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1. Introduction

Theories of measurement - at least those for classical physics, probability, and
the behavioral and social sciences — study ordered algebraic structures that fulfill two
conditions. First, at least one empirical interpretation of the primitives exists for which
the axioms appear to be either approximately true laws or plausible, if untestable,
conditions. Second, a homomorphism into some numerical structure can be established
in which the order maps into ordinary inequality and which is essentially unique in the
sense that its value at one (or two) points determines it. (When one value is sufficient,
the measurement literature refers to the homomorphism as a ratio scale, and when two
are needed, as some species of interval scale.)

Most of the literature has focussed on structures which either have or induce opera-
tions (either closed or partial) T that are associative (see, for example, Krantz et al. [4]
and Pfanzagl [13]). Such structures have numerical homomorphisms with the opera-
tions mappinginto +. Aside from some work on bisymmetric intensive structures —
those with the intensive property that if x <y, then x Txo yZ y and the bisymme-
try condition (x o y) o (u o v) ~ (x o u) o (¥ o v) — very little has been done on non-
associative measurement structures. Our purpose here is to work out some of the basic
features of such structures. In doing so we adhere strictly to the demand of essentially
unique homomorphisms, but relax considerably the requirement of citing existing em-
pirical interpretations. One consequence of this program is to enhance our understand-
ing of the interconnections between positive concatenation structures (ordered partial
operations with the property that x o y > x, '), general intensive structures, and gen-
eral conjoint ones (orderings of Cartesian products).

The paper has the following structure. The next section is devoted to positive con-
catenation structures which meet the structural conditior. of having half elements, i.e.,
a function @ from X into X such that for all x in X, 0(x) > 8(x) = x. The resulting
homomorphism is into (Re, 2>, @), where o is a partial, binary, numerical operation.
Section 3 takes up intensive structures and conditions under which it is possible to

T For special terminology and notation, see the end of this section.
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convert one into a positive concatenation structure with half elements and conveisely.
The topic of Section 4 is conjoint structures (X X P,Z) for which the representation
involves functions Y y and Y p from X and P, respectively, into the reals and a real
function F of two real variables such that for all x, y in X and p,q in P,

xpZyq iff F[Yy0x), ¥p0)] 2 FIY 3 (0, ¥p(@)] -

It is shown that under reasonable conditions this problem can be solved by inducing
on one of the components a partial operation of the sort studied in Section 2, and its
representation is used to construct one for the conjoint structure. In Section S we turn
to conjoint structures which also possess a positive partial operation on one of the
sets X, P, or X X P. A concept of distributivity is introduced, and it is shown that in
its presence the operation has an additive representation if and only if the conjoint
structure has a multiplicative one. Although this subsumes much of the measurement
structure of classical physics, it does omit such important cases as relativistic velocity.
That case is taken up in Section 6, where a qualitative assumption is shown to be
equivalent to the usual relativistic “addition” law for velocities. Finally, Section 7
returns to positive concatenation structures but with a focus on the question of alge-
braic conditions under which it is plausible to suppose that the homomorphism is
into a continuous, strictly increasing operation on the positive reals. We provide
purely algebraic conditions under which it is possible to construct a Dedekind com-
pletion of the given structure, and so a representation onto the positive reals. These
conditions, which appear both to be new and interesting, avoid the usual mixture of
algebraic and topological assumptions, and are necessary conditions in a Dedekind
complete structure with a closed operation. Some open problems are cited in the end.

Throughout this paper, the following conventions and definitions wiil be observed.

Re will denote the set of reals, Ret the positive reals, / the integers, and I* the
positive integers. Elements of Cartesian products X X Y will be written as (x, y) or x).

We say o is a partial operation on X if and only if for some nonempty subset A of
X X X, o is a functicn from A4 into X.

Let o be a partial operation on X, 4 be the domain of o, and x, y be arbitrary ele-
ments of X. x o y is said to be defined if and only if (x, y) isin 4. o is said to be a
closed operation if and only if x o y is defined for each x, y in X, i.e., if and only if
o is an operation. i"or each n in I*, nx is inductively defined as follows:

(i) Ix=x;

(ii) if n> 1 and [(n—1)x] o x is defined, then nx = [(n—1)x] o x;

(iii) if > 1 and [(n—1)x] o x is not defined, then nx is not defined.

Let Y be a subset of X. The closure of Y (with respect to o) is the smallest set Z such
that Y € Z and for each x,y in Z, if x o y is defined then x o y is in Z.

0 is said to be a half element function on X if and only if 8 is a function on X such
that for each x in X, 8(x) o 6(x) = x.

Z is said to be a weak ordering (or weak order) on X if and only if X is a nonempty
set and 2 is a transitive and connected binary relation on X.

Let < be a weak ordering on X and u, v be arbitrary elements of X. Thenu ~v
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denotes u Z v and v u. It is easy to show that ~ is an equivalence relation on X and
that2/~ is a total ordering on X/~. u > v denotes ¥ Z v and not v Z u, and u < v
denotes v > u. (X, ) is said to have a countable dense subset if and only if there
exists a countable subset Y of X such that for each x, z in X, if x > z then for some y
inY,x ZyZz.(X,Z)is said to be Dedekind complete if and only if each nonempty
bounded subset Y of X has a least upper bound (Lu.b.) in X. ¢ is said to be an order
homomorphism of (X, Z)into Re (respectively, Re™) if and only if ¢ is a function
from X into Re (respectively, Re*) such that for each x, y in X,

ny iff o(x)=o(y).

By well-known theorems of Cantor, (X ,b has a countable dense subset if and only
if order homomorphisms into Re and Re* exist; and if (X, Z) has a countable dense
subset, has no minimal or maximal elements, is Dedekind complete, and is such that
for each x, y in X if x > y, then for some z, x > z > y, then there exists an order
homomorphism that is onto Re*.

Let Z be a weak ordering on X. Throughout this paper, we will often treat multi-
valued functions whose values are unique up to ~ as functions, e.g., if ¢ is an order
homomorphism of (X, ZYinto Re then ¢~ ! will often be treated as a function.

Let R € Re*. For convenience, instead of forming a new relation that is the
restriction of 2 to R, we will often consider = to be a relation on R.

2. Positive concatenation structures

Definition 2.1. Let X be a nonempty set, Za binary relation on X, and « a partial
binary operation on X. The structure X = (X, <, o} is a positive concatenation struc-
ture if and only if the following seven axioms hold for all w, x, y, z in X:

Axiom 1. Weak ordering: 2 is connected and transitive.

Axiom 2. Nontriviality: there exist u, v in X such that u > v.

Axiom 3. Local definability: if x o y is defined, x z w, and y?: z,thenwo zis

defined.
Axiom 4. Monotonicity: (i) if x o z and y o z are defined, then

x?y iff xozzyoz,
and (ii) if z o x and z o y are defined, then
x?y iff zoxizoy.

Axiom 5. Restricted solvability: if x > y, then there exists u such that x > y o u.

Axiom 6. Positivity: if x o y is defined, thenx o y > x and x 0 y > ».

Axiom 7. Archimedean: there exists n € I'" such that either nx is not defined or
nx Z y. O

Definition 2.2. Let X = (X, E, o) be a positive concatenation structure. g is said to
be a o-representation for X if and only if ¢ is a function from X onto some subset R
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of Re" such that (R, >, o)is a positive concatenation structure and the following
two condltlons are true for each x, y in X:

() x 2 p iff p(x) = p(»);

(i) if x o y is defined, then p(x) o ¢(y) is defined and ¥(x o ») = (x) o Y(¥).
If o is +, then ¢ is said to be an additive representation for X. O

Lemma 2.1. Let (X, E, o) be a positive concatenation structure and x be an arbitrary
element of X. Then the following three statements are true:
(i) There exists y in X such that x > y.
(ii) There exists y in X such that 'y o y is defined and x >y o y.
(111) There exists a sequence of elements of X, xy, x,, ... such that (1) for each
i€I", x;4) © Xj4q is defined and x; > Xi+] © Xi4q, and (2) for each z in X there
exists j € I'* such that z> X;.

Proof. Left to reader. Dv

Lemma 2.2. If (X, 2, o) is a positive concatenation structure, then (X, Z) has a
countable dense subset.

Proof. By Lemma 2.1, let x, x,, ..., X;, ... be a sequence of members of X such that
for each z € X there exists m such that z > xp,. Let Y be the closure of {x,,x,, ...,

... } with respect to o. Then Y is a countable set. Suppose that u > v. By restricted
solvablhty, let w be such that u > v o w. Let n be such that w> x, and v>> x,,. We
will first show that for some positive: integer k,

2.1) vZkx, and (k+1)x,> v.

If (2.1) does not hold for some k, then from Archimedean it follows that it must be
the case that for some positive integer p,

v px, and (p+1)x, isnot defined.

But since v 2 px,,, w> X,, and v o w is defined, it follows from local definability
that (px,)) o x,, =(p +1)x,, is defined — a contradiction. Therefore, let k be such that
v?:kxn and (k +1)x,, > v. Since v 2'kxn and w zxn,

u>vow>(kx,)ox,=(k+1)x,>v.

Since Y is the closure of {x;, x5, ..., x;, ... } with respect to o, (k + Dx, isinY. O

Theorem 2.1. Let X =X, Z, o) bea positive concatenation structure. Then there
exists g and o such that ¢ is a o-representation for X .

Proof. Since by Lemma 2.2 (X, Z) has a countable dense subset, by a well known
theorem of set theory, let ¢ be an order homomorphism from (X, Z) into Re*. Let
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R = {p(x)| x € X} and for each r ER let ¢—1(r) be an element x of X such that

¢(x) =r. Let o be the partial binary operation on R such that for each r, s in R,
res= ¢(¢'l(r) o ¢‘l(s)) iff w”l(r) o ¢~ I(s) is defined.

Then o is a =-representation for X. O

Definition 2.3. A positive concatenation structure X =(X, <, o) is said to be with
half elements if and only if X satisfies the following axiom:
Half elements: for each x in X there exists u such thatuou~x. O

Theorem 2.2. Let X =(X, Z, o) be a positive concatenation structure with half ele-
ments and @, ) be o-representations for X such that for some u, ¢(u) = Y(u). Then
v=19.

Proof. Suppose that ¢, J are o-representations for X and p(v) = Y (). Assume that
¢ # Y. A contradiction will be shown. Without loss of generality assume that v is
such that p(v) > Y(v). Let u; = u, and by half-elements, for each n € I'* let u,, | be
such that u,, ~ u,,y © U,4;. For each n€I*, let o, = 9(u,)). Then

ay © oy =p(uz) o p(Uy) = p(uy o uy) =p(uy) = oy,
and by induction, for eachn€ 1%,

Xt © Byey = Oy
Since (R, Z, ) is a positive concatenation structure for some R C Re*, by the proof
of Lemma 2.2, let p, m € I'* be such that

¢(v) > Ry, > Y(O) ,

where of course pa,, stands for [(p—1)a,, ]  ay,. Since uy ~ uy o uj,

0y 0 oy =ay =(uy) = Y(uy) = Y(uy o uy) = Y(uy) e Y(uy) .

Since e is monotonic this means that Y(u,) = a,. By induction, for eachn €1 *,

Y(u,)=q, .
Thus,

o(v) > pay, = @(puy,) = Y(Piy,) > Y () -

Since ¢(v) > @(pu,, ), v > pu,, ; since Y(pu,,) > Y(v), pu,, > v. This is a contra-
diction. O

Definition 2.4. X = (X, Z, o) is said to be an extensive structure if and only if X is
a positive concatenation structure that satisfies the following axioms:

Associativity: for each x, y, zin X, if x o (¥ » z) and (x © y) o z are defined, then
xo(yoz)~(xoy)oz.

Unboundedness: for each x, there exists y such that y> x. U
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The following theorem due to Krantz et al. [4] is a generalization of a classic
theorem of Holder [2].

Theorem 2.3. If X is an extensive structure, then there exists an additive represen-
tation for X. Furthermore, if ¢ and  are additive representations for X, then for
somer€Ret,p=1ry.

Proof. Theorem 2.4 of Krantz et al. [4]. O

Sometimes it is convenient to consider additive structures with maximal elements.
X =(X, i’, o) is said to be an extensive structure with a maximal element if and only
lI ?A. sausnes au me COIlCllllOﬂS Ol UCIll’llIlUn 4 ‘0‘ excepl IUT urwuunaeaiiéss aﬁu lnere
exist u, v in X such that u o v is defined and for each x in X, u o v x. Then it is easy
to show that Theorem 2.3 remains valid if “extensive structure” is replaced by “ex-

‘ na.-u\ admiadriiea writh 4 smavial alamand??

CLlIdIVE dLiuLLule Wllll qa 1llaAalllladl viviiiviit

3. Intensive concatenation structures

Definition 3.1. Let X be a nonempty set, < Za bmary relation on X, and * a (partial)
binary operation on X. The structure X = (X, Z, *) is an intensive concatenation
structure iff for every x, y, z in X the following five axioms hold:
Axiom 1. Weak order: Z is transitive and connected.
Axiom 2. Nontriviality: there exist u,v in X such that u > v.
Axiom 3. Local definability: If x * y is defined and xZ wand y Z z,then w * z,
is defined.
Axiom 4. Monotonicity: (i)if x * z is defined, thenx < z yiffx*:Zy*z and
(i) if z * x is defined, then x Z y iff z *xzz * P,
Axiom 5. Intern: if x ~ y,thenx * y, y * x are defined and x ~x * y~y * x. If
x>y, thenx>x*y>yandx>y*x >y (x *yand y »x are de-
fined by x ~ x and Axiom 3.) O

Definition 3.2. Suppose X = (X ,E, *) is an intensive concatenation structure and &
is a function from 4 € X into X. § is a doubling function iff for every x, y in X:
(i) & is strictly monotonic increasing,.
(i) If x Ey and x isin 4, then y isin 4.
(iii) If x > y, then there is u in X such that y *u isin 4 and x> 8(» * ).
(iv) If x * y is in A, then 8(x * y) > x, y.
(v) Let x,,, n =1, 2, ..., be such that x; ~x and if x,, _; is in 4, then x,, ~ 8(x,,_) *X.
Either there exists n € I+ such that x,, is not defined or x,, 2 ». Such a sequence is
called a standard sequence of §. [J

Intensive concatenation structures resemble positive concatenation ones in that the
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first four axioms — weak order, nontriviality, local definability, and monotonicity —
are the same. They differ sharply in that * is not ascumed to be positive, but rather
intern. Nevertheless, as we show in Theorem 3.1, the two kinds of structures are
closely related provided they are sufficiently rich. For positive structures, it is suffi-
cient to postulate the existence of half elements. For intensive structures, the concept
of a doubling function appears to be needed. The reason for the name will become
apparent. But whereas the concept of a half clement in a positive structure is unique
up to ~, that of a double element in an intensive one is not - it matters what one ad-
joins as zero in the positive structure. The non-uniqueness is partially discussed in
Theorems 3.2 and 3.3.

Theorem 3.1. Suppose X is a nonempiy set, 2 a binary relation on X, * and o ( partial)
binary operations defined for the same pairs from X, and 0 a function from X into X
such that for all x,y in X for which x - y and x = y are defined 0(x > y) ~ x * y. Then,
X,Z, o)isa positive concatenation structure with half element function 6 (i.e.,

x ~ 0(x) o 0(x) for each x € X) iff (X, Z, *) is an intensive concatenation structure
with -1 a doubling function.

Proof. Since the weak order and nontriviality assumptions involve only Z, we need
not consider them.

Assume (X,Z,c)isa positive concatenation structure with 6 the half element
function. Since 0(x) c 8(x) ~ x, the monotonicity of o implies the strict monotonicity
of 8. We show the axioms of an intensive structure.

3. Local definability. Suppose x * y is defined, x Zw,andy Z z. Thenx o ) is de-
fined and so by local definability of o, w o z is defined. whence w * z is defined.

4. Monotonicity. Suppose x * z is defined, then x o z is defirzd and by the mono-
tonicity of o, x z yiffxoz z ¥ o z. By the strict monotonicity of 0, this holds iff
x * 22y » 2. The other case is similar.

S. Intern. Suppose x > y and x * y is defined. Since x * y = 0(x ¢ y), we see
(x * ) o (x * ) ~ x o y. By the monotonicity of -, (x = p) o (x * y)> y o y, whence
x *y> p. Suppose x * ¥ = x, then 8(x o )~ x * y = x ~ O(x o x), where by the
monotonicity of 8 and of ¢, y?.'. x, contrary to assumpion. A similar argument holds
for y * x.

If x ~ p, thensince O(x o x)~ x, x * y ~ x.

Next we show that 0! is a doubling function. Le’ A be the domain of 0 1,

(i) The strict monotonicity of 0 and hence of 6 | was shown above.

(ii) Suppose X isin A4 and x X y. Let z =0 !(x), 0z~ x - x. By local Jefinability
of o, xZ y implies y o y is defined, whence y - y ~ 6~ 1(y).

(iii) Suppose x > y. By restricted solvability, there exists u in X such that x >y
u~0-1(y *u).

(iv) Suppose x * y is in A and that 6~ i(x*y)>x,vis false. If x Z0-1(x * y),
then by the strict monotonicity of 9, B(x)=x =y~ 0(x - y), whence
xZxo y, contrary to the positivity of « .
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) Supposeyk Xpo=1,2,.., wherex, isin A4, x; =x, and
X, = 0’1(xn__1) *x = 0[0'1(xn_1) ox] .

A contradiction will be shown. Since B“I(xn) ~(n+1)x [where 1x =x and
for each m € I'*, (m + 1)x = (mx) o x], Archimedean (Definition 2.1) is con-
tradicted.

Conversely, suppose (X, Z, *) is an intensive concatenation structure and 61 is

a doubling function.
3. Local definability. Suppose x o y is defined, x Zw, y Z z. Since x * y~0(xoy)

is defined, by local definability of *, w * z is defined, so 8—1(w * z) =w o z is defined.
4. Monotoricity. Assume x o z is defined,

xZ y iff x*z Z y*z (monotonicity of *)

iffo-l(x *2)Z 0~y *z2) (strict monotonicity of 8!
and property (ii) of Def. 3.2)
iffxoz2 yoz.

The other case is similar.

5. Restricted solvability. Suppose x > y. By property (ii) of Definition 3.2,
x>0-ly*u)=you.

6. Positivity. Suppose x o y is defined, then by property (iv) of Definition 3.2,
xoy~0-1(x *y)>x, .

7. Archimedean. Consider the sequence nx = ((n—1)x) o x. Let

x,, ~ 0(nx) ~ 6[(n—1)x o x]
~(m-1Dx*x~ 0‘1[6((11— 1)x)] *x
~0"1(xn_l) * X

So for some # either x,, is not defined or x,, z 6(y), whence nx z ).
8. Half elements. Since 0(x) = 6(x) * 6(x),

x~01[6(x) * 0(x)] =6(x)0 O(x). O

Corollary 3.1. Under the assumptions of Theorem 3.1, the operation o is bisymmetric
(ie, (x o y) o (z o w)~(x 0 z) o (¥ o W)) iff the operation * is bisymmetric.

Proof. (x o y)o(zow)~(xo0z)o(yow)

iff [(x*y)o (x*+y)] o [Z*w)o(z*xw)] ~ [(xx2) 0 (x #2)] o [(y * W) o (¥ * W)]
(since x o y ~ (x * y) o (x * y))

ff[(x*y)e@*w)]o[(xxp)o@*w)] ~[(x=x2)o (*w)] o [(x *2) o (¥ *w)]
(bisymmetry)
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iff(x*y)o(zxw)y~(x*2)o(y*w) (monotonicity of o)

iff(x*y)*x(z*w)~(x*2)*(y *w) (monotonicity of  and 8(x o y) =
x*y). O

Definition 3.3. Suppose X =(X, Z, *) is an intensive structure with a doubling func-
tion §. g is said to be a o-representation for X if and only if ¢ is a function from X
into' Re* and e is a partial binary operation on Re* with half elements (let 7 denote
the o-half element function) such that the following three conditions are true for each
x,yin X:
() x Xy iff o(x) 2 p();
(ii) v(x * y) = hle(x) ° 0()];
(iii) @(x) = hgbd (x) if x is in the domain of 6. O

Theorem 3.2. Let X = (X, 2, *) be an intensive structure with doubling function 8.
Then there exist ¢ and o such that ¢ is a o-representation. Moreover, if \ is another
o-representation such that for some u in X Y(u) = o(u), then Y = .

Proof. By Theorem 3.1, x o y = 8(x * y) defines a positive concatenation structure
(X, Z, o) and by Theorem 2.1 there is a numerical operation o and a function ¢ that
is a o-representation of (X, Z, o). We show this is also a e-representation of the inten-

sive structure by proving (i)—(iii) of Definition 3.3. (i) holds in both structures. (ii)
Since

xoy~8lxoy)os lxoy)~(x*p)o(x*y),
then

Plx * y) o plx * ) =9(x o y) = ¢(x) e 9(¥),
whence

p(x * ) = hlp(x) e o] .
(iii) Since
@8(x) = 8 (x * x) = p(x 0 x) = p(x) © P(x)
hgd(x) = p(x) .
If p and ¥ are two such functions with ¢(u) = Y(u), then using properties (ii) and

(iid),

SO

@(x © y) =@8(x * y) = p(x * y) o o(x * )
= hlp(x) o 9(¥)] © hlp(x) © )] = w(x) @ V() .
Similarly, Y(x o ¥) = Y(x) © Y(»). Thus, ¢ and ¥ are both o-representations of (X, Z,0)
and so, by Theorem 2.2, p=y. O

We next turn to the question, which is not fully answered, about the relation be-
tween doubling functions of the same intensive structure.
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Theorem 3.3. Suppose (X, E, *) is an intensive concatenation structure with a doub-
ling function & and there exists f from X onto X such that

(i) f is strictly increasing;

(i) if x * y is defined, then f(x) * f{y) is defined and

f(x = y)=f(x) * f();

then f~18f is also a doubling function.

Proof. We show &' = f—15fis a doubling function: Let A, A' be the domains of §, §'.
(i) 8' is monotonic because f, f~1, and & are.
(ii) Suppose x < y and x is in 4" Since f8' = 8f, we see f(x) is in A, whence f(»)
isAandsoyisinA’.
(iii) If x> p, then f(x) > f(»), and so there is u such that f(x) > 8[f(x) * f(u)] =
8 [f(x * u)]. Taking inverses x > &8'(x * u).
(iv) 8'(x * y) = f~18f(x * y) = 18 [fx) * ()] > f-1fCx), f-1f () = x, .
(v) If x,, is a standard sequence of §', we show f(x,,) is one of §. x,, = 8'(x,,_l) * X,
So

Fey) = 18" (ep_y) * X1 = £8"(xp 1) * f(x)

= fF7180(xy_1) * fx) = 8f(x,_1) * f(x) -
And so property (v) of Definition 3.2 holds for 8’ because it does for §. O

Theorem 3.3 fails to characterize the non-uniqueness of the doubling functions.
We conjecture that the necessary and sufficient conditions for § and 8’ both to be
doubling functions of the same intensive structure is the existence of an automor-
phism f of that structure such that 8' = f~18. This conjecture can be recast as a con-
jecture about either the relation between the two induced positive concatenation
structures or the existence of a solution to a functional equation arising from the
numerical representations of these positive concatenation structures.

First, let o and o' be the concatenation operations induced by * through & and &',
respectively. We observe that o and o' are constrained by the following important
property: if all of the following concatenations are defined, then for all x, y, #, v in
X,

(3.1) xoy~uov iff xo' y~uo'v.

This follows immediately from the fact x o y ~ 8(x * y) and x o’ y ~ §'(x * y).
Moreover, if the original conjecture is correct that there is an automorphism f such

that 8" = f~18f, then it is easy to see that for all x, y in X for which the concatena-
tions are defincd,

(3.2) flx o y)=flx) e f(¥).

So the question can be cast as: suppose (X, i', oYand (X, Z, ') are two positive
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concatenation structures satisfying eq. (3.1), does there then exist a function f such
that eq. (3.2) holds?

Second, let ¢, e and ¢', o' be the numerical representations of Theorem 2.1 corre-
sponding to o and o', respectively. Define " by

as" =g’y @) o' P'o1(B).

Then, as is easily shown, eq. (3.1) reduces to the assertion that » and -~ have the
same indifference curves. And eq. (3.2) translates into the existence of a numerical
function g = (¢'fe~!) such that

gla o B)=gla) ' g(B) .

We are not aware of any analysis of this functional equation except when - and « " are
associative.

4. Local conjoint structures

The literature on conjoint structures has to date been concerned with weak vrders
on Cartesian products. Krantz et al. [4, p.275] noted that in practice a somewhat less
restrictive concept is needed. The one given below attempts to capture that a prefer-
ence ordering on the Cartesian product need only hold for pairs of elements that are
ccmparable with the minima! element.

Definition 4.1. C=(X X P, Z ab) is said to be a local conjoint structure (with an
identity element ab) if and only if Z is a binary relation on X X P, ab € X X P, and
the following eight axioms hold for all x, y, zin X and all p, q, r in P:

1. Transitivity: if xp < z yq and yq? zr, then xp>

2. Local connectivity: either xp Z yq or yq 2 xp if and only if xp Z ab and yq < ab.

3. Independence: (i) if xpk ab and, for some s, Xs < vs, then xp < yp: and (ii) if
xpz ab and, for some w, wp ~V :Lthen \'p Xq.

4. Component definability: xb < ab and ap < ab.

5. Nontriviality: there exists w such that wb > ab.

6. Partial solvability: (i) if yq Z ab, then thefe exists w such that wb ~ yq: and
(ii) there exists ¢ such that xb ~ at.

7. Density: if xb> yq, then for some s, xb > y.s> »q.

8. Archimedean: for some n € I*, either (nx)b Z yb or nx is not defined, where
mx is defined inductively as follows: 1x = x, and if mx is defined and s, w are such
that xb~ as and (mx)s ~ wb, then (m + 1)x is some element u of X such that wb ~ ub,

and otherwise (m + 1)x is not defined.

@ is said to be a local conpoint structure with half elements if C also satisfies the
foliowing axiom:

9. Half elements: for each x in X there exist w, s such that ws ~ xb and wb ~as. O
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Definition 4.2. Let C = (XX P, ., ab) be a local conjoint structure with an identity
element ab. Define ZX on X and Zp on P as follows: for each x, y in X,

xZ'Xy iff beyb;
and for each q,rin P,
qur iff aqzar.

It is easy to show that EX and E'P are weak orderings. By partial solvability, let & be
a function on D = {xp | xp Z ab } such that for each xp in D, xp ~ &(xp)b. By partial
solvability and component definability, let o be a function on X such that for each

x € X, xb ~ ao(x). Let o be the binary partial operation defined on X as follows: For
each x,y in X,

(i) x o y is defined iff xo(y) Z ab,
and
(ii) if x o y is defined, then x o y = &(xo(y)). O

Lemma 4.1. Let C = (X X P, z, ab) be a local conjoint structure. Then the following
three statements are true for each x, y in X and each p, q in P:

(1) xp Z yq iff £xp) Zx (q);

() xZy y iff o(x) Zp 00);

(3) a(¢(ap)) ~p p.

Proof. Left to reader. O

Definition 4.3. Let C = (X X P, %, ab) be a local conjoint structure with an identity
ab. Y=(X *+ %' o) is said to be the partial operation structure induced by @ if and
only if X* = {x EX| x>y a}, Z' is the restriction of Zy to X*, and o is the restric-
tion of o to X* X X*. If Y is a partial operation structure induced by @ that is also

a positive concatenation structure, then <Y is said to be the positive concatenation
structure induced by C. [

Theorem 4.1. Let C =(X XP, z, ab) be a local conjoint structure and letY = (X +
Z', o) be the partial operation structure induced by C. Then </ is a positive con-
catenation structure. Furthermore, if C has half elements, then Y has half elements.

Proof. We will show that axioms 1-7 of Definition 2.1 hold for /.
1. Since EX is a weak ordering on X, Z' is a weak ordering on X*.

2. Since € is nontrivial, let x be such that xb > ab. By density, let ¢ be such that
xb> at > ab. Then

xb > at ~ &(at)b > ab ,
and thus by the definition of >', x >’ £(at) >y a. Therefore Y is nontrivial.
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3. Suppose that x o' y is defined, x X' w, and yZ' z. Then by Lemma 4.1,
(x o'y)b~x0(y) Zxa(z) z wo(2),

and so w o' z = §(wo(z)) is defined.
(4). (i) Suppose that x o’z and y o’ z are defined. Then

xZ'y iff xZyy iff xo(z) X yo(z)
iff £(xo(2)) Zy £o(z)) iff xo'zZ yo'z
(ii) Suppose that z o’ x and z o’ y are defined. Then
xZ'y iff x EX y iff o(x)Z o) iff zo(x)Z zo(y)
iff  &(zo(x)) ?,X £(zo(y)) iff zdx Zzdy.

Thus Y satisfies monotonicity.
5. Suppose that x >' y. Then x >y v, and thus xb > yb. By density, let ¢ be such

that xb > yt > yb. Then xb> at. Let u = §(at). Then by Lemma 4.1, o(1) ~p ¢, and
sO

x ~ g(xb)>" £(yt) ~ Eyo) ~'y o'u.

Thus Y satisfies restricted solvability.
6. Suppose that x o' y is defined. Then xo(y) > xb, and thus by Lemma 4.1,

x o'y =§xo(y)) >y Exb)~ x ,
and similarly,

Xe'y>yy.

Therefore Y satisfies positivity.
7. Since @ is Archimedean, it follows immediately that Y/ is Archimedean.
Suppose that C has half elements and x is an element of X*. Let w, 1 be such that
wt ~ xb and wb ~ at. From the latter, o(w) ~p t, and so wo(w) ~ xb. Therefore,

w o' w= gwo(w)) ~ Ewh)~' Exb)~ x .
Thus Y has half elements. O

Definition 4.4. Let @ = (X X P, Z, ab) be a local conjoint structure. Then {p, ¥} is
said to be a o-representation for @ if and only if « is a partial binary operation on Re,
¢: X = Re, ¥: P Re, and the following three conditions hold for all x, y in X and
allp,q in P:

(1) (@) © Y(p) = ¥(p) .

(2) p(x) o Y(b) = w(x) .

3)xp Zyq iff xp Zab, yq 2 ab, and ¢(x) o Y(p) = () » ¥(g). O

Theorem 4.2. Let C=(X X P, 2: ab) be a local conjoint structure. Then for some »,
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ihere exists a o-representation for @. Furthermore, for each o, o', ¢, Y, V', if (o, ¥
. . N . & — '
is a o-representation for @ and {p, ') is a o-representation for C, then Y = § and

for all xp Z ab, ¢(x) o ¥(p) = ¢(x) o' V'(p).

Proof. By Lemmna 2.2 and Theorem 4.1, (X, Z'X) has a countable dense subset. Thus
by a well-known theorem of Cantor (see Theorem 2.2 of Krantz et al. {4]), let ¢ be
a function from X into Re such that for eack x, y in X, ¢(x) == ¢(») iff x ?;X Y. For
each r €P, let Y(p) = v(¢(ap)). Let o be the partial binary operation on Re defined
by

res=w iff for some xp 2 ab, r=p(x),

s = Y(p), and w = @(¥(xp)) .
Then for each x, y in X and each p, q in P,

xpZyq iff Exp)Zy E(q)
iff (E(xp)) 2 v(E(va))
iff p(x) o Y(p) 2 w(¥) o Y(q) .

Thus {p, Y ) is a e-representation for @.
Suppose that (g, Y) is a o-representation for @ and that (g, Y') is a o-representa-
tion for C. Let p € P, Then &(ap)b ~ ap, and thus

w(&(ap)) o Y(b) = p(a) © Y(p) ,
v((ap); = ¥(p) .

that is,

Similarly,

o(&ap)) = V'(p) .
Since p is an arbitrary element of P, Y = y'. Now suppose that xq Z ab. Then
o(£(xq)) = 9(x) © Y(q) = p(x) ' ¥'(q) = @(x) o' Y(q) . O

The following definition formulates a sufficient condition for o to be associative.
The proofs of Theorems 4.2 and 4.3 utilize concepts developed in Holman [3].
Theorem 4.3 is similar to theorems of Luce and Tukey [9] and Luce [6], but uses
somewhat different as;umptions; in particular, different solvability conditions are
assumed and Z need not be defined for large elements of X X P, i.e., xy Z ab need
not hold for all xy in X X P.

Definition 4.5. A local conjoint structure s = (X X P, Z, ab) s said to be additive
if and only if #{ is a local conjoint structure and the following two axioms hold:
The Thomsen condition: For each x, y, z in X and each p, ¢, r in P, if xp ~ yq and
yr~ zp, then xr ~ zq.
Unboundedness: For each xp in X X P, there exists yg such that yqg > xp.
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Theorem 4.3. Let ol = (X X P, Z, ab) be an additive local conjoint structure and
Y=(X*, ?.", ') be the positive concatenation structure induced by 2. Then for
eachx,y,zin X*,

(i) if x o'y is defined, then y o' x is defined and x +'y ~' y ' x (commutativity)
and

(ii) if x ¢’ (v o’ 2) is defined, then (x o' y) is defined and x s (3 ¢°2)~' (x s* ¥) o' 2
(associativity).

Proof. (i) Suppose that x ¢’ y is defined. We will show that xo(>’) ~ yo(x) and then
x o'y~ y o' x. Since ao(y) ~ yb and xb ~ ao(x), from the Thomsen condition it
follows that xa(y) ~ yo(x). Thus
x o'y = E(xo(y)) ~' §(vo(x)) =y 1'x.
(ii) Suppose that x o’ (y @’ z) is defined. Since y o z >’ v, x ¢’ y is defined. Since

yo(x)~(x e )b
and
o' 2)b~yo(z),

it follows from the Thomsen condition that

(o' 2) a(x) ~ (x > p) 0(2) .
Since by part (i) of this proof,

o' 2) o(x) ~x0(y o' 2),
it follows that

xo(y o’ 2) ~ (x o' y) 0(2) ,
and thus

x o' (yo' z)=Exo(y »2)~ E(x o y)oz))=(x+ y)+z. O

Theorem 4.4. Let o1 = (X X P, Z, ab) be an additive local conjoint structure. Then
there exist real valued functions ¢ on X and Y on P such thatfor each xp, yq in X X P,
(1) ¢(a) = ¥(b) = 0,
(2)if xp Z yq. then o(x) + Y(p) = p() + Y(9),
and
- Q)ifxp Z ab, rq z ab, and g(x) + Y(p) = o(») + Y(q), then xp z rq.
Furthermore, if o', ' are another pair of real valued functions on X, P respectively
such that (1), (2), and (3) above hold and such that for some u € X*, g(u) = ¢ ().
thenp=y9 and y = {'.

Proof. Existence. Let Y = (X+,Z', 1+*) be the positive concatenation struciure induced
by @. By Theorem 4.3, U is associative. Since by assumption C is unbounded, QU is
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unbounded. Thus Y is an extensive structure, and by Theorem 2.3, let ¢; be an addi-
tive representation for /. Extend ¢; to X as follows: let ¢: X -> Re be such for all

x € X*,p(x) = ¢, (x) and for all x ~y a, p(x) = 0. For each p € P, let Y(p) = ¢(&(ap)).
Suppose that xp 2‘ ¥q. Let z = £(ap) and w = ¥(aq). Then by Lemma 4.1, o(2) ~p
and o(w) ~' q. Thus

x0(z) ~xp < yq ~ yo(w) ,
and therefore,

x o'z = §(x0(z)) ~ £xp) T’ E(vq) ~ Epo(w)) ~' y o'w.
Thus
o(x o' 2) =¢(x) +9(z) = p(x) + v(£(ap)) = ¢(x) + Y(p)

= p(y o' w) = 9(¥) + p(W) = o(¥) + v(((aq)) = 0(¥) + ¥(q) .

Uniqueness. Suppose that ¢, ¥ and ¢', §' are pairs of functions that satisfy (1),
(2), and (3), and that u € A* is such that ¢() = ¢'(«). Then by Theorem 2.3, ¢ = ¢'.
Let 7 be an arbitrary element of P. Then £(ar)b ~ ar. Thus p(&(ar)) + Y(b) = p(a) + Y(7).
Since Y(b) = ¢(a) = 0, p(&(ar)) = Y(r). Similarly, ¢'(&(ar)) = ¥'(r). Since p = ¢' and r
is an arbitrary element of P, ¢ = ¢'. O

For later applications, it is convenient to have a form of additive conjoint struc-
tures that does not assume the existence of identity elements. To this end, a repre-
sentation and uniqueness theorem of Luce and Tukey [9] will be stated. The proof
of this theorem follows from Theorem 4.2.

Definition 4.6. o{= (X X P, Z) is said to be a solvable additive conjoint structure if
and only if Zisa binary relation on X X P and the following six axioms hold for each
x,y in X and each p, q in P:

1. Weak ordering: Z is transitive and connected.

2. Independence: (i) if for some 7, xrZ yr, thea for each s in P, xs z ys; and (ii) if
for scme w, wp z wq then for all z in X, zp z zq.

3. Nontriviality: for some w, z, r ,wy, s, t, wr>> zr and wys > w L.

4. Solvability: given any three of x;, y; in X and py, q; in P, the fourth exists
such that x;py ~y,4,.

5. Density: if xp > yq, then for some s, xp > ys > yq.

6. Thomsen condition: for each z in X and r in P, if xp ~ yq and yr ~ zp then
xr~zq.

7. Archimedear: for each x, xy, x5, ... in X, if xp > xq and x;p ~ x;,, q for each
i€ I*, then for some J, xjp >xp. O

Theorem 4.5. Suppose that (X X P, Z) is a solvable additive conjoint structure. Then
there exist functions ¢ on X and y on P into the reals such that for each xp, yq in
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XXP,
(4.1) xpZyq iff o(x)+ @) e() + (@) .

Furthermore, if ¢’ and ' are functions on X and P, respectively, that satisfy eq. (4.1),
then for some r in Re* and some s, t in Re,

o' =ro+s and Y =ry+1.

5. Distributive structures

Given the concepts of conjoint and extensive structures, a naturai question, one
of considerable importance in physical measurement, is how they relate to one
another. The problem was first discussed axiomatically by Luce [5] (for a more com-
prehensive discussion, see Krantz et al. [4, Chapter 10]) who showed that if (X X P, 2)
is an additive conjoint structure and there are extensive operations on two of the three
sets X, P, and X X P which are related by what he called laws of similitude and/or ex-
change, then the conjoint representations are power functions of the extensive ones.
Later Narens [11] showed, in a special context, that much weaker assumptions are
sufficient for the same conclusion. In brief, only one extensive operation is needed
provided it exhibits a property called distributivity and, surprisingly, it is not neces-
sary to assume the conjoint structure is additive.

Because the results for distributive structures are important for measurement theory
and because proofs of such results may yield insights into new types of measurement
structures, we provide two proofs of the main result. The first assumes strong topo-
logical (Dedekind completeness) and algebraic conditions which permit a transparent
proof using a well-known functional equation. (In section 7 we provide algebraic as-
sumptions that allow measurement structures to be extended to Dedekind complete
ones.) The second proof is similar to that used by Narens [11]; it rests heavily on the
representation and uniqueness theorems for extensive structures.

Definition 5.1. Let 2 be a binary relation on X X P and op a partial operation on P.
(XXP,Z,o p) is a P-distributivé structure if and only if the following four axioms
hold for allx,y € X, p,q,r,s € P:

1. Weak ordering: Z is transitive and connected.

2. Independence: (i) If for some x € X, xpZ xq, then for all y € X, ypZ yaq;
(ii) if for some p EP, xp Eyp, then for all ¢ € P, xq Z yq.

3.4P, EP, op), where EP is as defined in Definition 4.2. is a positive concatenation
structure.

4. Distributivity: If p op q and r ¢ p s are defined, xp ~ yr, and xq ~ ys, then

x(pop q)~ y(rops).
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The structure is solvable * if given any three of x, y € X, p,q € P, the fourth exists
such that xp ~ yq.
There is, of course, an analogous definition for (X X P, E, oy to be X-distributive. [

Definition 5.2. Let (X X P, 2, op) be a solvable P-distributive structure and let py € P.
Define the partial operation oy on X by: for x,y € X, if there exists x) € X, r,sEP
such that xpy ~ xo7, ¥pg ~ X, and r op s is defined, then x oy y is a solution to
(x oy Y)Pg ~ x(r op 5). (Observe that by distributivity this is unique up to ~ and
independent of the choice of x, r, and s.)

For fixed x( € X, py € P, define 7: P~ X as a solution to 7(p)py ~ Xp.

Define I1: X X P-> P as a sclution to xgII(x, p) ~ xp. O

Lemma 5.1. Suppose {X X P, Z, 0 p’ is a solvable P-distributive structure. Then
X =(X, Zy, oy is an extensive structure if (P, Zp, op) is an extensive structure,

Proof, Left to the reader. OJ

Lemma 5.2. Suppose (X X P,Z,0 p! is a solvable P-distributive structure. Then for all
x,yEX, p,q€EP, if pop qisdefined and x oy y is defined, then the right sides of
the following expressions are defined and
@)1 opg)~x (@) o x 7(q),
(i) I1Cx, p op q) ~p 11(x, p) op TI(x, q),
(iii) T1(x o y y, pg) ~p N(x, py) op (¥, py).

Proof. By definition of 7,
xop ~ 7(P)Py and x¢q ~ 7(q)py,
whence by the definition of oy and 7,

7@ op @Iy ~ xo(P 0p q) ~ [1(P) o x T(@)]py-

(i) follows by independence.
By the definition of II,

xp ~ xoll(x,p) and xq ~ xyTI(x, 9).
By distributivity and the definition of II,

xoTl(x, pop q) ~ x(p cp q) ~ x¢ [T(x, p) op N(x, q)] .
(ii) follows by independence.

Let r~p, 1l(x, py) and s ~p II(y, py), then by definition of IT and oy,
MGx oy y, pg)~props. O

x vy .
Each of the two proofs use a weaker form of solvability; they will be stated explicitly below.
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Corollary 5.1. Define » on P by: p o q = [1(p), q]. Then forp,q,r EP,
pe(@opN~p(Peq)op(per).

Proof. Definition of ¢ and part (ii) of Lemma 5.2. O

Theorem 5.1. Suppose (X X P, t op) is a solvable P-distributive structure for which
(P, Zp, op) is an extensive structure. If vp is an additive representation of (P, Zp, op)
and px an additive one of (X, EX’ ox) (see Lemma 5.1), then ¢ xpp is a multiplica-
tive representation of (X X P, 2.

Proof for the case o is closed and pp is onto the positive reals. In this case it is suffi-
cient to postulate solvability for xq and p, only.

Observe that by part (iii) of Lemma 5.2, py = @pll( , pg) is an additive represen-
tation of (X, ZX, ox)
Define G on X X P by

G(x, p) = ppli(x, p) .
G is order preserving since
xpZyq iff  T(x, p)Zp Ny, q)
iff  pli(x, p) 2 ppll(y, @) .
By part (ii) of Lemma 5.2,
G(x, pep q) = G(x, p) + G(x,q) .
Define G’ on Re* X Re* by:

G'(e,B)=G(x, p)

if
a=ypll(x, po) = ‘Px(x) ,
p= ‘PP(P) .

G' is well defined since if & = px(x") and B = pp(p"), then x ~y x" and p ~p p’, whence
xp ~ x'p'. It is defined for all &, > 0 since yp is onto the positive reals.
It follows immediately that

G'(a,B+7)=G'(a, ) + G'(a,7) ,

and as is well known [1], this means there is a positive function g such that

G'(e, B) = g(x)B,

and

and so
G(x, p) = glpx (x)] 0p(p) .
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This implies the Thompsen condition holds in the conjoint structure.

Finally, we show g is the identity function. Let r and s solve xpy ~ xor and
YPg ~ %o, 80 (x oy ¥)pg ~ xo(r op ). Coupling xop ~ 7(p)py with each of these
and using the Thompsen condition,

xp~1)r, yp~1(p)s, (xox »)p~1(@)(rops).
Thus, by part (ii) of Lemma 5.2,
N(x oy y, p) ~p M[7(p), r op 5]
~p N[7(p), ] op [7(p), 5]
~p 1I(x, p) op 1y, p) .
From this
G(x ox y,p) = G(x, p) + G(,p) ,

and the result follows from the same functional equation argument. [

General proof. Here it is sufficient to assume the following solvability condition: for
eachx,y,p, q; (i) if xp z yp then for some w, xw ~ yp; and (ii) if xp z xq then for
some u, up ~ xq.

Let py, g, and 7 in P be fixed and such that pg = q( op 7, and let gp be the
additive representation of (P, Z p, op) for which pp(pg) = 1.

Forwe X,letX,, = {x| x€X and WEX x}. Let %, be the restriction of>'
X,,, and define o, on X, as follows: x o,,, y ~y z if z € X,,, and for some p, q EP
with p, kP p.4q,

Wp ~ Xpg, W4~ YD
and

w(p op q)~zp .
The above form of solvability insures z exists whenever p op q'sp py-

It is easy to verify (X,,,Zy, 0,,) is an extensive structure with a maximal element.
Define ¢y ,, as follows. Tox € X, let

Yx w*) = op(q)

where q is the solution to wg ~ xp. Let Ry ,, be the range of py ,, and Rp that of
pp. We show there is a partial numerical operation e, on Ry ,, X Rp such that
Daoy, 1=10, a=a,

(2)xp >yq iff sz w®) oy 0p(0) 2 0y () 0, 0p(Q).
Suppose

QERX,W’ ﬂGRP, tpx,w(x) =q, SOP(p) = 4.
Let n(xp) solve n(xp)py ~ xp, then let
aey, B=gy X p).
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Note that a = 1 implies x ~x w in which case n(wp)py ~ wp, so ¢ X, wT(WP) = op(p) =
and 1 o =p. Similarly, @ =, 1 = a. The order preserving property follows from
xpZyp iff n(xp)Zy n(yq)
iff vy W 1(xp) 2 ¢y, 1(¥9)

iff lpx' W(X) Ow %Pp(p) 2 ‘px_w()') ®w 'pP(Q) .

Now, gy ,, is an additive representation of (X,,. Zy, o,.) because if wp ~ xpy.
wq ~ ypg, and w(p o ) ~ (x o y)p,, we see

ox,w(X © ¥) = p(p © q) = vp(P) + ¢p(q) = vy ., (x) + 0y . (V).
However, o, is a subset of o y hence by the uniqueness of additive representations

__¥%x
PX.w —¢x(W) |

We use this to show that o, is actually multiplication. Consider any z such that
wtx z and any q such that pyZp g. Let y be such that Ypgy ~ zq; note z?:.x Y.

‘px, w(z) °w ‘pP(q) = SOX. w(y) O ‘pP(pO) = ¢X.w0’)

ox()  vx(2) ¢x0’))

=oxw(?) vx . 0) (smce ox(W)  ox(W) px(2)

=ox,w(@) vy, (") <z vp(pp)]
= vx w@lox 2(2) o, ¢p(9)]
= ‘PX, w(z ) ¢P(q) .

Finally, we show ¢ yyp is order preserving. Suppose x,y € X, p,gE€P. Letw =
max(x, ), and pg be such that py Zp max(p,q) and py ~ ry op 5o for some ry, 5.
By what we have just shown,

xpZyq iff ox ,()p(p) 2 vy () 0p(a)
ox(x) >~px(y)
iff Ww(p)— ) vp(q)
iff ox(x)ep(P) 2 ox(Mep(9). O

It follows immediately from the construction used in the proof of Theorem 5.1
that representations for P-distributive structures have strong uniqueness conditions. .
This is explicitly formulated in the following definition and theorem.
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Definition 5.3. Let D=(XXP, %, o p) be a P-distributive structure for which (P, 2},, op)
is extensive. Then (py, vp, ©) is said to be a distributive representation for D if and
only if the following four conditions hold:
(@) ¢x: X > Re*;
(ii) pp is an additive representation for the extensive structure (P, kp, op);
(iii) o ir fistributive over +, i.e., foreach# s, tin Re*,ifre (s+£),reos,andre t
are defined, thenre (s +£)=(res) +(re f);
(iv) for each x, y in X and each p, g in P, xp? yq iff px(x) o vp(p) and ¢y (¥) @ p(q)
are defined and

ox(x) o vp(p) 2 0x () © vp(q) . O

Theorem 5.2. Suppose that D = (X X P, Z, o0 p! is a P-distributive structure for which
(P, zp, op) is extensive and (py, p, °), Y, ¢p, ©) are distributive representations
Jor D. Then there exist r, s, t € Ret* such that for each xp, yq in X X P,

ex(x) @ vp(p) = rox(x) vp(p) ,

Py (x) = spy(x),
and

op(P) = top(p) .

Proof. Left to reader. O

We now turn to structures in which the operation is on the cartesian product rather

than on one of the components, and we show that it reduces readily to the previous
cases.

Definition 5.4. Let Z be a binary relation and o a partial operation on X X P
(X X P,Z, o) is a distributive structure if and only if

1. It is a positive concatenation structure.

2. It satisfies independence (Axiom 2, Definition 5.1).

3.Forallx,y € X, p, q,r € P, whenever the operations are defined,

(xp) o (xq)~xr iff (yp) o {yq)~yr.
Define op on P by:

popq=r if for some x, hence for any x, (xp) o (xq) ~xr. O

Theorem 5.3. If (X X P,k,, o) is a solvable distributive structure, then (X X P, E, op)
is a soivable P-distributive one; if the former is extensive, then (P, ?., op) is extensive.

Proof. We leave it to the reader to prove that (P, Zp, op) is a positive concatenation
structure.
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To show distributivity, suppose xp ~ x'p and xq ~ x'q’. I p op q is defined, then
by the monotonicity of o,

x(p opq)~ (xp) o (xq)~ (x'P') o (x'a)~ x'(p' op q)
using solvability.
To complete the proof we must show that op is associative when o is. Let

s=(opq)opr and s'=pop(qopr).
Then,

xs~ [x(p op q)] o (xr)~ [(xp) o (xq)] o (x7)
~ (xp) o [(xq) o (xr)] ~ (xp) o [x(q op )] ~xs".
So, by independence s ~p s'. O

Finally, consider a structure (X X P, ) that has at least two of the following three
operations: o on X X P that is distributive, o y on X that is X-distributive, and op on
P that is P-distributive. According to the proof of Theorem 5.3, o induces such opera-
tions on both X and P, so there is no loss in generality in assuming just o y and op.
Assume that the hypotheses of Theorem 5.1 hold for both X and P. Then we know
there exist additive representations of o y and cp, gy and gp, and order preserving
functions Y y and Y p such that both

oxVp and Yypp

preserve the order Z. By the uniqueness part of the additive conjoint representation
(Theorem 4.4),

Uy = aXxpf*,( and Yp= ap«p},/ﬁ.
Thus, the general form of the multiplicative representation must be

X gf
which is the structure of most measurement in classical physics. It is this that makes
the units of all measures expressible as products of powers of a set of basic units of
extensive measures.

Certain important cases are not, however, encompassed by these results. One,

which we treat more fully in the next section, is relativistic velocity. If s, v, and ¢ are
the usual measures of distance, velocity, and time, they relate multiplicatively as

s = vt. But v is not additive over the obvious concatenation o, of moving frames of
reference; in fact,

_u(x) +u)
v(x oy ¥)= T3 v(x)v(y)/u(c)?

where ¢ denotes light. Thus if we let ¥ be the set of ve‘ocities that are less than light,
T the set of times, o the usual concatenation operation on time, and Z the usual
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ordering on distance, then (V X T, E, o) is T-distributive and (V' X T, 2, o) is not
V-distributive.

6. Relativistic velocity

In this section, a simultaneous axiomatization of distance, time, and relativistic
velocity is given. This axiomatization is a modification of Luce and Narens [8], and
T.distributivity plays a major role.

In what follows, V denotes a set of (qualitative) velocities, T a set of (qualitative)
times, and V' X T a set of (qualitative) distances.

Definition 6.1. V =(V' X T, Z, o, oy, o) is said to be a velocity structure if and only
if 0, o, and o7 are closed operations on VX T, V, and T respectively, and the fol-
lowing three conditions hold:

1.AVXT, Z op?is a solvable T-distributive structure for which (7, kT, or}is an
extensive structure.

2.(V'XT, Z, o) is an extensive structure.
3.Foreachvin Vandeacht, ¢'in T,

u(top ty~ @t o (vt'). O

Convention. Throughout the rest of this section let W= (V' X T,Z, o, o y o bea
velocity structure and ?V andET be the weak orderings induced by ZonVand T
respectively. By Theorem 5.1 let ¢}, and 7 be functions on V and T respectively
such that ¢ is an additive representation for (T, ?‘-'T’ o) and for each vz, o't in

VXT,vtZv't iff oy or(t) 2 () por(t). Let v = 9y * or.
Lemma 6.1. g is an additive representation for (V X T, 2, o).

Proof. Suppose that vz, v, ¢, are arbitrary elements of V' X T. By Theorem 5.1,
vtZ vty iff @y er(t) 2 ep(v))er(ty) .
Let £’ be such that v ¢; ~vr’. Then
WD) o vyt~ @) o )Y~uv(tort’,
and thus
e((ve) o (v 1)) =o((t o )= oy)or(tor t")
= op(v) (pr(1) + o7(1)) = 0y ) or(8) + ¢y V) 07(1)
=p(t) + p(t') = o) + (v £;). O

Definition 6.2. Let ¢ be an element of V. For all vin ¥ and ¢ in T, define 7,.(v, £) to
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be a solution to
6.1) ct (v, )~ vt.

If ¢ is interpreted as light, then 7,.(v, f) is the time required for light to transverse the
distance that the velocity v does in time ¢.] For all w,vin V and # in T, define 7(x, v, ¢)
to be a solution to

(6.2) oy vyr(u,v, )~ (ur) o (vr).

[7(u,v, £) is the time it takes the velocity u o v to travel the distance which is the
concatenation of the distance that u travels in time ¢ with the distance that v travels
in time ¢.] O

Lemma 6.2. Forallc,u,vin Vand tin T,
Te(ut, T, ) ~7 7.(v, T (1, 1)) .
Proof. Since

ey () or() = oy () or(r(u, )
and

oy(©)or(T (v, 1) = oy V)er (D) ,
it follows that

ey W) op(1.(v, 1)) = oy (V) o7 (u, 1)) ,
and thus

ut (v, ) ~vur(u, t) .

Therefore
eto(u, 7.(v, 1) ~ ur (v, 1)~ vr (U, 1)~ 1., 7.(%, 1)). O

Definition 6.3. <V is said to be classical if and only if foreach w,vin Vand rin T,
T(u, v, t)~7 L.

V is said to be relativistic with respect to ¢ in V, if and only if for all w, vin V and
tinT,

(6.3) (WU, v, )~ 7., 7.(v, ) op t. U
The following thecrem is immediate:

Theorem 6.1. <V is classical if and only if for each u,vinV,

oy oy v)=gp) +ey©).

Theorem 6.2. For c in V, <V is relativistic with respect to c if and only if for all u, v
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inV,

W) +opQ
(6.4) SOV(u OV v):: ‘pV u vV )

L+o,@)ey@ey(c)

Proof. Eq. (6.1) is equivalent to
vy () or(c(v; D) = wp)er(D) ,

and eq. (6.2) to
oy(u oy vyorlitu,v, 1] = pluf) o (vl
= p(ut) + p(vt)
=y or(t) +op)op(h) .
Thus
lop() + op ) op(2)
14 V(“ opv)=

‘pT [T(ur v, t)]
But eq. (6.3) is equivalent to

‘pT [T(u’ Y, t)] = ‘pT [TC (u’ Tc(va t)) or t]
= ‘PT [Tc(u’ Tc(v: t))] + SaT(t)

) py@)orlr-(v, 0]

*ﬁy(c) ¥ ‘pT(t)
(@) oy ) or(?)
- wylu) oy vz‘PT +‘PT(t) ,
‘PV(C)

and thus eq. (6.4) is equivalent to eq. (6.3). O

Let <V be relativistic. Suppose that ¥, and Y are functions from V and T
respectively into Re*, Y is additive over oy (ie., forall ¢, ' in T, ¥p(t o t') =
Yr(t) + Y7(1), and o is such that for all x, »,zinRe* and allor, o't in VX T,

xe(ytz)=(xoyp)t(xez),
aind

vt V't U)o YD) 2P ') o Yp(r).
Then by Theorem 5.2, there exists r in Re* such that ¥}, = rp},. Thus for each u, v
inV,
Yy +yp)

Ypuopv)= )
Y U @y W ()
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7. Dedekind complete structures

Quite often measurement theorists include topological assumptions in their axio-
matizations of empirical settings. In these axiomatizations, the assumptions can be
divided into two types: (1) relational (algebraic, first-order) axioms and (2) topologi-
cal axioms. The topological axioms are usually equivalent to Dedekind completeness.
Several other measurement theorists have insisted on only using algebraic assumptions.
These axiomatizations can also be divided into two types of assumptions: (1) rela-
tional (algebraic, first-order) axioms and (2) Archimedean axioms. These Archimedean
axioms are usually similar to our formulation of the notion (Definitions 2.1 and 4.1)
but may vary in their formulation from situation to situation. (For a discussion of
what an “Archimedean axiom” is see Narens [11].) Topological axiomatizations
usually yield briefer and more transparent proofs than their algebraic counterparts,
which is only natural since topological axioms are more powerful assumptions than
are Archimedean axioms: in all known relevant cases, the topolc: “~al axioms imply
the corresponding Archimedean axioms, but the Archimedean axic *s do not imply
the topological axioms. 1t should also be noted that the topological axiomatizations
usually assume the relevant operations are closed. In this case, it is often quite easy
to reformulate the measurement situation as a problem in functional equations and
bring the vast functional equation literature (e.g., Aczél [1]) to bear on the produc-
tion of the appropriate representation. (This is the approach of Pfangazl [13] and
others.) Because of various measurement considerations, several measurement tl.eorists
go to great lengths to avoid the assumption that arbitrary concatenations can be
formed. It should also be noted a closed operation together with Dedekind complete-
ness allow all sorts of strong solvability conditions to be derived.

Since measurement deals with the assignment of numerical quantities to empiiical
objects, philosophical reservations about the nature of the characterization o the em-
pirical structure are in order. Although it would be nice to avoid the use of infinity
entirely in measurement theory, it is usually a necessary assumption for uniqueness
of representations. However, algebraic axiomatizations are satisfied by denumerable
models whereas topological axiomatizations require models of the cardinality of the
continuum. Philosophically, one might accept a denumerable model as an idealiza-
tion of a large finite model; it is much harder to accept a nondenumerable model as
an idealization of any finite process.

The Archimedean and topological assumptions are used in part to guarantee the
existence of numerical representations. However, in some measurement situations,
Archimedean and therefore topological axioms seem to be inappropriate. The tech-
niques developed in algebraic approaches often allow these situations to be dzalt with
by giving representations into some richer structure (e.g., the nonstandard reals in
Narens [11,12] and vector space-like lexicographic representation in Narens [11]).
We are not aware of any comparable results for topological axioms.

Finally, the algebraic techniques that apply to finite empirical structures can often
be used to generate representations for infinite structures thus providing a link be-
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tween the finite and the infinite. Narens [12] has exploited this link to show that in
certain cases the unique numerical representation of an infinite structure is approxi-
mated by selecting any of the comparatively nonunique numerical representations
for each of a sequence of increasingly large, finite substructures.

For a strongly expressed view supporting the introduction of topological axioms
into measurement theory, see Ramsey [14].

In this section we will investigate conditions under which a positive concatenation
structure can be Dedekind completed. We will basically follow Dedekind’s procedure
for completing the reals from the rationals. But since we assume neither a closed nor
associative operation, the proofs are more subtle. In lieu of closure, we introduce a
property called tightness, which is satisfied by a closed operation but is much weaker.
And as a qualitative condition corresponding to continuity of the operation we intro-
duce interval solvability. A tight, Dedekind complete, positive concatenation structure
that satisfies interval solvability has half elements (Lemma 7.2) and satisfies a new
relational condition called regularity (Theorem 7.3). The major significance of the
latter two properties is that in a positive concatenation structure they are sufficient
to construct a Dedekind completion (Theorem 7.4). We do not know, however, if
tightness of the structure implies tightness of the completion, but closedness of the
operation is transmitted. Thus, for a closed structure satisfying interval solvability,
regularity is necessary and sufficient for the existence of a Dedekind completion. So,
in most topological measurement situations, the topological axioms are replaceable
by the relational axioms of interval solvability and regularity plus an Archimedean
axiom. Finally, the section ends with several unresolved problems.

Definition 7.1. A positive concatenation structure (X, Z‘, o) satisfics interval solvability
if and only if for all x, y, z in X, if x > y > z, then there exist «, v in X such that u o z,
zovaredefinedandx > uoz,zov >y 0O

Theorem 7.1. Suppose X =(X, E o) is a Dedekind complete, positive concatenation
structure without a maximal element. Then there exists a monotonic o-representa-
tion p of X that is onto Re*. Interval solvability holds if » is continuous.

Proof. Since X is unbounded from both above and below (Lemma 2.1), has countable
dense subset (Lemma 2.2), and is Dedekind complete, by a well known theorem of set
theory, there is an order homomorphism of (X, Z) onto (Re*, ). For each r € Re*,
let ¢~ 1(r) be an element x in X such that p(x) = r. Define the partial binary operation
o on Re* as follows: for each r, s in Re*, r o 5 is defined if and only if ¢~ 1(#) © ¢~ 1(s)
is defined, and if 7 ¢ s is defined then

res=ge (oo s)).

Then it is easy to show that ¢ is a »-representation for X .
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Suppose that 7> r' and r o s is defined. Then by the monotonicity of .
r>r iff o> l(r)
iff o7l o ®>¢7 1) 076
iff oo™ o e N> ele™ () o v (s
iff res>ros.

Thus e is monotonic in the first argument.

Suppose interval solvability holds and - is not continuous in the first argument.
Then there is a gap suci that for some s, ¢, ), with 25 <1,, and for all r for which
r o s is defined, cither r o s <t or 7 « s 2 1, and neither set is empty. By positivity.
t; > tg > s, and so by interval solvability there is an r such that 1; >r« s> 1,
which is a contradiction.

Conversely, suppose o is continuous in the first argument and x > y > z. By iight-
ness, there exists # such that « o z > x, so by local definability, for all positive reals
a < p(u), a o ¢(2) exists. By continuity, for some a, p(x) > a ¢ ¢(z) > ¢(¥), and since
¢ is onto Re*, interval solvability holds on the left.

The proof for the second argument is similar. O

Definition 7.2. Let X =(X,Z, >)bea positive concatenation structure. X is said to
be tight if and only if for all x, ¥ in X if x > v, then there exist &, v in X such that
uoyandyovaredefinedandu -y, yov>x. O

It should be noted that ea ! positive concatenation structure with a closed opera-
tion is tight.

Lemma 7.1. Let X=(X,Z, ) be a tight, Dedekind complete, positive concatenation
structure, x, z elements of X, and Y a nonempty subset of X with l.u.b. ¥ and such
that foryinY,z>x o y(z> y o x). Then x o y (¥ o x) is defined.

Proof. If ¥ is in Y, the lemma is immediate. So, assume j is not in Y. By positivity,
z > x. By tightness, there is v such that x o v exists and x o v > z. Suppose ¥ > v,
then there exists ¥ in Y such that § >y > v, whence z > x o y > x . v, which is
impossible. Thus, v z 7, whence by local definabili.y, x - y exists. [J

Lemma 7.2. Suppose X = (X, 7. Yis a tight, Dedekind complete, positive concatena-
tion structure that satisfies interval solvability. Then X has half elements.

Proof. We first note tightness implies there is no maximal element.

Next, we show:

(i)if x >y © v, then there exists z in X such thatz >yand x> > z.Letghbea
continuous and monotonic --representation onto Re* and let r = ¢(x) and s = ¢()).
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Then
r=e(x)>eoy) =vlp 1) op i) =s0s.

Choose € > 0 so that r — s @ s > €. By continuity of the first argument, select u > s
so that u o s— 5 @ s < €/2. By continuity of the second argument, select v > s so that
uov—uo s<ef2. Let f be the smaller of « and v. Then

tot—sosSuov—sos
=(uov-uos)t(ues—sos)
<e+el2<r-sos.

Thusr>tot. Letz=¢ !1(f). Thenx >z o z.

A similar proof establishes that

(ii) if y o y > x, then there exists z in X such that y> zand z 0 z > x.

For x in X, define Y, = {y | x?y oy}. By Lemma 2.1, Y, # @ and by positivity
it is bounded by x. Thus 8(x) = a L.u.b. Y, exists by Dedekind completeness. By Lem-
ma 7.1, 6(x) o 8(x) exists. Suppose x > 0(x) o 6(x). By part (i) there exists z > 6(x)
and x >z 0 z.Soz isin Yy, and so 8(x) is not a Lu.b. Y, contrary to choice. Simi-

larly, part (ii) renders 6(x) o 6(x) > x impossible. Since < is a weak order, x ~ 8(x) o
f(x). O

Theorem 7.2. Suppose X is a tight, Dedekind complete, positive concatenation struc-
ture. If ¢ and \ are two continuous and monotonic o-representations that are onto
Re* and, for some x in X, Y(x) = (x), then Y = .

Proof. Lemma 7.2 and Theorem 2.2. [

Definition 7.3. A positive concatenation structure (X, E, o) satisfies interval solvability

if and only if for all x, y, z in X, if x >y > z, then there exist u, v in X such that u o z,
zovaredefinedandx >uoz,zov>y 0O

Definition 7.4. A positive concatenation structure (X, Z’, c) satisfies regularity if and
only if for all x, y, z in X for which x > y and x o z is defined, there exists vin X
such that for all v in X, if u ?Jz, thenx ou >y o (u o v).

Theorem 7.3. A4 Dedekind complete, positive concatenation structure that satisfies
interval solvability also satisfies regularity.

Proof. To establish regul ‘rity, consider x > y and z for which x o z is defined.
Foru=z let

Vy={wlxou>yo(ucw)}.



L. Narens, R.D. Luce | The algebra of measurement 227
First, ¥, # @. For by monotonicity and local definability, x o  exists and x « z 2
X o u >y o u. By positivity and interval solvability, there is p in X such that
Xou>yop>you.
By monotonicity and restricted solvability, there is w such that p > u o w, whence
Xou>yop>yov(uow),

and so V,, # 0.

Since foru X z, V,, is bounded by x ¢ z, by Dedekind completeness V,, has a least
upper bound. Let v(u) be one. Next we show that

xou~yo [uovw)],

where by Lemma 7.1 y o [u o v(u)] is defined. We consider two cases.
Case 1. xou> yo [uovu)].
By positivity and interval solvability, let g be such that

xou>yoq>yo [uovu)] .
Then g > u o v(u) and thus, by interval solvabilitv, there is r such that
q>uor>uouvu).

Then r > v(u) and x o u> y o (u o r), which contradicts that v(u) is a Lu.b. of V.
Case 2. Suppose that

yoluov)]> xou.
Since x o u > y o u, by interval solvability there is g such that
yo [uovu)]> yoq>xou.

By monotonicity # o v(u) > g, and since x >y, ¢ > u. Thus by interval solvability
let r be such that

uocvu)>uzr>q.
Then
yoluov@)l>yoor>xou.

Thus v(u) > r. Since v(u) is a L.u.b. of V,,, we conclude that for some vin V,,,
yo(ovy>xou,

which is contrary to the definition of V,,.
Since these two cases are impossible and Z is a weak ordering, it follows that for
eachu Xz,

xou~yo [uovu)] .
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Now if for some v in X, v S v(u) for all u= z, then regularity holds. Thus we need
only show that the following is impossible: for each p in X there exists u <zsuch
that v(u) < p. Assume on the contrary that the last statement is true. By Lemma 2.1
we can find a sequence w; such that w; <zand v(w;) becomes arbitrarily small for
all sufficiently large i. If w; also becomes arbitrarily small for all sufficiently large i,
then j can be found so that

x>y o [wovw)],

and this is impossible. Thus there exists g in X such that w; z q for infinitely many i
Therefore lim sup w; and lim sup[w; o v(w;)] exist. Since v(w;) becomes arbitrarily
small for sufficiently large i,

lim sup w; ~ lim sup [w; o v(w;)] .
Let w = lim sup w;. Since
xow;~yo [wouw)]
it follows that
x o w~ lim sup(x o wy) ~ lim sup{y o [w; o v(w;)] }
~limsup(yow;))~yow.

By monotonicity, x ~ y, and this is impossible. [

Theorem 7.4. Suppose A = (X, \C, o) Is a positive concatenation structure that satis-
fies interval solvability and regularity. Then there exists a structure A= (X, zZ ,0)
and a subset X* of X such that

(i) X is a Dedekind complete, positive concatenation structure and Z is a linear
ordering;
(i) X* is an order dense subset of X;
(iii) X is homomorphic to the restriction of X to X*;,
(iv) if X has no maximal element, X has no maximal element,
(v) if o is a closed operation, o is a closed operation.

Proof. Let X consist of all subsets Y of X for which the following three conditions
hold:

1. Y and X - Y are nonempty.
2.Forx,yinY,ifxZyandxisin Y, then y isin Y.
3. Y does not have a maximal element.

Let X* consist of all sets of the form: for x in X,

x={ylyinXandx>yp}.
Note that X* C X.
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Define Z on X by: foreach Yand Z in X
YZZ iff Y2Z.

Define o on X by: for each Y and Z in X, Y o Z is defined if there exist #,vin X
such that u is not in Y, v is not in Z, and u o v is defined. In this case

YoZ= {x|xin X and there exist y in ¥, z in Z such that y c z > x} .

We break the proof up into a series of lemmas. The hypothesis in each case is that
of the theorem; however, in some cases weaker hypotheses would do.

Lemma 7.3. (i) 2 is a linear ordering of X.
(ii)ny iffx~y.
(iii) For Y, Zin X, if Y > Z, then there exist y, zin Y — Z such thaty >z > Z.
(iv) X* is order dense in X.
(V) (X, %) is Dedekind complete.

Proof. (i) Z is transitive and asymmetric because = is. Suppose it is not connected.
Then there exist y in Y—Z and z in Z— Y. Without loss of generality, suppose y Z 2.
Then by definition of X, z is in Y, which is impossible.
({)xZyiff x2yiff x2y.
(iii) Select x, y in Y — Z with x > y. They exist because Y > Z and Y has no
maximal element. Thusx Dy D Z, andsox >y > Z.
;iv) Suppose Y > Z. By part (iii), there exist y, z in Y such thaty > z > Z. Clearly,
YZy.
(v) Let a be a nonempty, bounded subset of 9.
Define

Y,={x|xinY forsome Yina}.

Y, is in X because:

1. Y, #@since a# 0; X — Y # 0 since a is bounded.

2. Suppose x is in Y, and x Ey. Let x be in Y of a. Then x zy implies 1 in Y, so
yisinY,.

3. Suppose x is a maximal element in Y. Since x is in some Y of a, x is also a
maximal element of Y, contrary to Y in X.

By choice, Y, is a bound on a since each Y of ais a subset of Y. We show it is a
least upper bound. Suppose on the contrary, there is a bound Z of a for which

Y, OZ. Lletxbein Y, - Z, so there exists Y in a with x € Y, whence Y O Z and so
Z is not a bound.

Lemma 7.4. 0 is a partial operation for which local definability holds.

Proof. To show 0 is a partial operation, we must show that when Y 0 Z is defined,
YoZisin X.
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1.X - Y 0Z +# () because when Y 0 Z is defined it is bounded by uov. YOZ#Q
since the existence of u o v implies by local definability that y o z is defined for y in
Y, zin Z. So by Lemma 2.1, thereisw<y o z.

2. Suppose wisin Yo Z and w Z u. There exist yinY,zinZ such thaty o z >
wZu, souisin YoZ.

3. Suppose w in Y 0 Z is a maximal element. There are y in Y and z in Z such that
y o z > w. By restricted solvability, there is p in X such that y o 2 >w o p, and so
wo pisin Y 0 Z. Since by positivity, w o p >w, w is not maximal.

To show local definability, suppose Y 0 Z is defined, YZ V,and Z Z W. Since
Z 2 W, the bounds u, v that insure Y 0 Z is defined, also insure Y o W is defined. And

Yo W= {x|xin X and there exist y in Y, w in W such that y o w> x}
C {x|xin X and there exist y in Y, z in Z such that y o 2 >x}
=YolZ.

Similarly, Vo WE Yo W. Thus, Vo WC Yo Z. O
The following is the only place in the proof that regularity is used.

Lemma 7.5. The following two statements are true for each Y, Z, W in X:
() YOWZZoWiff YZZand Y oW, Z oW are defined.
(i)yWoYZWoZiff YZZand Wo Y, Wo Z are defined.

Proof. If Y Z Z and Y o W, Z o W are defined, then it immediately follows from the
definition of o that Y o WE,' Z o W. Conversely, suppose that Y o WZZo W, then
we show Y Z Z by contradiction. Suppose that Z > Y. By Lemma 7.3(iii) let x, y
be elements of Z such that x >y > Y. Then

ZZx>y >V,
and thus

ZowZxoWZyoWZYoW,

Since by assumption Y o WZZo W, it follows that x o W=y o W. By Lemma 2.2,
let w; be a sequence of elements of W such that w;,, > w; and for each w in W there
exists / such that w; > w. Since x 0 W=y 0 W, a subsequence u; of the sequence w;
can be found so that

(7.1) You >xou.

Since Wis in X, let ¢ be a bound of W, i.e., t > W. Since x >y, by regularity there
exists v such that for all positive integers i,

(7.2) uou;>yo (u0v).
Now for some positive integer j

(7.3) Uov > Uiy »
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for if not, then
t>u, Zuyocvu,

t>u3>u20v>v@ v=2v,
t>uy>uyov>(W)ouv=3v,
etc.,

and this contradicts the Archimedean assumption. Combining egs. (7.1), (7.2) and
(7.3), for some k

Yoy Fxou >yo(u,-v)>yo Uy s
and this is a contradiction. O

Fammmn TL Tot Voand 7 bha 500 W
EACIIRIENGR 7 oWe &sCiE 1 UIU & UC 18 A

(i) If Yo Zisdefined, YoZ > Y,Z.
(ii) There exists n in I'* such that either nZ is not defined or nZ Z Y.

Proof. (i) By Lemma 7.3(v) Y has a least upper bound ¥ in X. If  is in ¥, then we
show there is an x in Y such that x £ ¥. For suppose y > x for all x in Y, then
Y >yZ Y,and ¥ is not a least upper bound of Y. For z in Z and this x and y, we
havex oz >xZy,whence Yo Z 2 Y. Thus, Y 0 ZZ ¥ > Y. The other case is
similar.

(ii) Observe that if Z 0 Z is defined, there exist , v such that u o v is defined,
u,v > z for z in Z. Thus by local definability, z o z is defined. By induction, if nZ
is defined, so is nz for z in Z. Thus, a failure of the Archimedean axiom in X implies
a failure in X.

The following twe lemmas make use of interval solvability.

Lemma 7.7. Let Yand Z be in X. If Y > Z, there exists Vin X such that Y >Zo V.

Proof. By Lemma 7.3(iii) there exist &, win Y such that YZu>w>Z. By
restricted solvability, there exists p such that u > w o p. Define

V={vip>vandforsomezinZ, u>zcv}.

First, we show V is in X. By restricted solvability, V' # @ and X - V # ¢ because V'
is bounded by p. lfvisin Vand v Z s, then s is in ¥ by the monotonicity of -.
Suppose & in ¥ is maximal, Then for some zinZ,u >w - p >z > 0 > z. By interval
solvability, there isvsuch thatu >w o p>zov>z 0. Thenvisin Vandv >0,
contrary to assumption.

Z o V is defined since w o p is defined and w >z forzinZ and p>v forvin V:

ZoV={wlzinZandvinVandu>z-v>w}Cu€Y.
Thus, YZZoV.O

Lemma78.z~xcoyifandonly ifz=x0y.
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Proof. We begin by proving that if x o y > z, then there exist &, v in X such that x > u,
y>v,anduov >z

(1) If x >z, by Lemma 2.1 there is u such that x Z u Z z and there is v such that
y >v. Thereforex oy > uov SuZz.

(2) If y > z, the argument is similar.

) Ifz Zx, y, thensincex oy >z z x, interval solvability implies there is v such
that x o y > x o v>> z. By monotonicity, y > v. Applying interval solvability to
Xovu >zZy>v,thereisusuch thatx ov >uov >z.

Now, suppose z ~ x o . Since x is not in x and y is not in y, this implies x 0 y is
defined. Clearly,

z={w|xoy=z>w}
DQ{w|x' isinx,y isiny,andx o y' > w}
=xo0y.

Suppose w is in z, i.e., w<x o y. By what was shown above, there exist u < x, v <y
such that w <u o v. Thus,wisinxoy.Soz=xo0y.

Conversely, suppose Z = x 0 y. Suppose x o y > z. Then by the above there exist
u<x,v<yanduov>zs0Xx0yDz, contrary to assumption. If z> x o y, then
by Lemma 2.2 there exists u with z > u > x o y. So u is in z but not in x o y, contrary
to assumption. Soz~xoy. O

This concludes the proof of parts (i), (ii), and (iii) of Theorem 7.4. Part (iv) follows
immediately from (ii) and (iii). Part (v) is immediate.

There are several unresolved problems concerning the conditions used for the Dede-
kind completion of a positive concatenation structure. Perhaps the most important
general problem is to find methods of imbedding positive concatenation structures
into ones with closed operations. (Luce and Marley [7] have done this for the asso-
ciative case.) The specific instance of this problem that is most important for meas-
urement theory is: For each positive concatenation structure that is tight and satis-
fies interval solvability and regularity, does there exist a positive concatenation ex-
tension with a closed operation that satisfies interval solvability and regularity? We
have not worked out all of the logical connections between half elements, tightness,
interval solvability, and regularity. It is easy to show that the axioms for positive
concatenation structure with a closed operation do not imply half elements. (Take
(X, 2, +) where X is the closure of the positive rationals and +/2 with respect to +.)
However, other implications seem more difficult. For example, if P stands for the
axioms of a positive concatenation structure with a closed operation, does ? and
interval solvability imply regularity ? Does 2 and half elements imply interval solva-
bility ?
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