Theorem 4.1, (X, hr~ ) has a countable dense subset. Thus 
by a well-known theorem of Cantor (see Theorem 2.2 of Krantz et al. [4]), let 4 be 
a function from X into Re such that for each r, y in X, g(x) 2 q(jQ iff x & y. For 
each r E P, let $$p) = cp(&p)). Let 0 be the partial binary operation on Re defined 

bY 
ros=w iffforsomexpkab, r=cp(x), 

s = HP), and w = g(WO) . 

Then for each x, y in X and each p, q in P, 

XPkY4 iff #P)Q KYd 

iff d&PLO 2 (P(KWl 

Thus (9, $) is a -representation for e. 
Suppose that Q, 3/> is a -representation for e and that (q, $‘) is a @‘-representa- 

tion for e. Let p E P. Then t(ap)b - ap, and thus 

Similarly, 

Since p is an arbitrary element of P, $ = 3/‘. Now suppose that xq 2 ab. Then 

9(&W)) = $0) ‘3 G(q) = 4(x) 3,’ J/‘(4) = g(x) @’ 9(q) l q 

The following definition formulates a sufficient condition for 0 to be associative. 
The proofs of Theorems 4.2 and 4.3 utilize ‘concepts developed in Holman [3] . 
Theorem 4.3 is similar to theorems of Lute and Tukey [9] and Lute [6], but uses 
somewhat different as-umptions; in particular, different solvability conditions are 
assumed and ?Z need not be defined for large elements of X X P, i.e., xy ? ab need 
not hold for all x)7 in X X P. 

Definition 4.5. A local conjoint structure d = (XX P, ?, ab) is said to be additive 
if and only if SQ is a local conjoint structure and the following two axioms hold: 

The Thomsen condition: For each x, y, z in X and each p, q, r in P, if xp - yq and 
yr - zp, then xr - q. 

hbotrndedness: For each xy in X X P, there exists yq such that yq + xp. 



Proof. (i) Suppose that x a“y is defined. e will show that xa(j9 - JY+J(X) and then 
x 0’ y m _Y 0’ X. Since aa) - yb and x& - au(x), from the Themsen con&t ian it 

follows that xoca)) - JVJ(X). Thus 

x @’ y = gxo@)) -’ &w(x)) = y ;f ‘x. 

(ii) Suppose that x au 0) a’ 2) is defined. Since y 9’ 2 t’ _I*, x a’ y is defined. Since 

and 
ye(x) - (x @‘Y)b 

it follows from the Thomsen condition that 

(p’z)u(x)-(x*‘y)u(z). 

Since by part (i) of this proof, 

it follows that 

MY @’ 2) - (x a’ y) u(z) , 

and thus 

x 9’ OI @’ 2) = HxNy @’ 2)) -’ tj((x @’ v)u(z)) = (x 4 ’ y) 1’ 2. 0 

Theorem 1.4. Let SQ = M X P, 2, ab) be a11 additive local conjoirtt stnrctwr. Then 
there exist real valued firrwtiom 4 011 X ajtd $ WI P such thabjiw each xp, yy in X X P, 

UMab=W9=0, 

Proof. Existence. Let y = (X+ , k’, 4 be the positive concatenation mucture induced 

by (2. By Theorem 4.3, y is associative. Since by assumption Cf is unbounded, y is 
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unbounded. Thus y is an extensive structure, and by Theorem 2.3, let q1 be an addi- 
tive representation for y . Extend p1 to X as follows: let cp : X -+ Re be such for all 
x E X+, q(x) = 9 (x) and for all x -x a, q(x) = 0. For each p E P, let 9(p) = &(ap)). 
Suppose that xp - yq. Let z = &ap) and w = &aq). Then by Lemma 4.1, a(z) d p f 

and a(w) -’ q. Thus 

x0(z) - xP 5 Y4 - Ye9 3 

and therefore, 

x CD’ z = f(xo(z)) -’ E(xp) 2 [(yq) -’ &W(w)) -’ y @’ w * 

2 $Nj @’ w) = 40) + dw) = de + d&m = (s69 + J/(q) ’ 
Uniqueness. Suppose that cp, J, and p’, 3/’ are pairs of functions that satisfy (l), 

(2), and (3), and that u E A+ is such that cp(u) = p’(u). Then by Theorem 2.3, cp = 9’. 
Let I be an arbitrary element of P. Then E(ar)b - ar. Thus &(ar)) + G(b) = q(a) + $@). 
Since $(b) = &a) = 0, &(ar)) = Jl(r). Similarly, cp’(t(ar)) = JI’(r). Since rp = cp’ and r 
is an arbitrary element of P, $ = I,&‘. Cl 

For later applications, it is convenient to have a form of additive conjoint struc- 
tures that does not assume the existence of identity elements. To this end, a repre- 
sentation and uniqueness theorem of Lute and Tukey [9] will be stated. The proof 
of this theorem follows from Theorem 4.2. 

Definition 4.6. &= (X X P, 2) is said to be a solvable additive conjoint structure if 
and only if? is a binary relation on X X P and the following six axioms hold for each 
x, y in X and each p, q in P: 

1. Weak ordering: 2 is transitive and connected. 
2. Independence: (i) if for some r, xr 2 yr, the51 for each s in P, xs k ys; and (ii) if 

for some w. wy ?Z wq then for all z in X, zp 2 zq. 
3JVontriviality: for some w, z, r ,wl, s, t, wr> zr and w1 s > w1 t. 
4. SoZvabiZity: given any three of x1, y1 in X and pl, q1 in P, the fourth exists 

such that xlpl - ylql. 
5. Density: if xp > yq, then for some s, xp > ys > yq. 
6. Thom-sen condition: for each z in X and r in P, if xp - yq and yr - zp then 

xr-zq. 
7. Archimedear?: for each x, x1, x2, .._ in X, if xp > xq and xip - xi+1 q for each 

i E I+, then for some j, xip >xp. Cl 

Theorem 4.5. Suppose that (X X P, k> is a solvable additive conjoint structure. Then 
there exist functions cp on X a,rd $ on P into the reals such that for earh xp, yq in 
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xp ?yq iff V(X) + iLO 2 scV) + G(q) l 
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Furthermore, if p’ and $’ are functions on X and P, respectively, that satisfy eq. (4.1), 
then for some r in Re+ and some s, t in Re, 

cp’ = np + s and $’ = r\ll t t . 

5. Distributive structures 

Given the concepts of conjoint and extensive structures, a natural question, one 
of considerable importance in physical measurement, is how they relate to one 
another. The problem was first discussed axiomatically by Lute [5] (for a more com- 
prehensive discussion, see Krantz et al. [4, Chapter lo] ) who showed that if (X X P, 2) 
is an additive conjoint structure and there are extensive operations on two of the three 
sets X, P, and X X P which are related by what he called laws of similitude and/or ex- 
change, then the conjoint representations are power functions of the extensive ones. 
Later Narens [ 1 l] showed, in a special context, that much weaker assumptions are 
sufficient for the same conclusion. In brief, only one extensive operation is needed 
provided it exhibits a property called distributivity and, surprisingly, it IS not neces- 
sary to assume the conjoint structure is additive. 

Because the results for distributive structures are important for measurement theory 
and because proofs of such results may yield insights into new types of measurement 
structures, we provide two proofs of the main result. The first assumes strong topo- 
logical (Dedekind completeness) and algebraic conditions which permit a transparent 
proof using a well-known functional equation. (In section 7 we provide algebraic as- 
sumptions that allow measurement structures to be extended to Dedekind con$ete 
ones.) The second proof is similar to that used by Narens [ 111; it rests heavily on the 
representation and uniqueness theorems for extensive structures. 

Definition 5.1. Let k be a binary relation on X X P and oP a partial operation on P. 
(X X P, k, op) is a P-distributiv2 structure if and only if the following four axioms 
hold for all x,y E X, p, q, r, s E P: 

1. Weak orderz’ng: 2 is transitive and connected. 
2. Independence: (i) If for some x E X, xpk xq, then for all y E X, yp2 yq; 

(ii) if for some p E P, xpc yp, then for all q E P, xq 2 yq. 
3. <P, z$* op), where -p is as de&red in Definition 4.2. is a positive concatenation 

structure. 
4. Distributivi[v: If p oP q and r op s are defined, xp - yr, and x9 - ys, then 

XCP op 9) - Yk Op s>- 
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The structure is solvable * if given any three of x, y E X, p, 4 E P, the fourth exists 
such that xp -yq. 

There is, of course, an analogous definition for (X X P, 2, OX> to be X-distributive. 0 

Definition 5.2. Let (X X .P, kz oP> be a solvable P-distributive structure and let p. E I? 
Define the partial operation ox on X by: for x,y E X, if there exists x0 E X, r, s E P 
such that xpo - XOP, ~PO - XOS, and r 0~ s is defined, then x 0~ y is a solution to 

(x OX Y)Po -x0(’ op s). (Observe that by distributivity this is uniqe up to - and 
independent of the choice of x0, r, and s.) 

For fixed x0 E X, p. E P, define T : P + X as a solution to ape - x,p. 
Define II: X X P + P as a solution to xon(x, p) - xp. Cl 

Lemma 5:. Suppose (X X P, -, > op) is a solvable P-distributive structure. Then 

g = (X9 “X9 x 0 i is an extensive structure ijYP > , -p, op> is an extensive structure. 

Proof. Left to the reader. El 

Lemma 5.2. Suppose (X X P, -, > op) is a solvable P-distributive structure. Then for all 
x, y E X, p, q E P, if p op q is defined and x ox y is defined, then the right sides of 
the following expressions are defined and 

(9 T@ “p 4) -x r(P) ox r(q), 
(ii) l-Rx9 P op 4) -p Wx, PI op Wx, q), 

(iiij [1(x ox Y, po) -p n(x, po) op w5 pox 

Proof. By definition of T, 

X(-JP - eP)Po and x()4 - 7(4)Po ‘) 

whence by the definition of ox and r, 

T(P Op 4)Po -x& op (I) - HP) ox ml PO* 

(i) follows by independence. 
By the definition of II, 

xp - xon(x,p) and xq -xgI-@, 4). 

By distributivity and the definition of II, 

qg-wP P op 9) - dp “p 4) - q-) [Wl P) op Wx, q)l l 

(ii) follows by independence. 
Let r”p ll(x, po) and s -p iI@, po), then by definition of II and OX, 

W 0X Y, PO) -p r 0~ s. •J 

* Each of the two proofs use a weaker form of solvability; they will be stated explicitly below. 
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Corollary 5.1. Define B on P by: p Q (I = II [TO,?), q] . Then for p, q, r E P, 

Roof. Definition of 8 and part (ii) of Lemma 5.2. Cl 

Theorem 5.1. Suppose (X X P, 5, op) is a solvable P-distributive structure for which 
(P, &, 0~) is an extensive stndcture. If VP is an additive representation of <P, kp, op> 
and ~~ an additive one of <X, kx, 0 ) 
tive representation of (X X P, 23. 

x ( see Lemma 5.1), then pxpp is a multiplica- 

Proof for the case op is closed and pp is onto the positive reals. In this case it is suffi- 
cient to postulate solvability for x0 and p. only. 

Observe that by part (iii) of Lemma 5.2, up 
tation of <X, ?x, ox). 

x = ppII( , p. j is an additive represen- 

DefrneGonXXPby 

G(K P) = QpW& PI l 

G is order preserving since 

.“cP kY(2 iff W, p)$ n b, 4) 

iff spwc P) 2 spw, (I) * 

By part (ii) of Lemma 5.2, 

G(x, P tip d = G(x, P) + W, 4) . 

Define G’ on Re+ X Re+ by: 

G’(N 0) = G(x, P) 
if 

and 
Q = CppW PO) = V#) Y 

P=pp(P)* 

G’ is well defined since if c11= cpx(x’j and p = pp(p’), then x -x x’ and p -p p’, whence 

XP - x’p’. It is defined for all ar, /3 > 0 since pp is onto the positive reals. 
It follows immediately that 

~‘(a, fl+ 7) = G’(Q, 0) + G’h Y) 3 

and as is well known [ 11, this means there is a positive function g such that 

and so 

G(x, P) = gi~x(x)l VP(P) - 
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This implies the Thompsen condition holds in the conjoint structure. 
Finally,, we show g is the identity function. Let r and s solve xpo - xor and 

YP() - “()St so (x OX Y)P() - x& oP s). Coupling xop - 7dp)p0 with each of these 

and using the Thompsen condition, 

Thus, by part (ii) of Lemma 5.2, 

From this 

G(x ox Y, P) = G(x, P) + W, P) 3 

and the result follows from the same functional equation argument. 0 

General proof. Here it is sufficient to assume the following solvability condition: for 
each x, y, p, q; (i) if xp 2 yp then for somex+v, xw N yp; and (ii) if xp? xq then for 
some u, up - xq. 

Let po, qo, and r. in P be fixed and such that p. = q. op ro, and let qP be the 
additive representation of CP, kp, op) for which up = 1. 

For k E X, let Xw = {x I x E X and w?& x ). Let k be the restriction of& to 
Xw, and define o,+, on X,+, as follows: x o,,, y -x z if z E Xw and for some p, q E P, 
with PO kp p, q, 

WP ““PO, ‘d4 “YPO, 
and 

NPOpq)-zpg l 

< The above form of solvability insures z exists whenever p op q -p po. 
It is easy to verify <X,,> -x, ow) is an extensive structure with a maximal element. 
Define px,w as follows. To x E Xw , let 

sx, ,(x) = (P&I) 

where q is the solution to wq - xpo. Let Rx,,, be the range of px,,,, and Rp that of 
pp. We show there is a partial numerical operation aw on Rx+, X RP such that 

(1) ao,l=lo,a=a, 

(2) XP kY4 iff YJX , w(x) @w vplp) 2 $Q, Jj) @,k’ (Ppw 
suppose 

Let T&VP) solve r&rp)po - xp, then let 
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Note that 0 = 1 implies x -x w in which case p(w&+, - MP, SO tpx ,.r)(wp) = (Fp(p) = p 

and 1 Q,‘P = fl. Similarly, ar mw I = 01. The order preserving properti follows from 

WkYP 3-f Ilo& My91 

iff vx ,PWl2 vx, wr) * 

iff cpx,,(x) 016” wo1) “w @@p(Q) * 

Now, q~,~ is an additive representation of CX,,, kx, 0,) because if tivp - xpo, 
w~-YPO,andw(poq)~(xoy)pg,wesee 

V#QJ~ 0 Y) = Vp(P q, 4) = 9pti-l + @pm = gx.&) + sx, ,cv)* 

However, Q,,,, is a subset of ox hence by the uniqueness of additive representations 

9x 
qX,W 

=- 
CPXW l 

We use this to show that e,,,, is actually multiplication. Consider any z such that 
w& z and any (I such that $+ 9. Let y be such that ypo - 29; note z& y. 

cpx,&) @w PP(9) = sx,,,W @11’ 9p(po) = sx.wcv> 

= px J2) 9x m sxo,) sx(2) P*ot) 
. . ( siflce *) = gx(w) 9 x 

(2) ) 
= v*,,&) bP*,zcy) @z Ipp(P())l 

Finally, we show qxqp is order preserving. Suppose .u,y E X, g.9 E P. Let w = 
ma&y), and ~0 be such that ~0 kp max(p, 9) and p. - r. op so for some q), so. 
By what we have just shown, 

It follows Immediately from the construction used in the proof of Theorem 5.1 
that representations for P-distributive structures have strong uniqueness conditions. . 

This is explicitly formulated in the following definition and theorem. 
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> Definition 5.3. Let CD = (X X P, -, 0~ ) be a P-distributive structure for which <P, &, oP) 
is extensive. Then (q*, pp, S> is said to be a distributive representation for (D if and 
only if the following four conditions hold: 

(i) qx: X+ Re+; 
(ii) 9~ is an additive representation for the extensive structure (P, kp, op); 

(1 iii 0 i:: %stributive over t, i.e., for each r, S, t in Re+, if r o (S + t), r o s, and r o t 
are defined, then r o (s t t) = (r 0 s) t (r o t); 

(iv) for each x, y in X and each p, q in P, xp? yq iff cpx(x) o c,o~(P) and ‘px(y) o (~~(4) 
are defined and 

Theorem 5.2. Suppose that CD = (X X P, 2, op) is a P-distributive structure for which 
<p, kp, op) is extensive and (v~, qp, 4, G&, & 4 are distributive representations 
for (D. Then there exist r, s, t E Re+ such that for each xp, yq in X X P, 

&P) = tcppw ’ 

Proof. Left to reader. Cl 

We now turn to structures in which the operation is on the Cartesian product rather 
than on one of the components, and we show that it reduces readily to the previous 
cases. 

Definition 5.4. Let 2 be a binary relation and 0 a partial operation on X X P. 
(X X P, 2, 0 ) is a distributive structure if and only if 

1. It is a positive concatenation structure. 
2. It satisfies independence (Axiom 2, Definition 5.1). 
3. For all x, y E X, p, q, r E P, whenever the operations are defined, 

(xp) 0 (xq) - xr iff (yp) 0 (yq) - yr . 

Define op on P by: 

p op q = r if for some x, hence for any x, [xp) 0 (xq) - xr. 0 

Theorem 5.3. If (X X P,>N, 0 > is a solvable distributive structure, tlzen (X X P, 2, “p) 
is a sor’vable P-distributive one; if the former is extensive, then <P, >h, O$ is extensive. 

Proof. We leave it to the reader to prove that (P > , -p, 0~) is a positive concatenation 
structure. 
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To show distributivity, suppose xp - x’p’ and xq - x’q’. If p op 4 is defined, then 
by the monotonicity of 0, 

HP op 4) - @PI O (xd - WP’> O (x’d) - X103’ op cl’) 

using solvability. 
To complete the proof we must show that op is associative when o ii. Let 

s=(Popq)opr and s’=pop(qopr). 
Then, 

xs - MP op 411 O b-1 * [@PI O WI O (xe 

- @PI O Ied O WI - @PI O [x(9 op v)l - xs’ l 

So, by independence s -p s’. Cl 

Finally, consider a structure (X X P, >N) that has at least two of the following three 
operations: 0 on X X P that is distributive, ox on X that is X-distributive, and op on 
P that is P-distributive. According to the proof of Theorem 5.3,0 induces such opera- 
tions on both X and P, so there is no loss in generality in assuming just ox and op. 
Assume that the hypotheses of Theorem 5.1 hold for both X and P. Then we know 
there exist additive representations of OX and op, 9X and pp, and order preserving 
functions JlX and $p such that both 

!/J&p and i&p 

preserve the order 2. By the uniqueness part of the additive conjoint representation 
(Theorem 4.4) 

Thus, the general form of the multiplicative representation must be 

which is the structure of most measurement in classical physics. It is this that makes 
the units of all measures expressible as products of powers of a set of basic units of 
extensive measures. 

Certain important cases are not, however, encompassed by these results. One, 
which we treat more fully in the next section, is relativistic velocity. Ifs, u, and t are 
the usual measures of distance, velocity, and time, they relate multiplicatively as 
s = ut. But u is not additive over the obvious concatenation 0 V of moving frames of 
reference; in fact, 

r-0 O v u) = 
v(x) + u69 

1 + WuWl~(c)2 

where c denotes light. Thus if we let V be the set of vkocities that are Iess thar? light, 
T the set of times, oT the usual concatenation operation on time, and ? the usual 
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ordering on distance, then ( V X T, ?, q> is T-distributive and ( V X T, 2, o v) is not 
V-distributive. 

6. Relativistic velocity 

In this section, a simultaneous axiomatization of distance, time, and relativistic 
velocity is given. This axiomatization is a modification of Lute and Narens [8], and 
T-distributivity plays a major role. 

In what follows, V denotes a set of (qualitative) velocities, T a set of (qualitative) 
times, and V X T a set of (qualitative) distances. 

Definition 6.1. 33 = WX T, ?, 0, 0 v, o T) is said to be a velocity structure if and only 
ifo,o y, and oT are closed operations on V X T, V, and T respectively, and the fol- 
lowing three conditions hold: 

1. W X 7”, 2, oT) is a solvable T-distributive structure for which (T, kT, or) is an 

extensive structure. 

2. (c/X T, 2, 0) is an extensive structure. 
3. For each u in V and each t, t’ in T, 

u(t OT t’) - (vt) 0 (vt’). 0 

Convention. Throughout the rest of this section let 99 = W X T, 2, 0, 0 v, + be a 
velocity structure and & and?ZT be the weak orderings induced by 2 on V and T 
respectively. By Theorem 5.1 let qV and 4T be functions on V and T respectively 
such that 9T is an additive representation for (T,kT, oT> and for each ut, u’t’ in 
v X T, vt 2 v’t’ iff p&) VT(t) 2 qV(,i)‘) @(t’). Let p = $+ ’ pT. 

Lemma 6.1. p is an additive representation for ( V X T, >N, 0). 

Proof. Suppose that ut, u1 tl are arbitrary elements of V X T By Theorem 5.1, 

uthl, tl iff ~J&) @(@ 9 f&l ) (PT(tl) l 

Let t’ be such that u1 tl - vt’. Then 

cur) ” (VI tl ) - (vt) ‘) (vr’) - v(t 0 T t ‘) , 

and thus 

mt) O (q q 1) = cp(W (’ T t’)) = ~V(vhT(t ‘T t’) 

= pV(v) (VT(t) + pT(t’)) = pV@) @@) + ~v(u)~T(~) 
= q(Vt) + q(Vt') = g(Vt) + Cp(Vi tl). 0 

Definition 6.2. Let c be an element of V. For ail v in V and t in T, define T&J, t) to 
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be a solution to 
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(W CTJV, t) N vt . 

If c is interpreted as light, then Q(V, t) is the time required for light to transverse the 
distance that the velocity v does in time t.] For all U, v in V and t in T, define T(U, v, t) 
to bi a solution to 

(6.2)’ (u 0 v v) 7(u, v, t) - (u t) 0 (vt) . 

[r(u,v, t) is the time it takes the velocity u 0 v v to travel the distance which is the . 
concatenation of the distance that u travels in time t with the distance that v travels 
in time t.] Cl 

Lemma 6.2. For all c, u, v in V and t in T, 

Proof. Since 

and 

9 V(c) @(T&P t)) = 9 V(u) VT@) Y 

it follows that 

4 V(u) ~T(~& t)) = 9 V(v) (PT(Tc(u* c)) ’ 
and thus 

llTC(V, t) - VT&l, t) l 

Therefore 

Definition 4.3. ‘V is said to be classical if and only if for each u, v in V and t in T, 

r(t(, v, t) -T t. 

V is said to be relativistic with respect to c in V, if and only if for all u, v in V and 
tin T, 

63) r(u, v, t) -T rc (tl, ?,(v, t)) ‘:I T t. q 

The following thecrem is immediate: 

meorem 6.1. v is classical if and only if fbr each u, v in V, _ 

cP& 0 y VI = CPVGO + 4 VW l 

Theorem 6.2. For c in V, c)3 is relativistic with respect to c if and only if for all u, v 



Proof. Eq. (6.1) is equiv~ent to 

cpymP&w~ 0) = ~V(V)~T(~) !f 

and eq. (6.2) to 

= &u) VT@) + ipV@) (ST@) * 

ThilS 

gvw PpT /Q.VP 01 = 
4 v(c) + ‘p# 

vqh) cpvw (PT(t) t 
(Pvw2 

+ qT(t) 9 

and thus eq. (6.4) is equivalent to eq. (6.3). II 

Let v be relativistic. Suppose that \L v and J/T are functions from V and T 
respectively into Re+, Jty is additive over QT (i.e., for ail t, t’ in T, ~~(t OT t’) = 

J/T(t) + $T(t’)), and @ is such that for all x,y, z in Ret and all ut, u’t’ in P’ X 7” 

x 0 b + 2) = (x @ y) t (x 0 2) , 

Then by Theorem 5.2, there exists Y in Ret such that 
in V, 

; I $ t/ = npv. Thus for each u, u 
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Dedekind complete structures 

Quite often measurement theorists include topological assumptions in their axio- 
matizations of empirical settings. In these axiomatizations, the assumptions can be 
divided into two types: (1) relational (algebraic, first-order) axioms and (2) topologi- 
cal axioms. The topological axioms are usually equivalent to Dedekind completeness. 
Several other measurement theorists have insisted on only using algebraic assumptions. 
These axiomatizations can also be divided into two types of assumptions: (1) rela- 
tional (algebraic, first-order) axioms and (2) Archimedean axioms. These Archimedean 
axioms are usually similar to our formulation of the notion (Definitions 2.1 and 4.1) 
but may vary in their formulation from situation to situation. (For a discussion of 
what an “Archimedean axiom” is see Narens [ 111.) Topological axiomatizations 
usually yield briefer and more transparent proofs than their algebraic counterparts, 
which is only natural since topological axioms are more powerful assumptions than 
are Archimedean axioms: in all known relevant cases, the topolc: ‘oal axioms imp& 
the corresponding Archintedean axioms, but the Archimedean axis, --s do not imply 
the topological axioms. It should also be noted that the topological axiomatizations 
usually assume the relevant operations are closed. In this case, it is often quite easy 
to reformulate the measurement situation as a problem in functional equations and 
bring the vast functional equation literature (e.g., Acz61 [l] ) to bear on the produc- 
tion of the appropriate representation. (This is the approach of Pfangazl [ 131 and 
others.) Because of various measurement considerations, several measurement theorists 
go to great lengths to avoid the assumption that arbitrary concatenations can be 
formed. It should also be noted a closed operation together with Dedekind complete- 
ness allow all sorts of strong solvability conditions to be derived. 

Since measurement deals with the assignment of numerical quantities to empLica1 
objects, philosophical reservations about the nature of the Characterization of the em- 
pirical structure are in order. Although it would be nice to avoid the use of infinity 
entirely in measurement theory, it is usually a necessary assumption for uniqueness 
of representations. However, algebraic axiomatizations are satisfied by denumerabie 
models whereas topological axiomatizations require models of the cardinality of the 

continuum. Philosophically, one might accept a denumerable model as an idealiza- 
tion of a large finite model; it is much harder to accept a nondenumerable model as 
an idealization of any finite process. 

The Archimedean and topological assumptions are used in part to guarantee the 
existence of numerical representations. However, in some measurement situations, 
Archimedean and therefore topological axioms seem to be inappropriate. The tech- 
niques developed in algebraic approaches often allow these situations to be dealt with 
by giving representations into some richer structure (e.g., the nonstandard reals in 
Narens [ 11,121 and vector space-like lexicographic representation in N;irens [ 11 I ). 
We are not aware of any comparable results for topological axioms. 

Finally, :he algebraic techniques that apply to finite empirical structures can often 

be used to generate representations for infinite structures thus providing a link be- 
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tween the finite and the infinite. Narens [ 121 has exploited this link to show that in 
certain cases the unique numerical representation of an infmite structure is approxi- 
mated by selecting any of the comparatively nonunique numerical representations 
for each of a sequence of increasingly large, finite substructures. 

For a strongly expressed view supporting the introduction of topological axioms 
into measurement theory, see Ramsey [ 141. 

In this section we will investigate conditions under which a positive concatenation 
structure can be Dedekind completed. We will basically follow Dedekind’s procedure 
for completing the reals from the rationals. But since we assume neither a closed nor 
associative operation, the proofs are more subtle. In lieu of closure, we introduce a 
property called tightness, which is satisfied by a closed operation but is much weaker. 
And as a qualitative condition corresponding to continuity of the operation we intro- 
duce interval solvability. A tight, Dedekind complete, positive concatenation structure 
that satisfies interval solvability has half elements (Lemma 7.2) and satisfies a new 
relational condition called regularity (Theorem 7.3). The major significance of the 
latter two properties is that in a positive concatenation structure they are sufficient 
to construct a Dedekind completion (Theorem 7.4). We do not know, however, if 
tightness of the structure implies tightness of the completion, but closedness of the 
operation is transmitted. Thus, for a closed structure satisfying interval solvability, 
regularity is necessary and sufficient for the existence of a Dedekind completion. So, 
in most topological measurement situations, the topological axioms are replaceable 
by the relational axioms of interval solvability and regularity plus an Archimedean 
axiom. Finally, the section ends with several unresolved problems. 

Definition 7.1. A positive concatenation structure (X, 2, 0 > satisfies interval solvability 
if and only if for all x, y, z in X, if x > y > z, then there exist U, v in X such that u o z, 
zovaredefinedandxkoz,zov~$. Cl 

Theorem 7.1. Suppose X = CX, 5, 4 is a Dedekirtd complete, positive cuncatertation 
structure without a maximal element. TL+m there exists a monotmic wepreselita- 
tion 9 of Sy that is onto Re’. IF1 terval solvability holds if I-J is corltimtous. 

Proof. Since Sy is unbounded from both above and below (Lemma 2.1). has countable 
dense subset (Lemma 2.2), and is Dedekind complete, by a well known theorem of set 
theory, there is an order homomorphism of <X,% onto (Re’, 2). For each rE Rcf, 
let qp- 1 (I-) be an element x in X such that q(x) = r. Define the partial binary operation 
* on Re+ as follows: for each Y, s in Re+, Y (9 s is defined if and only if $9.- I (r) (1 tp - 1 (s) 

is defined, and if Y 0 s is defined then 

r 0 s = q(q - l (r) ~1 q- ’ (s)) . 

Then it is easy to show that q is a !-l-representation for X . 
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Suppose that r > r’ and r 0 s is defined. Then by the monotonicity of , 
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r>J iff 

iff 

iff 

iff 

Thus m is monotonic in 

ros>t’@‘a. 

the first argument. 
Suppose interval solvability holds and C‘ is not continuous in the first argument. 

Then there is a gap such that for some s, fO, I l, with t0 < I~, and for all r for which 
r 6 s is defined, either r o s G t0 or r e s 2 I~, and neither set is empty. By positivity. 
It > to > s, and SO by interval solvability there is an r such that t, > r ~1 s > to, 
which is a contradiction. 

Conversely, suppose 8 is continuous in the first argument and x > y >I z. By iight- 
ness, there exists u such that u 0 z t x, so by local definability, for all positive reals 
CY < cp(tr), a 0 g(z) exists. By continuity, for some at, g(x) > ar Q q(z) > a), and since 
9 is onto Re+, interval solvability holds on the left. 

The proof for the second argument is similar. Cl 

Definition 7.2. Let SK = <X, k. 4 be a positive concatenation structure. Sy is said to 
be tigk if and only if for all XJ in X if .y > y, then there exist 11, u in X such that 
11 Q y and y C) u are defined and td ;v y, y Ly u > .Y. El 

It should be noted that ea3 positive concatenation structure with a closed O~W:I- 
tion is tight. 

Proof. If p is in Y, the lemma is immediate. So, assume jj is not in Y. By pusitivity. 
z >x. By tightness, there is u such that x j ) u exists and x :I u > z. Suppose .t, I+ u, 
then there exists y i;V such that 7 >)I % u, whence z > x t-j y > x ’ u, which is 

ossible. Thus, u - J, whence by local definabili‘y, x I _F exists. 

Proof. We first note tightness implies there is no maximal element. 
Next, we show: 
(i) if-r > 1’ L y, then there exists z in X s ch Ihat z ;“J* and -y > = 2. Let q be ;I I 

cvnt inuous and monotonic - -representation onto Re” and let r = s(s) and s = ~s(_H. 
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Then 

Choose e > 0 so that r - s 0 s > E. By continuity of the first argument, select u > s 
so that II o s - s 0 s < e/2. By continuity of the second argument, select u > s so that 
u 0 u - u 0 s < e/2; Let t be the smaller of u and u. Then 

tat--SosLuov-sos 

=(ll@U-uUs)t(UoS-SW) 

Ie/2t e/2<r--so s. 

Thusr>tO.Letz=g-l(+Thenx>zoz. 
A similar proof establishes that 
(ii) if y 0 y > x, then there exists z in X such that y > z and z 0 z > x. 
For x in X, define Yx =b/x?yoy).B Le y mma 2.1, Yx # $9 and by positivity 

it is bounded by x. Thus O(x) = a 1.u.b. Yx exists by Dedekind completeness. By Lem- 
ma 7.1,0(x) 3 O(x) exists. Suppose x > O(x) 0 O(x). By part (i) there exists z > O(x) 
and x t z 0 z. So z is in 1yx, and so e(x) is not a 1.u.b. Yx, contrary to choice. Simi- 
larly, part (ii) renders O(x) 0 O(x) j. x impossible. Since>, is a weak order, x - O(x) 0 
e(x). 13 

Theorem 7.2. Suppose X is a tight, Dedekind complete, positive concatenation struc- 
ture. If q and I/J are two continuous and monotonic o-representations that are onto 
Re+ and, for some x in X, $(x) = q(x), then J, 5 cp* 

Proof. Lemma 7.2 and Theorem 2.2. Cl 

Definition 7.3. A positive concatenation structure <X, 2, 0) satisfies interval solvability 
if and only if for all x, y, z in X, if x > y > z, then there exist u, u in X such that u 0 z, 
z~varedefinedandx>uoz,zou>y. Cl 

Definition 7.4. A positive concatenation structure <X, ?Z .- , 4 satisfies regularity if and 
only if for all x, y, z in X for which x >c y and x 0 z is defined, there exists u in X 
suchthat foralluinX,ifuN>z,thenxou>yo(uo u). 

Theorem 7.3. A Dedekind complete, positive concatenation structure that satisfies 
interval solvability also satisfies regularity. 

Proof. To establish regu? rity, consider xt y and z for which x 0 z is defined. 
For u sz, let 
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First, Vu # (8. For by monotonicity and local definability, x 0 zc exists and x (-5 z 2 
x o u > y 0 u. By positivity and interval solvability, there is p in X such that 

xou~yq+-you. 

By monotonicity and restricted solvability, there is w such that p> u o w, whence 

and so VU #0. 
Since for u <, z, Vu is bounded by x Q z, by Dedekind completeness VI has a least 

upper bound. Let u(u) be one. Next we show that 

xou-yo [uou(u)], 

where by Lemma 7.1 y 0 [u 0 u(u)] is de~ned. We consider two cases. 
easel. xou%yo fuou(u)l. 

By positivity and interval solvability, let q be such that 

xou~yoq~yo [uov(u)] l 

Then q > u 0 U(U) and thus, by interval solvabilit*l, there is r such that 

Then r > V(U) and x 0 u > y 0 (u 0 r), which contradicts that u(u) is a 1.u.b. of &. 
Case 2. Suppose that 

y 0 [u 0 v(u)] > x 0 t1 . 

Since x 0 tl> y 0 u, by interval solvability there is q such that 

yo [uw(u)].yoq~xoti. 

By monotonicity u 0 v(u) > q, and since x >y, q >- u. Thus by interval solvability 
let t be such that 

UQV(U)>U~ r>q. 

Then 

yo ~uov(u)]> y~(umpx~u* 

Thus u(u) )- r, Since v(u) is a 1.0. of Vu, we concl~lde that for some u in Vll, 

yo(uou)>xou, 

which is contrary to the de~nition of Vu_ 
Sinc;these two cases are impossible and ? is a weak ordering, it follows that for 

each ti - 2, 

x 0 u - y 0 [u 0 u(u)] . 
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Now if for some u in X, u 5 u(u) for all u -<, z, then regularity holds. Thus we need 
only show that the following is impossible: for each p in X there exists u 5 z such 
that u(u) <p. Assume on the contrary that the last statement is true. By Lemma 2.1 
we care find a sequence Wi such that Wi N -C z and u(wi) becomes arbitrarily small for 
all sufficiently large i. If Wi also becomes arbitrarily small for all sufficiently large i, 
then j can be found so that 

x>Y” [wjou(wj~l 9 

and this is impossible. Thus there exists 4 in X such that wi ? q for infinitely many i. 
Therefore lim sup Wi and lim sup [ wi 0 U(Wi)] exist. Since u(wi) becomes arbitrarily 
small for sufficiently large i, 

lim SUP Wi rv lim SUP [Wi 0 U(wi)] . 

let W ‘= lim Sup Wi. Since 

X”wiwyo [WiOU(Wi)] 3 

it follows that 

X O W - lim SUp(X 0 Wi) N 1iJn SUP .Cy 0 [Wi 0 U(Wi)] ) 

~IilllSUp~o Wi)-YO W. 

Ey monotonicity, x -y, and this is impossible. Cl 

Theorem 7.4. Suppose % = M ’ , C, O) is a positive concatenation structure that satis- 
f?es interval solvability and regularity. Then there exists a structure % = (X, ->, 0) 
and a subset X* of x such that 

(i) X is a Dedekind complete, positive concatenation structure and >, is a linear 
ordering; 

(ii) X* is an order dense subset of&; ’ 

(iii) Sy is homomorphic to the restriction of % to X*; 
(iv) if X has no maximal element, 511 has no maximal elernen t ; 
(v) if 0 is a closed operation, o is a closed operation. 

Proof. Let X consist of all subsets Y of X for which the following three conditions 
hold : 

1. Y and X- Y are nonempty. 
LForx,y;n Y,ifxkyandxisin Y, thenyisin Y. 
3. Y does not have a maximal element. 
Let X* consist of all sets of the form: for x” in X, 

x= CvlyinXandxty). 

Note that X* & X. 
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Define 2 on X by: for each Y and 2 in X 

Y2Z iff Y>Z. 

Define o on X by: for each Y and 2 in X, Y o 2 is defined if there exist II, u in X 
such that u is not in Y, u is not in 2, and u 0 u is defined. In this case 

We break the proof up into a series of lemmas. The hypothesis in each case is that 
of the theorem; however, in some cases weaker hypotheses would do. 

Lemma 7.3. (i) 2 is a linear ordering of X. 
(ii)& iff xN y. 
(iii) For Y, Z in X, if Y > Z, then there exist J’, z in Y - Z such that y > z t Z. 
(iv) X* is order dense in X. 
(v) (X, 2) is Dedekind complete. 

Proof. (i) 2 is transitive and asymmetric because 2 is. Suppose it is not connected. 
Then there exist y in Y-Z and z in Z- Y. Without loss of generality, suppose y 2 z. 
Then by definition of X, z is in Y, which is impossible. 

(ii) x ->u iff x 2 y iff x 2 y. 
(iii) Select x, y in Y - Z with x > y. They exist because Y > Z and Y has no 

maximal element. Thus x 3 y 1 Z, and so x > y > Z. 
(iv) Suppose Y > Z. By part (iii), there exist y, z in Y such that y > z > Z. Clearly, 

Yky. 
(v) Let Q be a nonempty, bounded subset of X. 

Define 

Y,=(xIxinYforsomeYinar). 

YQ is in X because: 
1. Ya f (8 since ac # $9; X- Ya! # $9 since a is bounded. 
2. Suppose x is in Yol and x 2~. Let x be in Y of at. Then x ?J? implies j’ in Y, so 

y is in Yol. 
3. Suppose x is a maximal element in Y&. Since x is in some Y of f2, x is also a 

maximal element of Y, contrary to Y in X. 
By choice, YQ is a bound on Q since each Y of (x is a subset of Y&. We show it is a 

least upper bound. Suppose on the contrary, there is a bound Z of (x for which 
Yo, I> Z. Let x be in Yo, - Z, so there exists Y in cy with x E Y, whence Y 1 Z and so 
Z is not a bound. 

Lemma 7.4. 0 is a partial operatiorl for which locoal defirlabilit~~ holds. 

Proof. To show o is a partial operation, we must show that when Y o Z is defined, 

YoZisinX. 
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1.X-YoZfQ) becausewhenYoZisdefineditisboundedbyuo~.YoZ#0 
since the existence of u Q u implies by local definability that y o z is defined for y in 
Y, z in 2. So by Lemma 2.1, there is w 4 y 0 z. 

2SupposewisinYoZandw, > u. There exist y in Y, z in 2 such that y 0 z > 
wku, sou isin YoZ. 

3. Suppose w in Y o 2 is a maximal element. There are y in Y and z In Z such that 
y 0 z > w. By restricted solvability, there is p in X such that y 0 z > w 0 p, and so 
w Q p is in Y o 2. Since by positivity, w o p > w, w is not maximal. 

To show local definability, suppose Y o 2 is defined, Y 2 V, and 2 k W. Since 
2 2 W, the bounds u, u that insure Y o Z is defined, also insure Y o W is defined. And 

YoW= {xIxinXandthereexistyinY,winWsuchthatyow>x} 

& {X I x in X and there exist y in Y, z in Z such that y 0 z tx ) 

=YoZ. 

Similarly, V 0 W _ = YQ W.Thus, Vo WC YoZ. Cl 
The following is the only place in the proof that regularity is used. 

knma 7.5. The following two statements are true for each Y, Z, Win X: 
(i) Yo W?Zo Wiff Y?Zand Yo W,Zo Waredefined. 

(ii)-Wo Y? WoZiff Y?Zand Wo Y, WoZaredefined. 

Proof. If Y ?Z and Y o W, Z o W are defined, then it immediately follows from the 
definition of o that Y o W ,>Z 0 W. Conversely, suppose that Y o W?Z 0 W, then 
we show Y 2 Z by contradiction. Suppose that Z > Y. By Lemma 7.3(iii) let x, y 
be elements of Z such that x > y t Y. Then 

ZL>yZY, 
and thus 

Since by assumption Y o W ?Z 0 W, it follows that x o W = y 0 W. By Lemma 2.2, 
let wi be a sequence of elements of W such that w~+~ > wi and for each w in W there 
exists j such that wi > w. Since x o W = y o W, a subsequence t+ of the sequence !Vi 
can be found so that 

y” “i+] >XOUi’ 

Since W is in X, let t be a bound of W, i.e., t > W. Since x >,I), by regularity there 
exists u such that for all positive integers i, 

Now for some positive integer j 

up u>u. 
/+1 9 
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for if not, then 

and this is a cant 

Lemma 7.6. Let Y and 
(i)If YOZisdefined, YOZ)c Y,Z 
(ii) 7lret-e exists n in I’ swh that either n.2 is not defined or n2 ,> Y. 

Proof. (i) By Emma 7.3(v) Y has a least upper bound P in X. If y is in F, then we 
show there is an x in Y such that x ?y. For suppose y > x for all x in Y, then 
r> y 2 Y, and y is not a least upper bound of Y. For .z in 2 and this x and y, we 
havexsP,X~y,whenceYoZ1~.Thus,YoZ~~,Y.Theothercaseis 
similar. 

(ii) Observe that if 2 o Z is defined, there exist U, u such that u 0 v is defined, 
tc, v ‘F z for z in 2. Thus by local definability, z 0 P is defined. By induction, if nZ 
is defined, so is HZ for z in 2. Thus, a failure of the Archimedean axiom in ‘5X implies 
a failure in Sy. 

The following twa lemmas make use of interval solvability. 

Lemma 7.3. Let Y and Z be in X. I$ Y t 2, there exists V in X srcdr that Y >Z o V. 

Roof. By Lemma 7.3(S) there exist 14, w in Y such that Yk u t w X?. By 
restricted solvability, there exists p such that II > w 60 p. Define 

V=~uIp)L~andfo~somezinZ, N*ZO). 

First, we show V is in X. By rests 
is bounded by g. If u is in 
Suppose U in V is maximal mezinZ,rrF,w~@?? &??.Ryinterval 
solvability, there is u such that 11 w I 1 p * f !,) u Z 2 0. Then u is in V and u > U, 

to assumption. 
is defined since w ~1 p is defined and w > z for z in Z an p t v ~QJ u in V: 

zinZandwinVandrr>zc ~>w)Cuc Y. 

Thus, YkZo V. Cl 

Lemma 7.8. z - x 0 y if and only if z = x 0 y . 
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Proof. We begin by proving that if x o y > z, then there exist u, u in X such that x t u, 
y>v,anduov>z. 

(I) If x > z, by Lemma 2.1 there is u such that x 2 u ?z and there is v such that 
y>u.Thereforexoy>uov>uZz. 

(2) If y > z, the argument is similar. 
(3)Ifz?x,y, thensincexoy>z? X, interval solvability implies there is u such 

that x 0 y > x 0 u> z. By monotonicity, y > v. Applying interval solvability to 
xou>z?y>u,thereisusuchthatxov>uou>z. 

Now, suppose z - x 0 y. Since x is not in x and y is not in y, this implies x o y is 
defined. Clearly, 

_>{wlx’isinx,y’isiny,andx’oy’> w} 

=xoy. 

Suppose w is in z, i.e., w < x 0 y. By what was shown above, there exist u _( X, u < y 
suchthat w<uou.Thus,wisinxoy.Soz=xoy. 

Conversely, suppose z = x o y. Suppose x 0 y + z. Then by the above there exist 
u < X, u <y and zc 0 u > z, so x o y 1 z, contrary to assumption. If z > x 0 y, then 
by Lemma 2.2 there exists u with z > u > x 0 y. So u is in z but not in x o y, contrary 
to assumption. So z - x 0 y. Cl 

This concludes the proof of parts (i), (ii), and (iii) of Theorem 7.4. Part (iv) follows 
immediately from (ii) and (iii). Part (v) is immediate. 

There are several unresolved problems concerning the conditions used for the Dede- 
kind completion of a positive concatenationstructure. Perhaps the most important 
general problem is to find methods of ilnbedding positive concatenation structures 
into ones with closed operations. (Lute dnd Marley [7] have done this for the asso- 
ciative case.) The specific instance of this problem that is most important for meas- 
urement theory is: For each positive concatenation structure that is tight and satis- 
fies interval solvability and regularity, does there exist a positive concatenation ex- 
tension with a closed operation that satisfies interval solvability and regularity? We 
have not worked out all of the logical connections between half elements, tightness, 
interval solvability, and regularity. It is easy to show that the axioms for positive 
concatenation structure with a closed operation do not imply half elements. (Take 
<X, 2, +) where X is the closure of the positive rationals and fi with respect to +.) 
However, other implications seem more difficult. For example, if 9 stands for the 
axioms of a positive concatenation structure with a closed operation, does 9 and 
interval solvability imply regularity? Does Sp and half elements imply interval solva- 
bility ? 
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